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.    
1. Introduction 
 
        During long time evidences have been 
shown that spacetime is holographic. A 
holographic principle has been conjectured 
to apply not just to black holes, but to any 
spacetime [1, 2, 3, 4]. Covariant holographic 
entropy bounds generalize to other 
spacetimes [5, 6]. Fully holographic theories 
have now been demonstrated, in which a 
system of quantum fields and dynamical 
gravity in N dimensions is dual to a system 
of quantum fields in N − 1 classical 
dimensions [7, 8, 9, 10, 11].  
          Recently, scientists from University of 
Arizona led by Nasser Peyghambarian have 
invented a system that creates holographic, 
three-dimensional images that may be 
viewed at another site [12]. Peyghambarian 
says the machine could potentially transport 
a person's image over vast distances. 
          Here, we show that if a holographic 
three-dimensional image of a body is created 
and sent to another site and the gravitational 
mass of the body is reduced to a specific 
range, then the body will disappear and 
posteriorly will reappear exactly where its 
holographic three-dimensional image was 
sent.   
 
2. Theory 
    
          From the quantization of gravity it 
follows that the gravitational mass mg and 
the inertial mass mi are correlated by means 
of the following factor [13]: 
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where  is the  rest  inertial  mass  of   the  0im

 
 
particle and pΔ  is the variation in the 
particle’s kinetic momentum;  is the speed 
of light.   

c

          This equation shows that only for 
0=Δp the gravitational mass is equal to the 

inertial mass.  
          In general, the momentum variation 

pΔ  is expressed by tFp ΔΔ =  where  is 
the   applied force during a time interval

F
tΔ . 

Note that there is no restriction concerning 
the nature of the force , i.e., it can be 
mechanical, electromagnetic, etc.          

F

          Equation (1) tells us that the 
gravitational mass can be negative. This fact 
is highly relevant because shows that the 
well-known action integral for a free-

particle: , , must be 

generalized for the following form (where 
can be positive or negative): 

∫−=
b

a
dscmS 0>m

gm

( )2∫−=
b

ag dscmS

or 
( )31 2222

1

dtcVcmS
t

t g −−= ∫
where the Lagrange's function is 

( )4.1 222 cVcmL g −−=

The integral dtcVcmS
t

t g
222 12

1
−= ∫ , 

preceded by the plus sign, cannot have a 
minimum. Thus, the integrand of Eq.(3) must 
be always positive. Therefore, if , 
then necessarily  ; if , then 

0>gm
0>t 0<gm

0<t . The  possibility of  is based on  
the well-known equation 

0<t
22

0 1 cVtt −±=  
of Einstein's Theory. 
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          Thus if the gravitational mass of a 
particle is positive, then t  is also positive 
and, therefore, given by 22

0 1 cVtt −+= . 
This leads to the well-known relativistic 
prediction that the particle goes to the future, 
if . However, if the gravitational mass 
of the particle is negative, then t  is negative 
and given by 

cV →

22
0 1 cVtt −−= . In this case, 

the prediction is that the particle goes to the 
past, if . Consequently,  is the 
necessary condition for the particle to go to 
the past. 

cV → 0<gm

          The Lorentz's transforms follow the 
same rule for  and , i.e., the 

sign before 

0>gm 0<gm
221 cV−  will be (  when 

 and  if . 
)+

0>gm ( )− 0<gm
          The momentum, as we know, is the 
vector VLp

rr
∂∂= .Thus, from Eq.(4) we obtain 
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cV

Vm
p g

g r
r

r
=

−±
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The  sign in the equation above will be 
used when  and the  sign if 

. Consequently, we can express the 
momentum  in the following form  

( )+
0>gm ( )−

0<gm
pr

( )6
1 22

VM
cV

Vm
p g

g r
r

r
=

−
=

whence we get a new relativistic expression 
for the gravitational mass, i.e.,  
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1 22 cV

m
M g

g
−

=

Note that  is not the gravitational mass at 
rest, which is obtained making  in Eq. 
(1), i.e., . In this case, the equation 
above reduces to the well-known Einstein’s 
equation: 

gm
0=Δp

00 ig mm =

22
0

1 cV

mM i
i

−
=  

       Substitution of Eq. (1) into Eq. (7) leads 
to the following equation 
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          It is known that the uncertainty 
principle can also be written as a function of 

