

Because we are in $\underline{\text { a }}$ time, and I have in retrospect, tried to understand local emergent-features about that, or then of effective-inertialization, And also By the way of initiating a first principles physical perspective, Take a moment as one might to ponder, and/or Stare at these
"Adagio: imagine if you will 'before you' ,some known Still, or re-imaging of the night sky, where each of the thousands of dots of this-artifact is a projection of an entire galaxy containing billions of stars..., revealed , in a region of space called the Lockman hole, and gifting, by it's disposition, a clear line of sight out into a distance of: what is our fragile-existence in a shared realm of universes."
pre-amble... reduce this found and then modified example, into a few-observations on unavoidable interacting aspects, between certain physically associated classes of geometrically embedded operational-sub-framings,

By decorticating :: a ubiquitous partial disconnect effect highlighted by these (machine re-generated) -pictorialrevisits, and writings-to., various foundational questions on that thing which, 'Anthro-philosophically speaking or also (in some pure abstract sense)... functionally speaking' then arrives and trace manifests into apparent underlying geometries-as: what are also time(past)-interpretative inducing intrinsic-Colorations. And/or then-in a featuresparallel, as a relative sub-perspective-maths study of [complete effectively-exterior localizations- to labeling-information]. and thus as a research then just on mathematical heuristically bound aspects-to-color, lets return and at once, by pulling, domain exploring-or-tending a few pieces together from the above, for an example-chase to-those contextual attributes which as a floor seem , at best, to push forward post-event Hues, or type. To start We shall begin our inquiries around (2) brief physiological surveys on some of the intricacies associated with the world, in regards to our perspectives and separation
$\sqrt{ }$ of cantata> consider this, first of all, if: you , as an operational reference via lens and photo-retinal-like review .: instantiated a moment and gazed-at, or near, the above image: there could have appeared regions, shaded lighter and dark; Allowing in a loose descriptive and "staccato" detail, for
"still a Forcing... or paralleling...of your (witness past) inititiated, regional-view, or neighborhood -of- representation (as-was-or-is-uniform) , and yet also mixed-then-with some privating interrelated (layered neural wave conditioning onto occipital lobe-like..) and/or what are in description also then your:<physical previous local.space.re-enforced...Encodings>with what seems ,information from, a relatively tinted and as-well sometimes almost pointed-set, (if so-preveleveded or- what became (your as such: unique dynamically learned apparatus-interior after imagings)-And/or as discussed with-in: mathematically-abstracted sub-perspective re-mappings and then state present re-enforcements by-and-on generalized representations of such - passed- and also then as it: were... apparently it seems here anthropically internalized visually graphic-objects". (or at least : on a human-operational surface, it does and did appear , to be, something of that .)

- More over ...: but now tending, instead towards, your viewer -joining-interface... and/or just, from with in the near transfer ,or, focus layer of- an interact ive opposite direction ing , ie."for example features of this viewable page".
if we examine once again the as "presenting"-explanations of this imagination:: then each, or at least some of the apparent pixelated sub-images are associated, (in their own historieses: and/or by specification): to the complexity of hundreds of thousands of distinct star-point ings [at the least]. And as such a, stated: and pictorially-adjoined interpretive presentation, is consistent with also the technicality of a local-external-past sense Breaking and/or it supports::
a case specific tenacity and distinction of the Image-Viewer receiving only a partialized ensemble of the initial or global-tending (state-informations), by.. an eventual and multifaceted-physical-appearance here; and again in staccato: of An almost to an iota angle-collapsed enduring-grainess of available information ,and then, an onto-(natural-objects) absorbable energy effect, and then the feature of photo-electric event homogenization by (this example's implicit potential for)-CCD-devices, Also could have participated in: some viewers claim-to suspecting ::
\exists (causally pre-existent- condensed at a distance star systems encoding "structural- content", which by uniformity $<$ [photonically reported a (state changing associations of those information) in many dirirections (some or most of which ,relative to a viewer, in those appearances, still in transit) (and yet as well also as if) through our particular now shared sample-joining, channels and/or -optics]>, which then afterwards content-wise, regionally existed at some Moment-interval as a mear sample-association-slice of the potential of that once larger and/or original dynamic-information-ensemble, where this discusively selected as it were, remaining constituent of light information was then reflected-onto, re-frozen-in:or again in-information part, sectionally re-clustered and/or near-field atomicallycoupled; And as such, it is independent of some Entropy, posited: that the above image (from your or our particular phase-place): is ;by "a pre-persistent loss of preceivable metric, or many-to-one almost to a point angle-collapsed graininess"; and in constrast also just by "effective frequency-selected and then isotropic projective fractive sampling"; and as well by re-localizing energy-capped or superpositional near-field quantum couplings; then (is) locallyirreversible to a full determinacy of such past-existent pre-condensed nascencies and thus 'this image' locally exists now with an interpretation of exterior, and thus in a relative sense, newly (quantify- potentialed) or sample averaged by and as, what becomes ,in its self, just a into semblownt co-Domanification, of latently passed-forward- ...then also (naïvely-locally decipherably: only upto some vast regenerative set of equivalent possible Digital-pasts)-as a machine translated-regionally-reproducuced seeming-or-effective action of what have become, [now and yet still framal:'anonymous observables' from such nascent-and-secondary-states], into once more, and as well, again in some readers-potential, as what are, and again are, at some relative sub-framal informational distance, only intrinsically descrete Hued-[artifacts]) : that is, some of the originating information, -and- knowledge of the exact pathway of transference, is simply not regionally available anymore with-in the information carried by the present color-temperatures or polorizations or quantizations or distributed conduction-band effects of this example,... , and thus $\underline{\text { A-or-your local framal-precievable past from such Hued }}$ photonic exterior domain is: reasonably at best then in a sense interpretively intertialized, or ultimately bifurcated or at least past-locally indeterminate. repeat that >- the non-unique variable multi-featured and entropic ... tail of the photonic arrow....> (or then: on \underline{a} physical-operational surface, it does by example after compounding, regionally appear to be something of that .)
and So; by specializing journeys into the inertial world of symbolically-embedded models: and then by focusing also ,for the purposes of this preamble, just on A perfect information symmetry-breaking ,that occurs, at:(at-the collapse) map Similarities, and/or by an additional leap and meaning conceptualization-to: mathematic and algorithmic perception [then on Oracally reflected representatives as it were - of locally unbounded-abstract-representations of standard label-analytic point-sources], (both: and first, as a re-exploration into the domain where Algorithmic descrete, and Continuous mathematics,... algebraically meet or embed; or then, and simply as an aperture to ,or, as an interpretive underlying constraining to the various general aspect boundings of what is meant by any of the possible and multiple-forms of partial: domainal pre-information disconnect, That we shall now define as: with or ajoining with the concepts and/or meanings of a generalization of mathematic-'time') ...
that, an example of an Extension into various pure"infinitesimal-couplings-of distributed topologies and operators", as researched by and thru what becomes an operational technique of singular numeric partialization ..then may be motivated and appended with the various philosophies of mathematics And/or its domains:: generating a particular mixixing or systematic layering of algebraic territories:: one at inception(just in order to provide wide context) ,tied here, at least then to a multitude of exterior continuous available symplectic analytic geometric fabrics <-,and one in a fashion,-> then on confinements to and/or concrete internal infinitesimal localizations of-[what can also become, then import-trace-artifacts of "previous" infinitesimal-projections of distribubuted-geometric-informations by-and consistent with , operationally filtering and/or partition limiting selected samplings, on-or-from constant-representative improved
classes of classic convergent-sequencially-structure bound labeling (and/or what are intertial) types]: Giving a nice arrowing feature of folded-in or porous non-standard models, first as an inititialization or augmentation to the constructive innotwee abstract representation of [metrized-point-maps and/or numbers] themselves, and then-andtogetherer as passed forward now and into map-futures- as also then sometimes trivially driven or now coupled external -and- geometric point internal color-algebraic or forced type-algebraic domains of interest...

But first in order to assist in the parameterization-and-passing of-layerings of these just mentioned hued-domain, and further where as the philosophic difficulties associated with the mear-existance and uniqueness of Time (axiomatically or not) and as just hinted at, are then in a small sense, presented, limited and transcended by the preponderance and availability of apparent clock examples; we shall in a wider conversation now want to, Re-characterize or be more specific again, as to what we shall mean here by the terminology: "clock". Or more specifically state what we shall mean here by the terminology " >* Perspective generated clock-able sub-framings" . That is emphasive let us for now; Not research a word-meaning for [time] ; but rather just for available mathematical encoding restriction that might be gleaned from an interpretation just on the word[clock]. As before we begin from a reference limited simply to a viewer-or-reciever of some re-emitted photonic or graphic-like realm (singular-minimalized or not); as also again it is commensurate to the existance-binding of sub-perspectives in general on and into higher order geometries. And so to solidify this outlook

Imagine -or- view -or- Remember some dynamic scene or rooming whose proper local independent progressions inorder to carry ontologic constraint into a-mathematics, were or are, dominated by some fundamental globalizing Principles(known or off the shelf)which are or were, at least loosely_Metephoric then to the effect of those apparent features of the relativity-principle or more so: the guaranteed ,at a distance, localized homogenization-of-operation-laws seemingly perserved by and also as-featured in physics. In addition assume Then (some independent functioning set of domain-cameras ${ }_{(i)}$ each associated with- its own functioning camera-clock ${ }_{(i)}$ by a sufficiently minimally-capable agent ${ }_{(i)}$ all embedded into the same scene and
 that imagination) such that: it's-clock ${ }_{(i)}$ could be included reasonably as a sub-frame image $_{(\mathrm{i}, \mathrm{j})}$ of that now or then potentially partialized-representation of such a more globalized imagination.

Where the index (i) associates to the case specific defining prespective ${ }_{(i)}$, and $(\mathrm{j} \in \mathbb{R})$ provides for image-layerings. Further simply for convience we restrict the meaning of "functioning clock" only to any independent monotonic function-or- process whose state is or could be recorded into or with the [static-image frames] $]_{(\mathrm{i}, \mathrm{j})}$ produced by This -or- such a perspective map-or-camera parameterization-time-stamp dynamic.

Claim this is relatively consistent-to or provides a projection from the enviroment of the initial assumption of a viewer, yet representationally Emits as well for the "recorded"-mathematically-concrete-representation and then comparison of multiple possibly Overlapping Sub-framed perspectives.

And so as...
a dirge, from some human compulsion , . . to again, join to that which isn't broken, . as-in place-recordings of an ongoing attempt , ... and because time is a great thickener of things -and yet, always still - short .. ${ }^{\downarrow} .{ }^{\downarrow}$
and then:
(wrapping things-up,.. and folding) into, or (sometimes with a permission, along-side of or then from an outside taking-in) an already ancient philosophy-and-conversation : on the toolset of-or-into 'purifying' (symbolic and graphic)-techniques .
and as_ ... this journey, of a few cardinality howlings into the wind : ... is culled, with a simple and naïve-observation that it seems completely-reasonable "to sppeak of a faithful-projection of color onto -a-visually subjecti vised-point •", but yet or still, somewhat more difficult to speak of a similar pointed-representation, for 'locally-emergent' and/or 'distributed-geometric' objects, such as: dimensionally-simple piped-triangles \triangle,or, in some other complexity fractalings * , _ present (after one more cycle-of-completion), an .. un-ordered,... already existent,..
further generalization to the infinitesimals ,...-and/or an adjoining of: (standard -And- non-standard analysis). By an

interior color-theory of abstact terminal...(s)

- a Construction of \mathbb{R}_{\dagger}
- (an) internal Spectral-carrying-Structure for numbers
- logarithmically contained laminar flows (Rellf)
- real-analytic(domain bounded) color algebras, knitted into geometries
- predictive -Opaqueness and an upto type-structuring of frames
- an application to inertial-maps and localized-time(like representations)
- a tools section
tagged for now ... with a wild or then whimsical warning paradox, and where as we must .. also touch on this: mostly as it seems, it still remains remarkably degenerate, let us just briefly risk , the intensely difficult , well-spring of platonic externalities . . . , out of the nut-shell: and more, coarsely-or-physically speaking
- "as,some, first-and/or-final system...:) - nothing exists:- (... preserved as- or in bare-potential then is or may-be associated with any obvious- representative model which presents-inconsistency. of course quite a bit, in a larger-sense, frees up from that "! and more so, any sufficiently unleashed --operational in-coherence -returns then, also- a climb-into such 2 fully-degenerate neighborhoods 〕"

Anyway, various paradoxical-classes, as often-is method-usual (stratified, domain restricted -or- ignored), start with, a little again - anthropormorhic - view of territory (as it is: commensurate) - and thus - we take a further re-fining of... or a new

1. reconnoitering: with-in , a wave-and-saturation of in-the-air-algebraic-approaches and discrete-instantiation, there is a simply fascinating, 'sometimes'-forgotten < multi-threaded > history on, the science and way to assign a meaning-and-role to "symbolic-numbers". (in practical aspect) numbers have become -or-remain "namings" ; which then if-sensed, as abstracted-Domain "Objectification-counting-localization-or-quotient.ing-,...,-descriptors ", embody

* || by-this 'registration': [also some-tending* -to inducement -of- distinguishable- codings -forms] (p_adic -or-not) which then is* or are implicit-of, or at the least coding consistent-with, an aliasing for ...such (frame)-adjoined ("possibilities- or- new recordings" - or- renormalizations, ... ,) to or by 'those' apparent "system-and-constraints".
and so this as poetry, in a label 'immersive-context', of trace-capturing-[separate] -framings of discourse: : partly inorder to retain, update ,or, merely fill-in those internal-type-capabilities which may remain or be, a vehicle at given interfaces, then is, a concrete-return and expansion down-into a language-passed-point.(ing)--dimensional(critical or)then componet-structure philosophies, as specifically-and-representationally related to:
[name.(ing)-instantiation-potential(s)], and/or, the information-history-inherintly carried-forward with-in an [abstract'mark.(ings)'-back-ground] by, a sub-class, underpinning, and, in a sense to be made precise from with-in ,then "descriptive positions"-given by-or-over, number-constructed alias-spaces and maps. further this provides, as such, from some opposite tenet ,
a "method and example" of dressing-or-writing external-constraint, into, pointed->geometric-context(s) ; and, by weakening (or making porous) the convention that isomorphic-objects are in-a-way identical : brings classic-definition to [color-(evil)]-systems or modulation-shells as seen by a partial(ization)-of-number(s), where in the end, of course these examples may then again be embedded in classes of identifiers, for other generalized spaces.
and so, and somewhat as a "review to the literature", the workings begin by carrying-into "convergent foundations";
a. in the first section: [a completion now of the "interior"] of a naming-conveyer for the irrational-real-numbers with a constant-representative ${ }^{\downarrow}$ (and/or a distributed-overlapping identity-element). these representatives then act as a reference for sub-typing the [latent-sequence-(ie.an available-alternate '/abeling)-space'] which
* forms, the underlying monogenerative\{"infinite" dimensional-unit\}-and/or-universe of-each separating- 'object -or-element-or-point': in then $\{a$ "re-emergent constructive"-contrast $\}$, of the-1-dimensional system \mathbb{R}_{+}, and also, of the (externally-algebraically-closed) hypercomplex systems, which immediately or conjointly follow ...
- with this simple addition: overall directions, may easily progress into, studies of inherent-"descriptive"-primary-co-structure(s) (preserved) by or with-in these ${ }^{\uparrow}$ infintesimally-augmented- numbers. specifically given are explorations of:

