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Abstract 

Mathematicians  and  physicists  have  long  wondered  why  the  Octionic 
Projective  Plane  (OP2),  the  Freudenthal  –  Tits  Magic  Square,  or  Magic 
Triangle and certain functions of the Octonions and Sedenions abruptly end. 
This paper lays out the various elements included in this conundra, with the 
assumption that irregularities and undiscovered relationships between these 
structures account for the anomalies. In addition to the above, this paper 
investigates the G2 to  B3 to  D4 to B4 to  F4 Magic Triangle,  the twisted 
product of  S7 x S7 x G2, which leads to the Sedenions, the exceptional  
singularities,  Kleinian  singularities,  Coxeter  Groups  H3  and  H4,  Polytope 
(3,3,5) , the 600 – cell and the binary icosahedral group. 
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Introduction 
In order to understand OP2, it is best to understand that projective planes 
exist for Reals, Complex, Quarternions and Octonions, but not for Sedenions 
or  Trigintaduonions.  OP2 ends the  series.  Many writers  never  make clear 
whether they refer to a real, complex, or quarternionic Hopf Fibration, which 
implies that they themselves remain unaware of any differences. 

Why write about OP2? In the course of building the Qi Men Dun Jia Model, 
the  author  has  discovered  various  anomalies  with  regard  to  G2,  the 
Sedenions,  the  Magic  Square  and  the  Magic  Triangle,  Triality,  and  the 
language used to describe the Hopf Fibration in terms of the BC – Helix. 

Most writers who describe the Hopf Fibration in terms of the BC – Helix fail to 
offer any sense of scale, or to differentiate about which type of Hopf Fibration 
they refer, while others prefer loose terminology such as Hopf Map or Hopf 
Bundle, or S03, all of which lead to confusion. Since the mathematical mind 
was not designed for language, humanity shall forever suffer this problem.

This paper is an effort, in part, to straighten out the language problems. Yet in 
the large part, this paper is an attempt to lay out the various elements of what  
appear to be related conundrums: the loss of functionality of Cayley Numbers, 
the higher one travels, the odd dimensions of the Hopf Fibration and the even 
dimension or degree of the lattices, the Magic Square, E8, the Exceptional Lie  
Algebras, and the Octonion Projective Plane. Why 3 Hopf Fibrations and then 
a final OP2? 

In the spirit of adventure we set out to lay out these elements and to draw 
connections, primarily to H3 and to H4 and their related Platonic Solids, for 
this seems to be the thrust of the Qi Men Dun Jia Model, as we follow the 
Golden Ratio higher into the Golden Field. 
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Real Projective Plane
Mridul Aanjaneya introduces the Real Projective Plane and its qualities. 

Triangulating the Real Projective Plane, by MRIDUL AANJANEYA
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The Complex Projective Plane

complex projective plane, usually denoted P2(C), is the two-

dimensional complex projective space. It is a complex manifold 

described by three complex coordinates

where, however, the triples differing by an overall rescaling are 

identified:

That is, these are homogeneous coordinates in the traditional sense 

of projective geometry.

Contents

• 1     Topology  
• 2     Algebraic geometry  
• 3     Differential geometry  
• 4     References  
• 5     See also  

Topology

The Betti numbers of the complex projective plane are

1, 0, 1, 0, 1, 0, 0, .....

The middle dimension 2 is accounted for by the homology class of the 

complex projective line, or Riemann sphere, lying in the plane. The 

nontrivial homotopy groups of the complex projective plane are 

. The fundamental group is trivial and all other higher 

homotopy groups are those of the 5-sphere, i.e. torsion.
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Algebraic geometry

In birational geometry, a complex rational surface is any algebraic 

surface birationally equivalent to the complex projective plane. It 

is known that any non-singular rational variety is obtained from the 

plane by a sequence of blowing up transformations and their inverses 

('blowing down') of curves, which must be of a very particular type. 

As a special case, a non-singular complex quadric in P3 is obtained 

from the plane by blowing up two points to curves, and then blowing 

down the line through these two points; the inverse of this 

transformation can be seen by taking a point P on the quadric Q, 

blowing it up, and projecting onto a general plane in P3 by drawing 

lines through P.

The group of birational automorphisms of the complex projective plane 

is the Cremona group.

Differential geometry

As a Riemannian manifold, the complex projective plane is a 4-

dimensional manifold whose sectional curvature is quarter-pinched. 

The rival normalisations are for the curvature to be pinched between 

1/4 and 1; alternatively, between 1 and 4. With respect to the former 

normalisation, the imbedded surface defined by the complex projective 

line has Gaussian curvature 1. With respect to the latter 

normalisation, the imbedded real projective plane has Gaussian 

curvature 1.

Cremona group, introduced by Cremona (1863, 1865), is the group of 

birational automorphisms of the n-dimensional projective space over a 

field k. It is denoted by Cr(Pn(k)) or Bir(Pn(k)) or Crn(k).

The Cremona group is naturally identified with the automorphism group 

Autk(k(x1, ..., xn)) of the field of the rational functions in n 

indeterminates over k, or in other words a pure transcendental 

extension of k, with transcendence degree n.

The projective general linear group of order n+1, of projective 

transformations, is contained in the Cremona group of order n. The 
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two are equal only when n=0 or n=1, in which case both the numerator 

and the denominator of a transformation must be linear.

The Cremona group in 2 dimensions

In two dimensions, Max Noether and Castelnuovo showed that the 

complex Cremona group is generated by the standard quadratic 

transformation, along with PGL(3, k), though there was some 

controversy about whether their proofs were correct, and Gizatullin 

(1983) gave a complete set of relations for these generators. The 

structure of this group is still not well understood, though there 

has been a lot of work on finding elements or subgroups of it.

• Cantat & Lamy (2010  ) showed that the Cremona group is not simple as an abstract group;
• Blanc showed that it has no normal subgroups other than the trivial group and itself that 

are also closed in a natural topology.
• For the finite subgroups of the Cremona group see Dolgachev & Iskovskikh (2009).

The Cremona group in higher dimensions

There is little known about the structure of the Cremona group in 

three dimensions and higher though many elements of it have been 

described. Blanc (2010) showed that it is (linearly) connected, 

answering a question of Serre (2010). There is no easy analogue of 

the Noether–Castelnouvo theorem as Hudson (1927) showed that the 

Cremona group in dimension at least 3 is not generated by its 

elements of degree bounded by any fixed integer.

De Jonquières groups

A De Jonquières group is a subgroup of a Cremona group of the 

following form. Pick a transcendence basis x1, ..., xn for a field 

extension of k. Then a De Jonquières group is the subgroup of 

automorphisms of k(x1, ..., xn) mapping the subfield k(x1, ..., xr) 

into itself for some r≤n. It has a normal subgroup given by the 

Cremona group of automorphisms of k(x1, ..., xn) over the field 

k(x1, ..., xr), and the quotient group is the Cremona group of 

k(x1, ..., xr) over the field k. It can also be regarded as the group 

of birational automorphisms of the fiber bundle Pr×Pn–r→Pr.
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When n=2 and r=1 the De Jonquières group is the group of Cremona 

transformations fixing a pencil of lines through a given point, and 

is the semidirect product of PGL2(k) and PGL2(k(t)).

