
Nonstandard Ultra-logic-systems

Applied to the GGU-model.

Robert A. Herrmann*

30 AUG 2013. Last revision 25 FEB 2018

Abstract: This article develops and employs modern methods for mathemat-

ical modeling. In particular, the methods of nonstandard analysis are ap-

plied to general language logic-systems. This allows the operators for the

only known mathematical cosmogony, the General Grand Unification Model

(GGU-model), to more clearly exhibit their hyper-logical properties. All of the

GGU-model entities and processes are predicted from observable entities and

processes employed to construct physical entities. It is shown that, for each of

the four cases for GGU-model interval construction and the four types of in-

struction paradigms Iq, there exists an ultra-word-like Xq
x such that when the

hyper-algorithm ∗A′ is applied to ( ∗Sq, {Xq
x}) an ultra-logic-system ∗Λq(x) is

hyper-deduced. Application of the hyper-algorithm ∗A to ( ∗Λq(x), {y}) yields

a hyperfinite instruction paradigm Iq
x that contains Iq. The Iq

x is *-deduced

in the required ≤ ∗Iq
order. It is shown how a set of instruction paradigms

{I} leads to the Patton and Wheeler required participator universe. The set

of all ultra-propertons is defined and its properties examined. In this version,

the set of all propertons that is sufficient for universe construction is properly

established. Further, the GGU-model schemes are presented in diagram form.

A refinement is introduced that leads, when applied, to the individual develop-

ment of each universe-wide frozen-frame. An operator is shown to exist, which,

via a substratum medium and processes, changes *instruction-information into

a substratum info-field. From these, physical and physical-like systems are pro-

duced.

1. Logic-System Generation for Instructions

As is customary, the nonstandard model ∗M as used in all of the articles for The

General Grand Unification Model (GGU-model) is a saturated enlargement. In this pa-

per, q = 1, 2, 3, 4. These numbers denote the four primitive-time intervals (Herrmann,

2006) employed for the GGU-model. The ultraword approach to generate a universe

is replaced with an ultra-logic-system. As in Herrmann (2013b), this is a hyperfinite

logic-system that, after application of the extended logic-system algorithm, generates

*Professor of Mathematics (Ret.), United States Naval Academy, Annapolis, MD,

U.S.A. vixra.org/abs/1308.0125. drrahgid@hotmail.com

1



each member of the hyperfinite developmental paradigm dq
x in the proper ≤d

q
x

order

such that dq ⊂ dq
x ⊂ ∗dq, where q = 1, 2, 3, 4 and x = λ, νλ, µλ, νγλ, respectively. Fi-

nally, the term “subparticle” was used previously. To prevent incorrect mental images

as to models for subparticles, the term “properton” replaces the term “subparticle.”

Without visualizing, a properton is an entity characterized only by a list of properties.

The primitive entity, which yields physical reality for any GGU-model generated

universe, is a collection of ultra-propertons. Their properties are neither based upon

the particle physics of today nor any corresponding theory such as quantum theory.

Although not originally presented in this manner, all of the GGU-model entities and

processes are actually predicted from observable entities and processes employed to

construct physical entities (Herrmann 2013a). They can be considered as existing in

a background universe or substratum world. This world can be considered as a

physical-like world, where the rules that govern universe formation are distinct from

those processes and rules that govern the development of any physical universe. They

are simple rules that refer mostly to counting. This substratum world is also interpreted

philosophically in other ways.

If necessary for a specific physical theory, any continuity requirement is satisfied

by the properton field (Herrmann, 1983, 1989). For our universe, a collection of proper-

tons has been shown to be closely associated with relativistic effects (Herrmann, 2003).

No other known primitive entities, such as strings, will have any affect upon the appli-

cation of propertons as the primitive entities that generate a universe. The processes

used to obtain particles and all other physical entities from ultra-propertons need not

correspond to the rules of quantum field theory or any additional rules like how quarks

combine to form particles.

Quantum field theory contains descriptions (rules or instructions) that produce

particles from immaterial fields. Such fields are quantum mechanical systems and,

when represented, have various degrees of freedom. These are but parameters which

contribute to the overall state of the system. For various particles, parameters for

physical measures, states or other descriptive modes are the characterizing features of

propertons. As an example, the physical appearance and disappearance of particles

are trivial applications of properton processes. For quantum field theory, one has the

“creation” and “annihilation” operators that mathematically yield the same results

obtained via properton processes.

For the GGU-model, quantum theory does not produce steps in a development

since the method of production must be universe and physical law independent. For

our universe, the development “satisfies” the predictions of verified physical laws and

theories.
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The GGU-model can be based upon observable human behavior and the mathe-

matics predicts, for our universe, behavior that satisfies the behavior predicted by ver-

ified physical laws and theories. The GGU-model satisfies all the requirements stated

by Patton and Wheeler (1975). There is a vast amount of evidence for the predicted

GGU-model processes. Whether such processes exist in some sort of reality is a philo-

sophic choice. One can make this choice based upon various factors. One can choose

to accept properton existence based upon the same philosophy expressed by those who

accept that entities postulated in quantum field and particle theory exist.

The concept of instructions or rules is generalized to instructions that yield a

physical reality from combinations of propertons. They are substratum laws. So as

not to confuse these with physical laws, they are called instructions. Further, in what

follows, the events that correspond to each fq(i, j), as completely defined in Section

2, are denoted by Eq(i, j). This does not mean that the rules used in quantum theory

(QT) actually yield each Eq(i, j). The GGU-model rules are termed as “instruction-

entities.” As mentioned, what this signifies is that the QT rules are verified via the

production of event sequences, which yield our universe.

Physical laws and theories are verified when each fq(i, j) is realized and they allow

us to predict what behavior occurred in or will occur within other realized fq(p, k).

Adjacent Eq(i, j) satisfy the “best possible unification,”
∨

w H, for the collection H

of all verified physical laws and theories (Herrmann, (2004, Corollary 2.10.1; 2006a,

Theorem 2.2)). For the GGU-model, the “instructions” are rather simple ones that lead

to all the characteristics that allow one to identify any material entity for any of the

presently known cosmologies. A standard properton is modeled by a finite collection

of numerical or coded descriptive physical characteristics. These characteristics are

represented by coordinates within n-tuples. Other identifiers can also be included as

specific coordinates.

What comes next is different than applying the GGU-model methods to the gen-

eral notion of collections of descriptions taken from a “language” W′ and where the

“general paradigm” approach investigates the composition of the words themselves.

For propertons, the notion of the extended (general) language, in this case informal, is

used with the appropriate cardinality (Mendelson, 1987). The GGU-model is just that

a mathematical model, where the basic approach is to correspond the words or *words

to entities within the substratum.

As previously done in Herrmann (1979-1993) section 9.3 on general paradigms,

we often use symbols, denoted by a prime, in the extended alphabet to specify as

constants the values for specific “variables” and other symbolic objects. Let W′ be

the set of informal words as constructed by the Markov join operator, not specifically
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denoted, as in Herrmann (1979-1993). Throughout mathematical logic, at least, the

completed set of natural numbers is employed. A completed set of this cardinality

can be mentally imaged (Herrmann, 2013C). Potentially infinite portions of the mental

scheme are used as representions for the natural numbers.

Although within a finite environment only finitely many symbols are available,

conceptually, for such representations, this can be extended, at last, to denumerably

many natural numbers. Thus, this basic assumption, as applied within mathematical

logic, holds conceptional. The (informal) set W′ is assumed to contain notation for

denumerable many natural or rational numbers. For some aspects of mathematical

logic, there are those who further extend this to the sets of greater cardinality.

Robinson (1963, p. 90) is the first to use a standard set of individuals U in the

formal standard model in the following manner. He states, “[N]ow suppose that certain

subsets of U are regarded as the constituents of a language of the first order predicate

calculus.” Then assuming the set U contains such language elements, he states that

having such “individuals in a certain domain is entirely in keeping with the axiomatic

approach to the syntax of a formal language.” He differentiates between members of the

formal language by simply stating that they are individuals and are different relative to

all similar symbols used for other purposes. Further, Robinson assumes that there are

subsets of U that comprise the “variables, connectives, well-formed-formula, sentences,

etc.” Robinson uses the same symbolic forms for the informal and formal structure.

As pointed out by Mendelson (1987, p. 28), mathematical logic modeling only

requires members of a language to be “arbitrary objects rather than just linguistic

objects.” Thus, the Robinson approach can be viewed on a technical level as Mendelson

states. On one hand, W′ are actual physical entities that satisfy various relations

and, on the other hand, they are merely arbitrary “abstract” objects, such as sets or

individuals, that satisfy corresponding abstract relations. In previous books and papers,

these notions were differentiated by means of the bijection i that is still employed.

The mathematical terminology employed referred to W′ and all necessary relations

using what is usually termed as “informal” set theory as “informal” relations. Then

objects in a more complex structure based only upon the natural numbers but directly

corresponding to members of W′ and how they are formed, yields “formal” objects.

However, in later research, the Robinson idea of employing W′ is added to the formal

mix. This has created some terminology confusion.

As originally presented in Herrmann (1979-1993), the collection of all W′ is coded

via a bijection i:W′ → IN that codes each member of the “informal” or “intuitive”

words W′. (In Herrmann (1979-1993), the notation W ′ is used for the W′.) When

formalized, this yields a mathematical model that employs only the natural numbers
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as its basic component. Comparative interpretations relate the nonstandard members

of the formal model directly to members of W′ via the inverse of i. The Robinson

approach considers only a propositional language L and states that it is a subset of

its nonstandard extension L′ (Robinson (1963, p. 91)). The same holds for defined

“informal” relations.

Incorporating the Robinson approach is accomplished by considered two disjoint

collections of atoms (individuals), W′, IR (IR represents the real numbers) and the

construction of a superstructure N =
⋃
{Xn | n ∈ ω} with ground set X0 = W′ ∪ IR.

This yields the standard structure 〈N ,∈ . =〉. (In most cases, for the GGU-model, IR

can be replaced by the rational numbers Q.) First, as usual, the nonstandard extension
∗X0 is obtained and a superstructure Y with ground set ∗X0, is constructed. This

yields the structure Y = 〈Y,∈,=〉. (The font change is defined below.) The ultrapower

nonstandard structure M1 = 〈N J ,∈U ,=U 〉 is obtained. The Mostowski Collapsing

Lemma yields the nonstandard model ∗M = 〈 ∗N ,∈ . =〉, where
⋃
{ ∗Xn | n ∈ ω} =

∗N . The standard structure M is a set-theoretic model for any bounded first-order

statement that holds in N . Further, each member of ∗N is a member of Y .

Superstructure members of N are often termed as “informal” while members of

Y are the “formal” objects. An additional strict formalizing can be added to these

constructions by considering a superstructure generated by a corresponding“abstract”

set of individuals ∆′ in place of the W′. However, this very strict formalizing is based

more upon the Philosophy of Mathematics and not upon an actual necessity. One would

simply note that it all can be so formalized in this way if one desires. It now seems

best to drop the additional ∆′ notion. As previously, the set of equivalence classes

E ′ of partial sequences can be employed, where each member of the class is a partial

sequence that generates the same coded word as determined by the join operator.

In like manner, there are partial sequences that have as their images members

of W′. These produce the significant equivalences classes defined in Herrmann (1979-

1993) except that the images are not natural numbers but rather members of W′.

In this revision, the symbol W ′ denotes the set of W′ generated equivalence classes.

There is a trivial bijective correspondence between these two distinctly different sets

of equivalence classes. (Note: It is usually assumed that the members of W ′ that

correspond to the natural or other “numbers” employ distinctly different symbols than

those used for such numbers as abstract entities. Also, there are sets in E ′ and W ′ that

contain but one member and are here still termed as equivalence classes.)