1) Spectral sets, and, the existence of distinct - sympathetically-coupled [interior-or-labeling algebras].
2) of ever-present- ("down-into" and "up-out-of") projective 'space \Leftrightarrow name-space' interaction schemes .
3) of sequential-type-migrations induced onto the set-of ubiquitous 'logarithmic-scale-inspired' \mathbb{R} (CLF) -defining-functions, and then onto bindings of eventual- analytic-color-maps, as a structuring group.
4) and yet of,a "never the-less",type proportioned infinitesimal_mathematic-opacity as is cardinally-or-locality-enforced by a coloristic sense-persistence of legions of intermediate-appropriate ultra-center(ed) exclusive-map(s).
and so: with the latent detail-journey of this mathematical (privi-tation)-technique encapsulated, at hand, and again starting: by-or-with a clear note-of distinction between, the thing-named and the-name, the long and easy stuff...
section 1:(first attach-concreteness, in classic foundation, there resides what appears to be "at-least most of")
2. a Construction of $\mathbb{R}^{+}+$: (visited here for a shared-background, and necessary structural reference-detail). So we explore, developments of general pointing-discussions, anew (in early-mid-stream). As maybe said, on review, there exists essentially two paths to induce, that which is generically-called, the real-number-system(\mathbb{R}): ("abstract", and, what is known as "constructive"). by such (a) for-layers sufficing acceptance approach, unites as
$\underline{\mathbb{R}}$ a is defined: as any mathematic-system, uniquely-characterized or consistent-with also the potential of a domain-projection (at bottom) down over " \underline{a} local modulation onto some context of a finite notation or inertial name- set (see $\left.1 .{ }^{*}\right)^{\prime \prime}$ by then the 'generalized' external algebraic-binding (and/or- structure rigidizing) properties of what is, ordinarily called or encompassed by the wording, a "complete-ordered-field". philosophically-then, the language of ('a potential of-or '..."over sufficiently definite-abstracted-form"') forces (by: finite, notation and complete), operational- \mathbb{R}_{a}-mapping [artifacts] to become both:-and-appear as: term-acceptance Patterns ${ }^{\downarrow}$; and yet still be independent-of, and/or,to posses an (interchangeability)-of that particular "notation" as then-passible or referenced nodings. in-specific, notice however-else (or not)(some as is know outer $\mathbb{R}_{\text {eal }}$-domain-inevitable) second-order infinite terms-structure is in itself either described, and/or pointed-to or. "trailed", is irrelevant to the rest of the bindings by C.O.F driving-characteristic which (free-up): to determine and (upto some as information known ambience interpertive:log-entropy breakdown-or-seeming counter-structuring-of-objects), then maintain a possibility of level-constraining \mathbb{R} a rings in(or- from) ,some else-wise, either writing-definite or then locally witnessed abstract. - and as we will see, otherwise layered universe domains are then admitted. so following a"constructive"-(model)--approach(which demonstrates such acceptances ${ }^{\uparrow}$): and since it is adequate for, or precisely sufficient-or-
2a. -descriptive for the purpose at hand, assume: some (small theory of logic and sets)(see Tø :)
∇^{3}. further as essentially the same "boot-strapping , up"- method is used (twice) ; then for later reference, generalize common features of these construction(s) as follows and where as we: merely label extend-various standard presentation, introduce first a notational-convenience of " ϵ " (representing the membership relation) and then (re-look after-other such-assumption(s)), at some generally-available structurally-localizing blue-print:
a. - assume:(some "finite notation-set" and a definite projection)*: of $\underline{\mathbb{Z}}$ - the integers, and its proper- subset- \underline{N}, such that $n \in \underline{Z}(>O)$ (by 2.a), over-that-domain. likewise assume: $\underline{\mu}^{*}$ - some arbitrary and sufficiently rich number-system, possessing at-least, an external-bound('ordered-field'algebraic structure), and as such an * absolute-value-metric. then codify a notion of "closeness" by method-defining: a convergent-sequence for a $\underline{\mu}$-number-system, as a sequence-function on \underline{N} into $\underline{\mu} \underline{u} f:\left\{\ldots,<\mathrm{n}, \boldsymbol{x}_{\mathrm{n}}>, \ldots\right\}$ (ie. a set of ordered pairs) such that for any $\underline{\mu}$-number ${ }^{\prime} \in \epsilon^{\prime}>0$, there exists a $N \in \underline{\mathbb{Z}}$, so that for every $\mathrm{m}, \mathrm{n}>N$; then

$$
\left|X_{\mathrm{n}}-X_{\mathrm{m}}\right|<\epsilon \quad \text { reserve-and-incorporatehere, thus the notation: of the "usual" absolute-value }
$$

- a relation p : in a set ' X ' is called an equivalence - relation (in ' X ')
if-and-only-if (notated "iff") p : is
- reflexive (iff $x p x$ for each x in ' x ')
- symmetric (iff $x p y$ implies $y p x$)
- transitive (iff $x p y$ and $y p z$, implies $x p z$)
it is an induced-feature of equivalence relations, that they partition the sets in which they are defined ,into, a union-of-mutually-disjoint-subsets (see T3).
b. - next define : a 'known'- equivalence - relation, in the set of all $\underline{\mu}$-convergent- sequences $C S_{\underline{\mu}}:\{\ldots, \underline{v} f, \ldots\}$, called $\sim \epsilon$: such that if (x) and (y) are in $C S_{\underline{\mu}}$, then $(x \sim \epsilon y)$, " read the sequence $-x$ is ϵ-equivalent with the sequence $-y^{\text {" }}$: iff for any $\underline{\mu}$ - number ' ϵ ' >0, there exists an integer N, so that for every $\mathrm{n}>N$

$$
\left|X_{\mathrm{n}}-Y_{\mathrm{n}}\right|<\epsilon
$$

- denote: then a [$\sim \epsilon$-equivalence-class] as the implicit - set of all-$\{\underline{\mu}$-convergent-sequences: that are $\sim \epsilon$-equivalent $\}$ (ie. which are " ϵ-close", or, which in this sense, also "approach" each other in $\underline{\mu}$).
* 4. utilizing the above generalized - method, we can construct (2) faithful-versions of the real-number-system. (ie. 'as context': one usual-construct \mathbb{R}_{Q}, and then historically: only "just-a-little"- less-usual one , eg. $\mathbb{R}^{+} \dagger$).
\mathbb{R}_{Q}) first assume: $\underline{\mu}$ is a 'bottom-up constructive-model' (and projection)* of the rational-number-system \mathbb{Q} (by 2.a)
- then define: a real-number as 'the-sum-total' of an instance of an [$\sim \epsilon$-equivalence - class] of Q - convergent- sequences . that is ; in the present construction every real-number (r) is a latent multi-member "sequence- set".
a. - name (and, then again, in particular-instance operationally represent) such a real-number-[] (see 4.b) with a reference(or potential-reference)-to: any-one of its pointed-set class-members, by writing

$$
\left[{ }^{Q} f\right]_{R e} \text { or with }[X]_{R e}
$$

note: variations of this naming- form will be freely used in-context in order to impart heuristic -"meaning"
b. claim : with-out proof (as it is widely known, reference : set- theory, logic, and T4) that this $\sim \epsilon$-induced "partitioning" of [convergent - rational - sequences in general] may "in-itself" be algebrized and /or re-sistered (into) a structurally coherent name-mapping-system $\left(\mathbb{R}_{\ell}\right)$ which is consistent with the underlying support implied for $\left(\mathbb{R}_{\mathbb{a}}\right)$; that is, it is admissible in-general as a number-system, generically then, for \mathbb{R}.

- next: for any-specific rational-number q in Q, we may define : the trivially-convergent sequence-function on \underline{N} into $\underline{Q}{ }^{q} f:\{\ldots\langle\mathrm{n}, q\rangle \ldots\}$ (ie. at this point, up to absolute-value-equivalence (eg. $\left|q_{1}-q_{2}\right|=0$), some endless-sequence of equal $q^{\text {'s }}$) as ' a ' constant-representative of $[q]_{\text {Re }}$ in the system $\left(\mathbb{R}_{Q}\right)$.

5. - and then : as it will be convenient, for what follows, to define a 'unique-or-firm' constant-representative for every (rational and irrational) number 'r'; use exactly the same generalized-method to construct the distributed-real-number-system (\mathbb{R}_{\dagger} from) \mathbb{R}_{1} seen immediately below).
$\left.\mathbb{R}_{+}\right)$first solidify a meaning of $\left(\mathbb{R}_{1}\right)$, by attaching and defining a "minimal-admissible-naming-structure" for a (complete)-ordered-field \mathbb{R}_{a} as: consisting of a single -(algebraically)-operational- name per element. for example : one constructed solely from some decimal notational - schema (but with-out an allowable internal-name(representative)-equivalence-class structure of any type ${ }^{1}$; as in , and with out explanation here (see: T 5), $\mathbb{R}_{1}=$ (some) appropriately defined $\mathbb{R}_{\text {radix }}$ - fraction-system .

- then assume: $\underline{\mu}$ is a <'bottom- $\underline{\underline{p}}$ constructive- model and projection(see:T5)'> of a \mathbb{R}_{1} number-system, and
a. - define: a distributed or generalized real-number as an [$\sim \epsilon$-equivalence-class] of \mathbb{R}_{1} -convergent-sequences ... (explicitly then: with-out any-other isomorphic associations in the "background" allowed) ${ }^{2}$. . . the reason for such a double-"term"alization on the object(s) (see: 1,2) of \mathbb{R}_{\dagger}, in transparency, will not be 'overtly-brought to light' ,in reference, again until . .(see: 20.) .
- name: a distributed- real -number then in particular instance (as above in 4.a) with any one of its 'class - members' , $[X .]_{R \dagger}$ etc.
and finally: for any real-number 'r.' in \mathbb{R}_{1}, define(by \mathbb{R}_{1}-completeness): the convergent-sequence-function on \underline{N} into $\mathbb{R}_{1}{ }^{r} f:\{\ldots<\mathrm{n}, \mathrm{r} .>\ldots\}$ (which by T5: is a well-linked endless sequence of unique 'r.'s) as 'the' constant-representative of ['r.' $]_{R_{+}}$in the system (\mathbb{R}_{+}) (seen immediately below).
b. - state: it is also-known that a $\sim \epsilon$-induced-"partitioning" of [all-convergent \mathbb{R}_{1}-sequences] may "itself" be algebrized and re-sistered (see : T4) into the system - \mathbb{R}_{\dagger}, and that: (\mathbb{R}_{\dagger} is orderisomorphic to \mathbb{R}_{R}) ie. it is also admissible, give a standard(GCT)-proof of that, (utilizing the relation of convergent-sequences to limits in general), in the tools -section : (T1).
* and so from-relatively-extant-foundations we arrive at, an "apparent" and yet at once symbolically-practical,...

6. notational comment and then-relook: up to this point ... essentially (4) admissible -(universe/models) for the real-number-system have been remembered, re-explored, and then given descriptive-definition
\mathbb{R}_{a} : presented explicitly 'with-out' biased-reference to which fine, underlying-"finite notational-set" potentialized [element]-naming-structure is referred-to, for specific, representational-operands.
\mathbb{R}_{1} : presented or biased-(explicitly)-with, a single-name per element -domain structure (eg. on some appropriately defined improved stevin or classic $R_{\text {radix }}$ - fraction - system).
\mathbb{R}_{Q} : structured on $\sim \epsilon$-equivalent projections of rational-naming-sequences.
and $\mathbb{R}+$:structured on $\sim \epsilon$-equivalent-(defined :unassociated) -or- "term"inalized $\mathbb{R} 1$-sequences.

- this is mentioned since the description has followed a convention used through-out, where $\mathbb{R}_{(\star)}$ denotes: (not a notational-conglomeration of all-" discussions-of " the "real -number-system") but returns again for emphasis to flexibility; as any-abstract "universe of discourse" projected into: or operationally-grounded,
- and so, for and as our return- to these discussions , or as our point-of-departure, we
- notice now 'not' -the-abstract-commonality of all these dressing-methods, but explore instead an obvious comrad-nodic philosophical and/or constructive capability-difference... for such label extended "name"-spaces .

Spectral structures (colors) with in numbers: (existence of: and after that: algebration)

7. first, for-robustness, a couple (2) referential preliminaries are given in the tools-section . which are

- an initiation in a general but limited way of partial - algebra : (T2: for selection operators)
- and a rudimentary development of equivalence - relations : (T3)
then as emphasis and to keep delineations clear for the development of "domain layer-mixed - systems" denote interior: as, and to reference (members, relations, and properties) associated with the overall--space of convergent-functions "in and of itself ", which then exists as the re-sistered, innininite-dimensional, latent-"collapsed",(and it turns out,algebraically distinct) sub-structure of \mathbb{R}_{\dagger} (see 20 .)(and systems to follow).
denote exterior: as,and to mean : potential-instantiations of (members, relations,and properties) associated then with some selection of a particular-representational-descriptive-surface ,and/or, a collection-of-named pointed-sets (as it were) of the 1 -dimensional system $\mathbb{R} \dagger$ (and systems to follow).
a. - and as such, relative to these discussions, the properties of (\mathbb{R}_{1}) are in-effect : then pulled-exterior, and provide both a theoretically-developed and representatively-rigid ,or, uniformly-opaque footing for the $\mathbb{R}^{\boldsymbol{R}} \dagger$ sub-domain.. next since and only since, I'm not actually aware of any-done and sufficieient description : maybe simply as, driven-by a host of warnings : "on the futility of further-completions"... never-the-less prepare such non-exotic domain ... and
$\underline{\text { Partition the elements of } \mathbb{R}}+$ (ie... carry-out , a refinement, of the above partitioning of $C S_{\mathrm{R} 1}$) now combine : \mathbb{R}_{\dagger}, equivalence-relations and partial-algebra ; to (briefly as possible, for what follows) delineate primary disjoint regions and/or an internal-partition-structure into the domain of sequences contained in \mathbb{R}_{+}: [equivalence - classes] . clearly a finest level-of-granularity provided for by suchpartitions : then is one generated by some-existence of identity-selection-operators, (that is, classes consisting of a single-sequence-each). however this forces the number of different structural-schemes to be unbounded. and thus initiating an eye-and-vehicle towards a particular flavor of application

8. first identify: for each $r \in \mathbb{R} \dagger$ a sub-equivalence-class consisting 'solely' of the Constant-representative " Cr_{r}. that is, notationally define : the interior-partition : (for any-r $\in \mathbb{R}_{+}:\left[\left[\mathrm{C}_{\mathrm{r}}\right],[\ldots]\right]$); where this arises essentially by the previous and the (what could be easier world following extant) construction of $\mathbb{R}+$.