Quaternionic Projective Space

quaternionic projective space is an extension of the ideas of real 

projective space and complex projective space, to the case where 

coordinates lie in the ring of quaternions H. Quaternionic projective 

space of dimension n is usually denoted by

and is a closed manifold of (real) dimension 4n. It is a homogeneous 

space for a Lie group action, in more than one way.

Its direct construction is as a special case of the projective space 

over a division algebra. The homogeneous coordinates of a point can 

be written

where the are quaternions, not all zero. Two sets of coordinates 

represent the same point if they are 'proportional' by a left 

multiplication by a non-zero quaternion c; that is, we identify all 

the

.

In the language of group actions, is the orbit space of 

by the action of , the multiplicative group of 

non-zero quaternions. By first projecting onto the unit sphere inside 

one may also regard as the orbit space of by the 

action of , the group of unit quaternions.[1] The sphere 

then becomes a principal Sp(1)-bundle over :
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There is also a construction of by means of two-dimensional 

complex subspaces of , meaning that lies inside a complex 

Grassmannian.

Projective line

The one-dimensional projective space over H is called the "projective 

line" in generalization of the complex projective line. For example, 

it was used (implicitly) in 1947 by P. G. Gormley to extend the 

Möbius group to the quaternion context with "linear fractional 

transformations". For the linear fractional transformations of an 

associative ring with 1, see projective line over a ring and the 

homography group GL(2,A).

From the topological point of view the quaternionic projective line 

is the 4-sphere, and in fact these are diffeomorphic manifolds. The 

fibration mentioned previously is from the 7-sphere, and is an 

example of a Hopf fibration.

Infinite-dimensional quaternionic projective space

The space is the classifying space BS3. The homotopy groups of 

are given by . These groups 

are known to be very complex and in particular they are non-zero for 

infinitely many values of . However, we do have that 

if and if . It 

follows that rationally, i.e. after localisation of a space, is 

an Eilenberg–Maclane space . That is . 

(cf. the example K(Z,2)). See rational homotopy theory.
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Quaternionic projective plane

The 8-dimensional has a circle action, by the group of complex 

scalars of absolute value 1 acting on the other side (so on the 

right, as the convention for the action of c above is on the left). 

Therefore the quotient manifold

may be taken, writing U(1) for the circle group. It has been shown 

that this quotient is the 7-sphere, a result of Vladimir Arnold from 

1996, later rediscovered by Edward Witten and Michael Atiyah.

Tony Smith Excerpts 

In What is a Lie Algebra, Frank “Tony” Smith writes, 

The A series contains the complex rotations in the unit circle, S1, 

and S1 is a Lie group.  

 

The B and C series both contain the quaternion rotations on the 

unit sphere, S3, and S3 is a Lie group.  

 

The D series contains the Lorentz group in 4-dim space, 

consisting of two copies of S3 (3 rotations and 3 boosts).  

Note that in some sense all nonablelian Lie groups can 

be constructed from nonabelian S3. Roughly, you can take 

as many copies of S3 as the rank of the Lie group, 

and then add additional root vectors according 

to the symmetry of the Weyl group. 

 

HOWEVER, the exceptional Lie groups do NOT include S7, 

because octonion non-associativity forces S7 to expand, 

so that S7 is the only unit sphere in a division algebra that 

is not a Lie group.  

 

To what Lie group does S7 expand?

S7 expands to the twisted product of S7 x S7 x G2, 
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which is the D-series Lie group D4 = Spin(0,8).  

 

Spin(8) is the spin covering of the rotations in 8-dimensional space, 

the space of the octonions.  

 

The D4 Lie group Spin(0,8) lives in BOTH:

the standard series Lie groups, as D4; 

and 

the exceptional octonion Lie groups.  

 

Therefore, 

you would expect Spin(0,8) to be a very special Lie group, 

and it is.  

So much so, that it is the basis of my D4-D5-E6-E7 physics model.  

Then somewhat later, 

NOW WE CAN LOOK AT THE COMMUTATOR ALGEBRAS 

OF THE SPHERES    S1, S3, and S7:       

 

Complex S1         [S1,S1] = 0                     S1 COLLAPSES!

is a Lie algebra.                    

 

Quaternion S3      [S3,S3] = S3                    S3 IS STABLE! 

is a Lie algebra. 

 

Octonion S7        [S7,S7] = S7xS7xG2 = Spin(0,8)  S7 EXPANDS!

is                 (x=twisted fibration product)

NOT a Lie algebra 

because 

it does NOT satisfy 

the Jacobi identity.  

Another way to describe Spin(8) is based on Clifford Algebras: 

 

 

Spin(8) is the Lie Group whose Lie Algebra is the commutator algebra 

of bivectors of the real Clifford Algebra Cl(8) 

with basis elements:  

                          G0   G1   G2   G3   G4   G5   G6   G7

These 8 real basis elements form an 8-real-dimensional 
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representation space for Spin(8). 

 

 

Denote the basis of the complex numbers {1,i}. 

The 8-real-dimensional basis of Cl(8) can be rewritten 

as a 4-complex dimensional basis: 

                          G0-iG1    G2-iG3    G4-iG5    G6-iG7

These 4 basis elements form a 4-complex-dimensional 

representation space for the SU(4) subgroup of Spin(8). 

 

 

Denote the basis of the quaternions {1,i,j,k}. 

The 8-real-dimensional basis of Cl(8) can be rewritten 

as a 2-quaternionic dimensional basis: 

                          G0-iG1-jG2-kG3      G4-iG5-jG6-kG7

These 2 basis elements form a 2-quaternionic-dimensional 

representation space for the Sp(2) subgroup of Spin(8). 

 

 

Denote the basis of the octonions {1,i,j,k,E,I,J,K}. 

The 8-real-dimensional basis of Cl(8) can be rewritten 

as a 1-octonionic dimensional basis: 

                          G0-iG1-jG2-kG3-EG4-IG5-JG6-KG7

This 1 basis element forms a 1-octonionic-dimensional 

representation space for an S7 subset of Spin(8). 

The S7 subset of Spin(8) is acted upon 

by the G2 subgroup of Spin(8). 

Notice that the 7-sphere S7 is not a Lie algebra,

but if you extend it to make a Lie algebra, you get Spin(8), 

which has an 8-real-dimensional representation space, 

that corresponds to the 1-octonionic-dimensional space.

The late Guillermo Moreno wrote
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We may assume here that this construction of G2 has something to do with 

So  we  get  (n-1)  for  the  odd  dimensional  spheres.  This  seems to  be  the 
opposite of combinatorial, in fact it appears to be a reduction in size. 
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the  derivation  algebra  of  ALL  Cayley-Dickson  algebra

the derivation algebra of ALL Cayley-Dickson algebra
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Freudenthal – Tits Magic Square 

In mathematics, the Freudenthal magic square (or Freudenthal–Tits 

magic square) is a construction relating several Lie algebras (and 

their associated Lie groups). It is named after Hans Freudenthal and 

Jacques Tits, who developed the idea independently. It associates a 

Lie algebra to a pair of division algebras A, B. The resulting Lie 

algebras have Dynkin diagrams according to the table at right. The 

"magic" of the Freudenthal magic square is that the constructed Lie 

algebra is symmetric in A and B, despite the original construction 

not being symmetric, though Vinberg's symmetric method gives a 

symmetric construction; it is not a magic square as in recreational 

mathematics.