Members of E ′ [resp. W ′] and all relations between them correspond bijectively to

members of W′, relations between them and other related entities. The corresponding

members of E ′ [resp. W ′], relations between them and other related entities are denoted
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by bold font. Although, originally not done in any refined manner, members of W′

and all relations between them that do not carry the bold notation are usually denoted

by Roman font. (Usually, if the “hyper” notation ∗ is employed the original Roman or

bold font is retained.) All other mathematical objects are usually denoted by mathe-

matics italics. It is not necessary in this article, and almost all others, to differentiate

between members E ′ or W ′ since the interpretations relate general nonstandard objects

to members W′ and corresponding relations between these members.

(Often in Herrmann (1979-1993) the notation is highly simplified and much can

only be understood from the context. For example, there is the expression ∗i[W ′],

where W ′ is the W′ in this article. Since the i is not a member of the formal structures,

this can only mean, in this context, ∗(i[W ′]). That is, the nonstandard extension of

the formal set i[W ′].)

Although it is probably unnecessary to do so since all that follows is not dependent

upon whether E ′ or W ′ is the underlying set used, when specification is not necessary, a

standard set of equivalence classes is denoted, in this article, by a generic type symbol

W ′. As done in Herrmann (1979-1993), a member of W ′ is bijectively related to a

corresponding member of W′. Various bijective correspondences are usually indicated

via font alterations.

Objects that correspond to members of W′ and relations between them have var-

ious standard “names.” These names or appropriate modifications are used for the

corresponding objects and relations, when viewed in W ′, tend to carry the same names

as the informal objects and the names for the informal relations that model the in-

formal language characteristics. Symbolically, there are times when both the informal

and formal symbols used are the same. Of course, in general, this is the customary

approach throughout mathematical modeling. For W′, the equivalence class W ′ is pro-

duced by the projection map θ. In the coded case, such a map yields E ′. Obviously,

there is a bijection from W ′ onto E ′ that preserves the identity on W′. Usually these

bijections are not formally mentioned. It is the application of θ that is indicated by

bold notation. This strict correspondence must be maintained.

The introduction of the “empty word” allows the set W′ with its join operator to

be expressed as a monoid. There is one and only one function f∅ ∈ (W′)∅, the empty

function. Consider W ′ ∪ {[f∅]}, where informal [f∅] = ∅ is the empty equivalence class.

Then the informal join operator has a mimicking operator defined on W ′ ∪ {∅} [resp.

E ′∪{∅}]. Each equivalence class [f] has a unique maximum f ′, where f ′ ∈ (W′)[0,m] and

there is no f ∈ [f ′] such that f /∈ (W′)[0,k], k > m. The partial sequence f ′ intuitively

generates, in order right-to-left, each “alphabet” symbol that comprises a word.

Let [f ′], [g′], f ′ ∈ (W′)[0,m], g′ ∈ (W′)[0,n] be the unique members of W ′ [resp. E ′].
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Define the binary operation ◦ as follows: [f ′] ◦ [g′] = [h′], where h′(i) = g′(i), i ∈ [0, n]

and h(n+ j) = f ′(j −1), j ∈ [1,m+1]. Then define [f ′]◦∅ = [f ′] = ∅◦ [f ′] and ∅◦∅ = ∅.

The collection W ′∪{∅} [resp. E ′∪{∅}], with this binary operation defined, is a monoid

structure (W ′ ∪ {∅}, ◦) due to the obvious associativity property it preserves.

As an example, consider the informal word “It|||is|||very|||good.” (The ||| is

a“spacing” symbol.) There is a member f ′ ∈ [f], n = 5 such that f ′ yields

f ′(4) ◦ f ′(3) ◦ f ′(2) ◦ f ′(1) ◦ f ′(0) = It|||is symbol string “It|||is|||” and g′ ∈ [g] such

that g′ yields g′(9) ◦ g′(8) ◦ · · · ◦ g′(0) = very|||good., m = 9. Then [h′] = [f ′] ◦ [g′] and

h yields h(15)h(14)h(13)h(12)h(11)h(10)h(9)h(8)h(7)h(6)h(5)h(4)h(3)h(2)h(1)h(0) =

It|||is|||very|||good. ∈ W′. (Note that the actual correspondence to ordinary left-to-

right word ordering corresponds to a reverse ordering of the numbers {0, . . . , 15}.) This

yields a model for the informal join operator via the monoid (W ′ ∪ {∅}, ◦).

Of course, relative to a physical or a non-physical world, all such mathematically

modeled objects but “represent” entities or processes. Then their standing as members

of a language follows from the characterizing relations such as the “ordering” notion

and axiomatic join requirements represented on the equivalence classes by ◦. It is via an

“interpretation” that the terminology is changed to linguistic notions. But, consistent

with the usual practice, terms from the basic interpretation are used as names for W ′,

the members it contains and other representations for linguistic objects. As indicated

above the previous results in books and papers dated before this one and that employ

statements in terms of E ′ can be bijectively translated to W ′. The inverse relation θ−1

translates statements relative to the W ′ into W′ statements.

Consider the denumerable set all prime numbers P , a bijection h: IN′ → P, IN
′ =

IN−{0}, and the sequence g: IN → Q, the set of rational numbers, where g(n) = 1/10n.

Definition 1.1. For fixed even K > 2 and each n ∈ IN
′, consider the sets of

K + 2-tuples Cn = {(h(j), 1,−1/10n, 1/10n, . . . ,−1/10n, 1/10n) | (j ∈ IN)}.

From definition 1.1, via *-transform, we have for an n ∈ ∗
IN, the internal set

∗Cn = {( ∗h(j), 1,−1/10n, 1/10n, . . . ,−1/10n, 1/10n) | (j ∈ ∗
IN)}.

Let ω ∈ ∗
IN

′ − IN
′ = IN∞.

Definition 1.2. Ultra-propertons. The set of all ultra-propertons is (repre-

sented by) the internal ∗Cω = C = {( ∗h(j), 1,−1/10ω, 1/10ω, . . . ,−1/10ω, 1/10ω) |

(j ∈ ∗
IN

′)}. (Note: A coordinate can represent a numerically coded non-numerical

descriptive physical characteristic. When a properton process is applied to one collec-

tion of these special properton coordinates, then an intermediate properton with the
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descriptive characteristic is obtained. This special form is distinct from that used in

Herrmann (1979-1993).)

For Definition 1.2, it is assumed that there is no more than K physical or physical-

like numerical or coded descriptive characteristics for the any elementary entity.

Theorem 1.1. Consider any nonempty internal D /∈ ∗X0 and A ⊂ D such that

|A| < |M1|+. Then there exists a hyperfinite BA such that A ⊂ BA ⊂ D.

Proof. Let F be the finite power set operator. That is for any set X, F(X) is the

set of all finite subsets of X, where a set Y is finite if it is empty or there exists an

n ∈ IN
′ = IN− {0} and a bijection f ′: [1, n] → Y.

Consider the internal binary relation C = {(x, y) | (x ∈ y) ∧ (x ∈ D) ∧ (y ∈
∗F(D))}. Let {(x1, y1), . . . , (xm, ym)} ⊂ C. Then y′ = y1 ∪ · · · ∪ ym is an internal

subset of ∗F(D). Since the domain of C is D, A ⊂ D and |A| < |M1|+, then by

saturation there exists a BA ∈ ∗F(D) such that A ⊂ BA ∈ ∗F(D) and BA ⊂ D. This

complete the proof.

Corollary 1.1.1. Consider any ∗E and A ⊂ ∗E such that |A| < |M1|+. Then there

exists a hyperfinite BA such that A ⊂ BA ⊂ ∗E.

Theorem 1.2. Consider any nonempty hyperfinite A ⊂ ∗
IN

′. Then there exists a

γ ∈ ∗
IN such that A ⊂ [1, γ].

Proof. Every nonempty finite subset F of IN′ has a greatest member MF ∈ IN
′.

That is if x ∈ F, then x ∈ [1,MF ]. By *transfer, A has a *greatest member γ ∈ ∗
IN

′

such that if x ∈ A, then x ∈ [1, γ]

In the Theory of Ultralogics (Herrmann (1979-1993)), the basic applications use

IN as a set of individuals. Due to the inclusion of propertons, it was necessary to

extend the ground set by replacing IN with IR. However, depending upon how physical

characteristics are numerically measured, as mentioned, it is usually sufficient to replace

the real numbers with the rational numbers Q as ground set individuals. Further, if E ′

is not employed, then it is necessary to numerically encode each of the non-numerically

presented descriptive physical characteristics.

Let r1 ∈ IR. By Theorem 11.1.1 in Herrmann (1979-93), there is a λ1 ∈ IN∞ such

that λ1/10ω ∈ µ(|r|). Hence, st((λ1/10ω)) = |r|. Then there are K, λi, i ∈ [1,K] that

yield the K characteristics. For an elementary physical entity ej , some characteristics

can be 0, meaning that the measure has value 0. Throughout the combining processes, if

a coordinate retains its infinitesimal value ±1/10ω, this indicates that the characteristic

has no meaning for ej . In order to indicate these differences, any characteristic that has

measure 0 is obtained from a combination of two ultra-propertons. The standard part
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(physical realization) operator St is only applied to coordinates of the intermediate

properton representations with the form ±λ/10ω, where λ ≥ 2.

There are other characteristics such as spin, where the 0 takes on a different

meaning. However, such coding is rather arbitrary and can be replaced with non-zero

numbers or non-zero codings for the characteristics so as to not confuse them with a 0

measurement. For the needed intermediate properton, with a third coordinate charac-

teristic under independent coordinate addition, the hyperfinite set of ultra-propertons

{( ∗h(j), 1,−1/10ω, . . . , 1/10ω) | j ∈ [1, λ1]} is employed. Hence, the first intermediate

properton is (Πλ1
j=1

∗h(j), λ1,−λ1/10ω, 1/10ω, . . . , 1/10ω). For a forth coordinate inter-

mediate properton for value r2, consider {( ∗h(j), λ2,−1/10ω, λ2/10ω, . . . , 1/10ω) | j ∈

[λ1 + 1, λ1 + λ2]}. This yields (Πλ1+λ2

j=λ1+1
∗h(j), λ2, 1/10ω, λ2/10ω, . . . , 1/10ω). Continue

these definition for each member of [1,K]. Thus, for the entire collection of ultra-

propertons used to obtain e1, one member of the set of elementary entities {ej}, let

λ1 + · · ·+ λK = δ1 ∈ IN∞. There is an injective correspondence, p1: [1, δ1] → C, which,

as indicated, is between [1, δ1] and the set of all ultra-propertons C .

It is assumed that the collection {ej} of all elementary particles is nonempty and

countable (i.e non-zero finite or denumerable). For the case that |{ei}| = n ≥ 1,

by finite construction and presentation, there is the set of intervals {[δi−1 + 1, δi] |

1 ≤ i ≤ n}, n ∈ IN
′, δi ∈ IN∞, (δ0 = 0) such that if j 6= k, 1 ≤ j, k ≤ n, then

[δj−1 + 1, δj ] ∩ [δk−1 + 1, δk] = ∅. Further, for each j, k ∈ IN, 1 ≤ j, k ≤ n, pj [[δj−1 +

1, δj ]] ∩ pk[[δk−1 + 1, δk]] = ∅. Hence, there is the corresponding injection
⋃
{pi | 1 ≤

i ≤ n} = Pδn
such that Pδn

: [1, δn] → C.

If {ei} is denumerable, then, by induction, there is a denumerable set {δi}, and

the set of intervals {[δi−1, δi] | i ∈ IN
′} has the same property as in the finite case.