EΔ  (uncertainty in the energy) and tΔ  
(uncertainty in the time), i.e., 

( )9. h≥ΔΔ tE
This expression shows that a variation of 
energy EΔ , during a time interval tΔ , can 
only be detected if Et Δ≥Δ h . Consequently, 
a variation of energy EΔ , during a time 
interval Et Δ<Δ h , cannot be 
experimentally detected. This is a limitation 
imposed by Nature and not by our 
equipments.  
          Thus, a quantum of energy 

hfE =Δ that varies during a time interval 
Ecft Δ<==Δ hλ1 (wave period) cannot 

be experimentally detected. This is an 
imaginary photon or a “virtual” photon. 
          Now, consider a particle with energy 

. The DeBroglie’s gravitational and 
inertial wavelengths are respectively 

2cM g

cMh gg =λ  and cMh ii =λ . In Quantum 
Mechanics, particles of matter and quanta of 
radiation are described by means of wave 
packet (DeBroglie’s waves) with average 
wavelength iλ . Therefore, we can say that 
during a time interval ct iλ=Δ , a quantum 
of energy  varies. According to the 
uncertainty principle, the particle will be 
detected if

2cME g=Δ

Et Δ≥Δ h  , i.e., if 2cMc gi h≥λ  
or πλλ 2gi ≥ . This condition is usually 
satisfied when . In this case, ig MM =

ig λλ =  and obviously, πλλ 2ii > . 
However, when   decreases gM gλ  increases 
and πλ 2g can become bigger than iλ , 
making the particle non-detectable or 
imaginary.     
          Since the condition to make the 
particle imaginary is  

π
λ

λ
2

g
i <

and  
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Then we get 

159.0
2
1

=<
π

χ

However, χ  can be positive or negative 
( 159.0+<χ  or 159.0−>χ ). This means 
that when 
 

( )10159.0159.0 +<<− χ
 
the particle becomes imaginary.  
Consequently, it leaves our Real Universe, 
i.e., it performs a transition to the Imaginary 
Universe, which contains our Real Universe. 
The terms real and imaginary are borrowed 
from mathematics (real and imaginary 
numbers). 
          All these conclusions were originally 
deduced in a previous article [13].  
          Quantum Mechanics tells us that if an 
experiment involves a large number of 
identical particles, all described by the same 
wave function  , real density of mass  Ψ ρ  
of these particles in x, y, z, t is proportional 
to the corresponding value  (2Ψ 2Ψ  is 
known as density of probability. If Ψ  is 
imaginary then *ΨΨ=Ψ 2 . Thus, 

).  Similarly, in the case of 
imaginary particles, the density of imaginary 
gravitational mass, 

*.ΨΨ=Ψ∝ 2ρ

)(imaginarygρ , in x, y, z,  

will be expressed by . 

Since  is always real and positive and 

*2
)( ΨΨ=Ψ∝imaginarygρ

2Ψ

Vm imaginarygimaginaryg )()( =ρ  is an imaginary 
quantity then, in order to transform the 
proportionality above into an equation, we 
can write 

( )11)(
2

imaginarygk ρ=Ψ

Since the modulus of an imaginary number is 
always real and positive;  is a 
proportionality constant (real and positive) to 
be determined.   

k

           The Mutual Affinity is a dimensionless 
quantity with which we are familiarized and 
of which we have perfect understanding as to 
its meaning. It is revealed in the molecular 

formation, where atoms with strong mutual 
affinity combine to form molecules. It is the 
case, for example of the water molecules, in 
which two Hydrogen atoms join an Oxygen 
atom. It is the so-called Chemical Affinity. 
          The degree of Mutual Affinity, A , in 
the case of imaginary particles , respectively 
described   by the wave functions  1Ψ   and 

2Ψ , might be correlated to  and . Only 
a simple algebraic form fills the requirements 
of interchange of the indices, the product  

2
1Ψ 2

2Ψ

( )12
..