The Freudenthal magic square includes all of the exceptional Lie 

groups apart from G2, and it provides one possible approach to 

justify the assertion that "the exceptional Lie groups all exist 

because of the octonions": G2 itself is the automorphism group of the 

octonions (also, it is in many ways like a classical Lie group 

because it is the stabilizer of a generic 3-form on a 7-dimensional 

vector space – see prehomogeneous vector space).
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A \ B R C H O
R A1 A2 C3 F4

C A2 A2 × A2 A5 E6

H C3 A5 D6 E7

O F4 E6 E7 E8

Magic Triangle 
Bruce Westbury 2005
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SEXTONIONS AND THE MAGIC SQUARE, BRUCE W. WESTBURY

In his conclusion, Bruce Westbury indicates the proper path that should have 
been taken through the Lie Algebras to reach the Magic Triangle:
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Thus our primary interest lies in the path from G2 to B3 to D4 to B4 to F4. 
Herein lies the keys to the conundrum in the author’s view. 
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Magic Triangle 
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Kleinian Singularities 
In this section we provide excerpts from Andrei Gabrielov to illustrate the key 
role of Kleinian Singularities in this problem: 
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Binary Icosahedral Group . Wikipedia

This group plays a pivotal role in the QMDJ Model, providing the linkage to 
Polytope (3,3,5)

Relation to 4-dimensional symmetry groups

The 4-dimensional analog of the icosahedral symmetry group Ih is the 
symmetry group of the 600-cell (also that of its dual, the 120-cell). 

Just as the former is the Coxeter group of type H3, the latter is the Coxeter 
group of type H4, also denoted [3,3,5]. Its rotational subgroup, denoted [3,3,5]  +   

is a group of order 7200 living in SO(4). 

Coxeter 
group

symmetry 
group

Double Cover Order

H3 600-cell SO(3
H4 120-cell Polytope 

[3,3,5]
SO(4) Spin(4) 14400
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The coset space Spin(3) / 2I = S3 / 2I is a spherical 3-manifold 

called the Poincaré homology sphere. It is an example of a homology 

sphere, i.e. a 3-manifold whose homology groups are identical to 

those of a 3-sphere. The fundamental group of the Poincaré sphere is 

isomorphic to the binary icosahedral group, as the Poincaré sphere is 

the quotient of a 3-sphere by the binary icosahedral group.

The author notes here that Andrei observed the presence of singularities with 
H3 and with H4. 

SO(4) has a double cover called Spin(4) in much the same way that Spin(3) is 
the double cover of SO(3). Similar to the isomorphism Spin(3) = Sp(1), the 
group Spin(4) is isomorphic to Sp(1) × Sp(1).

The preimage of [3,3,5]+ in Spin(4) (a four-dimensional analogue of 2I) is 
precisely the product group 2I × 2I of order 14400. The rotational symmetry 
group of the 600-cell is then

[3,3,5]+ = ( 2I × 2I ) / { ±1 }.

Various other 4-dimensional symmetry groups can be constructed from 2I. For 
details, see (Conway and Smith, 2003).
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The 600 – Cell 

The 600 – Cell ties directly to the Hopf Fibration, according to one writer. 

Of primary importance is that the 600 – Cell leads directly to the number 24:

The snub 24-cell may be obtained from the 600-cell by removing the 

vertices of an inscribed 24-cell and taking the convex hull of the 

remaining vertices. This process is a diminishing of the 600-cell. In 

geometry, the snub 24-cell is a convex uniform polychoron composed of 

120 regular tetrahedral and 24 icosahedral cells. Five tetrahedra and 

three icosahedra meet at each vertex. In total it has 480 triangular 

faces, 432 edges, and 96 vertices.

The snub 24-cell is related to the truncated 24-cell by an 

alternation operation. Half the vertices are deleted, the 24 

truncated octahedron cells become 24 icosahedron cells, the 24 cubes 

become 24 tetrahedron cells, and the 96 deleted vertex voids create 

96 new tetrahedron cells.

The snub 24-cell may also be constructed by a particular diminishing 

of the 600-cell: by removing 24 vertices from the 600-cell 

corresponding to those of an inscribed 24-cell, and then taking the 

convex hull of the remaining vertices. This is equivalent to removing 

24 icosahedral pyramids from the 600-cell.

Conversely, the 600-cell may be constructed from the snub 24-cell by 

augmenting it with 24 icosahedral pyramids.

Coordinates

The vertices of a snub 24-cell centered at the origin of 4-space, 

with edges of length 2, are obtained by taking even permutations of

(0, ±1, ±φ, ±φ2)

(where φ = (1+√5)/2 is the golden ratio).

These 96 vertices can be found by partitioning each of the 96 edges 

of a 24-cell into the golden ratio in a consistent manner, in much 

the same way that the 12 vertices of an icosahedron or "snub 
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octahedron" can be produced by partitioning the 12 edges of an 

octahedron in the golden ratio. This is done by first placing vectors 

along the 24-cell's edges such that each two-dimensional face is 

bounded by a cycle, then similarly partitioning each edge into the 

golden ratio along the direction of its vector.[4] The 96 vertices of 

the snub 24-cell, together with the 24 vertices of a 24-cell, form 

the 120 vertices of the 600-cell.

Structure

Each icosahedral cell is joined to 8 other icosahedral cells at 8 

triangular faces in the positions corresponding to an inscribing 

octahedron. The remaining triangular faces are joined to tetrahedral 

cells, which occur in pairs that share an edge on the icosahedral 

cell.

The tetrahedral cells may be divided into two groups, of 96 cells and 

24 cells respectively. Each tetrahedral cell in the first group is 

joined via its triangular faces to 3 icosahedral cells and one 

tetrahedral cell in the second group, while each tetrahedral cell in 

the second group is joined to 4 tetrahedra in the first group.

Symmetry

The snub 24-cell has three vertex-transitive colorings based on a 

Wythoff construction on a Coxeter group from which it is alternated: 

F4 defines 24 interchangeable icosahedra, while the BC4 group defines 

two groups of icosahedra in a 8:16 counts, and finally the D4 group 

has 3 groups of icosahedra with 8:8:8 counts.