Further, relative to common entities, the same additional properties hold. There is

also an injection P∞ =
⋃
{pi | 1 ≤ i ∈ IN

′} such that P∞[
⋃
{pi | 1 ≤ i ∈ IN

′}] ⊂ C.

For the denumerable case, let Π = {(x, y) | (x < y) ∧ (x ∈ ∗
IN) ∧ (y ∈ ∗

IN)}.

This is an internal binary relation, which is well know to be concurrent. Consider the

external denumerable set {δi | 1 ≤ i ∈ IN}. Then {δi | 1 ≤ i ∈ IN} is a subset of the

domain of Π. From |M1|+-saturation, since |
σ

IN
′| = |IN′|, then there exists a Γ ∈ ∗

IN

such that δi < Γ for each i ∈ IN. Since there is a bijection from [1, γ] into C , then there

are “more than enough” ultra-propertons for universe generation. However, in general,

elementary particles are not necessary to generate a physical universe.

For this application, it appears unnecessary to consider more than H, where

1 ≤ H ∈ IN, different types of elementary entities. The set of ultra-propertons

{( ∗h(j), 1,−1/10ω, . . . , 1/10ω) | j ∈ ∗
IN

′} = C is an internal set and as such the

hyperfinite operator ∗F is defined for it. For properton generation, a universe can be
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considered as a collection of physical-systems. Hence application of a hyperfinite iter-

ation (> 0) of the hyperfinite powerset ∗F i to C yields C =
⋃
{ ∗F i(C) | (1 ≤ i ≤ n)},

for an appropriate n ∈ ∗
IN, an internal collection that is sufficient to generate the

physical-systems for any of the presently considered cosmologies. To accommodate the

formation of the physical-like systems, infinite hyperfinite set X of internal sets that is

disjoint from C is adjoined to C. Then Π+ = C ∪ X.

Recall that, for each (i, j) in primitive time (recently re-termed as a “primitive

sequence”), tq(i, j) is the rational number that identifies the actual moment when a

description is realized and, hence, identifies a particular general description Fq for a de-

velopmental paradigm. The fq = Fq ◦tq, where tq is the primitive time double sequence

and q varies from 1 to 4; the designations for the four types of “time” developments.

Each fq(i, j) ∈ W′ is a general description. Rather than the fq being a general descrip-

tion, they are replaced by instructions or rules fq(i, j) = Iq ◦ tq(i, j) - a nonempty finite

subset of W′, which is equivalent to a single word in W′.

These sets of instructions - instruction-entities - (also called instruction-

information) are indexed in the same way as the general descriptions and determine

the instruction paradigm Iq. Thus, there is only a difference in the descriptive state-

ments employed. In general, if not otherwise denoted as Iq(i, j), then for this paper the

meaning of the fq(i, j) is contextually controlled. There is one instruction paradigm

for each universe and there can be a vast collection of such universes.

As symbol strings, consider the set

†{There|||are|||n|||ultra|||propertons|||combined|||to|||

produce|||an|||intermediate|||properton. | n ∈ IN} = R. Then

using the single member equivalence class for an alphabet symbol with the monoid

operator symbol suppressed this yields

†{There|||are|||n|||ultra|||propertons|||combined|||to|||

produce|||an|||intermediate|||properton. | n ∈ IN} = R

is a member of N , where M = 〈N ,∈,=〉. Indeed, there is some Xn such that standard

R ∈ Xn and R ⊂ Xn+1. But the terms “ultra-properton” and “properton” have no

physical meanings within the physical world. Using the method of Theorem 9.3.1 in

Herrmann (1979-93) and *-transform, this set corresponds to ∗R ⊂ ∗Xn+1.

Symbolically, let λ ∈ IN∞. This symbol λ represents a member of the hyper-

language ∗W ′, since, symbolically, IN ⊂ W′. The λ = [f ] ∈ ∗W ′. Then considering the

inverses this yields the intuitive
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‡There|||are|||λ|||ultra|||propertons|||combined|||to|||

produce|||an|||intermediate|||properton.

Such ‡ *instructions have “interpretations” in terms of the GGU-model language.

There can be additional objects that behavior like symbol strings taken from ∗W ′ that,

via the consistent interpretation, have no meanings until interpreted for the GGU-

model.

Each physical-system can be considered as a physical-like system since their con-

struction can include *instructions for, at present, unknowable processes or “things,”

as represented by the X, that seem to “force” these combinations to occur. These, at

present, unknowable processes or “things” are modeled by the “gathering operator.”

Although instructions are modeled by a language when in standard form, these non-

physical processes or “things” are distinct from the language itself. Notice that symbol-

strings, diagrams, images and sensor information represented by an informal language

W′ are comprehensible only when they carry an additional component - meanings.

“Meanings” are understood by the mind and cannot lead to mere circular thinking.

♦ For the GGU-model, a specific form of symbolic expression was,

in 1979, incorporated within each linguistic expression being modeled

(Herrmann (1979-1993, Section 7.1).) This additional aspect iden-

tifies the expression as being related to a specific moment

during a development. Obviously, as the primitive time (the

basic sequence) for such linguistic expressions is refined, the

refined symbolic representation is considered attached as a

more refined identifying symbolic representation for the de-

velopment being represented by the language element. These

additional sequence representations are also, obviously, directly related

to the mathematically described notions of “order.” In all cases, this

special form of linguistic expression is maintained. When this feature

needs to be recalled the symbol ♦ is appended.

For human endeavors, there is a five-step process. (1) An informal meaningful

instruction-entity is given. (2) The instructions are mentally comprehended. (3) This

mental comprehension is transmitted, via electro-chemical actions, to other human

physical locations. (4) At these physical locations actions are performed. (5) These

actions produce a physical entity that corresponds to the original instruction-entity.

Errors can occur along this entire path. If these processes are performed in an errorless

manner and the physical entity produced does not correspond to a desired physical
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object, then this alone cannot change the instruction-entity. The instruction-entity (1)

would need to be altered in a meaningful way as required by (2). In this illustration,

alteration is done by an intelligent physical entity. For the GGU-model, a standard

meaningful instruction-entity contains operative statements.

From the modeling viewpoint, processes within the substratum are non-physical.

Thus, step (1) is non-physical and steps (2) and (3) are considered as statements relative

to a non-physical medium and a non-physical mode of transmission, respectively. For

each universe-wide frozen-frame, step (4) corresponds to a subsets of C - the substratum

info-fields. Step (5) is the application of the St operator and yields that physical

products of the entire process. In order to be operative, the above displayed *instruction

as well as similar ones have non-physical components.

The Eccles and Robinson (1984, p. 172) notion that there is empirical evidence

for an immaterial medium and corresponding processes that influence physical brain

activity can be employed. Additional comprehension is aided by this “medium” and

it has been modeled via ultra-logic-systems (Herrmann, 2006b). In particular, there

is a binary ultra-logic-system that rationally establishes the notion of creative mental

activity as a product of a non-physical medium and processes. For specific information

and the generation of a GGU-model universe, this corresponds to step (2). In general,

the terms “non-physical” and immaterial, as used here, indicate that it is not part of

a physical universe. But, interaction with a physical universe occurs.

2. Logic-System Generation for the Type-1 Interval.

[NOTE: For all GGU-model applications as originally presented in Herrmann (1979

- 1994), the developmental paradigm determining functions f and t, as discussed below,

are defined on Z×IN and then the q notion, where q = 1, 2, 3 indicates a restriction of

these functions to Zq×IN. For q = 4, the indicated functions are the original unrestricted

ones. For the t function, the image is R ⊂ Q. Then tq is the appropriate restriction.

Hence, the I domain is R and maps R into the language W′.]

In Herrmann (2006), there are two different t sequence notations. One t is in the

informal world, while another t is in the formal standard superstructure. This is no

longer necessary since the Robinson approach is now part of our standard structure.

The term informal is often used when members of W′ are being considered. The

term standard, if used, usually refers to the corresponding equivalences. The informal

composition fq = Iq ◦tq, when embedded relative to W ′, is denoted by f q = Iq ◦tq. Each

tq(i, j) is a rational number. Each fq(i, j) is an identified nonempty instruction-entity.

Each member of Iq is now considered as determined by a function defined on a set

Rq of rational numbers, Q. The members of Rq carry the rational number simple order
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and the order ≤Iq for the members of Iq (the lexicographic order) is order isomorphic

to Rq in the obvious way. Each interval partition is of the form (ci, ci+1) (with a closed

interval in two cases), where i ∈ Z and Z is the set of integers, and tq(i, 0) = ci, tq(i +

1, 0) = ci+1. Then each member of (ci, ci+1) is a defined rational number tq(i, j) A fixed

K ′ ∈ IN
′ is selected. Then, for example, for [0, c1), [c1, c2), [c2, c3), . . ., let 0 ≤ i ∈ Z and

j ∈ IN, then tq(i, j) = (1/K ′)(i + 1 − 1/2j) and Rq is the appropriate q restriction of

{x | (x = (1/K ′)(i+1−1/2j ))∧ (i ∈ Z)∧ (j ∈ IN)}. Hence, [0, c1), [c1, c2), [c2, c3), . . . =

[0, 1/K ′), [1/K ′, 2/K ′), [2/K ′, 3/K ′), . . . . For a given q, the lexicographic order � on

{(i, j)} is also q restricted. For Rq this yields a bijection on the q restricted {(i, j)}q onto

Rq such that, for each (x, y), (z, w) ∈ {(i, j)}q, (x, y) � (z, w) if and only if tq(x, y) ≤

tq(z, w). The order ≤Iq on an instruction paradigm Iq is defined by fq(x, y) ≤Iq fq(z, w)

if and only if tq(x, y) ≤ tq(z, w).

Let I1 be the standard instruction paradigm. An instruction paradigm is defined

mathematically in the exact same manner as that of the developmental paradigm in

Herrmann (2006) and is equivalent to the range of a sequence g′: IN → P(W′), where

W′ is our denumerable general language. The first case illustrated for the GGU-model

is for a developing universe starting with a frozen segments (frame) instruction-entity

g′(0). For the other three GGU-model cases, this sequence is appropriately modified. In

all cases, the (fq(i, j), fq(p, k)) is equivalent to “If fq(i, j), then fq(p, k)). This notation

will be simplified later.

For the type-1 case [0, b], b > 0, as indicated above, a denumerable instruction

paradigm displays a refined form. For 1 < m ∈ Z, I1 = {f1(i, j) | (0 ≤ i ≤ m) ∧ (i ∈

Z) ∧ (j ∈ IN)}.

Due to the simplicity and special nature of the logic-systems used, a simplified

algorithm is employed. The basic logic-system algorithm is re-defined for sets of two

distinct objects {A,B}. If a deduction yields C and C is a member of {A,B}, then the

“other” member is a deduction. Hence, if A is deduced, then from {A,B}, B is deduced.

This can be written as {A,B} − {A} is deduced. In general, to avoid repetition, once

such a two element set is employed for a deduction it is not used again. This approach is

only valid for these special collections of two element sets. Binary relations can be used

as logic-systems. This special algorithm for deduction mimics the propositional-logic

modus ponens rule of inference for hypotheses A, and A → B. The rule is expressed as

{(X → Y,X,Y) | X,Y are propositions}. Using I1, consider the following logic-system.

Definition 2.1 Let i ∈ Z and 0 < m ∈ IN. For each n ∈ IN, let k1
i (n) =

{{f1(i, j), f1(i, j + 1)} | (0 ≤ j ≤ n − 1) ∧ (j ∈ IN)}, K1(m,n) =
⋃
{k1

i (n) | (0 ≤

i < m) ∧ (i ∈ Z)}. Finally, let finite Λ1(m,n) = {f1(0, 0)} ∪ K1(m,n) ∪ {{f1(p −

1, n), f1(p, 0)} | (0 < p ≤ m) ∧ (p ∈ Z)} and L1 = {Λ1(m,x) | x ∈ IN}. The set
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{{f1(p − 1, n), f1(p, 0)} | (0 < p ≤ m) ∧ (p ∈ Z)} is called the “jump elements.” Also,

each Λ1(m,n) is a distinct finite set due to the specific identifying W′ language symbols

employed.