1,22,1

2
1

2
2

2
2

2
1

AAA ===
=ΨΨ=ΨΨ

In the above expression, A  is due to the 

product  will be always positive. 
From equations (11) and (12) we get   
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          Since imaginary gravitational masses 
are equivalent to real gravitational masses 
then the equations of the Real Gravitational 
Interaction are also applied to the Imaginary 
Gravitational Interaction.  However, due to 
imaginary gravitational mass, , to 
be an imaginary quantity, it is necessary to 
put 

)(imaginarygm

)(imaginarygm  into the mentioned equations 
in order to homogenize them, because as we 
know, the module of an imaginary number is 
always real and positive.  
          Thus, based on gravity theory, we can 
write the equation of the imaginary 
gravitational field in nonrelativistic 
Mechanics.  

( )144 )( imaginarygG ρπ=ΔΦ

It is similar to the equation of the real 
gravitational field, with the difference that 
now instead of the density of real 
gravitational mass we have the density of 
imaginary gravitational mass. Then, we can 
write the general solution of Eq. (14), in the 
following form: 

( )152

(

∫−=Φ
r

dV
G imaginarygρ

This equation expresses, with nonrelativistic 
approximation, the potential of the imaginary 
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gravitational field of any distribution of 
imaginary gravitational mass. 
          Particularly, for the potential of the 
field of only one particle with imaginary 
gravitational mass , we get: )(imaginarygm

( )16)(

r
mG imaginaryg−=Φ

Then the force produced by this field upon 
another particle with imaginary gravitational 
mass is )(imaginarygm′

( )172

((

()()(

r

mm
G

r
mFF

imaginarygimaginaryg

imaginarygimaginarygimaginaryg

′
−=

=
∂
Φ∂′−=′−=

rr

 By comparing equations (17) and (13) we 
obtain  

( )1822
21

2112 rk
VVAGFF −=−=

rr
          

In the vectorial form the above equation is 
written as follows 

( )19ˆ
22
21

2112 μ
rk
VVGAFF −=−=

rr

Versor μ̂  has the direction of the line 
connecting the mass centers (imaginary 
masses) of both particles and oriented from 1 
to 2.      
          In general, we may distinguish and 
quantify two types of mutual affinity: 
positive and negative. The occurrence of the 
first type is synonym of attraction, (as in the 
case of the atoms in the water molecule) 
while the aversion is synonym of repulsion. 
In fact, Eq. (19) shows that the forces 12F

r
and 

21F
r

 are attractive, if A  is positive 
(expressing positive mutual affinity between 
the two imaginary particles), and repulsive if 
A   is negative (expressing negative mutual 
affinity between the two imaginary 
particles).  
          Now, after this theoretical background, 
we can explain the Gravitational 
Holographic Teleportation.  
          Initially, is created a holographic 
three-dimensional image of the bodies and 
sent to another site. The technology for this 
is already known [12]. Next, the 
gravitational masses of the bodies are 
reduced to a 

range 00 159.0159.0 igi mmm +<<− . When 
this occur the gravitational masses becomes 
imaginaries and the bodies perform transitions 
to the Imaginary Universe (leaving the Real 
Universe) (See Eq. (10)).  However, the physical 
phenomenon that caused the reduction of the 
gravitational masses of the bodies stays at the 
Real Universe. Consequently, the bodies return 
immediately to the Real Universe for the same 
positions they were before the transition to the 
Imaginary Universe. This is due to the 
Imaginary Gravitational Interaction between the 
imaginary gravitational masses of the bodies and 
the imaginary gravitational masses of the forms 
shaped by the bodies in the imaginary 
spacetime1 before the transition to the Imaginary 
Universe. These imaginary forms initially 
shaped by the bodies are preserved in the 
imaginary spacetime by quantum coherence 
effects [14, 15, 16, 17].   
         Since spacetime is holographic then an 
imaginary form shaped in imaginary spacetime 
by the holographic three-dimensional image of a 
body has much more similarity with the body 
than the imaginary form shaped in the imaginary 
spacetime by the real body. 
          Mutual affinity is directly related to 
similarity. This means that the degree of 
mutual affinity, A , between the imaginary 
bodies (which were sent to the Imaginary 
Universe) and the imaginary forms shaped by 
their holographic images is far greater than 
the degree of mutual affinity between the 
imaginary bodies and the imaginary forms 
shaped in the imaginary spacetime by the real 
bodies before the transition to the Imaginary 
Universe. Thus, according to Eq. (19), the 
bodies are strongly attracted to the 
holographic three-dimensional image placed 
in the far site. Consequently, the bodies do 
not return for the positions they were before 
the transition, they reappear as real bodies 
exactly where their holographic three-
dimensional images were sent. Thus, is 
carried out the teleportation of the bodies to 
the far site. Since the process combines 
holography and gravitation, we have called 
this process of Gravitational Holographic 
Teleportation.   
                                           