This last section bears repeating and amplification since it provides 

essential information:

F4 defines 24 interchangeable icosahedra, while the BC4 group 

defines two groups of icosahedra in a 8:16 counts, and finally the 

D4 group has 3 groups of icosahedra with 8:8:8 counts.
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Here we see links between the BC4 group, then the D4 Group and finally the 
F4 Group, which reflects the general G2 to B3 to D4 to B4 to F4. In other 
words, the geometry in the seventh dimension or degree which links S7 x S7 
X G2 to the fourteenth dimension and the Sedenions, can be found right here 
in the linkages of these icosahedra. Tony Smith understands the importance 
of this sequence, which he mentions above, and as may be seen in this chart: 

Dim Number Lie 
Alge
bra

Hopf Fibration Lattice Division

Algebra

SPIN

1 Real S1 Div Alg
2 Z2 Square 

Lattice
Div Alg

3 Complex S3 Hopf
4 D4 Div Alg
5
6
7 S7 Hopf 
8 Quarternion Root 

Lattice
Div Alg

9
10
11
12
13
14 G2 S7 x S7 x G2
15 S7 – S15 – S8
16 Sedenion Octionic 

Projective 
Plane

Laminat
ed 
Lattice 
L16

17
18
19
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It is one of three semiregular polychora made of two or more cells 

which are platonic solids, discovered by Thorold Gosset in his 1900 

paper. He called it a tetricosahedric for being made of tetrahedron 

and icosahedron cells. (The other two are the rectified 5-cell and 

rectified 600-cell.)

Wikipedia on the 600 – Cell 

In geometry, the 600-cell (or hexacosichoron) is the convex regular 

4-polytope, or polychoron, with Schläfli symbol {3,3,5}. Its boundary 

is composed of 600 tetrahedral cells with 20 meeting at each vertex. 

Together they form 1200 triangular faces, 720 edges, and 120 

vertices. The edges form 72 flat regular decagons. Each vertex of the 

600-cell is a vertex of six such decagons.

The mutual distances of the vertices, measured in degrees of arc on 

the circumscribed hypersphere, only have the values 36° = 

, 60°= , 72° = , 90° = , 108° = , 120° = 

, 144° = , and 180° = . 

Departing from an arbitrary vertex V one has at 36° and 144° the 12 

vertices of an icosahedron, at 60° and 120° the 20 vertices of a 

dodecahedron, at 72° and 108° again the 12 vertices of an 

icosahedron, at 90° the 30 vertices of an icosadodecahedron, and 

finally at 180° the antipodal vertex of V. References: S.L. van Oss 

(1899); F. Buekenhout and M. Parker (1998).

The 600-cell is regarded as the 4-dimensional analog of the 

icosahedron, since it has five tetrahedra meeting at every edge, just 

as the icosahedron has five triangles meeting at every vertex. It is 

also called a tetraplex (abbreviated from "tetrahedral complex") and 

polytetrahedron, being bounded by tetrahedral cells.

Its vertex figure is an icosahedron, and its dual polytope is the 

120-cell.

Each cell touches, in some manner, 56 other cells. One cell contacts 

each of the four faces; two cells contact each of the six edges, but 
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not a face; and ten cells contact each of the four vertices, but not 

a face or edge.

The snub 24-cell is related to the truncated 24-cell by an alternation operation. Half the vertices 
are deleted, the 24 truncated octahedron cells become 24 icosahedron cells, the 24 cubes become 
24 tetrahedron cells, and the 96 deleted vertex voids create 96 new tetrahedron cells.
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Why 24? 

Geoffrey Dixon  seems obsessed with  this  question,  in  one of  his  thought 
provoking essays on his website. 

Above the reader may find partial answers

3 x 8 = 24, and 8 is the primary unit in the stable 8 x 8 Satva state of matter.

2 x 12 = 24, and 12 is an essential  number in astrology, houses or Earth 
Branches. 

6 x 4 = 24

1 x 24 = 24, and the traditional Chinese calendar has 24 seasons. 

28 – 4 = 24, and 28 is a critical number for Sedenion triplets. 
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John Baez on H3 and H4

7) Andreas Fring and Christian Korff, Non-crystallographic reduction
of Calogero-Moser models, Jour. Phys. A 39 (2006), 1115-1131. Also
available as hep-th/0509152.

We  apply  a  recently  introduced  reduction  procedure  based  on  the  embedding  of  non-
crystallographic  Coxeter  groups  into  crystallographic  ones  to  Calogero–Moser  systems.  For 
rational  potentials  the  familiar  generalized  Calogero  Hamiltonian  is  recovered.  For  the 
Hamiltonians  of  trigonometric,  hyperbolic  and  elliptic  types,  we  obtain  novel  integrable 
dynamical  systems  with  a  second  potential  term  which  is  rescaled  by  the  golden  ratio.  We 
explicitly  show for the  simplest  of  these  non-crystallographic  models,  how the corresponding 
classical equations of motion can be derived from a Lie algebraic Lax pair based on the larger, 
crystallographic Coxeter group.

They set up a nice correspondence between some non-crystallographic
Coxeter groups and some crystallographic ones:

the H2 Coxeter group and the A4 Coxeter group,
the H3 Coxeter group and the D6 Coxeter group,
the H4 Coxeter group and the E8 Coxeter group.

A Coxeter group is a finite group of linear transformations of
R^n that's generated by reflections. We say such a group is
"non-crystallographic" if it's not the symmetries of any lattice.
The ones listed above are closely tied to the number 5:

H2 is the symmetry group of a regular pentagon.
H3 is the symmetry group of a regular dodecahedron.
H4 is the symmetry group of a regular 120-cell.

Note these live in 2d, 3d and 4d space. Only in these dimensions
are there regular polytopes with 5-fold rotational symmetry! Their
symmetry groups are non-crystallographic, because no lattice can
have 5-fold rotational symmetry.

A Coxeter group is "crystallographic", or a "Weyl group", if it
*is* symmetries of a lattice. In particular:

A4 is the symmetry group of a 4-dimensional lattice also called A4.
D6 is the symmetry group of a 6-dimensional lattice also called D6.
E8 is the symmetry group of an 8-dimensional lattice also called E8.
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H3 is the group of symmetries of the dodecahedron or icosahedron. H4 is the 
group of symmetries of a regular solid in 4 dimensions which I talked about in 
"week20".  This  regular  solid  is  also called the "unit  icosians"  -  it  has 120 
vertices, and is a close relative of the icosahedron and dodecahedron. One 
amazing thing is that it itself  is a group in a very natural way. There are no 
"hypericosahedra"  or  "hyperdodecahedra"  in  dimensions  greater  than  4, 
which is related to the fact that the H series quits at this point.

– end

The author  of  this  paper  notes here that  this  is  the critical  part  of  Baez's 
paper: 

H2 is the symmetry group of a regular pentagon.
H3 is the symmetry group of a regular dodecahedron.
H4 is the symmetry group of a regular 120-cell.

Which sets up the relationship between H2 and A5, which proves key to the 
Five Elements and to the construction of Time. 

The Dodecahedron and the 120-cell play important roles in the formation of 
matter  at  higher  stages,  and  here  Baez  sets  up  the  relationship.  That 
singularities should occur in these regions indicates the special importance of 
these groups in the process of the formation of matter. 
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Conclusion 
This paper has laid out,  autopsy – style,  the various parts and pieces the 
author  believes fit  into  the  puzzle  before  us.  Given the  isolated  nature  of 
mathematicians  and  physicists,  separated  by  time,  distance,  discipline, 
specialties,  language  and  jargon,  it  becomes  difficult  to  see  the  common 
areas of  a  problem. For  this  reason the author  has found it  necessary to  
deliberately excise parts from one paper and another, in order to lay out all the 
parts together on the table as it were, to begin analysis. 