In general, members in Lq can be characterized by a first-order sentence. When

the deduction algorithm is applied to Λ1(m,n) the result is an ordered set of words

from W′ - the ordered instruction paradigm. In accordance with the juxtaposition join

operator that yields words in W′, this ordered instruction paradigm is a word in W′.

It can be obtained using the spacing symbol where each member of this paradigm is

considered a sentence. For a multi-universe cosmology, each such universe is a portion

of each of the original members of the instruction paradigm.

In order to make the notation as simple as possible for the next construction, notice

that L1 is denumerable. Let IN − {0} = IN
′. Thus, there is a bijection D1: IN′ → L1.

We use the subscript notation for this bijection. Thus, consider L1 = {D1
i | i ∈ IN

′}.

For each n ∈ IN
′, define M1

n = {{D1
1, . . . ,D

1
n}}. Let M1 = {M1

n | n ∈ IN
′}. The set

M1
n = {{D1

1, . . . ,D
1
n}}, as before, can be considered as a single word-like object.

(There are a few typographic errors in Herrmann (2006). For example, in Her-

rmann (2006) Theorem 4.1, m > 0 should read m > 1, and ∗D, should read ∗D1.

These typographical error may be corrected in a future version.)

A finite consequence operator S is defined in Herrmann (1979 - 1993, p. 70;

65). However, new simplified logic-systems Sq
n, q = 1, 2, 3, 4 are defined. When a

logic-system is applied, it generates a specific finite consequence operator. It is the

logic-system algorithm that does this. In this article, this algorithm is explicitly noted

since only logic-systems are used. In general, logic-systems are stated in terms of

metamathematics n-tuples. If a set {A,B,C, . . . ,D} is used as an hypothesis, then it is

word-like since the objects the logical deduction models via the algorithm yields words

or word-like objects.

What follows, through and including section 5, is for the Multi-Complexity GGU-

model. Define Mq, q = 2, 3, 4, in the same manner as M1, from members of Lq.

For each Gq ∈ Mq, there exists a unique n ∈ IN
′ such that Gq ∈ Mq

n. This Gq =

{Dq
1, . . . ,D

q
n}, Dq

i ∈ Lq, 1 ≤ i ≤ n. (As I continue to mention, each Dq
i corresponds to

a Dq
i a member of W ′. Also, the usual standard deduction algorithm is applied to the

member Dq
1∧, . . . ,∧Dq

n (or some other language form with & or ||| taking the place of

∧), which also corresponds to a member of W ′.

For each n ∈ IN
′, let Sq

n = {{x, y} | (x ∈ Mq
n) ∧ (y ∈ Lq) ∧ (y ∈ x)}. Then let

Sq = {Sq
n | n ∈ IN

′}. (This definition can be further described in order to characterize

the doubleton set notion and can include all necessary bounds for the quantifiers.)
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Each member of Mq
n is directly related to a corresponding Sq

n. Further, under the

simplification used here, each member of an Sq
n is a propositional tautology. Notice

that Mq is a function with values a singleton set containing an n-set (i.e. a set of “n”

members).

Usually, such a logic-system would use ordered pairs to model the rules of inference.

Within these rules, finite conjunctions are displayed as first coordinates via n-sets.

Again the simplified doubleton-set approach is used here, where one of these sets is

{{D1},D1}.

Hypotheses are considered as members of a subset of W′ (a unary relation), when

part of a logic-system. They are, usually, considered as a list of the members of this

set. In general, a logic-system, when considered as an operator, is defined on subsets

of the language employed.

From the definitions employed for the logic-systems used here, the properties of

the logic-system algorithm A can be explicitly described in set-theoretic notation. For

these applications, A is a function defined on various defined logic-systems and a set

of hypotheses. For example, the entire set of deductions or the order in which the

deductions are made, among a few other characteristics. In our application to a logic-

system, the notation used signifies all of the ordered deductions the algorithm produces

when the logic-system is applied to a set of hypotheses. This yields the same results as

a corresponding finite consequence operator. What the notation indicates is that the

finite consequence operator is being displayed in a more refined and explicit manner.

Hence, the algorithm and its relation to the logic-system can be embedded into the

formal structure via formalizable characteristics.

When the application characteristics are *-transferred, then the notation ∗A is

employed. The process of applying the algorithm to each Sq
n, that is applying it to a set

of hypotheses Y, is denoted by A((Sq
n,Y)). (Note: Although the algorithm is actually

a sequence of algorithms, in each case, the process itself when described in a first-

order statement is independent from n. Notationally, the algorithm is not denoted as

a sequence.) Hence, A is defined upon a set of ordered pairs. The result of A((Sq
n,Y))

is a set. An additional step can be included for this specific algorithm, where Y is

removed as a deductive conclusion. When this is done the algorithm is denoted by

A′. The necessary informally and, hence, formally described properties are specifically

displayed. In general, the q notion is not included as part of the A notation unless

confusion would result.

For the denumerable set L1, notice that for any Λ1(m,k), k ∈ IN there exists

an k′ ∈ IN and X1
k′ ∈ M1

k′ , such that Λ1(m,k) ∈ A′((S1
k′ , {X1

k′})) and, in this case,

finite choice yields the Λ1(m,k) logic-system. Notice that the logic-system Λ1(m,k)
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is considered as a set-theoretic object. Then the logic-system algorithm A is applied

to (Λ1(m,k), {f1(0, 0)}), where f1(0, 0) is the only hypothesis contained in the logic-

system. This yields f1(i, j) ∈ I1 as a deduction from f1(0, 0). Conversely, if f1(i, j) ∈ I1,

then there is an X1
k′ ∈ M1

k′ and a logic-system Λ1(m,k) ∈ A′(S1
k′ , {X1

k′}) such that

application of the logic-system algorithm A to (Λ1(m,k), {f1(0, 0)}) yields f1(i, j) as a

deduction from f1(0, 0).

The informal algorithm A is defined on any logic-system that contains an hypoth-

esis and, in this paper, such a logic-system is Λq(x) and application is on (Λq(x),Y)

where Y contains the hypotheses in the logic-system and, in this case, it contains but

one member. Due to the construction of the Λq(x), this yields a partial sequence of

members of Iq. This sequence and any other sequence in this article that represents

steps in such a deduction is denoted by [[A(Λq(x),Y)]]. These sequences satisfy orders

of the type ≤I
q
x
. It is the rational process being displayed upon application

of A that models the process of ordering descriptive entities. Also, for this

case, A((Λq(x),Y)) = Iq
x ⊂ Iq . Significantly, for n, k ∈ IN, n ≤ k, A((Λ1(m,n),Y)) ⊂

A((Λ1(m,k),Y)) and [[A[(Λ1(m,k),Y)]]|[1, n] = [[A(Λ1(m,n),Y)]]. [Note: Herrmann

(2013b) such sequences are denoted by A[(Λq(x),Y)].

Further, the (intuitive) dictionary definition the word “sequence” is “(1) The com-

ing of one thing after another, succession. (2) The order in which this occurs.” However,

in much of mathematics, the definition is a restriction of this intuitive notion. In or-

der to retain the intuitive notion, throughout my writings for the GD, GGU and GID

models, I may use this term in a generalization form. A sequence for me need not be

just a function defined on the natural numbers. In many cases, it “produces” things.

An “ordered” set D is given and this set need not be the set of counting (or natural)

numbers. That is, D may have a simple order defined on it, like the one for the integers.

This ordered set is always stated and understood if this generalization is employ. The

successive order of what is produced is reflected by the order on the domain, not by

any order that may be perceived for the set of produced results. The term “net” is not

applied to this generalized notion.]

In the usual way, all of the above informally defined objects are embedded relative

to W ′. When the informal set-theoretic expressions are considered as embedded into

the standard superstructure, all of the bold font conventions defined in Herrmann

(1979-1993) are observed. All other embedded symbols retain their math-italics form.

Where script notation is used, an underline is used in place of the bold face font. All

the following results are relative to our nonstandard model ∗M or ∗M1 (Herrmann,

(1979 - 1993)).
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Theorem 2.1 Consider primitive time interval 1 = [0, b], b > 0. It can always

be assumed that interval 1 is partitioned into two or more intervals [c0, c1), . . .

[cm−1, cm], cm = b, m > 1, m ∈ Z. Let I1 be an instruction paradigm order

isomorphic to the rational numbers R1 ⊂ [0, b]. For any λ ∈ IN∞, there exists a

unique hyperfinite ∗Λ1(m,λ) ∈ ∗L1 and a λ′ ∈ ∗
IN

′ such that the ultra-word-like

X1
λ′ ∈ ∗M1

λ′ and ultra-logic-system ∗Λ1(m,λ) ∈ ∗A′(( ∗S1
λ′ , {X1

λ′})) and σI1 ⊂
∗A(( ∗Λ1(m,λ), { ∗ f1(0, 0)})) = I1

m,λ ⊂ ∗I1. Also the [[ ∗A(( ∗Λ1(m,λ), { ∗ f1(0, 0)}))]]

*steps satisfy the ≤I1
m,λ

order and ( ∗I1 − σI1) ∩
∗A(( ∗Λ1(m,λ), { ∗ f1(0, 0)})) = an

infinite set.

Proof. This follows in the same manner as Theorem 4.1 in Herrmann (2006) by

*-transfer of the appropriate first-order statements that precede this theorem state-

ment. Also note that since for every n ∈ IN
′, the Λ1(m,n) is finite, then, via

the identification process, σΛ1(m,n) = Λ1(m,n). It also follows that ∗Λ1(m,n) =

Λ1(m,n) under the customary conventions. Since for any n, k ∈ IN
′, n ≤ k,

A((Λ1(m,n), {f1(0, 0)})) ⊂ A((Λ1(m,k), {f1(0, 0)})), from the above and, via *-

transfer, it follows that
σ

I1 ⊂ ∗A(( ∗Λ1(m,λ), { ∗ f1(0, 0)})) = I1
m,λ ⊂ ∗I1. From

the definition of Λ1(m,n), these steps numbers are order isomorphic the set of rational

numbers R1. Hence, ∗A(( ∗Λ1(m,λ), { ∗ f1(0, 0)})) is *order isomorphic to a hyperfinite

subset of ∗Q. Since there are infinitely many i < λ and i ∈ IN∞, there are infinitely

many ∗ f(i, j) ∈ ∗A(( ∗Λ1(m,λ), { ∗ f1(0, 0)})) ⊂ ∗I1, where ∗ f(i, j) ∈ ∗I1−
σI1. These

are interpreted as ultranatural events but in some cases may differ from physical events

only in their primitive time identifications. This completes the proof.

By considering the definition of L1, it follows that the given 1 < m ∈ IN, ∗Λ1(m,λ)

is precisely { ∗ f1(0, 0)} ∪ {
⋃
{ ∗k1

i (λ) | (0 ≤ i < m) ∧ (i ∈ ∗Z)}} ∪ {{ ∗ f1(p −

1, λ), ∗ f1(p, 0)} | (0 < p ≤ m) ∧ (p ∈ ∗Z)}. Of significance is the fact that the steps

in the *-deduction ∗A(( ∗Λ1(m,λ), { ∗ f1(0, 0)})) preserve the order ≤ ∗I
1
. Notice that

∗Λ1(m,λ) is obtained by hyperfinite choice. Further, any ∗f1(i, j) ∈ { ∗ f1(x, y) | (0 ≤

x < m) ∧ (0 ≤ y ≤ λ) ∧ (x ∈ ∗Z) ∧ (y ∈ ∗
IN)} ∪ { ∗ f1(m, 0)} is a hyperfinite *-

deduction from ∗f1(0, 0). And, it also follows that the set of all such *deductions yields

a hyperfinite set I1
λ such that σI1 ⊂ I1

λ ⊂ ∗I1.