"internally" - disconnected:

9. then characterize and codify 'a' concept of internally-disconnected as referenced by such constant-representative(s).
 (ie. if (x, y) are members of some selected (by T2:) interior-partition [...[]...]r), and if $\left(\mathrm{C}_{\mathrm{r}}\right)$ is the 'constant-representative' of the same $[\sim \epsilon \text { - equivalence }]_{\mathrm{r}}$; then $\left(x \sim_{\mathrm{d}} y\right)$: iff (either:
(there implicitly-exists a $N \in \underline{\mathbb{Z}}$ such that for all $\mathrm{n}>N$) then both

$$
\left\{\begin{array}{cl}
\left|X_{\mathrm{n}}-\mathrm{C}_{\mathrm{r}}\right|>0 & \text { ie. in this sense, both are } \mathrm{n}>N \text { continuously } \\
\text { and } & \text { Idisconnected ("internally-disconnected") } \\
\left.\left|Y_{\mathrm{n}}-\mathrm{Crn}_{\mathrm{n}}\right|>0 \text { hold true }\right\} & \text { naming-sequences. }
\end{array}\right.
$$

or:
(there implicitly does-not exists a $N \in \underline{\mathbb{Z}}$ such that for all $\mathrm{n}>N$) then either one-of

$$
\left\{\begin{array}{cc}
\left|X_{\mathrm{n}}-\mathrm{C}_{\mathrm{rn}}\right|>0 & \text { ie. neither become continuously Idisconnected } \\
\text { or } & \text { naming-sequences. } \\
\left.\left|Y_{\mathrm{n}}-\mathrm{C}_{\mathrm{r}}\right|>0 \text { hold true }\right\} &
\end{array}\right.
$$

method of abstraction:

a. and as such the above, at-essence, is a binary not-(Exclusive-or) with the sequential-operands (x, y) first "descriptively"-filtered by the implicit-definite relation $\left(\left|\mathrm{f}_{\mathrm{n}}-\mathrm{C}_{r_{n}}\right|>0\right)\left(\in \mathbb{R}_{1}\right)$.that is : since everysequence (f) in the given domain of interpretation is composed of an "implicit-definite" collection of $\mathrm{f}_{\mathrm{n}} \in(f)$ (by 'an' induction hypothesis or Axiom of infinity see 2.a), then (trichotomy; " for any-pair ($\mathrm{a}, \mathrm{b}) \in \mathbb{R}_{1}$, exactly one-of ($\mathrm{a}<\mathrm{b}, \mathrm{a}=\mathrm{b}, \mathrm{a}>\mathrm{b}$) holds true "- see T 4.1 .02): implies "inherently", and then independent of "explicit" examination, that any-(f) can be (by such axiomatic- binding) : of "one-and only-one" latent-truth value-type relative to all- $(\mathrm{n}>N)$-filterings ;
and thus the terminology and an operational-reliance on descriptive-filters (here and in both of the previously-given standard constructive-models of \mathbb{R} (see 3.), where as is-usually done: divergent-sequences in-total were typed and discarded by non-explicit rigidizing-intuition.
and then, the partitioning and re-sistering of "convergent-sequences" into a number-system was logically based on a similar [codified-binding of-type] and then on the algebration of such-(type-pointers[themselves]) (see T4), rather than , by some-"at essence"-"unresolvable"-representations . and so \rightarrow
b. - state: $\left(\sim_{\mathrm{d}}\right)$ is an equivalence-relation, prove ::

- reflexivity : is then immediate by a not-(exclusive-or) comparative-structuring, and the implicit-definite property of the deriving-filters on the domain.
- assume $(x \sim \mathrm{~d} y)$: then by the "commutativity" of standard-interpretation(s) of the logical-($A N D$ and $O R$)-relations, with in the (not-XOR) itself, it follows that $\left(y \sim_{d} x\right)$; which shows symmetry.
- \quad assume $\left(x \sim_{\mathrm{d}} y\right)$ and $\left(x \sim_{\mathrm{d}} z\right)$: then either (there implicitly exists a common $N_{1} \in \underline{\mathbb{Z}}$ such that for all $\mathrm{n}>N_{1}$, then both $\left|X_{\mathrm{n}}-\mathrm{Cr}_{\mathrm{r}}\right|>0$ and $\left|Y_{\mathrm{n}}-\mathrm{Cr}_{\mathrm{r}_{\mathrm{n}}}\right|>0$ hold true) .OR. (there does-not exist an integer $N_{1} \sim$ so that for all $\mathrm{n}>N_{1} \sim$, then either one-of the (x, y)-filters hold true). likewise : a similar statement may be crafted for the ($x \sim_{\mathrm{d}} Z$) assumption utilizing (a $N_{2} \in \underline{\mathbb{Z}}$ notation and the non-existent integer description $N_{2} \sim$). and so as the above filterings are implicit-definite on $(x),(y)$ and (z), the assumptions are as such latently--bonded by (y) and claim: either(there implicitly exists an integer $N=\max \left(N_{1}, N_{2}\right)$ (see 27.c) such that for for all $\mathrm{n}>N$, then together $\left|X_{\mathrm{n}}-\mathrm{C}_{r_{n}}\right|>0,\left|Y_{\mathrm{n}}-\mathrm{C}_{r_{n}}\right|>0$ and $\left|Z_{\mathrm{n}}-\mathrm{C}_{r_{n}}\right|>0$ all-hold true $)$. .OR. (there implicitly does-not-exist a $N^{\sim} \in \underline{Z}$ such that for all $\mathrm{n}>N^{\sim}$, any of the (x, y or z)-filters hold true). and so it naturally follows that ($x \sim_{d} z$), which gives transivity.
thus: as (\sim_{d}) is defined on interior-partition elements : there exists 'a' type-descriptive re-partitioning such that (for any-r $\in \mathbb{R}_{\dagger}:\left[\left[\mathrm{C}_{\mathrm{r}}\right],\left[\mathrm{D}^{\sim}\right],[\mathrm{d}]\right]_{\mathrm{e}}$).
c. - where the global-qualifier []e arrives as a syntactic derivation of ("iff there exists an integer ' N ' such that for every (. . .) $>N^{\prime \prime}$), and is read as eventual .
- [D~] temporarily denotes: (not) eventual-Idisconnected sequences "in-general" .
- [$\left.\mathrm{C}_{\mathrm{r}}\right]$: an always-Iconnected singleton (ie. $\left|\mathrm{Cr}_{\mathrm{r}_{\mathrm{n}}}-\mathrm{C}_{\mathrm{r}_{\mathrm{n}}}\right|=0$, for all $\mathrm{n} \in \underline{\mathbb{N}}$).
- and [d]: eventual-Idisconnected-sequences, which comprise, as such, both strictly Idisconnected-sequences and sequences which, in this sense, may-'initially' contain members equal-to,or, internally-connected with C_{r}.
continuing a usual path...

ei-monotonic :

10. next define : a sequence-function on $\underline{\mathbb{N}}$ into $\left.\mathbb{R}_{1} f:\left\{\ldots<\mathrm{n}, f_{\mathrm{n}}\right\rangle \ldots\right\}$ as "eventual-Imonotonically--increasing" iff there exists a $N \in \underline{\mathbb{Z}}$, such that for all $\mathrm{m}, \mathrm{n}>N$

$$
f_{\mathrm{m}} \geqslant f_{\mathrm{n}} \quad \text { whenever } \mathrm{m}>\mathrm{n}
$$

"eventual-Imonotonically-decreasing" iff there exists a $N \in \underline{\mathbb{Z}}$, such that for all $\mathrm{m}, \mathrm{n}>N$

$$
f_{\mathrm{m}} \leqslant f_{\mathrm{n}} \quad \text { whenever } \mathrm{m}>\mathrm{n}
$$

and "eventual-Imonotonic" (sometimes denoted: as ei-monotonic) when a sequence is either ei-monotonically (increasing or decreasing):

- thus it follows again, as the above sub-filters are (see T4.1.02) obviously implicit-definite by trichotomy, that any-(f) $\in[\sim \epsilon \text { - equivalence }]_{\mathbb{R}+}$ is latently ei-monotonic (or not) ; and that a "not-(exclusive-or)-equivalence-relation" may be constructed and then demonstrated (see 9.) on those filters . and as such,
define: an equivalence-relation on the interior of \mathbb{R}_{\dagger} called \sim_{m} : such that if, $(x$-and- $y) \in[\sim \epsilon \text {-equivalence-class }[]]_{\mathrm{r}}$ then $\left(x \sim_{\mathrm{m}} y\right)$:
iff (either:
x and y are both ei-monotonic.
or:
neither x or y is ei-monotonic.
).
then: as $\left(\sim_{m}\right)$ is defined on interior-partition elements ; there exists a sub-filter codified- \ldots
-descriptive-repartitioning of naming-type such that (for any-r $\in \mathbb{R}_{+}:\left[\left[\mathbb{C}_{m}\right],\left[d_{m}\right],\left[C_{r}\right],[\mathrm{dM}],[\mathrm{C}]\right]_{\mathrm{e}}$).
- where [C_{r}] : is trivially ei-monotonic (ie. for-all m,n $\mathrm{C}_{\mathrm{rm}_{\mathrm{m}}}=\mathrm{C}_{\mathrm{r}_{\mathrm{n}}}$).
- $\left[\mathrm{d}_{\mathrm{m}}\right]$ denotes: ei-disconnected sequences, which are not-ei-monotonic.
- [dM]:ei-disconnected sequences, which are ei-monotonic.
- $\left[\mathbb{C}_{\mathrm{m}}\right]:($ not $)$-ei-disconnected sequences, which are not-ei-monotonic ; that is in "conclusion",
sequences which never fully-Idisconnect or fully-Iconnect to Cr (see T6.10.1).
- and [C]: (not)-ei-disconnected sequences, which are ei-monotonic ; that is sequences which
"must" -eventually-completely-Iconnect to C_{r} (see T6.10.2).

side - equivalence:

11. - and finally and without pause, such a rudimentry interior-partitioning may fully-characterize 'some'intuitive conceptualizations of side-equivalence as follows:
a. define : a relation on the interior of $\mathbb{R} \dagger$ called \sim_{\uparrow} : such that if (x-and- y) $\in[\sim \epsilon \text { - equivalence-class [] }]_{\mathrm{r}}$ where neither (x or y) are constant-representatives, and if C_{r} is the 'constant-representative' of the same $[\sim \epsilon \text { - equivalence-class }]_{\mathrm{r}}$; then $(x \sim \uparrow y)$:
iff (
either:
(there implicitly-exists a $N \in \underline{\mathbb{Z}}$ such that for all $\mathrm{n}>N$) then both

$$
\left\{\begin{array}{l}
\left(X_{\mathrm{n}}-C_{r_{n}}\right) \leqslant 0 \\
\text { and } \\
\left.\left(Y_{\mathrm{n}}-C_{r_{n}}\right) \leqslant 0 \text { hold true }\right\}
\end{array}\right.
$$

or:
(there implicitly does-not exists a $N \in \underline{\mathbb{Z}}$ such that for all $\mathrm{n}>N$) then either one-of

$$
\left\{\begin{array}{l}
\left(X_{n}-C_{r_{n}}\right) \leqslant 0 \\
\text { or } \\
\left.\left(Y_{n}-C_{r_{n}}\right) \leqslant 0 \text { hold true }\right\}
\end{array}\right.
$$

)
state : it is immediate (again) by implicit-definite construction that $(\sim \uparrow)$ is an equivalence-relation. thus: as $(\sim \uparrow)$ is defined on interior-partition elements ; there exists ; a type-repartitioning such that
(for any-r $\in \mathbb{R}+:\left[\left[C_{m} \uparrow\right]\left[\mathbb{C}_{m}(\mathrm{osc}, \downarrow)\right]\left[\mathrm{d}_{\mathrm{m}} \uparrow\right]\left[\mathrm{d}_{\mathrm{m}}(\mathrm{osc}, \downarrow)\right] ;[\mathrm{dM} \uparrow][\mathrm{C} \uparrow]\left[\mathrm{C}_{\mathrm{r}}\right][\mathrm{C} \downarrow][\mathrm{dM} \downarrow]\right]_{\mathrm{e}}$) where : the interior-partitions are notationally-denoted and grouped
. . . (non)-ei-monotonic on the Left ; and ei-monotonic on the Right . addressing the (ei-monotonic)-partitions first ; give (one-last) overview .

- $\quad(\sim \uparrow)$-(by 11.a) is then "undefined" for any-and-all I-monotonic-Iconnected-singletons [...[Cr] ...]
- further for any-r $\in \mathbb{R}_{+}+[$and any $-f \in[\mathrm{C}]$ (see 10.$\left.)\right]$ then $f \neq \mathrm{C}_{\mathrm{r}}$, thus there exists ... for any- $f \in[\mathrm{C}]$ a sequence-dependent minimum integer ' $N_{\min }$ ' and a larger-integer ' $N \max$ ' ($f_{\mathrm{n}}=\mathrm{C}_{\mathrm{r}}$ for all $\mathrm{n} \geqslant N^{\max }$) ; such that (by ei-monotonicity) then for-all ($\mathrm{n} \geqslant N_{\min }$ but $<N^{\max }$) exclusively-either;
$\left(f_{\mathrm{n}}-\mathrm{C}_{\mathrm{r}_{\mathrm{n}}}\right)<0$; in which case $f \in[\mathrm{C} \uparrow]$
- or -
$\left(f_{\mathrm{n}}-\mathrm{C}_{\mathrm{r}_{\mathrm{n}}}\right)>0$; in which case $f \in[\mathrm{C} \downarrow]$
- next for any-r $\in \mathbb{R}_{+}$: [and any- $f \in[\mathrm{dM}]$ (see 10.$)$] there exists a sequence-dependent integer ' N ' such that for all $\mathrm{n}>N$, (again by ei-monotonicity) exclusively-either :

$$
\begin{array}{ll}
\left(f_{\mathrm{n}}-\mathrm{C}_{r_{n}}\right)<0 ; \text { in which case } & f \in[\mathrm{dM} \uparrow] \\
- \text { or }- \\
\left(f_{\mathrm{n}}-\mathrm{C}_{r_{n}}\right)>0 ; \text { in which case } & f \in[\mathrm{dM} \downarrow]
\end{array}
$$

then addressing the (non-ei-monotonic)-partitions

- [$\mathrm{d}_{\mathrm{m}} \uparrow$] denotes: ei-disconnected, non-ei-monotonic sequences, which (by the filter $\left(f_{n}-\mathrm{C}_{r_{n}}\right) \leqslant 0$) are strictly 'less-than or equal-to' (C_{r})
- $\quad\left[\mathbb{C}_{m} \uparrow\right]$: non-ei-disconnected, non-ei-monotonic sequences, which (again by $\left(f_{n}-\mathrm{C}_{r_{n}}\right) \leqslant 0$) are strictly 'less-than or equal-to' (C_{r})
b. - and $[\mathrm{dm}(\mathrm{OSc}, \downarrow)],\left[\mathbb{C}_{\mathrm{m}}(\mathrm{osc}, \downarrow)\right]$: comprise sequences which may be repartitioned by these "named" sub-type components through a (new)-filter $\left(f_{n}-\mathrm{C}_{r_{n}}\right) \geqslant 0$ derived not-(exclusive-or)--equivalence-relation : ($\left.\sim_{\downarrow}\right)$ and is left, after such excesses, to the reader.
... again note: we get all this for free, by simply completing the interior with a constant representative ie. ...

conclusion :