This  is  the  method  preferred  by  my  mentor,  Chalmers  Johnson,  whose 
autopsy  of  People’s  War  helped  make  his  scholarly  reputation.  From  a 
heuristic perspective, laying out the parts helps to see all of the relationships 
clearly,  so that  one may begin to analyze how the whole functions.  While 
constructing the Qi Men Dun Jia Model the author noticed many anomalies – 
as well as that few seemed to have any answers for them. 

The  author  notices,  as  Tony  Smith  wrote,  that  the  three  types  of  Hopf 
Fibrations  occur  in  odd  dimensions,  while  lattices  appear  only  in  even 
dimensions,  and the same with  division algebras.  This  has to  do with  the 
formation of  matter  into  two distinct  types:  the stable 8 x  8  Satva type of 
matter, which develops in even dimensions and eventually forms into stable 
structures, such as the DNA helix, which enjoys an isomorphic relationship 
with  the  64 hexagrams of  the I  Ching,  as was noted in  1970 by Jungian 
analyst Marie – Louise von Franz. 

The other  type  of  matter  is  that  of  9  x  9:  a  more  dynamic,  Raja  type  of 
structure associated with the Tai Xuan Jing, the Dao De Jing, a section of the 
Huang  Di  Nei  Jing,  and  with  the  Pearce  Cluster,  as  the  author  will  soon 
describe in a forthcoming paper. 

This  division  of  visible  matter  into  different  types  explains  the  chain  of 
anomalies which mark the path of the emergence of matter into solid forms – 
crystals  or  otherwise.  Thus  H3  and  H4  and  their  associated  quirks,  the 
strangeness in degree or dimension seven of S7 squared added to G2 to 
jump to degree fourteen. This indicates a relationship with the Sedenions and 
higher Octonions, perhaps even the Sextonions as noted by Bruce Westbury, 
and the Twisted Octonions, since the process of matter creation requires a 
sudden twist, which may as well explain the twisted fibration product noted by 
Tony Smith.
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The next paper in this series moves into strange and rare territory of the 600 – 
cell, which is introduced here and mentioned briefly in the paper on the BC –  
Helix.  One  motivation  for  this  paper  was  the  observation  that  the  Hopf 
Fibration seemed many things to many people, with no sense of scale. 

The Hopf Fibration both appears to comprise the BC – Helix and to float and 
rotate around it,  while  few tried to  account  for  the associated Clifford Tori 
associated with the Hopf Fibration. It may well prove the case that specific 
types of Hopf Fibrations appear in different sizes and have associations with 
the Clifford Tori, but this needs clarification. 

Putting the Hopf Fibration into perspective will help manage questions about 
the 600 – cell and the relations between the Platonic Solids and the Golden 
Ratio.  At this point  the author theorizes that the Golden Ratio functions to 
separate  the  two states  of  visible  matter,  one from the  other,  forming the 
border  between  them,  thus  the  appearance  of  the  Golden  Ratio  and  the 
Platonic Solids in the process of the formation of visible matter. 

Old Plato knew his stuff and of what he wrote, it is the shame of previous 
generations to have lacked the imagination to have taken him seriously. The 
universe is indeed made of tiny triangles – the Fano Plane, the multiplication 
table of the Octonions. And in passing, en passant, we note the case of Roger 
Penrose as one of the “lost causes” of physics, for lacking the imagination to 
have  seen  the  octonions  for  what  they  are  –  Plato’s  tiny  triangles,  and 
equilateral ones at that. 

From here the author ventures into Polytope (3,3,5), briefly mentioned herein,  
but  in  need  of  complete  analysis,  with  the  prospect  of  macroscopic  and 
microscopic Polytope (3,3,5)’s, the macro forming the structure of Time itself. 
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Appendix I John Baez on OP2 

John Baez has written extensively on the Octontions as well as the Octonionic 
Projective Plane, which he describes in detail  here, with its relation to the 
exceptional Lie Algebras E6 and F4. 

The second smallest of the exceptional Lie groups is the 52-

dimensional group . The geometric meaning of this group became 

clear in a number of nearly simultaneous papers by various 

mathematicians. In 1949, Jordan constructed the octonionic projective 

plane using projections in . One year later, Armand Borel [8] 

noted that is the isometry group of a 16-dimensional projective 

plane. In fact, this plane is none other than than . Also in 

1950, Claude Chevalley and Richard Schafer [18] showed that is the 

automorphism group of . In 1951, Freudenthal [35] embarked upon 

a long series of papers in which he described not only but also 

the other exceptional Lie groups using octonionic projective 

geometry. To survey these developments, one still cannot do better 

than to read his classic 1964 paper on Lie groups and the foundations 

of geometry [38]. 

Let us take Chevalley and Schafer's result as the definition of : 

Its Lie algebra is thus 
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As we saw in Section 3.4, points of correspond to trace-1 

projections in the exceptional Jordan algebra. It follows that 

acts as transformations of . In fact, we can equip with a 

Riemannian metric for which is the isometry group. To get a sense 

of how this works, let us describe as a quotient space of . 

In Section 3.4 we saw that the exceptional Jordan algebra can be 

built using natural operations on the scalar, vector and spinor 

representations of . This implies that is a subgroup of 

. Equation (3.4) makes it clear that is precisely the 

subgroup fixing the element 

Since this element is a trace-one projection, it corresponds to a 

point of . We have already seen that acts transitively on . 

It follows that 

This fact has various nice spinoffs. First, it gives an easy way to 

compute the dimension of : 
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Second, since is compact, we can take any Riemannian metric on 

and average it with respect to the action of this group. The isometry 

group of the resulting metric will automatically include as a 

subgroup. With more work [5], one can show that actually 

and thus 

Equation (4.2) also implies that the tangent space of our chosen 

point in is isomorphic to . But we already know that this 

tangent space is just , or in other words, the spinor 

representation of . We thus have 

as vector spaces, where is a Lie subalgebra. The bracket in is 

built from the bracket in , the action , and the map 

obtained by dualizing this action. We can also rewrite 

this description of in terms of the octonions, as follows: 
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This last formula suggests that we decompose further using the 

splitting of into and . It is easily seen by looking at 

matrices that for all we have 

Moreover, when we restrict the representation to , it splits 

as a direct sum . Using these facts and equation (4.2), we 

see 

This formula emphasizes the close relation between and triality: 

the Lie bracket in is completely built out of maps involving 

and its three 8-dimensional irreducible representations! We can 

rewrite this in a way that brings out the role of the octonions: 

While elegant, none of these descriptions of gives a convenient 

picture of all the derivations of the exceptional Jordan algebra. In 

fact, there is a nice picture of this sort for whenever is a 

normed division algebra. One way to get a derivation of the Jordan 

algebra is to take a derivation of and let it act on each 

entry of the matrices in . Another way uses elements of 
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Given , there is a derivation of given by 

In fact [4], every derivation of can be uniquely expressed as a 

linear combination of derivations of these two sorts, so we have 

as vector spaces. In the case of the octonions, this decomposition 

says that 

In equation (4.2), the subspace is always a Lie subalgebra, but 

is not unless is commutative and associative -- in which case 

vanishes. Nonetheless, there is a formula for the brackets in 

which applies in every case [70]. Given and 

, we have 
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where acts on componentwise, is the trace-free part of the 

commutator , and is the derivation of defined using 

equation (4.1). 