3. Logic-System Generation for the Type-2 Interval

For the type-2 case [0,+∞), a denumerable instruction paradigm displays a refined

form. For this case, I2 = {f2(i, j) | (0 ≤ i) ∧ (i ∈ Z) ∧ (j ∈ IN). Using I2, consider the

following logic-system.
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Definition 3.1 Let 0 ≤ i ∈ Z. For each n ∈ IN, let k2
i (n) = {{f2(i, j), f2(i, j +1)} |

(0 ≤ j ≤ n − 1) ∧ (j ∈ IN)}. For 0 < m ∈ Z, let K2(m,n) =
⋃
{k2

i (n) | (0 ≤ i <

m) ∧ (i ∈ Z)}. Finally, let Λ2(m,n) = {f2(0, 0)} ∪ K2(m,n) ∪ {{f2(p − 1, n), f2(p, 0)} |

(0 < p ≤ m) ∧ (p ∈ Z)} ∪ {{f2(m, j), f2(m, j + 1)} | (0 ≤ j < n) ∧ (j ∈ IN)}, and

L2 = {Λ2(x, y) | (0 ≤ x ∈ Z) ∧ (y ∈ IN)}. Notice that if 0 ≤ i < k, i, k ∈ Z,

then A((Λ2(i, j), {f2(0, 0)})) ⊂ A((Λ2(k, n), {f2(0, 0)})) for any j, n ∈ IN. Also, each

Λ2(m,n) is a distinct finite set due to the specific identifying W ′ language symbols

employed. (Notice that members in L2 can be characterized by a first-order sentence.)

Consider any Λ2(q, k). Then there exists an q′, k′ ∈ IN
′ and the q′, k′-set

X2
q′ ,k′ ∈ M2

q′,k′ , such that Λ2(q, k) ∈ S2
q′,k′({X2

q′,k′}) and, in this case, finite choice

yields the Λ2(q, k) logic-system. Then the logic-system algorithm A applied to

(Λ2(q, k), {f2(0, 0)}) yields f2(q, k) as a deduction from f2(0, 0). Further, f2(q, k) ∈ I2.

Conversely, if f2(q, k) ∈ I2, then there exists an q′, k′ ∈ IN
′ and an X2

q′ ,k′ ∈ M2
q′,k′ and

a logic-system Λ2(q, k) ∈ A′((S2
q′ ,k′ , {X2

q′,k′})) such that application of the logic-system

algorithm A to (Λ2(q, k), {f2(0, 0)}) yields a deduction of f2(q, k) from f2(0, 0).

Theorem 3.1 Consider primitive time interval 2 = [0,+∞). It can always be assumed

that interval 2 is partitioned into intervals [c0, c1), . . . [cm−1, cm), m > 1, m ∈ Z. Let

I2 be an instruction paradigm order isomorphic to the rational numbers R2 ⊂ [0,+∞).

For any λ ∈ IN∞ and ν ∈ ∗Z− Z, ν > 0, there exists a unique hyperfinite ∗Λ2(ν, λ) ∈
∗L2 and ν′, λ′ ∈ ∗

IN
′ such that the ultra-word-like X2

ν′,λ′ ∈ ∗M2
ν′,λ′ and ultra-logic-

system ∗Λ2(ν, λ) ∈ ∗A′(( ∗S2
ν′,λ′ , {X2

ν′,λ′})) and σI2 ⊂ ∗A(( ∗Λ2(ν, λ), { ∗ f2(0, 0)})) =

I2
ν,λ ⊂ ∗I2. Also the [[ ∗A(( ∗Λ2(ν, λ), { ∗ f2(0, 0)}))]] *steps satisfy the ≤I2

ν,λ
order and

( ∗I2 −
σI2) ∩

∗A( ∗Λ2(ν, λ), { ∗ f2(0, 0)})) = an infinite set.

Proof. As in Theorem 2.1, the proof follows by *-transfer of the appropriate

formally presented material that appears above in this section 3.

By considering the definition of L2, it follows that the ∗Λ2(ν, λ) is precisely

{ ∗ f2(0, 0)} ∪ {
⋃
{ ∗k2

i (λ) | (0 ≤ i < ν) ∧ (i ∈ ∗Z)}} ∪ {({ ∗ f2(p − 1, λ), ∗f2(p, 0)} |

(0 < p ≤ ν) ∧ (p ∈ ∗Z)} ∪ {{ ∗ f2(ν, j), ∗f2(ν, j + 1)} | (0 ≤ j < λ) ∧ (j ∈ ∗
IN)}. Of

significance is the fact that the steps in the *-deduction ∗A[ ∗Λ2(ν, λ), { ∗ f2(0, 0)}))]

preserve the order ≤ ∗I
2
. Notice that ∗Λ2(ν, λ) is obtained by hyperfinite choice. Fur-

ther, any ∗f2(i, j) ∈ { ∗f2(x, y) | (0 ≤ x ≤ ν) ∧ (0 ≤ y ≤ λ) ∧ (x ∈ ∗Z) ∧ (y ∈ ∗
IN)}

is a hyperfinite *-deduction from ∗f2(0, 0). And, it also follows that the set of all such

*deductions yield a hyperfinite set I2
ν,λ such that σI2 ⊂ I2

ν,λ ⊂ ∗I2.
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4. Logic-System Generation for the Type-3 Interval

For the type-3 case (−∞, 0], a denumerable instruction paradigm displays a refined

form. For this case, I3 = {f3(i, j) | (i ≤ 0) ∧ (i ∈ Z) ∧ (j ∈ IN). Using I3, consider the

following logic-system.

Definition 4.1 Let i ∈ Z, i ≤ 0. For each n ∈ IN, let k3
i (n) = {{f2(i, j), f1(i, j +

1)} | (0 ≤ j ≤ n−1)∧(j ∈ IN)}. For m ∈ Z, m < 0, let K3(m,n) =
⋃
{k3

i (n) | (m ≤ i <

0) ∧ (i ∈ Z)}. Finally, let Λ3(m,n) = {f3(m, 0)} ∪ K3(m,n) ∪ {{f3(p − 1, n), f3(p, 0)} |

(m < p ≤ 0) ∧ (p ∈ Z)}, and L3 = {Λ2(x, y) | (0 ≤ x ∈ Z) ∧ (y ∈ IN)}. Notice that

if i < k ≤ 0, i, k ∈ Z, then A((Λ3(i, j)), {f3(m, 0)})) ⊂ A((Λ3(k, n), {F3(m, 0)})) for

any j, n ∈ IN. Also, each Λ3(m,n) is a distinct finite set due to the specific identifying

W ′ language symbols employed. (Notice that members in L3 can be characterized by

a first-order sentence.)

Consider any Λ3(q, k). Then there exists an q′, k′ ∈ IN and X3
q′,k′ ∈ M3

q′,k′ , such

that Λ3(q, k) ∈ A′((S3
q′ ,k′{X3

q′,k′})) and, in this case, finite choice yields the Λ3(q, k)

logic-system. Then the logic-system algorithm A applied to (Λ3(q, k), {f3(q, 0)})) yields

f3(q, k) as a deduction from f3(q, 0). Further, f3(q, k) ∈ I3. Conversely, if f3(q, k) ∈ I3,

then there is an X3
q′ ,k′ ∈ M3

q′,k′ and a logic-system Λ3(q, k) ∈ S3({X3
q′,k′}) such that

application of the logic-system algorithm A to (Λ3(q, k), { ∗ f3(q, 0)})) yields f3(q, k) as

a deduction from f3(q, 0).

Theorem 4.1 Consider primitive time interval 3 = (−∞, 0]. It can always be assumed

that interval 3 is partitioned into intervals . . . , [c−2, c−1), [c−1, c0]. Let I3 be an in-

struction paradigm order isomorphic to the rational numbers R3 ⊂ (−∞, 0]. For any

λ ∈ IN∞, µ ∈ ∗Z − Z, µ < 0, there exists a unique hyperfinite ∗Λ3(µ, λ) ∈ ∗L3

and µ′, λ′ ∈ ∗
IN

′ such that the ultra-word-like X3
µ′,λ′ ∈ ∗M3

µ′,λ′ and ultra-logic-

system ∗Λ3(µ, λ) ∈ ∗A′(( ∗S3
µ′,λ′ , {X3

µ′,λ′})) and σI3 ⊂ ∗A( ∗Λ3(µ, λ), { ∗ f3(µ, 0)})) =

I3
µ,λ ⊂ ∗I3. Also the [[ ∗A(( ∗Λ3(µ, λ), { ∗ f3(µ, 0)}))]] *steps satisfy the ≤I3

µ,λ
order and

( ∗I3 −
σ

I3) ∩
∗A(( ∗Λ3(µ, λ)), { ∗ f3(µ, 0)})) = an infinite set.

Proof. As in Theorem 3.1, the proof follows by *-transfer of the appropriate

formally presented material that appears above in this section 3.

By considering the definition of L3, it follows that the ∗Λ3(µ, λ) is precisely

{ ∗ f3(µ, 0)} ∪ {
⋃
{ ∗k3

i (λ) | (µ ≤ i < 0) ∧ (i ∈ ∗Z)}} ∪ {{ ∗f3(p − 1, λ), ∗f3(p, 0)} |

(µ < p ≤ 0) ∧ (p ∈ ∗Z)}. Of significance is the fact that the steps in the *-deduction
∗A[( ∗Λ3(µ, λ), { ∗ f3(µ, 0)}] preserve the order ≤ ∗I

3
. Notice that ∗Λ3(µ, λ) is obtained

by hyperfinite choice. Further, any ∗f3(i, j) ∈ { ∗f3(x, y) | (µ ≤ x < 0) ∧ (0 ≤ y ≤

λ)} ∪ { ∗f3(0, 0} is a hyperfinite *-deduction from ∗f3(µ, 0). And, it also follows that

the set of all such *deductions is a hyperfinite set I3
ν,λ such that σI3 ⊂ I3

ν,λ ⊂ ∗I3.
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5. Logic-System Generation for the Type-4 Interval

Theorem 5.1 Consider primitive time interval 4 = (−∞,+∞). It can always

be assumed that interval 4 is partitioned into intervals . . . , [c−2, c−1), [c−1, c0), . . ..

Let I4 be a instruction paradigm order isomorphic to the rational numbers R4 ⊂

(−∞,+∞). For any λ ∈ IN∞, ν, γ ∈ ∗Z − Z, such that ν ≤ 0, γ ≥ 0,

there exists a unique hyperfinite ∗Λ4(ν, γ, λ) ∈ ∗L4 and ν′, γ′, λ′ ∈ ∗
IN

′ such

that the ultra-word-like X4
ν′,γ′,λ′ ∈ ∗M4

ν′,γ′,λ′ and ultra-logic-system ∗Λ4(ν, γ, λ) ∈
∗A′(( ∗S4

ν′,γ′,λ′ , {X4
ν′,γ′,λ′})) and σI4 ⊂ ∗A(( ∗Λ4(ν, γ, λ), { ∗ f4(ν, 0)})) = I4

ν,γ,λ ⊂
∗I4. Also the [[ ∗A(( ∗Λ4(ν, γ, λ), { ∗ f4(ν, 0)}))]] *steps satisfy the ≤I4

ν,γ,λ
order and

( ∗I4 −
σI4) ∩

∗A(( ∗Λ4(ν, γ, λ), { ∗ f4(ν, 0)})) = an infinite set.