12. thus as 'a' descriptive methodology can now be excessively apparent, augment further interpretation-and/ornotation : in conclusion, there exist ordered-defining-lists of ((partial-algebraic set-restrictions) and (equivalence-relations)) such that for every-potential [$\sim \epsilon$ - equivalence-class]r : identity-selectionoperator ($\mathrm{Ir}_{\dagger} \rightarrow[]_{\mathrm{r}}$), there also exists an implicit-and-latent set of interior-alternate-name-type selection-operators $\left\{\mathrm{S}_{\mathrm{i}}\right\}$ such that ;

$$
\begin{aligned}
& \mathrm{Ir}_{\dagger} \rightarrow\left[\mathrm{S}_{\mathrm{no}}+\left(\mathrm{S}_{\mathrm{dM} \uparrow}+\mathrm{S}_{\mathrm{dm} \uparrow}+\mathrm{S}_{\mathrm{C} \uparrow}+\mathrm{S}_{\mathrm{Cr}}+\mathrm{S}_{\mathrm{C} \downarrow}+\mathrm{S}_{\mathrm{dm} \downarrow}+\mathrm{S}_{\mathrm{dM} \downarrow}\right)\right]_{\mathrm{r}} \quad \text { (exhaustive) } \\
& \text { where: } \left.S_{\mathrm{no}}=\left(S_{\mathrm{dm}(\mathrm{osc})}+\mathrm{S}_{\mathrm{Cm}(\mathrm{osc})}+\mathrm{S}_{\mathrm{Cmq}}+\mathrm{S}_{\mathrm{C}_{\mathrm{m} \downarrow} \downarrow}\right) \ldots \text { (near-oscillative }\right) \\
& S_{i}{ }^{n}=S_{i} \quad \text { for any indice }(i)\left(\ldots \text { eg. } \mathrm{d}_{\mathrm{MT}} \ldots\right) \quad \text { (idempotent) } \\
& S_{i} S_{\mathrm{j}}=\varnothing \text { for any indice }(\mathrm{i} \neq \mathrm{j}) \quad \text { (disjoint selective) }
\end{aligned}
$$

and as such : these operators define: a spectral - set on the interior of \mathbb{R}_{\dagger}, where, "at this point", there exist (8) disjoint-subsets and/or "colors" (thus preserving notational-graphic-approaches) which sub-characterize \{not-some\} but all the interior-('potential')-sequences of the members of $\mathbb{R}_{\dagger}:[$]r . that is: we initialize conversations with (1) state of near-oscillative , (3) states of increasing , (1) constant state, 13. and (3) states of decreasing ; visualized here by the example of a binding-and-sampling of-and-by a graph :

fig 1.

1) note: the n-axis is inverted to highlight the "sense" of a number-internal "downward"-or-compressive support
2) where : a single-hypothetic-sequence is presented from each representative-sub-region-or-color from some $r \in \mathbb{R} \dagger$, for
3) which : this graphically demonstrates each color as non-empty (eg. and/or various constructions based on $K_{n} \cdot(1 / n)$, with $K_{n} \in \mathbb{R}_{1}$ and appropriately bounded)
and so latent coarse-interior-structures or [(colors)] have now, [by part][ition], been easily demonstrated. further we might as well, in such a standard analytic interpretively-vacuous-swamp, breath a normal sigh of...so-what. yet: after some reflection and/or a pause, ask what, our initial and then structurally-finite-addition would bring... to (those things which in some historical past were called indivisibles) ... ie. -and/or- fall into if we were to ...
14. provide such decompositions first-then, with an innate-algebra . denoted here as:
A) one which is confined-strictly-sympathetic or immediate relative to the algebration systematically implied by $\mathbb{R}_{\text {a }}$ as a (complete-ordered-field) ; and, as such , one which maintains , in this sense, the whole external discussion of instantiated analysis, but
B) one which also then maps colors-into-colors with-out ,again, otherwise explicit-dependency on
the underlying defining-sequences of a color.that is in contrast to specific-(sometimes impossible) -proof(s) of representative-membership, this appears, as an exploitation of the generalized uniform driving forces and various layerings-and-modulations of type-algebras onto a study of \mathbb{R}_{\dagger}-admissible point-internal name-instantiation-characteristic . where subjectively and as our fascination here .. then in private exposition :"it is noted as a feature, and, (as will be made precise), that quite a bit of spectral-structure carries through ,in-the-limit series-transformations, ... completely intact."
(and where, afterward as extended, and then eventually)
C) applied-apriori to: the bi-directional partially-opaque-[non-totally-sympathetic 1-to-many]-coupling(s) for and between the (internal-and-external) algebraic-domain, as systems passed-or-punch through point-singularities consistent-with or under the interpretation of, relative path-dependence. (that is, in-a-sense "appear to" do something, while, still maintaining partial-structural-binding).

Section or part two : ... and $s o$, as s is well known, we might have begun here ...

ALGEBRAIC MAPS

d. first some notes (on the typsetting or) on the-various-style(s) for a presentation of these muses: which then, in some sense are -or- will be cursed, simply as an Ouroboros-reflection ${ }^{\downarrow}$ of this moment itself. let me explain ... the process "of this passage", and in fact for the whole document, is just a daily-or-ritualized return to a yet-lengthening tail. if in doubt, write, what one would honestly like to say, and let tomorrows present improve-it or wash-it away. if a conversation or a transitory-perspective seems beautifully-accurate, imprint it now, before its lost forever. if in research, some philosophy seems better, use it, change it, dissolve it into solutions, and/or poisons ...
nothing is given endless referencial-credit anyway. there aredays that it seems better to scan through these thoughts: and so this document-or-juncture may reflect that.
days where certain features, seem spread across the discussion, and may be pulled together by type ${ }^{\downarrow}$-high-lighting. there are passages and words with many possible ,mornings of interpretation, there is art, humour, overview, cheating, malipulation, fear, boredem, truth, things which are categorically rentlessly-wrong, passion, admiration, confliction, place holders, inconsistency, faithful work from within a trade, happiness, and of course still much much more, and then many more asides. "driving this, is an outsiders attempt to beg-an-enforcement to simplicity ,and, ... then.
to bring an aspect of mathematics towards a physical-bind, not some attempt to mathematically describe physics". finally at any point: these muses are inertial, and yet never finished, and thus have a unique-imprinted-life of their own, and with out any regret invariably will fade unfinished into what is a colorfull past. and so,in this somewhat human sense, then un-tethered and whole-heartedly encouraged, let us again explore and modify the art work and scenery together _ but certaintly, let s,not agree to easily, "after such a fleating-circle ${ }^{\uparrow}$ ",on what is-or-was necessarily...an (obvious perspective) ... or an interesting work .. or an then
" what's in a name; that which ... tends to hide , easily, in the open, often, should be avoided, at times, isre all yh a rdt os ee, especially when ergodically coiled, as fresh air , or the, the wonderfully-invalid puzzle of nature as a sub-category of nothing. "
further ; what is a philosophy based on (axioms and/or rules of formation) other than a pure potentialized tool and symptom for descriptive runaway. that is the very strength of mathematics to explicitly detach from the surroundings (by notationally "describing" apriori-features and then layers of pointers into abstract universes or notations); \rightarrow is on the other hand, a weakness :
as such virtual-domains are profoundly unrestricted in room and scope, (allowing for the simplicity of original insight and journey to be long forgotten in a fathomless exotic dream world of ornate - "truth") \rightarrow thus effectively shrouding from clear view all-that-is axiomatically-separate or on the opposite-side of some complexity-surface; and \checkmark "which" very still, and somehowpersistently, seems-again right under the anthropormorhic nose.
(by example) such apriori-methods have been fraught with misguided beginnings where the tinniest inclusion of misconception, or, (un)intentional lack of restriction (has) propped up a millenniums long-(dark) forest of that which is limited or just mystically-wrong. and it was not until the recent-polyfurcation of disciplines and the freedom brought on by what became popularly and generically known as "the scientific method ", and, then again in strong-contrast dropping the un-testable assumption that "parallel lines never meet" that at-least a true axiomatic-method could take hold and flourish.
that is, and where in-part, mathematics now has become a kernel of the physical-sciences without any physics in it at all. and as such exists, by toil and chance, unfettered (except by an arbitrary selection of primitive-notions and pointers to abstracted objects with-in layers of type-and-association): as deep, exquisitely predictive to a diverse scene of application, ornate-potent, and yet like all things in reality-and-instantiation as bound to a past. that is the very description-or-initiation of an abstract-mathematics restricts the apparent potential-or- near term of its representable-space(s), and it is the measure of just such preferential time-likerestrictions, that is the algebra(s) of internal-form, which are exposed in the following section(s).
later, when the step of multiple-frame couplings are induced ("by , a look at, renormalized-or-lockstep collapse"), then keeping track of such sub-domains becomes unavoidable, but for now, may be viewed as: a simple stuctural-detail-trailing-curiosity, beneath a porous surface of isomorphism and (hobbled) prior-art. first though :: non-exoctic infinitesimal-pointing-spaces, where the "notation medium is the message", and where (for tricks,... triffles and form) : ... we return
as such: to the mundane underlying (objectively-bound, descriptive philosophies) or the work at hand.
assume the previous defines: a "primary"-code-pallet, and some re-combination (ie. [$\left.\mathrm{C}_{\mathrm{r}}\right]\left[\mathbb{C}_{\mathrm{m}} \downarrow\right]$) defines: an amalgam, and, re-combining all the internal-elements defines: a total-amalgam (ie. [TA]r).
15. then contained in the tools-section are (standard) referential-preliminaries which delineate operations between [total-amalgams] and as such present a coarse internal-algebration implied by \mathbb{R} : (T4) with such features assumed available, and as essential-review, define : the interior algebraic-system of sequences, as usual, to be (term-by-term) . that is for example: if some arbitrary binary-operation (\star) is given, where (f and g) are sequences, then

$$
f \star g \text { implies }(f \star g)_{\mathrm{n}}=f_{\mathrm{n}} \star g_{\mathrm{n}} \quad \text { for all } \mathrm{n} \in \underline{N}
$$

and (re)-evoke such a structurally-localized system ,now, then into a study of internal-representative--migrations of [underlying -constricted to-color type]... and as such first complete a few useful ...
constructive details (pertaining now, in-particular groundwork, only to "the elements" of $\mathbb{R} \dagger$)

$\checkmark \quad \begin{array}{r}\text {-------------- } \\ \text { similarity }\end{array}$

16.a - re-examine the definition of a "convergent-sequence" given in (T4.4.a)(..." for all $\mathrm{n}>N$, then, $\left|f_{\mathrm{n}}-X\right|<\in " \ldots$); which offsets each $\left(f_{\mathrm{n}} \in \mathbb{R}_{1}\right)$ of the sequence (f) by a constant ' $X^{\prime} \in \mathbb{R}_{1}$, and which there and as such defines a "null-sequence".
that is : for any- $f \in[]_{\chi \neq 0}$ (where []$\in \mathbb{R}_{\dagger}$), there is generated by such definition an exactly-similar (convergent-sequence) ${ }^{\varnothing} f \in[]_{X=0}$ denoted by the sequence-equation ${ }^{\varnothing} f=\left(\left\{f_{\mathrm{n} \in \underline{N}}\right\}-\left[\mathrm{C}_{\mathrm{r}}\right]_{X \neq 0}\right)$ where for all-n $\mathrm{C}_{\mathrm{r}_{\mathrm{n}}}=X ;$
and (likewise) any- ${ }^{-} f^{\prime} \in[]_{X=0}$ generates an exactly-similar (convergent-sequence) $f^{\prime} \in[]_{X \neq 0}$ denoted by the sequence-equation $f^{\prime}=\left(\left\{{ }^{\varnothing} f_{\mathrm{n} \in \underline{N}}^{\prime}\right\}+\left[\mathrm{C}_{r}\right]_{X \neq 0}\right)$ where again for all-n $\mathrm{C}_{\mathrm{r}_{\mathrm{n}}}=X$.
thus by the overall symmetry-and-transivity of the above, it follows that:
(any-[$\sim \epsilon$ - equivalence-class $]_{\mathbb{R}+}$ is "exactly-similar" or essentially-identical ,except for offset, to every-other- $[\sim \epsilon \text { - equivalence-class }]_{\mathbb{R}+} \underline{2}$.

- comment : again this is not the case for \mathbb{R}_{Q} (which doesn't posses a complete interior-structure).
symmetry
b. - further (every - $[\sim \epsilon \text {-equivalence-class }]_{\mathbb{R}+\dagger}$ is symmetric around its constant-representative) prove: for any $f \in[]_{X=0}$ then $(-f) \in[]_{X=0}$ (by T4.2.c), and thus (by the similarity of [$\sim \epsilon$ - equivalence-classes] 16.a) the claim follows.