1 The real spacetime is contained in the imaginary 
spacetime. Such as  the set of real numbers is 
contained in the  set of imaginary numbers. 
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.   

1. Introduction

        During long time evidences have been shown that spacetime is holographic. A holographic principle has been conjectured to apply not just to black holes, but to any spacetime [1, 2, 3, 4]. Covariant holographic entropy bounds generalize to other spacetimes [5, 6]. Fully holographic theories have now been demonstrated, in which a system of quantum fields and dynamical gravity in N dimensions is dual to a system of quantum fields in N − 1 classical dimensions [7, 8, 9, 10, 11]. 

          Recently, scientists from University of Arizona led by Nasser Peyghambarian have invented a system that creates holographic, three-dimensional images that may be viewed at another site [12]. Peyghambarian says the machine could potentially transport a person's image over vast distances.

          Here, we show that if a holographic three-dimensional image of a body is created and sent to another site and the gravitational mass of the body is reduced to a specific range, then the body will disappear and posteriorly will reappear exactly where its holographic three-dimensional image was sent.  

2. Theory


          From the quantization of gravity it follows that the gravitational mass mg and the inertial mass mi are correlated by means of the following factor [13]:
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          In general, the momentum variation 

[image: image6.wmf]p


D


 is expressed by 

[image: image7.wmf]t


F


p


D


D


=


 where 

[image: image8.wmf]F


 is the   applied force during a time interval

[image: image9.wmf]t


D


. Note that there is no restriction concerning the nature of the force

[image: image10.wmf]F


, i.e., it can be mechanical, electromagnetic, etc.         


          Equation (1) tells us that the gravitational mass can be negative. This fact is highly relevant because shows that the well-known action integral for a free-particle: 
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where the Lagrange's function is
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, preceded by the plus sign, cannot have a minimum. Thus, the integrand of Eq.(3) must be always positive. Therefore, if 
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 of Einstein's Theory.


          Thus if the gravitational mass of a particle is positive, then 
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whence we get a new relativistic expression for the gravitational mass, i.e., 
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. In this case, the equation above reduces to the well-known Einstein’s equation:
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       Substitution of Eq. (1) into Eq. (7) leads to the following equation
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          It is known that the uncertainty principle can also be written as a function of 
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(wave period) cannot be experimentally detected. This is an imaginary photon or a “virtual” photon.


          Now, consider a particle with energy 
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. In Quantum Mechanics, particles of matter and quanta of radiation are described by means of wave packet (DeBroglie’s waves) with average wavelength 
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          Since the condition to make the particle imaginary is 
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Then we get
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the particle becomes imaginary.  Consequently, it leaves our Real Universe, i.e., it performs a transition to the Imaginary Universe, which contains our Real Universe. The terms real and imaginary are borrowed from mathematics (real and imaginary numbers).

          All these conclusions were originally deduced in a previous article [13]. 

          Quantum Mechanics tells us that if an experiment involves a large number of identical particles, all described by the same wave function 
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 is an imaginary quantity then, in order to transform the proportionality above into an equation, we can write
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Since the modulus of an imaginary number is always real and positive; 
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 is a proportionality constant (real and positive) to be determined.  


           The Mutual Affinity is a dimensionless quantity with which we are familiarized and of which we have perfect understanding as to its meaning. It is revealed in the molecular formation, where atoms with strong mutual affinity combine to form molecules. It is the case, for example of the water molecules, in which two Hydrogen atoms join an Oxygen atom. It is the so-called Chemical Affinity.