By considering the definition of L4, it follows that the ∗Λ4(ν, γ, λ) is precisely

{ ∗ f4(ν, 0)} ∪ {
⋃
{ ∗k4

i (λ) | (ν ≤ i < γ)∧ (i ∈ ∗Z)}} ∪ {{ ∗f4(p− 1, λ), ∗f4(p, 0)} | (ν <

p ≤ γ)∧(p ∈ ∗Z)}∪{{ ∗ f4(γ, j), ∗ f4(γ, j+1)} | (0 ≤ j < λ)∧(j ∈ ∗
IN)}. Of significance

is the fact that the steps in the *-deduction ∗A[( ∗Λ4(ν, γ, λ), { ∗ f4(ν, 0)})] preserve the

order ≤ ∗I
4
. Notice that ∗Λ4(ν, γ, λ) is obtained by hyperfinite choice. Further, any

∗ f4(i, j) ∈ { ∗ f4(x, y) | (ν ≤ x ≤ γ) ∧ (0 ≤ y ≤ λ)} is a hyperfinite *-deduction from
∗ f4(ν, 0). And, it also follows that the set of all such *deductions is a hyperfinite set

I4
ν,γ,λ such that σI4 ⊂ I4

ν,γ,λ ⊂ ∗I4.

6. Necessary refinements.

For the GGU-model, a universe is a nonempty collection of empty-systems,

physical-systems, physical-like systems or other-systems. In general, an infinite hy-

perfinite set X of internal sets, disjoint from
⋃
{ ∗F i(C) | (1 ≤ i ≤ n) ∧ (i ∈ ∗

IN)}, for

an appropriate n, is adjoined when info-fields are employed.

It is now necessary that a more refined definition for each f q(i, j), which yields

each ∗ f q(i, j), be given. The notion of the “non-operative” instruction is used. Using

the alphabet symbol yX ∈ W′, consider the meaningless “word” yX. If this word

is considered an instruction, then it has no operative content and yX yields neither

properton combinations of any form nor any entities that require the adjoined set X.

Its application yields an empty-system. This word is introduced in order to simplify

the following refinement.

Although thus far ∗ f q(i, j) has been considered as an *instruction-entity and any

further refinements as to how it is constructed were unnecessary, this is no longer the

case. None of the previous results are altered by this refinement. All members of ∗W ′

being considered in this section are *instructions. Let Zq, q = 1, 2, 3, 4, be as employed

to define the Iq. Consider, as with q and defined in the same manner, Zr ⊂ Z, where
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r = 1, 2, 3, 4. Notationally, let T = Zr × IN. Both Zq × IN and T carry the simple

lexicographic order � (Herrmann, 2006).

[As with the previous NOTE, the following g and v functions are compositions,

where the respective t functions are defined on Z×IN with the same values as members

of R. In the case of g, the values are the v sequences, where the values of v are members

of W′. The (q, r) notation indicates the appropriate restrictions. ]

In what follows, given a particular q, then r is fixed for all universe-wide frozen-

frames. For this approach, the Theorems 2.1, 2, 3, 4 are highly refined.

Consider functions g(q,r):Zq × IN → (W′)T with the following properties. For (i, j) ∈

Zr × IN, g(q,r)((i, j)) = v. Then for each (k, s) ∈ Zr × IN, v(k, s) is an appropriate

instruction-entity. Notationally, the instruction-entity is g(q,r)((i, j))(k, s) = v(k, s) =

g(q,r)(i, j; k, s). For applications and a particular (i, j), the k identifies the system and

varying s identify system constituents.

Definition 6.1. Depending upon the application, each (i.j)-universe-wide frozen-

frame (UWFF) is one of three general types. (1) It can be empty. (2) It can

contain but repetitions. (3) It can be composed of, at the least, one different

object. The same three general types of ; r, s) physical, physical-like or other-systems

can occur.

Definition 6.2. UWFF Associations. All UWFF and the various types of

systems can be related relative to their (i, j) and ; k, s) identifiers. However, there can

be three special types of relations termed as associations. For a given (i, 0)-UWFF,

each of the (i, j)-UWFF is associated with the (i, 0). In this i-case and for standard

j and j ′, (i.e. {j, j ′} ⊂ IN), each (i, j) and (i, j′), is closely associated with each

other. Standard j and j ′ ∈ IN are closely associated. Then for {j, j ′} ⊂ IN∞, each (i, j)

and (i, j′), is exquisitely association. Further, due to required convergence, each

(i, j), j ∈ IN∞ is also exquisitely associated with the (i + 1, 0)-UWFF.

Definition 6.3. System Associations. For a nonempty (i, j)-UWFF, the three

types of systems identified by the quasi-ordered pairs ; k, s) can also carry the same “as-

sociation” terminology. Further, the “other-systems” often have an additional feature.

They can be conceived of a k internal structures. On the other hand, via specific

interpretations, they need only be considered as associated physical or physical-like

systems.

Although defined in this article, the use of the “association” term

usually appears when the GGU-model is interpreted, where an intu-

itive meaning is applied.
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Using this notation, for a fixed (i, j), the g(q,r)(i, j; k, s) represents the same type of

primitive time ordering (lexicographic) as does the universe-wide frozen-frames when

generated by the deduction algorithm process. For purposes of analysis, physical-

systems and universes-wide frozen-frames are also viewed as subsets of W′. For each

(i, j, k) ∈ Zq×IN×Zr, consider the set {g(q,r)(i, j; k, s) | (s ∈ IN)}. Define h(q,r)(i, j, k) =

{g(q,r)(i, j; k, s) | s ∈ IN}♦. For each (i, j) ∈ Zq × IN, let f(q,r)(i, j) =
⋃
{h(q,r)(i, j, k) |

k ∈ Zr}♦. By embedding and *-transfer, for (i, j) ∈ ∗Zq × ∗
IN and (k, s) ∈ ∗Zr × ∗

IN,

consider the composed function ∗g(q,r)(i, j; k, s), with its *instruction-entity property.

Thus, there is an internal ∗h(q,r)(i, j, k) = { ∗g(q,r)(i, j; k, s) | s ∈ ∗
IN}. Then, for each

(i, j, k) ∈ ∗Zq × ∗
IN × ∗Zr, the *instruction-entity ∗ f (q,r)(i, j) =

⋃
{ ∗h(q,r)(i, j, k) |

k ∈ ∗Zr}. On appropriate { ∗g(q,r)(i, j; k, s)}, the relation ≤(q,r) is also satisfied. (It is

costmary for such relations to be expressed this way, where one actually means ∗≤(q,r) .)

The notion of the “extended” language is necessary when certain single word rep-

resentations are employed. This means that denumerably long words are allowed as

members of W′. Further, in this case, the equivalence class representation for such a

word is composed of total sequences. (Note: When such an equivalence class [f ] is em-

bedded into the nonstandard model, then, general;y, it does not hold that ∗ [f ] = [f ].)

With respect to the original method used to obtained words in W′, note that from the

definitions and when considered as restrictions, for fixed (i, j, k), each g(q,r)(i, j; k, s) is

an instruction-entity, each h(q,r)(i, j, k) is an instruction-entity (of instruction-entities)

as is each f(q,r)(i, j). For fixed (i, j), (k, s), there is a single word W
(q,r)
(i,j;k,s) in W′ that

corresponds to g(q,r)(i, j; k, s). However, due to how the intervals and interval partition

methods are employed, the various single word forms are considered as but a logical

form constructed by the addition of a “conjunction” (and, &, ∧) notation. Mathe-

matically from ♦ any two conjuncts can be compared relative to the simple order as

symbolically expressed.

Then there is a word W
(q,r)
(i,j;k) ∈ W′ corresponding to each h(q,r)(i, j, k) the in-

dividual symbol-strings, the spacing symbol, diagrams, images, or sensory informa-

tion determined by each word g(q,r)(i, j; k, s) as s varies. This word yields a written

instruction-entity for each of the finite k systems.

In like manner for fixed (i, j), there is a member of W′ that yields, in written

word-ordered form, via the lexicographic order, a single word W
(q,r)
(i,j) ∈ W′. Then there

is a single word W(q,r) that yields in written word-ordered form, again via ♦, a word

that corresponds to a complete development for a generated standard universe. These

results are immediately extended to the hyperfinite cases. Then, for the W(q,r)(n), this

immediately yields the existence of an ultraword ∗W(q,r)(λ) ∈ ∗W ′ with the same

first-order properties as W(q,r)(n).
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For each (i, j) ∈ ∗Zq × ∗
IN and k ∈ ∗Zr,

∗h(q,r)(i, j, k) yields an empty-system,

physical-system, physical-like system or an other-system. (Note that physical-like prop-

erties include physical-like behavior relative to non-physical entities, where the enti-

ties have no other known properties.) Of course, each hyperfinite ∗f (q,r)(i, j) is an

*instruction-entity as is each ∗h(q,r)(i, j, k). By application of the word yX and the

GGU-model construction of each universe-wide frozen frame, there are only finitely or

hyperfinitely many physical or physical-like systems. Further more, various physical-

like systems can be physical-systems in that only physical events exist. Which physical-

like systems are but physical depends upon choice since the GGU-model is not depen-

dent upon what science classifies as “physical.” Such a choice is dependent upon a

chosen interpretation. The same holds for what are considered as empty-systems or

other-systems.

As previously done by considering the finite case, for each (i, j) ∈ ∗Zq × ∗
IN

that yields a universe-wise frozen-frame, ∗g(q,r)(i, j; k, s) produces an info-field in the

same manner as an entire universe is considered as corresponding to a *developmental

paradigm. These info-fields can also be considered in system form via the ∗h(q,r)(i, j, k)

*instruction-entities. If empty-systems are used, only a type-r = 4 ultra-logic-system

need be considered. Then as based upon the finite case, this yields for each such (i, j),

λ ∈ ∗
IN, and {ν, γ} ⊂ ∗Z a generating ultra-logic-system

∗F(q,r)(i, j, ν, γ, λ) = { ∗g(q,r)(i, j; ν, 0)} ∪ {
⋃

∗k(q,r)
x (λ) | (ν ≤ x < γ) ∧ (x ∈ ∗Z)}}

∪{{ ∗g(q,r)(i, j; k − 1, λ), ∗g(q,r)(i, j; k, 0)} | (ν < k ≤ γ) ∧ (k ∈ ∗Z)}∪

{{ ∗g(q,r)(i, j; γ, s), ∗g(q,r)(i, j; γ, s + 1)} | (0 ≤ s < λ) ∧ (s ∈ ∗
IN)}, λ ∈ IN∞.

The set ∗F
(q,r)
ν,γ,λ(i, j) = ∗F(q,r)(i, j, ν, γ, λ) is a hyperfinite set of internal entities

and, as such, it is internal. For the previous ultra-logic-system ∗Λq(x, λ), where x

depends on the q, the ∗F
(q,r)
ν,γ,λ replaces the ∗f q. Thus, this gives an ultra-logic-system

∗Λ(q,r)(x, λ) that is composed of ultra-logic-systems. As such, it is an hyperfinite set

of internal entities and, hence, internal. Note again that the basic entities correspond

to ultrawords in ∗W ′.