separable

c．－the（defining－sequences）for any two distinct＂$\sim \epsilon$－equivalence－classes＂［ $]_{X}$ and []$_{y} \in \mathbb{R} \dagger$ eventually－separate.\neg prove：（utilizing that \mathbb{R}_{\dagger} is constructed from \mathbb{R}_{1} ）
assume：$x>y$ and $x-y=2 \epsilon$（where then (2ϵ) is a positive－＂constant＂－and $-(\epsilon, x, y) \in \mathbb{R}_{1}$ ）．
thus for（any $\sim \epsilon$－sequences f_{X} ，and $\left.\mathrm{C}_{\mathrm{r}}\right) \in[]_{X}$ where then（ $\mathrm{C}_{\mathrm{r}_{\mathrm{n}}}=X$ for all n ）
there exists（by 3．b）an integer N such that for all $\mathrm{n}>N$ then $\left|f_{X_{n}-x}\right|<\epsilon$ ；
that is（for all $-f_{x} \in[]_{X}$＂eventually＂$x-\epsilon<\left(f_{X}\right)<x+\epsilon$ holds）．
likewise for［ $]_{y}$ ，then（for all $-f_{y} \in[]_{y}$＂eventually＂$y-\epsilon<\left(f_{y}\right)<y+\epsilon$ holds）．
however：by assumption $(x=2 \epsilon+y)$ so $(x-\epsilon=y+\epsilon)$ ，
thus it follows implicitly that every－f_{y} is separated－by the eventual－relation（s）
＂$\left(f_{y}\right)<y+\epsilon<\left(f_{x}\right)$＂from all－$f_{x}$ ．
and so by a similar argument for $y>x$ ；
［ $]_{X}$ and［ ］$]_{y}$ separate in \mathbb{R}_{1}（as well as being disjoint（see：T3）in \mathbb{R}_{\dagger} ）
－note：relative to an exterior－context of the－global－structuring of $\mathbb{R} \dagger$［its points］as such necessarily appear topologically＂closed＂．regardless，it then follows that：
sundries（and at times useful ϵ－uniformly－bounded－representations）
d．－for any－$\epsilon>0\left(\in \mathbb{R}_{1}\right)$ and any－（ $\left.f\right) \in[$ color－（ or amalgam $\left.)\right] r\left(\in \mathbb{R}_{\dagger}\right)$ ，there latently exists（by 3．a） a（＂minimum－unique＂－sequence－dependent integer $\left.N_{\epsilon}\right) \in \underline{\mathbb{Z}}$ ：such that the $f_{\mathrm{n}} \in(f)$ may be then considered implicitly re－indexed（ by $\breve{n}=\mathrm{n}-N_{\epsilon}$ ）：such that for all $-(\breve{m}, \breve{n})>0$ then $\left|f_{(\breve{n})}-f_{(\breve{m})}\right|<\epsilon$ ．
that is the collection of（all）－such－identically and latently re－indexed
(f) sequences：$\left(f_{\epsilon}\right) \in$［some color］r $(\in \mathbb{R} \dagger)$ ，
if all those：（ \breve{n} ）are－then considered restricted from \underline{Z} to \underline{N} ：
implicitly defines a recasting of that color to a ϵ－uniformly－bounded－representation（．．．＂【 】＂．．．） which by definition＂captures＂all $-(f) \in[\text { the color（amalgam）}]_{r}\left(\in \mathbb{R}_{\dagger}\right)$ ．
e．－and as such，a［ $]_{X} \in \mathbb{R}^{+}$is called positive：iff a $\epsilon>0\left(\epsilon \mathbb{R}_{1}\right)$ may be shown（ see T6．16．e ）to exist such that there exists ϵ－uniformly－bounded－representation（s）of［ ］$]_{X}$ and［ ］cr＝0 such that strictly $\llbracket \rrbracket \mathrm{Cr}=0<\llbracket \rrbracket \rrbracket_{x}$ ；that is for（any－and－all ${ }^{\varnothing} f_{(\widetilde{n})} \in\left(\right.$ the $\left.{ }^{\varnothing} f_{\epsilon}\right) \in \llbracket \rrbracket \mathbb{C r}=0$ ） and（any－and－all $g_{(\breve{m})} \in\left(\right.$ the $\left.g_{\epsilon}\right) \in \llbracket \rrbracket X$ ）then ${ }^{\varnothing} f_{(\breve{\mathrm{n}})}<g_{(\breve{m})}$ （where of course in－application such proofs relie again at essence on 16．c ）．
f．－likewise，a［ $]_{X} \in \mathbb{R}^{+} \dagger$ is called negative：iff there exists some $\epsilon>0\left(\epsilon \mathbb{R}_{1}\right)$ such that there exist （see T6．16．f）ϵ－uniformly－bounded－representation（s）such that strictly $\llbracket \rrbracket_{x}<\llbracket \rrbracket{ }_{\mathrm{cr}}=0$ （again by 16．c）．
17. - then focusing ,again, in on the thread of discussion, that beneath the "closed"-surface of any-point lies some and yet benign potential (coiled up in a virtual partition-name-space) : establish and begin an exploration of the coupled algebraic-maps with in 1-dimensional mixed-layer-space(s) (see 20.) as initiated by $\left(\mathbb{R}_{\dagger}\right)^{(1)}$. along the way, both side-algebras and a (*)-relative-internal-metric will emerge, allowing for an (*)-interior-calculus, and confirming the appearance of ornateness;
which (of course), as is usual, and as it: is-compulsive, will also then be built upon (see: 14.d).
an internal-naming scheme (the-first iteration) that is, and
a. - where, the $f_{\mathrm{n}} \in f\left(\in\left[\mathrm{C}_{r}\right]_{\mathbb{R}+}\right)$ (ie. the various " f_{n} " of an equivalence-class for some C_{r}), are rewritten with-respect or in-reference to " Cr " itself; as $f_{n}=\mathrm{Cr}_{n} \mp * f_{n} \quad$ sometimes written: $+/-$

- where: all (${ }^{*} f_{n} \in \mathbb{R}_{1}$) are understood $\geqslant 0$;
b. - the $\mp * f_{n}$ thus associated) with any- $f \in\left[\mathrm{C}_{r}\right]_{\mathbb{R}_{+}}$(by 16.a) necessarily exist and form a null-sequence.
c. - the interpretation of " \mp " is context-dependent, but at times for conciseness is (written as (\mp) or as $(+/-)$) and: implies (2)-distinct sequence-formulas ,which, (by T4.1.M3) distribute over parenthesis); ie.
d. $-(+/-)\left(* f_{1 n}+* f 2 n\right)$ denotes for example some $\left(C^{\prime} r_{n}\right)$ - offsets $\left({ }^{*} f_{1 n}+* f 2 n\right)$ and $\left(-* f_{1 n}-* f_{2 n}\right)$, which when taken over $\mathrm{n} \in \underline{\mathbb{N}}$ (by $17 . \mathrm{b}$ and T 4.3 "the addition of null-sequences") define in and of themselves, null-sequence(s), and as such define-sequences which remain "in" $\left[\mathrm{C}^{\prime} \mathrm{r}\right]_{\mathbb{R}+}$ (by T 4.5).
multiplication: (by any "possitive"- constant-representative) preserves color
18.a - and then, in order to tend towards making specific an exploration of a color-algebra, state that: multiplying each element of the 'external-real-line' by a common-positive-factor (>0), causes a uniform relative change or "lensing" of the absolute-value-metric equal to the common factor (eg. $|c a-c b|=|c(a-b)|=|c||a-b|$ by T1.theorem.1.1. II).
thus for all-interior supportive ($f_{\mathrm{n}} \in f\left(\epsilon\left[\mathrm{C}_{\mathrm{r}}\right]_{\mathbb{R}+}\right)$ rewritten as $\left(f_{\mathrm{n}}=\mathrm{Cr}_{\mathrm{n}} \mp * f_{\mathrm{n}}\right)\left(\in \mathbb{R}_{1}\right)$ (see 7.a), it follows that $|c| f_{n}=\left(|c| \mathrm{Cr}_{n}\right) \mp\left(|c| * f_{n}\right)$ (by T4.1.M3)
and as such : term-by-term multiplying a representative $f \in\left[\mathrm{C}_{\mathrm{r}}\right]_{\mathbb{R}_{+}}$"in some particular-instance" by then some positive-constant- $|\mathrm{C}|_{\mathrm{r}}$-representative, causes in effect a uniform-lensing of the (${ }^{*} f_{\mathrm{n}}$ relative-to) the constant-representative then of [] $] \mathrm{c} \mid \mathrm{Cr}_{\mathrm{r}}$.
b. - where (by T4.2.c) : the $\mp\left(|c|^{*} f_{n}\right)$ define a null-sequence, and thus (by T4.5) define a [] $]_{|c| C r}$ "contained" - lensing .
c. - and where $\mp|c|^{*} f_{n}$ preserves color , briefly substantiate this claim.
- first, since : each of the equivalence-relations involved in the above partitioning of \mathbb{R}_{\dagger} are based on descriptive e-filters on sequence(s) with respect to some member-element relative-ordering. eg: the $f \in[]_{\mathbb{R}+}$ are partitioned (at essence) by the eventual-innate-validity (or-not) of the "forms" :

1. - $\left|f_{\mathrm{n}}-\mathrm{C}_{\mathrm{rn}}\right|>0$ with in the ei-disconnected-filter; which here then may rewritten as: $\left|\left(\operatorname{Cr}_{n} \mp * f_{n}\right)-\operatorname{Cr}_{n}\right|>0$, (ie. $\left.\left|\mp * f_{n}\right|>0\right)$.
2. - $\quad\left(f_{\mathrm{m}} \geqslant f_{\mathrm{n}}\right.$.or. $\left.f_{\mathrm{m}} \leqslant f_{\mathrm{n}}\right)$ with-in the ei-monotonic-filter; which then may be rewritten as: $\left(\mp * f_{m} \geqslant \mp * f_{n}\right)$ or $\left(\mp * f_{m} \leqslant \mp * f_{n}\right)$.
3. - $\quad\left(f_{n}-C r_{n}\right) \leqslant 0$ with-in the " \uparrow "- side-filter ; rewritten as: $\left(\mp f_{n}\right) \leqslant 0$
4. - $\left(f_{n}-C r_{n}\right) \geqslant 0$ with-in the $" \downarrow "$-side-filter ; rewritten as: $\left(\mp * f_{n}\right) \geqslant 0$
5. - and [...[Cr] ...] may be rewritten such that the associated $* f_{\mathrm{n}}=0$, for all $\mathrm{n} \in \underline{\mathbb{N}}$ (ie. in one sense, all are identity - ordered) .
then : each "color"-is-forced, and is 'some' [relative order-type of (${ }^{*} f_{n}$)]e implicitly . that is, either as a relation-type to zero ,or, between ($\left.{ }^{\prime} f_{m}, * f_{\mathrm{n}}\right)$.
d. - thus since : (T4.1.M(1-5) and T4.1.E(1-3) derive various-similar multiplicative-theorem, such as: " $x \leqslant y$ implies for $0<\mathrm{c}$, that $\mathrm{c} x \leqslant \mathrm{c} y$ " , and, " $x>0$ implies for $\mathrm{c}>0$, that $\mathrm{c} x>0$ "...), then for-any $\left(f_{\mathrm{m}}, f_{\mathrm{n}}\right) \in f\left(\in \mathbb{R}_{\dagger}\right)$ it follows that all-the (f)-internal-member-order-relationships are preserved in and through the binary-operation(s) of $|\mathrm{C}|_{\mathrm{r}} f$.

- and then or again, since the $|c| f_{n} \in(|C| r f)$ may be rewritten as $|c| f_{n}=\left(|c| C_{n}\right) \mp\left(|c|^{*} f_{n}\right)$, and $\left\{\mp * f_{n}\right\}$ defines an associated "null-sequence" (see 17.b), then $\left\{\mp * f_{n}\right\}$ and $\left\{\mp|c| * f_{n}\right\}$ (by 18.b , 18.C.(1-5) , and the immediately above 18.d) : are members, in and of themselves, of the same [relative-order-type] -or- $\left[\operatorname{color}(\text { amalgam) }]_{X=0} ;\right.$ and as such , the claim essentially (by 16.a) follows . . (ie. stated contextually here as

$$
\left.\left.\left|\mathrm{C}_{\mathrm{r}}\right|[\ldots \text { [color }] \ldots\right]_{\mathrm{r} .}=[\ldots[\text { color }] \ldots]_{|\mathrm{Cr}| \mathrm{r} .}\right) .
$$

* e. - note : therefore it also follows that, the collection of all-positive-constant-representatives, may be claimed as (contained-in or at least equal-to) the [(multiplicative)-spectral-identity-class] (notated: " $\mathrm{e}_{\mathrm{i} \otimes}$ ") associated with this over-all re-sistered distributed internal-domain of \mathbb{R}^{+}.

19. - addition: (by any constant-representative) preserves color
recast the $f_{\mathrm{n}} \in f\left(\in\left[\mathrm{C}_{\mathrm{r}}\right]_{\mathbb{R}_{+}}\right)$by or with $\mathrm{Cr}_{\mathrm{n}} \mp{ }^{*} f_{\mathrm{n}}$, and 'any-term' of some otherwise general constant--representative by or with $\operatorname{Crg}_{\mathrm{n}} \mp 0$ (both $\in \mathbb{R}_{1}$). thus it is immediate : that

$$
\left(\operatorname{Cr}_{n} \mp * f_{n}\right)+\left(\operatorname{Crg}_{n} \mp 0\right)=\left(\operatorname{Cr}_{n}+\operatorname{Crg}_{n}\right) \mp * f_{n}
$$

and besides-offset when taken over $\mathrm{n} \in \underline{\mathbb{N}}$, that addition by constant-representatives (by 18.c.(1-5)) preserves color, which, then in a fashion similar to the above derives the

* a. - statement : that the collection of all-constant-representatives, is (contained-in or equal-to) the [(additive)-spectral-identity-class] (notated: " $\mathrm{e}_{\mathrm{i} \oplus} \oplus$ ") associated with this over-all distributed internal-domain of \mathbb{R}_{+}.
and that: ($\mathbf{e}_{\mathrm{i} \otimes}$ and $\mathbf{e}_{\mathrm{i} \oplus}$) as such at least partially-overlap.
*20. - some overviews on ($\mathrm{e}_{\mathrm{i} \otimes} \bigcap \mathrm{e}_{\mathrm{i} \oplus} \oplus$) overlap ... "or the crux of the matter".
examine [zero] the additive-identity-element for the 1 -dimensional exterior ring of $\left(\mathbb{R}_{\dagger}\right)^{(1)}$ (ie. "0" + [any-number] = [any-number]); its "interior" however, (by : the existence of 1-1 maps between sequences-and-series) is a very general infinite-dimensional re-sistered space with-out any representative restriction impressed on it other-than the ϵ-(0)-convergent-equivalence of its member sequences(see 5.b)
further (for emphasis, by $16 . c-e$) ϵ-uniformly-bounded-representations of $\mathbb{I} \rrbracket_{0}$ and $\llbracket \rrbracket 1$ may be shown to exist; such that they are "completely-disjoint or separate "in \mathbb{R}_{1}; and thus: as "one" is the exterior multiplicative-identity-element ($1 \cdot \mathrm{r}=\mathrm{r}$) for the real-number-system; it is apparently-immediate: that the current spectral-decomposition of the interior of $\mathbb{R} \dagger$ (by : overlap) then shall represent the existence of an algebraically-distinct, sympathetically (see 14.A, 15.)-coupled-system, which is latent (by : the order-isomorphism of $\mathbb{R} \dagger$ to \mathbb{R}) or effectively-ubiquitous or in 'a' genetic-background of (all- \mathbb{R}), and as such intrinsic to its hypercomplex-closures (eg. the complex-numbers \mathbb{C}, ...and etal.), and thus and finally then as, coupled to all representations (or point-associated representations) which by nature are functionally and/or concretely-constructed on or over($\mathbb{R}, \underline{\mathbb{C}}$..)..(unless again 'term'ally-restricted , as in $\mathbb{R} 1$, now formally see:T.5)
a. - and it is ,at essence, this "coupling" and non-trivial distinctness of (algebra and dimension) which inspires and forces the layer-description "mixed-domain", ie. as: aninfinite-dimension exists in a continuous-and-invoariant mix or coupling with-and-to any-such finite-dimension(s).
- and, then again, it is the partial-overlapping(see: 21.a) of ($\mathrm{e}_{\mathrm{i}} \otimes$ and $\mathrm{e}_{\mathrm{i} \oplus} \oplus$) which will-in-hindsight give interior-color-algebra (among its' many-other properties) also a < 'meta-stable, A-symmetric' > time-like feel, regardless ... then examine,

(-1)c rotation:

21. - state multiplication by (-1) re-orders the external-real-line reflectively around the origin: thus for any $-f \in[]_{\mathbb{R}}+$; it follows naturally for $(-1)(f)$; when " (-1) " is considered as the constant- (-1)c -representative and where the $f_{n} \in(f)$ may be rewritten " $f_{n}=\operatorname{Cr}_{n}+/-* f_{n}$ "; that such multiplication internally generates $(-1) f_{n}=\left(-C_{n}\right)-/+* f_{n}$ relative to (f) (ie. at essence: +/- $\rightarrow-/+$). and thus, as the "side"-filters of ($18 . c .3 \& 4$) may be thought of as (-1)-"symmetric-duals" of each other : it also follows that $(-1) c\left(\right.$ 'any' $-f \in[\text { some-color }]_{\mathrm{Cr}}$) (see T6.21) maps into 'a' symmetric-color-dual. and as such (and with-out "much adieu" here) a claim may be easily generalized to an external-perspective represented for notational-emphasis by:

$$
\left.(-1)_{\mathrm{c}_{\mathrm{r}}}[\ldots[\text { color }] \ldots]_{\mathrm{r} .}=[\ldots[\text { roloc }] \ldots]_{-\mathrm{r} .}\right) .
$$

* a. - and where : this as such establishes the "partial"-overlap claim made above, since there exist $(f \notin\{\mathrm{Cr}\})$.
side-addition:

22. with these (three) initiating features of color-algebra assumed in-hand, begin a discussion of side-addition (note: and then an extension to side-multiplication), starting with the following definition(s).