Summarizing these different descriptions of , we have: 

Theorem 5.   The compact real form of is given by 

where in each case the Lie bracket is built from natural bilinear 

operations on the summands.

The smallest nontrivial representations of are 27-dimensional: in 

fact it has two inequivalent representations of this dimension, which 

are dual to one another. Now, the exceptional Jordan algebra is also 

27-dimensional, and in 1950 this clue led Chevalley and Schafer [18] 

to give a nice description of as symmetries of this algebra. These 

symmetries do not preserve the product, but only the determinant. 

More precisely, the group of determinant-preserving linear 

transformations of turns out to be a noncompact real form of 

. This real form is sometimes called , because its Killing form 

has signature . To see this, note that any automorphism of 

preserves the determinant, so we get an inclusion 
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This means that is a compact subgroup of . In fact it is a 

maximal compact subgroup, since if there were a larger one, we could 

average a Riemannian metric group on with respect to this group 

and get a metric with an isometry group larger than , but no such 

metric exists. It follows that the Killing form on the Lie algebra 

is negative definite on its 52-dimensional maximal compact Lie 

algebra, and positive definite on the complementary 26-dimensional 

subspace, giving a signature of . 

We saw in Section 3.4 that the projective plane structure of can 

be constructed starting only with the determinant function on the 

vector space . It follows that acts as collineations on 

, that is, line-preserving transformations. In fact, the group of 

collineations of is precisely : 

Moreover, just as the group of isometries of  fixing a specific 

point  is  a  copy  of  ,  the  group  of  collineations  fixing  a 

specific point is . This fact follows with some work starting 

from  equation  (3.4),  and  it  gives  us  a  commutative  square  of 

inclusions:
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where the groups on the top are maximal compact subgroups of those on 

the  bottom.  Thus  in  a  very  real  sense,  is  to  9-dimensional 

Euclidean geometry as is to 10-dimensional Lorentzian geometry.
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Appendix II Triality by Wikipedia 

Triality
From Wikipedia, the free encyclopedia

The automorphisms of the Dynkin diagram D4 give rise to triality in Spin(8).

In mathematics, triality is a relationship among three vector spaces, 

analogous to the duality relation between dual vector spaces. Most 

commonly, it describes those special features of the Dynkin diagram 

D4 and the associated Lie group Spin(8), the double cover of 8-

dimensional rotation group SO(8), arising because the group has an 

outer automorphism of order three. There is a geometrical version of 

triality, analogous to duality in projective geometry.

Of all simple Lie groups, Spin(8) has the most symmetrical Dynkin 

diagram, D4. The diagram has four nodes with one node located at the 

center, and the other three attached symmetrically. The symmetry 

group of the diagram is the symmetric group S3 which acts by 

permuting the three legs. This gives rise to an S3 group of outer 

automorphisms of Spin(8). This automorphism group permutes the three 

8-dimensional irreducible representations of Spin(8); these being the 

vector representation and two chiral spin representations. These 

automorphisms do not project to automorphisms of SO(8). The vector 

representation – the natural action of SO(8) (hence Spin(8)) on 

– is also known as the "defining module", while the chiral spin 

representations are also known as "half-spin representations", and 

all three of these are fundamental representations.

No other Dynkin diagram has an automorphism group of order greater 

than 2; for other Dn (corresponding to other even Spin groups, 
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Spin(2n)), there is still the automorphism corresponding to switching 

the two half-spin representations, but these are not isomorphic to 

the vector representation.

Roughly speaking, symmetries of the Dynkin diagram lead to 

automorphisms of the Bruhat-Tits building associated with the group. 

For special linear groups, one obtains projective duality. For 

Spin(8), one finds a curious phenomenon involving 1, 2, and 4 

dimensional subspaces of 8-dimensional space, historically known as 

"geometric triality".

The exceptional 3-fold symmetry of the diagram also gives rise to 

the Steinberg group ³D  ₄  .

General formulation

A duality between two vector spaces over a field F is a nondegenerate 

bilinear map

i.e., for each nonzero vector v in one of the two vector spaces, the 

pairing with v is a nonzero linear functional on the other.

Similarly, a triality between three vector spaces over a field F is a 

nondegenerate trilinear map

i.e., each nonzero vector in one of the three vector spaces induces a 

duality between the other two.

By choosing vectors ei in each Vi on which the trilinear map evaluates 

to 1, we find that the three vector spaces are all isomorphic to each 

other, and to their duals. Denoting this common vector space by V, 

the triality may be reexpressed as a bilinear multiplication

where each ei corresponds to the identity element in V. The 

nondegeneracy condition now implies that V is a division algebra. It 

follows that V has dimension 1, 2, 4 or 8. If further F = R and the 

identification of V with its dual is given by positive definite inner 
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product, V is a normed division algebra, and is therefore isomorphic 

to R, C, H or O.

Conversely, the normed division algebras immediately give rise to 

trialities by taking each Vi equal to the division algebra, and using 

the inner product on the algebra to dualize the multiplication into a 

trilinear form.

An alternative construction of trialities uses spinors in dimensions 

1, 2, 4 and 8. The eight dimensional case corresponds to the triality 

property of Spin(8).
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Appendix III 
The Real Projective Plane / Wikipedia 

In mathematics, the real projective plane is an example of a compact 

non-orientable two-dimensional manifold, that is, a one-sided 

surface. It cannot be embedded in our usual three-dimensional space 

without intersecting itself. It has basic applications to geometry, 

since the common construction of the real projective plane is as the 

space of lines in R3 passing through the origin.

The plane is also often described topologically, in terms of a 

construction based on the Möbius strip: if one could glue the 

(single) edge of the Möbius strip to itself in the correct direction, 

one would obtain the projective plane. (This cannot be done in our 

three-dimensional space.) Equivalently, gluing a disk along the 

boundary of the Möbius strip gives the projective plane. 

Topologically, it has Euler characteristic 1, hence a demigenus (non-

orientable genus, Euler genus) of 1.

Since the Möbius strip, in turn, can be constructed from a square by 

gluing two of its sides together, the real projective plane can thus 

be represented as a unit square (that is, [0,1] × [0,1] ) with its 

sides identified by the following equivalence relations:

(0, y) ~ (1, 1 − y)   for 0 ≤ y ≤ 1

and

The fundamental 
polygon of the 

projective plane.

The Möbius strip with a 
single edge, can be 

closed into a projective 
plane by gluing opposite 
open edges together.

In comparison the 
Klein bottle is a 
Möbius strip closed 
into a cylinder.
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(x, 0) ~ (1 − x, 1)   for 0 ≤ x ≤ 1,

as in the leftmost diagram on the right.

Projective geometry is not necessarily concerned with curvature and 

the real projective plane may be twisted up and placed in the 

Euclidean plane or 3-space in many different ways.[1] Some of the more 

important examples are described below.