For this refined approach, the algorithm A has an extended definition. It is applied

to these special logic-systems where the members are themselves logic-systems. This is

how modified A is applied. As each logic-system is obtained in the indicated ordered

manner, A is applied to it. This is what would occur in the standard definition for

application of A to a collection of logic-systems in n-tuple form except that the logic-

systems are obtained deductively in a specific order and then as each is deduced the

23



deduction is completed for the deduced logic-system. This is a rather natural way one

would precede. Under this extended definition for A all of previous Theorems 2.1, 2,

3, 4 in sections 2, 3, 4, 5 are modified as follows:

Consider an appropriate (q, r), x, a, b and any λ ∈ IN∞. Then there

exists a unique hyperfinite ∗Λ(q,r)(x, λ) ∈ ∗L(q,r) and an x′, λ′ ∈ ∗
IN

′ such

that the ultra-word-like X
(q,r)
x′,λ′ ∈ ∗M

(q,r)
x,λ′ and ultra-logic-system ∗Λ(q,r)(x, λ) ∈

∗A′(( ∗S
(q,r)
x′,λ′ , {X

(q,r)
x′,λ′})) and σI(q,r) ⊂ ∗A(( ∗Λ(q,r)(x, λ), { ∗F

(q,r)
ν,γ,λ(a, b)})) = I

(q,r)
ν,γ,λ ⊂

∗I(q,r). Also the [[ ∗A(( ∗Λ(q,r)(x, λ), { ∗F
(q,r)
ν,γ,λ(a, b)}))]] *steps satisfy the ≤

I
(q,r)

ν,γ,λ

order

and ( ∗I(q,r) −
σI(q,r)) ∩

∗A(( ∗Λ(q,r)(x, λ), { ∗F
(q,r)
ν,γ,λ(a, b)})) = an infinite set.

Let Di ⊂ IR be a countable set of non-zero numerical or coded values for a

particular ultra-properton coordinate i ∈ K or, in some cases, a coded descrip-

tive member of W′. (Note. It is possible that such coded descriptions can also be

modeled as members of ∗W ′.) Let D =
⋃
{Di | i ∈ K}. For each p ∈ D, let

Λp = {x | (x ∈ ∗
IN) ∧ (st(x/10ω) = p)}. If p 6= 0, then x ∈ IN∞ = ∗

IN − IN. The

sets Λp are disjoint and, by choice, consider distinct λp ∈ Λp for each p ∈ D. For

any p ∈ D, consider the λp-finite set Pp of ultra-propertons. There exists a bijec-

tion from [1, λp] onto Pp. From the definition of the set of all ultra-propertons, for

each i′, j ′ ∈ [1,K] that yield characteristics and each p, y ∈ D, there exist λp-finite

x(p, i′) ∈ C and a λy-finite x(y, j ′) ∈ C sets of ultra-propertons such that if i 6= j,

then x(p, i′)∩ x(p, j ′) = ∅. The x(p, i′) are intermediate propertons. The same holds if

coordinates are but coded descriptive members of W′.

All of the previous appropriate results hold for the case of a correspond-

ing developmental paradigm by substituting corresponding developmental paradigm

f(q,r), g(q,r)(i, j; k, s), and the like for instruction paradigm notation.

For a particular λ ∈ IN∞, i such that i ∈ ∗Zq, and j such that j ∈ ∗
IN, j ≤ λ, con-

sider ∗ f
(q,r)
λ (i, j) =

⋃
{ ∗h(q,r)(i, j, k) | k ∈ ∗Zr}. Let hyperfinite f

(q,r)
λ = { ∗ f

(q,r)
λ (i, j) |

(i ∈ ∗Zq) ∧ (j ∈ ∗
IN) ∧ (j ≤ λ)}. Then let

G
(q,r)
λ : f

(q,r)
λ → Π+.

The image G
(q,r)
λ ( ∗ f

(q,r)
λ (i, j)) = IF

(q,r)
λ (i, j) is an info-field. Depending upon how

a result of IF
(q,r)
λ (i, j) is analyzed, it can be viewed as collections of ultra-propertons,

collections of intermediate propertons, collection of these collections . . . . However,

it can also contain non-properton generated physical-like systems and the empty set.

For physical-systems only, the function G
(q,r)
λ is the “gathering” or “binding” oper-

ator. Its properties for the generation of physical-like systems are unknown. From a set-

theoretic viewpoint for physical-systems, this operator simply gathers ultra-propertons
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into bound subsets, the intermediate propertons. For our universe, these subsets are

further gathered into bound sets that represent the elementary particles, this continues,

as necessary to bound sets that, when realized, yield, for “meaningful” *instructions-

sets, various disjoint physical-systems. As previously noted, empty-systems are pro-

duced when the “*instructions” are meaningless in that no members of a info-field are

produced by them.

For a physical universe, the intermediate propertons x(p, i′) determine physical

objects and this can be viewed two ways. First, a collection of such sets is viewed

as a collection of ultra-propertons and the independent coordinate addition is coupled

with the standard part operator. Or, independent coordinate addition is applied in

a separate step to sets of ultra-propertons and the sets are replaced with a single

entity - an intermediate properton. Since for physical objects within our universe,

what are considered as “particles” are, from the GGU-model, but bound collections,

of collections of ultra-propertons, then introducing the intermediate subparticle as but

an appropriate collection of ultra-propertons seems, for comprehension, to be the best

approach. But, the standard part operator, St, is applied only to the bound

collections of ultra-propertons that yield the intermediate propertons. This

will automatically yield each physical-system. This approach can eliminate the

virtual particle or process concept within reality models. The models that need such

concepts to predict behavior can be considered as just that “models” for predicted

behavior and that the virtual “stuff” does not exist in physical reality.

Application of the standard part operator, the physical realization operator, to a

specific IF
(q,r)
λ (i, j) causes the immediate info-field sequential predecessor, if any, to

cease in that the propertons are no longer bound. For the intermediate propertons, this

can be modeled by vector space subtraction and this would be followed by independent

*-finite subtraction.

The function G
(q,r)
λ represents a substratum medium and the processes that yield

the gathering action. This correspondence produces a correlation between the ultra-

logic-system, ordered *deduction, via ∗A, that mimics these processes with respect to

its range. This further corresponds to the appearance and the behavior of the physical-

systems that will display the same properties as the mimicked entities. Further, this

substratum medium has other properties. In all that follows, this refinement is assumed.

7. GGU-model Schemes.

he following schemes are not expressed in complete composition form. In what

follows, for q = 1, 2, 3, 4, the a, b, c take the appropriate value for a specific q. The

relations (operators) such as ∗A and the others presented in the following left-to-right
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sequential form, represent processes. There is also the process, here denoted by Ch,

that, depending upon an interpretation, represents a characterizable choice process.

For the multi-complexity cosmogony, the scheme is

(MC) ∗M
(q,r)
λ′ ⇒ Ch( ∗M

(q,r)
x′,λ′)) = ( ∗S

(q,r)
x′,λ′{X

(q,r)
x′,λ′}) ⇒

Ch( ∗A′( ∗S(q,r), {X
(q,r)
x′,λ′})) = ( ∗Λ(q,r)(x, λ), { ∗F

(q,r)
ν,γ,λ(b, c)})

⇒ (StG
(q,r)
λ )([[( ∗A( ∗Λ(q,r)(x, λ), { ∗F

(q,r)
ν,γ,λ(b, c)}))]]) ⇒ U .

In (MC), when G
(q,r)
λ is sequentially applied to an ∗F

(q,r)
ν,γ,λ(i, j), the St is applied.

This scheme can be further refined in that the info-fields are set-theoretically gathered

into an ultra-logic-system Γ(q,r)(x, λ).

Then (StG
(q,r)
λ )([[( ∗A( ∗Λ(q,r)(x, λ), { ∗F

(q,r)
ν,γ,λ(b, c)}))]]) ⇒ U is replaced with

G
(q,r)
λ ([[( ∗A( ∗Λ(q,r)(x, λ), { ∗F

(q,r)
ν,γ,λ(b, c)}))]]) = (Γ(q,r)(x, λ), IF

(q,r)
λ (b, c)) ⇒

St([[( ∗A((Γ(q,r)(x, λ), IF
(q,r)
λ (b, c)))]]) ⇒ U .

For a particular λ ∈ IN∞ and appropriate x and a, b one single-complexity

scheme is

(S) (StG
(q,r)
λ )([[( ∗A(( ∗Λ(q,r)(x, λ), ∗F

(q,r)
ν,γ,λ(a, b)))]]) ⇒ U or

(S′) G
(q,r)
λ ([[( ∗A(( ∗Λ(q,r)(x, λ), { ∗F

(q,r)
ν,γ,λ(a, b)})))]]) = (Γ(q,r)(x, λ), IF

(q,r)
λ (a, b)) ⇒

St([[( ∗A((Γ(q,r)(x, λ), IF
(q,r)
λ (a, b))))]]) ⇒ U .

This scheme indicates that only one complexity level, λ, is considered for a partic-

ular universe. This is can be considered a fixed complexity for the entire GGU-model.

This is a significant simplification. For (S) and a standard finite complexity k case,

there is a concrete model for corresponding standard A((Λ(q,r)(m,n), {F
(q,r)
p,t,k(a, b)})) in

the form of a book with chapters identified.

The minimal scheme, where only info-fields exist, is

(M) St([[( ∗A((Γ(q,r)(x, λ), IF
(q,r)
λ (a, b))))]]) ⇒ U .

The mathematics yields a mathematical model for behavior that is most likely

expressed differently. In the usual way, abbreviate “If P, then Q” as P → Q. Let A,

B, C, D, . . . be members of a standard logic-system as represented by two element

sets and ||| is a spacing, where each A, B, C, D, . . . represent an instruction-entity
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for the physical-systems that comprise a specific (i, j) universe-wide frozen-frame. For

this standard case, there is a word, W
(q,r)
(i,j) = A|||A → B|||B → C|||C → D||| . . . ∈ W′,

and each expression, other than |||, in A|||A → B|||B → C|||C → D||| . . . is considered,

in the usual way, an hypothesis. The propositional rule for deduction yields, in order,

{A,B,C,D, . . .}. Let the members of a finite set {W
(q,r)
(i,j) } of these words be denoted by

P, Q, R, S, T, . . . . This is a finite collection of instruction-entities for finitely many

universe-wide frozen-frames. Hence, using the words P, Q, R, S, . . . there exists in

informal W′ a word W(q,r)(n) = P.|||P → Q.|||Q → R.|||R → S.|||.... Applying modus

ponens throughout the members of this word yield, in order, the instruction-entities

for each universe-wide frozen-frame and each physical-system contained therein.

Of course, although technically ∗W ′ is a set of *equivalences classes within the

model, these results yield ultrawords W
(q,r)
(i,j) and W (q,r)(x, λ), when these results are

extended using the notion of a “hyper” language. Thus, rationally, one can state that
∗Λ(q,r)(x, λ) corresponds to an ultraword W (q,r)(x, λ) in a hyper-language to which a

type of hyper-deduction is applied. This type of hyper-deduction is the exact same rule

as modus ponens except it is applied to an ultraword and has hyperfinitely many steps.

8. The Algorithm A (Also Denoted Elsewhere as A).

[Note: When I formally express set-theoretic statements in a first-order language,

I usually use “clarifying” parentheses that need not be part of the formal language.

For example, ∀x((x ∈ A) ∧ (x ∈ B)), as slightly abbreviated, need only be written as

∀x(x ∈ A ∧ x ∈ B since x ∈ A and x ∈ B are often formally expressed by predicate

notation E(x, y) and this statement is expressed as ∀x(E(x,A) ∧ E(x,B)). There is a

major axiom used in informal mathematics that is not expressible in this first-order

formal manner. It is the Peano-Dedekind induction axiom for the complete collection

of natural numbers.]

Given nonempty B, the doubleton operator D on B, D(B), is defined as

∀x((x ∈ D(B)) ↔ ((x ∈ P(B)) ∧ (∃y∃z((y ∈ B) ∧ (z ∈ B) ∧ (y ∈ x) ∧ (z ∈

x) ∧ (∀w((w ∈ B) ∧ (w ∈ x) → ((w = y) ∨ (w = z))))))).