- (2) sequences $(x),(y) \in \mathbb{R} \dagger$ are called "left"-side-equivalent: iff each is selected by 'an' amalgam-operator
a. $\quad S_{L S}=S_{d M \uparrow}+S_{d m \uparrow}+S_{C m \uparrow}+S_{C \uparrow}+\left(S_{C r}\right) \quad$ (note: the inclusion of $\left[S_{C r}\right] \subseteq \mathrm{e}_{\mathrm{i}} \oplus$)
that is or alternatively stated : there exist $N_{X}, N_{y} \in \underline{Z}$ such that for all $\mathrm{n}>\left(N_{X}\right.$ or $\left.N_{y}\right)$, then (x) or (y) may be completely-represented from there on by some form : $\underline{\underline{C}(\mathrm{rn})-* f(\mathrm{n})}$.
- likewise (2) sequences $(x),(y) \in \mathbb{R} \dagger$ are called "right"-side-equivalent: iff each is selected by 'an' amalgam-operator
b. $\quad \mathrm{S}_{\mathrm{RS}}=\mathrm{S}_{\mathrm{dM} \downarrow}+\mathrm{S}_{\mathrm{dm}} \downarrow+\mathrm{S}_{\mathrm{C} m \downarrow}+\mathrm{S}_{\mathrm{C} \downarrow}+\left(\mathrm{S}_{\mathrm{Cr}}\right) \quad$ (again note: $\left[\mathrm{S}_{\mathrm{Cr}}\right] \subseteq \mathrm{e}_{\mathrm{i} \oplus}$)
that is or alternatively stated : there exist $N_{X}, N_{y} \in \underline{Z}$ such that for all $\mathrm{n}>\left(N_{X}\right.$ or $\left.N_{y}\right)$,

c. addition of (LS/RS)-same-side-equivalent(coloration) sequences, derives the easily-apparent-referencial rule: for all $\left(r_{1}, r_{2}\right) \in \mathbb{R}^{+}$

$$
\begin{aligned}
& {[[\mathrm{LS}] \ldots]_{\mathrm{r} 1}+[[\mathrm{LS}] \ldots]_{\mathrm{r} 2} \Rightarrow[[\mathrm{LS}] \ldots]_{\mathrm{r} 1}+\mathrm{r} 2} \\
& {[\ldots[\mathrm{RS}]]_{\mathrm{r} 1}+[\ldots[\mathrm{RS}]]_{\mathrm{r} 2} \Rightarrow[\ldots[\mathrm{RS}]]_{\mathrm{r} 1}+\mathrm{r} 2}
\end{aligned}
$$

prove: assume (f_{1}, f_{2}) are (LS/RS-same-side-equivalent naming sequences) where the $\left(f_{1 \mathrm{n}} \in f_{1} \in\left[\mathrm{C}_{\mathrm{r}}\right]_{\mathrm{r} 1}\right.$, and $\left.f_{2 \mathrm{n}} \in f_{2} \in\left[\mathrm{C}_{\mathrm{r}}\right]_{\mathrm{r} 2}\right) \in \mathbb{R} 1$ are rewritten as $\left(f_{1 \mathrm{n}}=\operatorname{Cr}_{1 \mathrm{n}} \mp{ }^{*} f_{1 \mathrm{n}}\right.$, and, $\left.f_{2 \mathrm{n}}=\mathrm{Cr}_{2 \mathrm{n}} \mp * f_{2 \mathrm{n}}\right)$ respectively . then "both" sequences (in unison) may be represented (note: the inclusion of $\mathrm{Scr}_{\mathrm{r}}$) by at least one common side form $\left(\mathrm{C}\left(\mathrm{r}_{\mathrm{n})}-{ }^{*} f_{(\mathrm{n})}\right)\right.$ or $\left(\mathrm{C}\left(\mathrm{r}_{\mathrm{n}}\right)+f_{(\mathrm{n})}\right)$: exclusively, and so $\left(f_{1}+f_{2}\right)$ may eventually be represented by

and, where as (17.a defines all $\left.{ }^{*} f_{(\mathrm{n})} \geqslant 0\right)$, and, (T4.1.a4 implies that for $\left.\left({ }^{*} f_{1 \mathrm{n}},{ }^{*} f_{2 \mathrm{n}}\right) \geqslant 0\right)$, that $0 \leqslant f_{1 \mathrm{n}} \leqslant\left({ }^{*} f_{1 \mathrm{n}}+{ }^{*} f_{2 \mathrm{n}}\right)={ }^{*} f_{\mathrm{n}}^{\prime}$), and, (by $17 . \mathrm{d}$ "the addition of null-sequences" implies that ${ }^{*} f_{\mathrm{n}}^{\prime}$, when taken over $\mathrm{n} \in \underline{N}$, defines after algebraic-substitution of ($\mathrm{Cr}_{1} \mathrm{n}+\mathrm{Cr}_{2} \mathrm{n}$), strict-([$\mathrm{r}_{1}+\mathrm{r} 2$) -internal-offsets): then $\left(f_{1}+f_{2}\right)$ may eventually be represented by the "same"-one sufficient-form ($\mathrm{C}\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)_{\mathrm{n}}-{ }^{*} f_{\mathrm{n}}^{\prime}$) or $\left(\mathrm{C}\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)_{\mathrm{n}}+{ }^{*} f_{\mathrm{n}}^{\prime}\right)$ as $\left(f_{1}, f_{2}\right)$ themselves, and the claim.

* - more generally, since $\left\{\left[\mathrm{S}_{\mathrm{r} r}\right] \mathrm{r}\right\} \subseteq \mathrm{e}_{\mathrm{i} \oplus}$ (by 19.a) , and each C_{r} then is such an identity-element sufficient ${ }_{\text {; }}$ it follows also by a (C_{r})-anti-symmetric (see 16.b) lack of additive-inverses [ie. e-not ($-\left({ }^{*} f_{\mathrm{n}}\right.$) : for ${ }^{*} f_{\mathrm{n}} \neq 0$)], that side-equivalent-sequences (in and of themselves) form an internal-spectral semi-group (or stable--descriptive-shell structure) which "algebraically"-projects-and-(preserves) information (via "semi-group"stability) across the background of ,or, the distributed sub-domain of $(\mathbb{R})_{\dagger}$.
$\underline{\text { note }}$: the ($" \Rightarrow$ ") is a notational contraction, and simply represents here a mixed-domain map which is externally-equivalent (ie. =), and, internally into_in a loose but then sufficiently appropriate sense (ie. \rightarrow).
color-dominance

23. - continuing with ground-work : exam color-dominance associated with a re-finement of the addition of (LS/RS-same-side-equivalent sequences). consider the partial LS/RS-operators descriptively selecting either 'ei-disconnected or (not)- ei-disconnected' naming-sequences.
24. $S_{\mathrm{LS}(\mathrm{d})}=\mathrm{S}_{\mathrm{dM} \uparrow}+\mathrm{S}_{\mathrm{dm} \uparrow} \quad ; \quad S_{\mathrm{LS}(\mathrm{C})}=S_{C \mathrm{~mm} \uparrow}+\mathrm{S}_{\mathrm{C} \uparrow}+\mathrm{S}_{\mathrm{Cr}}$
25. $S_{\mathrm{RS}(\mathrm{d})}=\mathrm{S}_{\mathrm{dM} \downarrow} \downarrow \mathrm{S}_{\mathrm{d} m \downarrow} \quad ; \quad \mathrm{S}_{\mathrm{RS}(\mathrm{C})}=\mathrm{S}_{\mathrm{C} m \downarrow} \downarrow \mathrm{~S}_{\mathrm{c} \downarrow}+\mathrm{S}_{\mathrm{Cr}}$
that is (by: 9. and 18.c. 1 "ei-disconnected "),for any- $f \in\left[\ldots[]_{\mathrm{SLS} / \mathrm{RS}(\mathrm{d})} \ldots\right]_{\mathrm{r}}$ there exists a $N_{\mathrm{d}} \in \underline{\mathbb{Z}}$, such that for all- $\mathrm{n}>N_{\mathrm{d}}$, the (f : associated) : ${ }^{*} f(\mathrm{~d}) \mathrm{n}>0$. and similarly (at least then, simply by 17.a), for any $-f \in\left[\ldots[\quad]_{\mathrm{SLS} / \mathrm{RS}(\mathrm{C})} \ldots\right]_{\mathrm{r}}$ the $(f:$ associated $): * f(\mathrm{C}) \mathrm{n} \geqslant 0$. and as such, it is immediate that \neg
a. - $\underline{\text { SLS/RS(d) dominates } S_{L S / R S(C)}}$ that is, since the addition of such LS/RS-same-side-equivalent sequences, may be eventually-completely-represented by 'one' of the exclusive-form(s): ($\left.\mathrm{C}(\mathrm{C}) \mathrm{r}_{\mathrm{n}}+\mathrm{C}(\mathrm{d}) \mathrm{r}_{\mathrm{n}}\right)(\mp)\left({ }^{*} f(\mathrm{C}) \mathrm{n}+{ }^{*} f(\mathrm{~d}) \mathrm{n}\right)$ (by 22.d) then $0 \leqslant{ }^{*} f(\mathrm{C}) \mathrm{n}$ implies eventually (by T4.1.a4) that $0<{ }^{*} f(\mathrm{~d}) \mathrm{n} \leqslant\left(* f(\mathrm{C}) \mathrm{n}+{ }^{*} f(\mathrm{~d}) \mathrm{n}\right)$ holds, and thus the final-form is also Idisconnected .
similarly:
b. - the addition of (2) SLS/RS(d)-same-side-equivalent sequences $\left(f_{1(\mathrm{~d})}, f_{2(\mathrm{~d})}\right) \in \mathbb{R} \dagger$ also necessarily map into $\left[\ldots[]_{\mathrm{SLS} / \mathrm{RS}(\mathrm{d})} \ldots\right]_{\mathrm{r}_{1}[\mathrm{~d}]+\mathrm{r}_{2}[d]}$; where a proof is almost identical to the immediately above (23.a) (except for with a replacement of: " $0<{ }^{*} f_{1}(\mathrm{~d})$ implies after (addition) that $0<{ }^{*} f_{2}(\mathrm{~d}) \mathrm{n}<\left({ }^{*} f_{1}(\mathrm{~d}) \mathrm{n}+* f_{2}(\mathrm{~d}) \mathrm{n}\right)$ eventually-holds").
more abstractly the above (ie. 23.b) demonstrates the existence of an additive side-dominant (stable-shell structure):
26. - which interestingly doesn't contain members selected-by SCr . and
27. - which as such, necessarily exhibits [convergent-"lensing g"] ; that is for any ($\left.{ }^{*} f_{\mathrm{n}},{ }^{*} g_{\mathrm{n}}\right)>0$, then, $\left({ }^{*} f_{\mathrm{n}}+{ }^{*} g_{\mathrm{n}}\right)$ is greater-than either-of: $\left({ }^{*} f_{\mathrm{n}}\right.$ or $\left.{ }^{*} g_{\mathrm{n}}\right)$ (note: frame-opaqueness. will be tied to this later).
28. - and which, at least simply by features brought into view by the "otherwise-general" descriptivebinding of non-monotonic naming-sequences to:[$\left.\mathrm{S}_{\mathrm{LS} / \mathrm{RS}(\mathrm{d})}\right]$, while still forcing such side-lensings, "preserves-the-possibility" of a diverse-class of the other type-migrations (seen below). and as such, does not lay-hold or make completely-rigid future-instantiation (then) with-in this presently more coarsely-confined yet-stable ($\mathrm{S}_{\mathrm{LS} / \mathrm{RS}(\mathrm{d})}$: into)-domain.

- (ie. and as a note: thus making more explicit the wording "shell") .
$\underline{\text { monotonic - side - addition }}$

24. - and next claim: adding (two) same-side (LS/RS)-ei-monotonic-naming-sequences produces another (of the) same-side (LS/RS)-ei-monotonic-sequence(s).
prove: first in a fashion similar to (17.c), utilize a notational combination "(§)" to denote
(2) distinct exclusive sequence-formulas (ie. for the "LS . . or . . RS" case). and,
then assume: f, g are same-side (LS/RS)-ei-monotonic sequence(s),
thus (by 10. and "eventual") there exist integers $N\left(=\max \left(N_{f}, N_{g}\right)\right.$) such that for all fixed $\mathrm{m}, \mathrm{n}>N$ then
25. $f_{\mathrm{m}}(\geqq) f_{\mathrm{n}} \quad$ whenever $\mathrm{m}>\mathrm{n}$;
26. $g_{\mathrm{m}}(\Re) g_{\mathrm{n}} \quad$ " "
however since (by T4.1.a(1-4) and T4.1.E(1-3)) : " $x \geqslant y$ implies $x+z \geqslant y+z$ " and: " $x \leqslant y$ implies $x+z \leqslant y+z$ "
it follows then that:
27. $f_{m}+g_{n}(\geqq)\left(f_{n}+g_{n}\right) \quad$ where here (choose the fixed) : $g_{n}=z$
28. $\left(g_{\mathrm{m}}+f_{\mathrm{m}}\right)(\geqslant) g_{\mathrm{n}}+f_{\mathrm{m}} \quad$ and here (choose the fixed) : $f_{\mathrm{m}}=z$
and therefore (by T4.1.a2) it is immediate that $\left(f_{\mathrm{m}}+g_{\mathrm{m}}\right)(\geqslant)\left(f_{\mathrm{n}}+g_{\mathrm{n}}\right)$ in general whenever $(\mathrm{m}>\mathrm{n})>N$, and as such the claim .
therefore it also follows: (by 23.b)
a. $-\quad$ that $\left[\ldots[]_{\mathrm{SLS} / R S(d) M} \ldots\right]_{\mathrm{r}_{1}}+[\ldots[] \mathrm{SLS} / \mathrm{RS}(\mathrm{d}) \mathrm{M} \ldots]_{\mathrm{r} 2} \Rightarrow[\ldots[] \mathrm{SLSSRS}(\mathrm{d}) \mathrm{M} \ldots]_{\mathrm{r} 1+\mathrm{r} 2}$ and (by 23.a)
b. - that $\left[\ldots[]_{S_{L S / R S(C) M}} \ldots\right]_{r_{1}}+[\ldots[] \operatorname{SLS} / \mathrm{RS}(\mathrm{d}) \mathrm{M} \ldots]_{\mathrm{r} 2} \Rightarrow\left[\ldots[]_{\mathrm{SLS} / \mathrm{RS}(\mathrm{d}) \mathrm{M}} \ldots\right]_{\mathrm{r}_{1}+\mathrm{r} 2}$

- where as would be expected, the (C)-ei-monotonic LS/RS-selection operators are :

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{LS}(\mathrm{C})}=\mathrm{S}_{\mathrm{C} \uparrow}+\mathrm{S}_{\mathrm{Cr}} \\
& \mathrm{~S}_{\mathrm{RS}(\mathrm{C})}=\mathrm{S}_{\mathrm{C} \downarrow} \downarrow+\mathrm{S}_{\mathrm{Cr}}
\end{aligned}
$$

in their-notationally uncombined form(s).
*25. comment: (as, an injective pre-amble to the color-properties of power series and sequencial expansions)
again restate, whether or not information other than color for the immediately above (24.b) (ie. $\left.\mathrm{r}_{[\mathrm{CM}]}, \mathrm{r}_{[\mathrm{dM}]}\right) \in[]_{\mathbb{R} \dagger}$ is apparent (or in-application may be recovered), then is irrelevant to "this" mapping; which still latently may, carry-"forward", regardless, as simply into an otherwise opaque
 for example, potential ($\mathbb{R}_{1}, .$.)-point-samplings of the various-sets of posssible-functions which may be embedded in or characterize particular geometries (or associated-geometries); constructing [elements] which are reflective-of,or, residual-to: (type-classings) -of- (path approaches "now lets say") under "apparent"-forcing, and then, mix-embed or bind such [objects] into environments of differentcharacteristic, producing completely-local-intertial-regions whose interiors(in this sense) representationally mimic "potential -past(s)-of" the sampled-space, while preserving the exterior-structural-binding or a fabric of the cross-embedded <mixed-into> domain. (that is, develop and maintain a possibility of point-binding--or-site projecting mathematic-structure by and through some initial internal driven-"restriction" of-and-to and-upto- some interpretively robust-and then- fabric separable-and/or-discrete-ized history-or-coloration(s) and -or- then by ... representative-supportive colored (name or n-tupled name)-spaces).
continuing with such eventual-discussions, and laying further necessary referential-groundwork...