The projective plane cannot be embedded (that is without 

intersection) in three-dimensional Euclidean space. The proof that 

the projective plane does not embed in three-dimensional Euclidean 

space goes like this: Assuming that it does embed, it would bound a 

compact region in three-dimensional Euclidean space by the 

generalized Jordan curve theorem. The outward-pointing unit normal 

vector field would then give an orientation of the boundary manifold, 

but the boundary manifold would be projective space, which is not 

orientable. This is a contradiction, and so our assumption that it 

does embed must have been false.

The projective sphere

Consider a sphere, and let the great circles of the sphere be 

"lines", and let pairs of antipodal points be "points". It is easy to 

check that this system obeys the axioms required of a projective 

plane:

• any pair of distinct great circles meet at a pair of antipodal points; and
• any two distinct pairs of antipodal points lie on a single great circle.

If we identify each point on the sphere with its antipodal point, 

then we get a representation of the real projective plane in which 

the "points" of the projective plane really are points. This means 

that the projective plane is the quotient space of the sphere 

obtained by partitioning the sphere into equivalence classes under 

the equivalence relation ~, where x ~ y if y = −x. This quotient 
space of the sphere is homeomorphic with the collection of all lines 

passing through the origin in R3.

The quotient map from the sphere onto the real projective plane is in 

fact a two sheeted (i.e. two-to-one) covering map. It follows that 
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the fundamental group of the real projective plane is the cyclic 

group of order 2, i.e. integers modulo 2. One can take the loop AB 

from the figure above to be the generator.

The projective hemisphere

Because the real projective plane covers the sphere twice, it may be 

represented as a hemisphere around whose rim opposite points are 

similarly identified.[2]

Boy's surface – an immersion

The projective plane can be immersed (local neighbourhoods of the 

source space do not have self-intersections) in 3-space. Boy's 

surface is an example of an immersion.

Polyhedral examples must have at least nine faces.[3]

Roman surface

An animation of the Roman Surface

Steiner's Roman surface is a more degenerate map of the projective 

plane into 3-space, containing a cross-cap.
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The tetrahemihexahedron is a polyhedral representation of the real projective plane.

A polyhedral representation is the tetrahemihexahedron,[4] which has 

the same general form as Steiner's Roman Surface, shown to the right.

Hemi polyhedra

Looking in the opposite direction, certain abstract regular polytopes 

— hemi-cube, hemi-dodecahedron, and hemi-icosahedron — can be 

constructed as regular figures in the projective plane; see also 

projective polyhedra.

Planar projections

Various planar (flat) projections or mappings of the projective plane 

have been described. In 1874 Klein described the mapping 

[1]

Central projection of the projective hemisphere onto a plane yields 

the usual infinite projective plane, described below.

Cross-capped disk

A closed surface is obtained by gluing a disk to a cross-cap. This 

surface can be represented parametrically by the following equations:
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where both u and v range from 0 to 2π. These equations are similar 

to those of a torus. Figure 1 shows a closed cross-capped disk.

Figure 1. Two views of a cross-capped disk.

A cross-capped disk has a plane of symmetry which passes through its 

line segment of double points. In Figure 1 the cross-capped disk is 

seen from above its plane of symmetry z = 0, but it would look the 

same if seen from below.

A cross-capped disk can be sliced open along its plane of symmetry, 

while making sure not to cut along any of its double points. The 

result is shown in Figure 2.
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Figure 2. Two views of a cross-capped disk which has been sliced open.

Once this exception is made, it will be seen that the sliced cross-

capped disk is homeomorphic to a self-intersecting disk, as shown in 

Figure 3.

Figure 3. Two alternate views of a self-intersecting disk.

The self-intersecting disk is homeomorphic to an ordinary disk. The 

parametric equations of the self-intersecting disk are:
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where u ranges from 0 to 2π and v ranges from 0 to 1.

Projecting the self-intersecting disk onto the plane of symmetry (z = 

0 in the parametrization given earlier) which passes only through the 

double points, the result is an ordinary disk which repeats itself 

(doubles up on itself).

The plane z = 0 cuts the self-intersecting disk into a pair of disks 

which are mirror reflections of each other. The disks have centers at 

the origin.

Now consider the rims of the disks (with v = 1). The points on the 

rim of the self-intersecting disk come in pairs which are reflections 

of each other with respect to the plane z = 0.

A cross-capped disk is formed by identifying these pairs of points, 

making them equivalent to each other. This means that a point with 

parameters (u,1) and coordinates is 

identified with the point (u + π,1) whose coordinates are 

. But this means that pairs of opposite 

points on the rim of the (equivalent) ordinary disk are identified 

with each other; this is how a real projective plane is formed out of 

a disk. Therefore the surface shown in Figure 1 (cross-cap with disk) 

is topologically equivalent to the real projective plane RP2.

Homogeneous coordinates

The points in the plane can be represented by homogeneous 

coordinates. A point has homogeneous coordinates [x : y : z], where 

the coordinates [x : y : z] and [tx : ty : tz] are considered to 

represent the same point, for all nonzero values of t. The points 

with coordinates [x : y : 1] are the usual real plane, called the 

finite part of the projective plane, and points with coordinates 

[x : y : 0], called points at infinity or ideal points, constitute a 

line called the line at infinity. (The homogeneous coordinates 

[0 : 0 : 0] do not represent any point.)
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The lines in the plane can also be represented by homogeneous 

coordinates. A projective line corresponding to the plane ax + by + 

cz = 0 in R3 has the homogeneous coordinates (a : b : c). Thus, these 

coordinates have the equivalence relation (a : b : c) = 

(da : db : dc) for all nonzero values of d. Hence a different 

equation of the same line dax + dby + dcz = 0 gives the same 

homogeneous coordinates. A point [x : y : z] lies on a line 

(a : b : c) if ax + by + cz = 0. Therefore, lines with coordinates 

(a : b : c) where a, b are not both 0 correspond to the lines in the 

usual real plane, because they contain points that are not at 

infinity. The line with coordinates (0 : 0 : 1) is the line at 

infinity, since the only points on it are those with z = 0.

The flat projective plane

In the projective plane P2, a point x is represented by the 

homogeneous coordinate (x1, x2, x3). If we think of (x1, x2, x3) as a 

point in real space R3 with the third value of the homogeneous 

coordinate as a value in the z direction, then P2 can be visualized 

as R3.
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Points, rays, lines, and planes

A line in P2 can be represented by the equation ax + by + c = 0. If 

we treat a, b, and c as the column vector ℓ and x, y, 1 as the column 
vector x then the equation above can be written in matrix form as:

xTℓ = 0 or ℓTx = 0.

Using vector notation we may instead write

x ⋅ ℓ = 0 or ℓ ⋅ x = 0.

The equation k(xTℓ) = 0 (which k is a non-zero scalar) sweeps out a 
plane that goes through zero in R3 and k(x) sweeps out a ray, again 

going through zero. The plane and ray are linear subspaces in R  3  , 

which always go through zero.
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Ideal points

In P2 the equation of a line is ax + by + c = 0 and this equation can 

represent a line on any plane parallel to the x, y plane by 

multiplying the equation by k.