Previously, I merely stated that algorithm A can be formally characterized and

its basic properties captured. I now show how this can be done. Let Λ4(p, r, n) be the

logic-system defined on I4. Then the algorithm A has various properties. (Recall that

underlined symbols indicates “bold” font.) One statement relating these properties is

∀n∀p∀t(((n ∈ IN) ∧ (p ∈ Z) ∧ (p ≤ 0) ∧ (t ∈ Z) ∧ (t ≥ 0)) → (∀z((z ∈

A(Λ4(p, r, n), {f4(p, 0)})) ↔ ((z ∈ {f4(p, 0)}) ∨ (∃x∃y((¬(x = y) ∧ (x ∈ Λ4(p, t, n)) ∧

(y ∈ Λ4(p, t, n)) ∧ (x ∈ D(I4)) ∧ (y ∈ D(I4)) ∧ (z ∈ x) ∧ (z ∈ y)))) ∨ (∃w((w ∈

D(I4)) ∧ (z ∈ w) ∧ (∀v((v ∈ D(I4) ∧ ¬(v = w) → ¬(z ∈ v))))))))).
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Then there is the less informative statement

∀n∀p∀t(((n ∈ IN) ∧ (p ∈ Z) ∧ (p ≤ 0) ∧ (t ∈ Z) ∧ (t ≥ 0)) → (∀z((z ∈

A(Λ4(p, t, n), {f4(p, 0)})) ↔ ((z ∈ {f4(p, 0)})∨(∃x((x ∈ Λ4(p, r, n))∧(x ∈ D(I4))∧(z ∈

x))))))).

Then upon embedding and *-transfer these two formal statements become

∀n∀p∀r(((n ∈ ∗
IN) ∧ (p ∈ ∗Z) ∧ (p ≤ 0) ∧ (r ∈ ∗Z) ∧ (r ≥ 0)) → (∀z((z ∈

∗A( ∗Λ4(p, r, n), { ∗ f4(p, 0)})) ↔ ((z ∈ { ∗f4(p, 0)}) ∨ (∃x∃y((¬(x = y) ∧ (x ∈
∗Λ4(p, r, n)) ∧ (y ∈ ∗Λ4) ∧ (x ∈ ∗D( ∗I4)) ∧ (y ∈ ∗D( ∗I4)) ∧ (z ∈ x) ∧ (z ∈

y))))∨(∃w((w ∈ ∗D( ∗I4))∧(z ∈ w)∧(∀v((v ∈ ∗D( ∗I4)∧¬(v = w) → ¬(z ∈ v))))))))).

∀n∀p∀r(((n ∈ ∗
IN) ∧ (p ∈ ∗Z) ∧ (p ≤ 0) ∧ (r ∈ ∗Z) ∧ (r ≥ 0)) → (∀z((z ∈

∗A( ∗Λ4(p, r, n), { ∗ f4(p, 0)})) ↔ ((z ∈ { ∗ f4(p, 0)}) ∨ (∃x((x ∈ ∗Λ4(p, r, n)) ∧ (x ∈
∗D( ∗I4)) ∧ (z ∈ x))))))).

Since the GGU-model is based upon the finite, then the methods used are probably

the “simplest” that exist within nonstandard analysis. Of course, the *-transferred

statements and the original ones are stating that the same properties hold but when

examined from the meta-world more can be stated. From that world, it is observed

that the p, t, n can be the hyper-numbers ν, γ, λ, respectively.

Of course, one can also introduce the notion of the “step-order” for the algorithm.

For each nonempty finite instruction paradigm I4
p,t,n (not in refined notation), there is

an m ∈ IN
′ and a bijection S: [1,m] → I4

p,t,n that preserves the order ≤ on the natural

numbers and the lexicographic order ≤I4
p,t,n

on I4
p,t,n.

∀n∀p∀t∀k∀m(((n ∈ IN) ∧ (p ∈ Z) ∧ (p ≤ 0) ∧ (t ∈ Z) ∧ (t ≥ 0) ∧ (k ∈ IN
′) ∧ (m ∈

IN
′) ∧ (k ≤ m)) → (S(k) ≤I4

p,t,n
S(m))).

Hence,

∀n∀p∀t∀k∀m(((n ∈ ∗
IN)∧(p ∈ ∗Z)∧(p ≤ 0)∧(t ∈ ∗Z)∧(t ≥ 0)∧(k ∈ ∗

IN
′)∧(m ∈

∗
IN

′) ∧ (k ≤ m)) → ( ∗S(k) ≤ ∗I4
p,t,n

∗S(m))).

Thus, for the particular ν, γ, λ in Theorem 5.1, algorithm ∗A “deduction” takes

place in µ ∈ IN∞ ≤ steps.

9. The Participator Universe.

For the GGU-model, one of the most difficult requirements is to include the con-

cept of the “participator” universe. As stated at the May 1974 Oxford Symposium in

Quantum Gravity, Patton and Wheeler describe how the existence of human beings

alters the universe to various degrees. “To that degree the future of the universe is
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changed. We change it. We have to cross out that old term ‘observer’ and replace it

with the new term ‘participator.’ In some strange sense the quantum principle tells

us that we are dealing with a participator universe.” (Patton and Wheeler (1975, p.

562).) This aspect of the GGU-model is only descriptively displayed in section 4.8 in

Herrmann (2002). It is now possible to obtain formally the collection of universes that

satisfies this participator requirement. For simplicity and for our universe, it is assumed

in this section that a single-complexity type universe is used throughout. The universe

in which we dwell is one that needs to satisfy the notion of participator alterations.

For our universe as presently accepted, this is now extended, for each n ∈ IN, to

a sequence Λ(q,r) defined on [1,m], m ∈ IN
′, with range {Λ(q,r)

p (x, n) | 1 ≤ p ≤ m}.

By *-transfer, for λ ∈ IN∞, appropriate x, the finite (hence, hyperfinite) sequence has

range { ∗Λ
(q,r)
p (x, λ) | 1 ≤ p ≤ m}. (Of course, the x and λ are fixed relative to the

(q, r).)

A logic-system need not be confined to language elements. Using a similar pro-

cedure as appears in section 2, there is a Y
(q,r)
m ∈ ∗My(q,r)

m such that for each

p, 1 ≤ p ≤ m, ∗Λ
(q,r)
p (x, λ) ∈ ∗A′( ∗Sy(q,r), {Y

(q,r)
m }). Hence, the members of the

{Λ(q,r)
p (x, n) | 1 ≤ p ≤ m} can be considered as *deduced.

An original alteration can be miniscule and made in one or more of the necessary

parameters that are satisfied by a specific cosmology. This can be done in such a way

that only miniscule alterations in physical-systems satisfy the alterations. On the other

hand, a highly altered cosmology can also occur. Alterations are considered as those

initiated by a collection of human mental activities via the Eccles and Robinson notion

of “mental intentions” and is local prior to it being propagated during a universe’s

development. Each *instruction paradigm is consider as the result of the corresponding

*developmental paradigm.

For various interpretations, only the set { ∗Λ
(q,r)
p (x, λ) | 1 ≤ p ≤ m} needs to be

considered. Further, there are different approaches as to the activation of the members

of { ∗Λ
(q,r)
p (x, λ) | 1 ≤ p ≤ m} (Herrmann, (2013a)). Notice that, for each type of

cosmology, there is a “last” step in the development of each member of { ∗Λ
(q,r)
p (x, λ) |

1 ≤ p ≤ m}.

Let fixed K ′ ∈ IN
′. Then for each appropriate i ∈ ∗Z and j ∈ ∗

IN, j ≤ λ,

each moment in primitive-time ∗t(q,r)(i, j) = 1/K ′(i + 1 − 1/2j), there is a de-

fined ∗Λ
(q,r)
p′ (x, λ) ∈ { ∗Λ

(q,r)
p (x, λ) | 1 ≤ p ≤ m} that generates, if any, all previous

universe-wide frozen-frames, whether they stem from alterations or not. This particu-

lar ∗Λ
(q,r)
p′ (x, λ) also contains at ∗t(q,r)(i, j +1), or if j = λ, then at ∗t(q,r)(i+1, 0), any

altered universe-wide frozen-frame. For certain theological interpretations, this or the

corresponding *developmental paradigm also can correspond to a “history” file. Thus,
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as a participator universe progresses, preceding, if any, universe-wide frozen-frame can

either come about relative to the unique ∗Λ
(q,r)
p (x, λ) or other similar unique members

of { ∗Λ
(q,r)
p (x, λ) | 1 ≤ p ≤ m} that satisfy participator alterations.

Depending upon the q, each universe has, with respect to �, a “first” universe-

wide frozen-frame at (x, 0). Hence, for a hyperfinite restricted *rational number interval

[ ∗ t(q,r)(x, 0), ∗t(q,r)(i, j)] and relative to realized alterations, there is a defined member
∗Λ

(q,r)
p′′ (x, λ) of { ∗Λ

(q,r)
p (x, λ) | 1 ≤ p ≤ m} and a complete hyperfinite developmental

paradigm that descriptively details the specific members of the realized universe that

includes all realized alterations. The application of a scheme such as (S′) can be

sequentially preceded by ∗A′( ∗Sy(q,r), {Y
(q,r)
m }) = { ∗Λ

(q,r)
p (x, λ) | 1 ≤ p ≤ m}.

10. The Physical Book Model

For the book and chapter model that appears in Herrmann (2013a), each member

of U (and any corresponding *developmental paradigm), corresponds to a book, where

a chapter determines the step-by-step construction of a specific universe-wide frozen-

frame. Sequentially prior to an alteration of a universe-wide frozen-frame, there is a

specific p-book chapter with (i, j) realized. The altered chapter is a member of a k-book

and realization begins either with chapter (i + 1, 0) or chapter (i, j + 1), 0 < j + 1 ≤ λ.

11. More GGU-model Schemes.

This is a slight modification of the *instruction-information (GGU) model (Her-

rmann, 2013). Recall that G
q,r)
λ [{h(q,r)(i, j; k) | k ∈ Zr}] = IF

(q,r)
λ (i, j), where it is

assumed that this info-field has λ-complexity. In the standard schemes (S), (S′) above,

the St operator is applied to each intermediate properton or the coded *-descriptions

for physical characteristics. It applies to nothing else. For (S), (S′), one considers a

complete (i, j) “universe-wide frozen-frame” as denoted by St(IF
(q,r)
λ (i, j)). The info-

fields are for a participator universe, if the universe is such. As with the notion of

quantum fields, for what follows, the info-fields are considered as present in the sub-

stratum. Thus, notationally, for the entire primitive time sequence, a complete universe

is denoted by

(PWM) {St(IF
(q,r)
λ (i, j)) | (α ≤ i ≤ β) ∧ (0 ≤ j ≤ λ)} ⇒ {E(q,r)(i, j)},

for the appropriate α, β and λ as previous defined. Notice that for each (i, j), (n,m),

(i, j) � (n,m) ↔ E(q,r)(i, j) ≤ E(q,r)(n,m),

where ≤ is order isomorphic to � . That is, the physical events are ordered with respect

to primitive-time, and, when restricted, to observer-time.
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For the participator universe, there are sets of info-fields {{IF
(q,r)
p (i, j) | (α ≤ i ≤

β) ∧ (0 ≤ j ≤ λ)} | 1 ≤ p ≤ m}. One considers St as p dependent. The hyper-fast

properton selection process preserves the order �. The Stp is applied to the appropriate

(i, j) member of the p member of {{IF
(q,r)
p (i, j) | (α ≤ i ≤ β) ∧ (1 ≤ j ≤ λ)} | 0 ≤ p ≤

m}.
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