(non)-monotonic-side-addition:

26. - now examine (in general) and (in more-extended constructive-detail, as it is here that (*)relative -internal-metric(s) first appear), the algebraically-defocusing family of partially-unstable-mappings:

$$
[\ldots[\quad] \operatorname{SLS} / \mathrm{RS}(\mathrm{~d}) \mathrm{m} \ldots]_{\mathrm{r} 1}+[\ldots[\quad] \operatorname{SLS} / \mathrm{RS}(\mathrm{~d}) \mathrm{m} \ldots]_{\mathrm{r} 2}
$$

- first prove: (for any- $f_{1} \in[\ldots[] \operatorname{SLS} / \mathrm{RS}(\mathrm{d}) \mathrm{m} . . .]_{\mathrm{r} 1}$ that such an interior-shell allows-for :
(and so , there latently-exists) a same-side companion

$$
\begin{gathered}
f_{2} \in[\ldots[\quad] \operatorname{SLS} / \operatorname{RS}(\mathrm{d}) \mathrm{m} \ldots]_{\mathrm{r} 2} \\
\left(f_{1}+f_{2}\right) \in[\ldots[\quad \text { such that } \\
2 .
\end{gathered}
$$

to facilitate this observation introduce the utility and concept of an implicitly-constructed . . .
a. - "step-function sheath" as follows; begin by defining an implicit-set on a relationship between (2) integer- pointers and any-epsilon : \quad and thus if presented-with some (other-wise unconfined) (LS/RS)-side-selectable naming-sequence $(f) \in \mathbb{R} \dagger$,

- there is brought into adjoined-existence (by definition 22.a,b) a minimal eventual-integer (N_{s}) such that (f) could-or-may be represented from there on , by one of the exclusive-side-form(s) " $\mathrm{C}_{(\mathrm{rn})}(\mp){ }^{*} f(\mathrm{n})$ ", (ie. and again, either as $\left(\mathrm{C}_{(\mathrm{rn})}+{ }^{*} f_{(\mathrm{n})}\right)$.or. as $\left.\left(\mathrm{C}(\mathrm{rn})-{ }^{*} f_{(\mathrm{n})}\right)\right)$
(and) next for the same (f):
- there is also brought into latent-existence then (by 17.a and 3.b "the convergence of [$f, \mathrm{Cr}]$ ", for any (epsilon) $\left.\epsilon>0\left(\in \mathbb{R}_{1}\right)\right): a(\underline{N \epsilon}) \in \underline{\mathbb{Z}}$ so that for-all $\mathrm{n}>N \epsilon$, the f-associated: $\left({ }^{*} f_{\mathrm{n}}<\epsilon\right)$.
and as such identify a (outer-sheath generating) f-distinguished and (implicit) sub-set $\left\{* f_{n}\right\}(o s) \subseteq\left\{^{*} f_{n}\right\}$ by the criteria that :
- for ($\mathrm{n}>N \mathrm{~N}$) if (then):
each $\left(* f_{\mathrm{n}}>0\right)\left(\in \mathbb{R}_{1}\right)$, is in and of itself considered as a ' ϵ^{\prime},
and
if for some $* f($ " n ") , (ie. the n) which indexes $* f$, also innately:
("n" = Ne for that ' $\epsilon^{\prime}=* f$ "n")
- then such $\left({ }^{*} f_{n}\right.$ are $) \in\left\{* f_{n}\right\}$ (os)
- note: the description of $\left\{{ }^{*} f_{n}\right\}$ (os) then in-general relies on an implicit-definite philosophy(see 9.a), which (far from being an annoyance), later- also drives an underlying mechanism of pathologic-opaqueness, and allows-and-provides-for [relative virtual "local-ness"] with in partially-sympathetic multi-frame-couplings.

1. - returning: $\}(0 s)$ then is confined strict-monotonic, since by very definition: for any $\underline{m}>\mathrm{n}$, if $\left({ }^{*} f_{\mathrm{m}},{ }^{*} f_{\mathrm{n}}\right) \in\{\quad\}$ (os), then (by the above epsilon-confinement) : $\left\{{ }^{*} f_{\mathrm{m}}<{ }^{*} f_{\mathrm{n}}\right\}$ (os).
b. - further and under tighter-constraints (for any-f $\in[\ldots[] \operatorname{SLS/RS(d)m} \ldots] r$), $\left\{{ }^{*} f_{\mathrm{n}}\right\}($ os $)$ then is:
2. - non-empty, prove : much as before, but with a few additional focusing details, there inherently are associated with such side-bound disconnected-(f),
some $\underline{N_{s}, N_{d}} \in \underline{\mathbb{Z}}$ such that for all $\mathrm{n}>N_{\mathrm{sd}}\left(=\max \left(N_{\mathrm{s}}, N\right.\right.$ (see: 27.c)) , then the rest of the f : associated ${ }^{*} f_{n}$ (are both non- Cr-oscillatory, and are (>0));
also
again (by "convergence") for any $\epsilon>0\left(\epsilon \mathbb{R}_{1}\right)$ there is a $N \in \in \underline{\mathbb{Z}}$
such that for all $\mathrm{n}>N \epsilon, * f_{\mathrm{n}}<\epsilon$;
and
then as well (by T1.theorem(1.7)) and thus essentially (see 7.a) by the "density"-properties of the \mathbb{R}_{1}-system) , for (any ${ }^{*} f^{\prime} \gg 0$)"in general") there can be described : some $-\epsilon^{\prime}\left(\epsilon \mathbb{R}_{1}\right)$ so that ${ }^{* f_{n}^{\prime}>\epsilon^{\prime}>\ldots>0}$.
("now descriptively-generate the existence-of- a particular-'pattern-of' finite-packet(s) with-in these (f)").
3. - and so, for any-'such' ei-disconnected-(non)-monotonic-side-bound set $\left\{{ }^{*} f_{\mathrm{n}}\right\}$
and then again for each ($\left.*^{*}{ }^{n n} n \in\left\{{ }^{*} f_{n}\right\}\right)$ such that:
$\mathrm{n}=\underline{\underline{\text { any }}}\left(N_{\text {min }}>N_{\text {sd }}\right)$
there obviously, and, implicitly-(eventually)-exists some equal-or-larger ($\left.N \epsilon^{\prime}\right)^{\max }$ satisfying both: that, there "is-or-maybe chosen" some $\left(\epsilon^{\prime}\right)<{ }^{*} f_{\text {Nmin }}$ such that for all $\mathrm{n}>\left(N \epsilon^{\prime}\right)^{\max }$, then ${ }^{*} f_{\mathrm{n}}<\epsilon^{\prime}$;
and
$\left(N_{\epsilon^{\prime}}\right)^{\text {max }}$ - generates as such, a finite-set (or "packet") of (${ }^{*} f_{\mathrm{n}}$) $>\epsilon^{\prime}$, indexed by and between $N_{\text {min }} \leqslant\left\{*^{*} f^{\prime n} n^{n}\right\} \epsilon^{\prime} \leqslant\left(N \epsilon^{\prime}\right)^{\max }$

- from a discussion of any of these incrementally-large finite-\{sets\} ϵ^{\prime} the non-emptiness of $\left\{{ }^{*} f_{n}\right\}$ (os) may be demonstrated: first with-in any potential-instantiation of 'a' $\left\{{ }^{*} f_{\mathrm{n}}\right\} \epsilon^{\prime}$ ' there necessarily-resides 'a': disjoint (ref: the points of \mathbb{R}_{1} are separable) sub-set (\subseteq " $\left\{* f_{n}\right\} \epsilon^{\prime "}$), defined by the $\max 1\left("\left\{f_{\mathrm{n}}\right\} \epsilon^{\prime} "\right)$,
for a precise description of a binary-"max"-function (see: 27.c), which may then be generalized to-here. (note: this set may not be a singleton), and thus from that set ; consider the unique-member represented or pointed-to simply and intuitively by the ordered-filterings :

$$
f_{\bar{n}}=\left(\operatorname { m a x } _ { 1 } \left(" \left\{* f_{\left.\left.\left.\max _{2}(n)\right\} \epsilon^{\prime} "\right)\right)}\right.\right.\right.
$$

clearly such a member meets the criteria : since, first of all, its the last-member of $\left\{\right.$ equal $\left(* f_{(\mathrm{n}>N \mathrm{sd})}\right)$ in general \} which are still: greater-than or equal-to (that is notationally) $\left(\geqslant{ }^{*} f_{\bar{n}}>\epsilon^{\prime}>\left(\right.\right.$ all $\left.-* f_{\left(\mathrm{n}>N \epsilon^{\prime}\right)}\right)$; and thus, by being a maximum of some chosen ${ }^{\{ }\left\{{ }^{*} f_{\mathrm{n}}\right\} \epsilon^{\prime}$ ", then for all $\left.\underline{\mathrm{n}}>\overline{\mathrm{n}}: * f_{\mathrm{n}}<f_{\bar{n}}\right)$, and the assertion of non-emptiness.
3. - further the (implicit)-existent \{set\} $\subset \underline{\mathbb{N}}$ which then indexes any-such $\left\{{ }^{*} f_{\mathrm{n}}\right\}$ (os) is necessarily continuous-and-"gappy" : this follows first by the otherwise arbitrary definition of $N_{\text {min }}$ above (see 26.b. 2 ie. any) ; and then again as otherwise $\left\{{ }^{*} f \mathrm{n}\right\}$ itself, would be eventually-(strict)-monotonic (see 26.a-b) which (by assumption) its not .
4. - and at last bind the above to a notation : that is: (by the well-ordered properties of $\underline{\mathbb{V}}$) (ref: order-theory) any potential-instantiation of such an indexing $\{$ set $\} \subset \underline{N}$ contains a unique-minimum member (m_{1}).
and
thus \{itself\} may be tacitly considered indexed by the sequence-function on $\underline{\mathbb{N}}$ into $\underline{\mathbb{N}} \mathrm{m} f:\left\{\ldots<\mathrm{p}, \mathrm{m}_{\mathrm{p}}>\ldots\right\}$ such that $\left(\mathrm{m}_{\mathrm{p}}=\left(\right.\right.$ the $\mathrm{p}^{\text {th }}:(\mathrm{n})$) indexing $\left\{{ }^{*} f_{\mathrm{n}}\right\}(\mathrm{os})$) and
so $\left\{m_{p}\right\}$ arises then simply as a contiguous ordering for : latently-naming the $n \in\{* f " n "\}(o s)$
c. - as such it is now possible to define a "non-tight-fitting" : (outer)f-associated step-function-sheath(s) for (any-f) $\in[\ldots[] \operatorname{SLS} / \operatorname{RS}(\mathrm{d}) \mathrm{m} . .]$.$r by the sequence-function(s) \left(\in \mathbb{R}_{1}\right)$
$"(0 S) f_{\mathrm{n}}=\mathrm{C}_{(\mathrm{rn})}(\mp){ }^{*} \underline{O}_{\mathrm{n}} " \quad$ such that:

$$
\begin{aligned}
& \text { for } \mathrm{n}<\mathrm{m}_{1} \text { then } \\
& \qquad \begin{aligned}
* \underline{O}_{\mathrm{n}} & ={ }^{*} f_{\mathrm{n}} \quad \ldots \text { ie. }\left\{{ }^{*} \underline{O}_{\mathrm{n}}\right\} \text { is identical or intersecting with }\left\{{ }^{*} f_{\mathrm{n}}\right\} \text { below }\left(\mathrm{m}_{1}\right) \\
\text { for } \mathrm{m}_{1} & =\mathrm{n} \leqslant\left(\mathrm{~m}_{2}+1\right) \\
{ }^{*} \underline{O}_{\mathrm{n}} & =\left({ }^{*} f_{\mathrm{m} 1}\right)+\delta \quad \ldots \text { ie. }{ }^{*} \underline{O}_{\mathrm{n}}>{ }^{*} f_{\mathrm{n}} \text { where } \delta>0\left(\in \mathbb{R}_{1}\right) \\
\text { for } \mathrm{p} & >2 \text { and for }\left(N_{p}\right)_{\min }<\mathrm{n} \leqslant\left(N_{p}\right)^{\max } \\
& \text { such that }\left(\left(N_{p}\right)_{\min }=\mathrm{m}_{(\mathrm{p}-1)}+1\right)<\mathrm{n} \leqslant\left(\left(N_{p}\right)^{\max }=\mathrm{m}_{\mathrm{p}}+1\right) \text { then } \\
{ }^{*} \underline{O}_{\mathrm{n}} & ={ }^{*} f_{\mathrm{m}(\mathrm{p}-1)}
\end{aligned}
\end{aligned}
$$

... ie. inconculsion (see 26.d . .below) an appropriate sympathetic latent construction exists, giving a $\mathrm{n} \geqslant \mathrm{m}_{1}$ (in general): $\left\{{ }^{*} f_{\mathrm{n}}\right\}$ (os) generated and confined step-monotonic, (non)-f-intersecting, sheathing-sequence of (f), such that from there-on all ${ }^{*} \underline{Q}_{\mathrm{n}}>{ }^{*} f_{\mathrm{n}}$.
reverse-engineered and generalized from, and thus inspired-and-demonstrated here by some .. and notice now the (to-be exploited) -localized-region,(as such), then of a visually-sufficient graph :

where : as before the n -axis is inverted to highlight the "sense" of a number--internal-downward-support-structure .
and where: as will be shown presently
$\left(\mathrm{Cr}_{\mathrm{r}}+\left({ }^{(0 S)} f-f\right)\right) \in\left[\mathrm{S}_{\mathrm{LS} / \mathrm{RS}(\mathrm{d}) \mathrm{m}}\right] \mathrm{rep}$
d. - first for completeness affirm the convergence-of at that (0) $f \in \operatorname{SLLS/RS(d)}^{\mathrm{M}}$