          The degree of Mutual Affinity,
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In the above expression, 

[image: image104.wmf]A


 is due to the product 
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 will be always positive. From equations (11) and (12) we get  
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          Since imaginary gravitational masses are equivalent to real gravitational masses then the equations of the Real Gravitational Interaction are also applied to the Imaginary Gravitational Interaction.  However, due to imaginary gravitational mass,
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 into the mentioned equations in order to homogenize them, because as we know, the module of an imaginary number is always real and positive. 


          Thus, based on gravity theory, we can write the equation of the imaginary gravitational field in nonrelativistic Mechanics. 




[image: image109.wmf](


)


14


4


)


(


imaginary


g


G


r


p


=


DF


It is similar to the equation of the real gravitational field, with the difference that now instead of the density of real gravitational mass we have the density of imaginary gravitational mass. Then, we can write the general solution of Eq. (14), in the following form:
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This equation expresses, with nonrelativistic approximation, the potential of the imaginary gravitational field of any distribution of imaginary gravitational mass.

          Particularly, for the potential of the field of only one particle with imaginary gravitational mass 
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Then the force produced by this field upon another particle with imaginary gravitational mass 
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 By comparing equations (17) and (13) we obtain 
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          In the vectorial form the above equation is written as follows
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Versor 
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 has the direction of the line connecting the mass centers (imaginary masses) of both particles and oriented from 1 to 2.     


          In general, we may distinguish and quantify two types of mutual affinity: positive and negative. The occurrence of the first type is synonym of attraction, (as in the case of the atoms in the water molecule) while the aversion is synonym of repulsion. In fact, Eq. (19) shows that the forces 
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 are attractive, if 
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 is positive (expressing positive mutual affinity between the two imaginary particles), and repulsive if 
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  is negative (expressing negative mutual affinity between the two imaginary particles). 

          Now, after this theoretical background, we can explain the Gravitational Holographic Teleportation. 


          Initially, is created a holographic three-dimensional image of the bodies and sent to another site. The technology for this is already known [12]. Next, the gravitational masses of the bodies are reduced to a range

[image: image122.wmf]0


0


159


.


0


159


.


0


i


g


i


m


m


m


+


<


<


-


. When this occur the gravitational masses becomes imaginaries and the bodies perform transitions to the Imaginary Universe (leaving the Real Universe) (See Eq. (10)).  However, the physical phenomenon that caused the reduction of the gravitational masses of the bodies stays at the Real Universe. Consequently, the bodies return immediately to the Real Universe for the same positions they were before the transition to the Imaginary Universe. This is due to the Imaginary Gravitational Interaction between the imaginary gravitational masses of the bodies and the imaginary gravitational masses of the forms shaped by the bodies in the imaginary spacetime
 before the transition to the Imaginary Universe. These imaginary forms initially shaped by the bodies are preserved in the imaginary spacetime by quantum coherence effects [14, 15, 16, 17].  

         Since spacetime is holographic then an imaginary form shaped in imaginary spacetime by the holographic three-dimensional image of a body has much more similarity with the body than the imaginary form shaped in the imaginary spacetime by the real body.


          Mutual affinity is directly related to similarity. This means that the degree of mutual affinity,
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, between the imaginary bodies (which were sent to the Imaginary Universe) and the imaginary forms shaped by their holographic images is far greater than the degree of mutual affinity between the imaginary bodies and the imaginary forms shaped in the imaginary spacetime by the real bodies before the transition to the Imaginary Universe. Thus, according to Eq. (19), the bodies are strongly attracted to the holographic three-dimensional image placed in the far site. Consequently, the bodies do not return for the positions they were before the transition, they reappear as real bodies exactly where their holographic three-dimensional images were sent. Thus, is carried out the teleportation of the bodies to the far site. Since the process combines holography and gravitation, we have called this process of Gravitational Holographic Teleportation.  
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� The real spacetime is contained in the imaginary spacetime. Such as  the set of real numbers is contained in the  set of imaginary numbers.
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