If z = 1 we have a normalized homogeneous coordinate. All points that 

have z = 1 create a plane. Let's pretend we are looking at that plane 

(from a position further out along the z axis and looking back 

towards the origin) and there are two parallel lines drawn on the 

plane. From where we are standing (given our visual capabilities) we 

can see only so much of the plane, which we represent as the area 

outlined in red in the diagram. If we walk away from the plane along 

the z axis, (still looking backwards towards the origin), we can see 

more of the plane. In our field of view original points have moved. 

We can reflect this movement by dividing the homogeneous coordinate 

by a constant. In the image to the right we have divided by 2 so the 

z value now becomes 0.5. If we walk far enough away what we are 

looking at becomes a point in the distance. As we walk away we see 

more and more of the parallel lines. The lines will meet at a line at 

infinity (a line that goes through zero on the plane at z = 0). Lines 

on the plane when z = 0 are ideal points. The plane at z = 0 is the 

line at infinity.

The homogeneous point (0, 0, 0) is where all the real points go when 

you're looking at the plane from an infinite distance, a line on the 
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z = 0 plane is where parallel lines intersect.

Duality

In the equation xTℓ = 0 there are two column vectors. You can keep 
either constant and vary the other. If we keep the point constant x 

and vary the coefficients ℓ we create new lines that go through the 
point. If we keep the coefficients constant and vary the points that 

satisfy the equation we create a line. We look upon x as a point 

because the axes we are using are x, y, and z. If we instead plotted 

the coefficients using axis marked a, b, c points would become lines 

and lines would become points. If you prove something with the data 

plotted on axis marked x, y, and z the same argument can be used for 

the data plotted on axis marked a, b, and c. That is duality.

Lines joining points and intersection of lines (using duality)

The equation xTℓ = 0 calculates the inner product of two column 
vectors. The inner product of two vectors is zero if the vectors are 

orthogonal. To find the line between the points x1 and x2 you must 

find the column vector ℓ that satisfies the equations x1
Tℓ = 0 and x2

Tℓ 
= 0, that is we must find a column vector ℓ that is orthogonal to x1 

and x2. In the case of P2, the cross product will find such a vector. 

The line joining two points is given by the equation x1 × x2. To find 

the intersection of two lines you look to duality. If you plot ℓ in 
the coefficient space you get rays. To find the point x that is 

orthogonal to the two rays you find the cross product. That is ℓ1 × 

ℓ2.
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While the cross product works in P2, it is not well-defined in 

arbitrary dimensions. However, this pair of equations is satisfied by

[citation needed]

Embedding into 4-dimensional space

The projective plane embeds into 4-dimensional Euclidean space. The 

real projective plane P2(R) is the quotient of the two-sphere

S2 = {(x, y, z) ∈ R3 : x2+y2+z2 = 1}

by the antipodal relation (x, y, z) ~ (−x, −y, −z). Consider the 
function R3 → R4 given by (x, y, z) ↦ (xy, xz, y2−z2, 2yz). This map 

restricts to a map whose domain is S2 and, since each component is a 

homogeneous polynomial of even degree, it takes the same values in R4 

on each of any two antipodal points on S2. This yields a map P2(R) → 

R4. Moreover, this map is an embedding. Notice that this embedding 

admits a projection into R3 which is the Roman surface.

Higher non-orientable surfaces

By gluing together projective planes successively we get non-

orientable surfaces of higher demigenus. The gluing process consists 

of cutting out a little disk from each surface and identifying 

(gluing) their boundary circles. Gluing two projective planes creates 

the Klein bottle.

The article on the fundamental polygon describes the higher non-

orientable surfaces.

61

http://en.wikipedia.org/wiki/Fundamental_polygon
http://en.wikipedia.org/wiki/Klein_bottle
http://en.wikipedia.org/wiki/Genus_(mathematics)
http://en.wikipedia.org/wiki/Roman_surface
http://en.wikipedia.org/wiki/Quotient_space
http://en.wikipedia.org/wiki/Wikipedia:Citation_needed


Appendix IV 

Rosenfeld projective planes
Following the discovery of the Cayley projective plane or "octonionic 

projective plane" P2(O) in 1933, whose symmetry group is the 

exceptional Lie group F4, and with the knowledge that G2 is the 

automorphism group of the octonions, it was proposed by Rozenfeld 

(1956) that the remaining exceptional Lie groups E6, E7, and E8 are 

isomorphism groups of projective planes over certain algebras over 

the octonions:[1]

• the bioctonions, C ⊗ O,

• the quateroctonions, H ⊗ O,

• the octooctonions, O ⊗ O.

This proposal is appealing, as there are certain exceptional compact 

Riemannian symmetric spaces with the desired symmetry groups and 

whose dimension agree with that of the putative projective planes 

(dim(P2(K ⊗ K′)) = 2dim(K)dim(K′)), and this would give a uniform 

construction of the exceptional Lie groups as symmetries of naturally 

occurring objects (i.e., without an a priori knowledge of the 

exceptional Lie groups). The Riemannian symmetric spaces were 

classified by Cartan in 1926 (Cartan's labels are used in sequel); 

see classification for details, and the relevant spaces are:

• the octonionic projective plane – FII, dimension 16 = 2 × 8, F4 symmetry, 
Cayley projective plane P2(O),

• the bioctonionic projective plane – EIII, dimension 32 = 2 × 2 × 8, E6 

symmetry, complexified Cayley projective plane, P2(C ⊗ O),
• the "quateroctonionic projective plane"[2] – EVI, dimension 64 = 2 × 4 × 8, 

E7 symmetry, P2(H ⊗ O),
• the "octooctonionic projective plane"[3] – EVIII, dimension 128 = 2 × 8 × 8, 

E8 symmetry, P2(O ⊗ O).

The difficulty with this proposal is that while the octonions are a 

division algebra, and thus a projective plane is defined over them, 

the bioctonions, quateroctonions and octooctonions are not division 

algebras, and thus the usual definition of a projective plane does 

not work. This can be resolved for the bioctonions, with the 
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resulting projective plane being the complexified Cayley plane, but 

the constructions do not work for the quateroctonions and 

octooctonions, and the spaces in question do not obey the usual 

axioms of projective planes,[1] hence the quotes on "(putative) 

projective plane". However, the tangent space at each point of these 

spaces can be identified with the plane (H ⊗ O)2, or (O ⊗ O)2 further 

justifying the intuition that these are a form of generalized 

projective plane.[2][3] Accordingly, the resulting spaces are sometimes 

called Rosenfeld projective planes and notated as if they were 

projective planes. More broadly, these compact forms are the 

Rosenfeld elliptic projective planes, while the dual non-compact 

forms are the Rosenfeld hyperbolic projective planes. A more modern 

presentation of Rosenfeld's ideas is in (Rosenfeld 1997), while a 

brief note on these "planes" is in (Besse 1987, pp. 313–316).[4]

The spaces can be constructed using Tit's theory of buildings, which 

allows one to construct a geometry with any given algebraic group as 

symmetries, but this requires starting with the Lie groups and 

constructing a geometry from them, rather than constructing a 

geometry independently of a knowledge of the Lie groups.[1]
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Contact 

The author may be reached at 

Jaq 2013 at out look dot com all of this connected with no spaces 

“Some men see things and ask, why? I dream of things and I ask, why not?”

Robert Francis Kennedy (RFK), after George Bernard Shaw
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