- convergence follows: since as each member of the associated sequence ($\left\{^{*} \underline{O}_{n}\right\}$ for $n>\left(m_{2}+1\right)$) is a member of $\left\{^{*} f_{n}\right\}($ os $)\left(\in\left\{^{*} f_{n}\right\}\right)$: then a convergence-relation may be constructed for ($\left\{^{*} \underline{O}_{n}\right\}$ or any re-arrangement of $\left\{{ }^{*} \underline{O}_{n}\right\}$) from the $\left\{{ }^{*} f_{n}\right\}$-($($)-relationship itself (see T4.appendix.1,2) .
- $\underline{\epsilon} \operatorname{SLS/RS(d)M}$ follows: since (for $\mathrm{n} \geqslant \mathrm{m}_{1}>N_{S d}$), (os) f is from there on (by order-preserving sympathetic-construction from $\left\{{ }^{*} f_{n}\right\}($ os $)$) "monotonic " : which then implicitly negates (Cr-oscillations) and forces (OS) f as " (f) "-same-side(LS/RS).
further: first since for $\mathrm{p}>2$ and for all $\mathrm{n}>\mathrm{m}_{(\mathrm{p}-1)}$; then all ${ }^{*} f_{\mathrm{n}}<{ }^{*} f_{\mathrm{m}(\mathrm{p}-1)}$ (by the definition of $\}(\mathrm{os})$) and : next since eventually every region of identical $\left\{^{*} \underline{Q}_{\mathrm{n}}={ }^{*} f_{\mathrm{m}(\mathrm{p}-1)}\right\}$
(see 26.c. 1 def: of $\left.\left(N_{p}\right)_{\text {min }}\right)$ are defined such that all- $\mathrm{n}>\left(\mathrm{m}_{(\mathrm{p}-1)}+1\right)$;
then : it follows that eventually all * $\underline{O}_{\mathrm{n}}>{ }^{*} f_{\mathrm{n}}>0$, and so (OS) f is necessarily ei-disconnected.
- and thus the assertion(s).
e. - now claim : the convergence-of and that ($\mathrm{C}_{(\mathrm{rn})}(\mp)\left\{\left\{^{*}{\underline{O_{n}}}-{ }^{*} f_{\mathrm{n}}\right\}\right) \in[\operatorname{SLS} / \operatorname{RS}(\mathrm{d}) \mathrm{m}]$ rep : however where as obviously, both $\left\{{ }^{*} \underline{O}_{n}\right\}$ and $\left\{{ }^{*} f_{n}\right\}$ are (by definition) null-sequences, and where as both the convergence-of and then that $\left\{\left({ }^{*} \underline{O}_{\mathrm{n}}-* f_{\mathrm{n}}\right)\right\} \in \operatorname{SLS} / \operatorname{RS}(\mathrm{d})$ are (see above $26 . \mathrm{d}$) similarly immediate,
simply show $\left\{\left({ }^{*}{\underline{O_{n}}}-{ }^{*} f_{\mathrm{n}}\right)\right\}$ as (ei-non-monotonic) : thus
- for any of the $\left(\left(N_{p}\right)_{\text {min }}\left(N_{p}\right)^{\max }\right)$-bounded regions for $\left(f_{,}(O S) f\right)$ determined above (see 26.c.1) by $p>2$ and $\left(\left(N_{p}\right)^{\max }-\left(N_{p}\right)\right.$ min $\left.\geqslant 2\right)$ then: (by the visually-sufficient (fig 2 .) and its generalization(s)(26.a-c))

- however since the $\left\{^{*} f_{\mathrm{n}}\right\}($ os $)$ for all- $f \in[\operatorname{SLS/RS}(\mathrm{~d}) \mathrm{m}]$ are 'gappy'- continuous (by 26.b.3) , there continuously-exist such $\left(\left(N_{p}\right)_{\min ,}\left(N_{p}\right)^{\max }\right)$-bounded local-disturbances in-the-stream of these sequence(s);
and thus there does-(not)-exist a $N^{\sim} \in \underline{Z}$ such that for all-(m>n) $>N^{\sim}$ then $\left({ }^{*} \underline{O}_{m}-* f_{m}\right) \leqslant\left({ }^{*} \underline{O}_{n}-{ }^{*} f_{n}\right)$. that is, it follows and expands more generally that $((0 S) f-f)$ is (e-non-monotonic)

1. - and (by 16.a) that an exactly-similar sequence exists in every member of $\mathrm{r} \in \mathbb{R}^{+}$

* f. - and therefore it also arises that : for any $-f_{1} \in\left[\ldots[] S_{L S / R S}(\mathrm{~d}) \mathrm{m} . . .\right]_{1}$ there implicitly exists an associated
 \uparrow
- which of course (remember-now) is what was originally meant to be shown (see. 26).
*27. an aside: and then remarshalling.
before completing the addition of opaquely-chosen SLS/RS(d)m, another cursory-and-brief diversion : (where as since) essentially all the as-demonstrated-book-work and philosophy is done, it would be an absolute shame, at this juncture, not to (at-least) introduce (then for later, utility , of discussion) ... \checkmark the notion of a "channel", and take by-example an initial foray into the idea of an internal-metric.
behind the scenes of this presentation there has always been a guiding precept to do nothing except for to gain a simple-description-and-tools |from with-in extant-capabilities|, for carrying-and-imprinting (in a most general way) the craft-of (notation and geometry) "onto" the available naming-structure(s)--and/or-boundaries(s) of "the conceptualization" of a point, (thus-shedding a 'still-worn' open/closed noose)
however considering, that the over-all (state of the art) , as it were, is intimately and (so-and-forever) tied to , and, a subtle carry-forward : of a descriptive premising (and maintenance) of abstracted construction(s) of the rope (in our-and-a globally-historic sense) and then its proper-sub-classification(s) (the compass and then (the ruler)), and, that "much" of the notationalization of those construction(s) was and is rooted in dimensionally- "purifying "-relation(s) of size as initially-notated by the rational-form, then :
attempting such a task (on first go-around) would be unnecessarily risky-and-obtuse with out some conceptualization (first) of a loosed-internal-measure . (and where , as such, (an appropriate-and-practical rooting) for the (now presently more)-generalized-descriptive-and/or-categoric method(s) will have been.. set forth $\underline{\underline{2}}$: introduce the notion of a
a. inner-sheath :
briefly, as the methods and philosophies are almost-identicle to the immediately above (see: 26.), then (for any f-associated $\left.\left\{{ }^{*} f_{\mathrm{n}}\right\}\right) \in[\ldots[\quad] \operatorname{SLS} / \mathrm{RS}(\mathrm{d}) \mathrm{m} . .]$.r , an implicit generating sub-set $\left\{{ }^{*} f_{\mathrm{n}}\right\}(\mathrm{IS}) \subset\left\{\left\{^{*} f_{\mathrm{n}}\right\}\right.$ may be identified by a ("blue-sky")criteria for $n>N_{S d}$ (thhat.is we may look up to the:26.b.1 eventual-boundary)
first pre-define: ${ }^{*} f_{\left(N_{\mathrm{sd}+1)}\right)}\left(\right.$ as a member of) $\left\{{ }^{*} f_{\mathrm{n}}\right\}(\mathrm{IS}) \quad$ (note again see: fig 2.)
next: for $\mathrm{n}>\left(N_{\mathrm{Sd}}+1\right)$
if (some $* f^{\prime \prime n} " \in\left\{* f_{n}\right\}$ is $)<$ all $* f_{n}$ such that $\left.\left(N_{S d}+1\right) \leqslant n<" n "\right\}$,
then $* f_{" n "} \in\left\{* f_{\mathrm{n}}\right\}(\mathrm{IS})$ (ie. all such-members exist as "temporary" $* f_{\mathrm{n}>N s d}$-minima)
- further and again, the members of $\left\{f_{n}\right\}_{(I S)}$ may be contiguously ordered by the descriptive notational convenience of $* f_{m_{p}}$ such that $\left(m_{p}=\left(\right.\right.$ the $\left.p^{\text {th }}:(n)\right)$ indexing $\left\{{ }^{*} f_{\mathrm{n}}\right\}(\mathrm{IS})$) (see $26 . b .4$, ie. here $\left.\mathrm{m}_{1}=\left(N_{\mathrm{Sd}}+1\right), \ldots\right)$; and in particular the characteristics of (non-empty, strict-monotonic, continuous-gappy, and ei-disconnected) may be demonstrated (see T6.22.a) for any f-associated $\left(\left\{^{*} f_{n}\right\}(I S) \subseteq\left\{^{*} f_{n}\right\}\right) \in[\ldots[\ldots]$ SLS/RS(d)m $\ldots] r$
- that is and for example then look at the $\odot^{s} \in f$ in (see fig 2.)
b. - and as such, much as before define: a (non-tight-fitting) (inner) f-associated step-function-sheath(s) for any- $f \in[\ldots[] \operatorname{SLS} / \operatorname{RS}(\mathrm{d}) \mathrm{m} . .]$.$r by the sequence-function(s) \left(\in \mathbb{R}_{1}\right)$
" (IS) $f_{\mathrm{n}}=\mathrm{C}_{(\mathrm{rn})}(\mp) * \underline{I}_{\mathrm{n}} " \quad$ such that:
$* I_{\mathrm{n}}= \begin{cases}\text { for } \mathrm{n} \leqslant N_{\mathrm{sd}} & \ldots \\ * \underline{I}_{\mathrm{n}}=* f_{\mathrm{n}} & \text { ie. }\left\{\underline{I}_{\mathrm{n}}\right\} \text { is identical or intersecting with }\left\{{ }^{*} f_{\mathrm{n}}\right\} \text { upto-and-until } \\ \text { for } \mathrm{m}_{\mathrm{p}} \leqslant \mathrm{n}<\mathrm{m}_{(\mathrm{p}+1)} & \ldots \text { the } N_{\mathrm{sd}} \text { - boundary. where after for }(\mathrm{p} \in \underline{\mathbb{N}}) \text { and } \mathrm{n} \geqslant \mathrm{m}_{\mathrm{p}=1}, \text { then } \\ * \underline{I}_{\mathrm{n}}=* f_{\mathrm{m}(\mathrm{p}+1)} & \text { by a latent-construction based-on : a localized backwards-offset } \\ & \text { and appropriate-finite-repetition of the members of }\left\{* f_{\mathrm{n}}\right\}(\mathrm{IS}) .\end{cases}$
$\rightarrow \quad$ where (f) then separates its' inner-and-outer sheaths, since eventually by implicit-construction for all sufficiently-large $n \in \underline{N}:\left(0<^{*} \underline{I}_{n}<{ }^{*} f_{n}<^{*} \underline{O}_{n}\right)$, and, so the (inner-and-outer) sheaths form a disconnected channel around (f) which further, in and of itself, is ei-disconnected as a whole from Cr_{r}. thus demonstrating-again the somewhat as-usual counter-intuitive "roominess" with-in for example, this representative-model or (dressing -and/or- naming)-structure : of abstract-geometric "point(s)".

Begin a process of making such a 'concept of bounded-color flexibility' more precise. examine a (max represenative)relative relation, which is defined
'at least' for any " $(\mathrm{a}, \mathrm{b}) \geqslant 0$ but not-both $(\mathrm{a}, \mathrm{b})=0$ " by:
c. $-\quad \mathrm{d}^{*}(\mathrm{a}, \mathrm{b})=\frac{|\mathrm{a}-\mathrm{b}|}{\max x_{r e p}(a, b)} \quad\left\{\right.$ where for $\quad \mathrm{a} \neq \mathrm{b} \quad \max _{\text {rep }}(\mathrm{a}, \mathrm{b})=\frac{|(a-b)+|a-b||}{2|a-b|} \mathrm{a}+\frac{|(b-a)+|a-b||}{2|a-b|} \mathrm{b}$ and for $\mathrm{a}=\mathrm{b} \quad \max _{\mathrm{rep}}(\mathrm{a}, \mathrm{b})=($ either 'a' or. ' b ' $)$
further, for-all $(\mathrm{a}, \mathrm{b}, \mathrm{c}) \geqslant 0$, $\{$ if 'at most' one-member of the triad=0 $\}$;
then: $\mathrm{d}^{*}(\mathrm{a}, \mathrm{b})$ becomes a standard-metric relation under
the axiomization or restraint-criteria,
A1. $d^{*}(a, b) \geqslant 0 ;$
A2. $d^{*}(a, b)=0$ iff $a=b$;
A3. $d^{*}(a, b)=d^{*}(b, a)$;
A4. $d^{*}(a, c) \leqslant d^{*}(a, b)+d^{*}(b, c)$.
where all must hold -true.
that the first three properties (ie. A.1-3) hold: is obvious, there are (6)cases, based on the orderings of (a,b,c), for the fourth (A4.) ; similar 'proof-grammars' may be paired as below. for which (A4.) is first simplified by an instantiation relative to the particular axiomization-and-ordering ;and then only-one of the 'similar-grammars' is presented (for conciseness):

- let-s now take care of the: intended interpretation and motivation underlying the notation $\max _{\text {rep }}(a, b)$, augmented here: as a restriction to stability |(for addition by zero with-in the absolute-value braces)|. ... by-example notice: if we simply-initialize $(a=5)$ and $(b=3)$; then under one-possible interpretation

$$
\mathrm{d}^{*}(\mathrm{a}, \mathrm{~b})=\frac{|\mathrm{a}-\mathrm{b}|}{\max _{\text {rep }}(a, b)}=>\frac{|5-3|}{5} \text { or then }=>\frac{|5-3+(1-1)|}{\max _{\text {rep }}(a, b)} \ldots=>\frac{|4-2|}{4} \ldots=>\ldots|1| \ldots
$$

which ,at-once fascinating, is restricted here by and < with-in the-scope of "maxrep" > to fix (a, and, b) as constants. that is: view max rep then as an injective sample-and-hold in the denominator, such-that $\mathrm{d}^{*}(\mathrm{a}, \mathrm{b})$ becomes: notationally-concise(d).. and sufficient to that (intuitive)- description,.. ..the "equals-sign" makes sense,.. and: $\mathrm{d}^{*}(\mathrm{a}, \mathrm{b})$ is as such in-the-short term stabilized . and then
d. depictions of channel-width(s) [internally] defined by: commonly-indexed-members of the above inner/outer-sheaths ,and, $\mathrm{d}^{*}(\mathrm{a}, \mathrm{b})$; perșist strictly larger than zero ,and, less than one: where (less than one) arrives,from inner-sheathing existing as ei-disconnected ,and, (greater than zero) from local separation provided by $\left(f_{n}\right)$ (again see. 26). _this, in effect produces a visual-interpretation which may, easily be extended into,a collapsing-punctured- series (of occupied $1 / 2$ disks), with referencing shifted to, or of-essence folded-in and compared-with an outer-converging sheath-horizon,instead of some ultimate-convergence as gifted by a constant-representative, (thus giving one perspective, example and/or visual domain for a non-degenerate (*)internal-metric).

* 28. - recall (again see 26.) that we are in a process of examining and/or then showing

$$
\left[\ldots[\quad]_{\operatorname{SLS} / \operatorname{RS}(\mathrm{d}) \mathrm{m}} \ldots\right]_{\mathrm{r} 1}+[\ldots[] \operatorname{SLSS/RS}(\mathrm{d}) \not \mathrm{m} \ldots]_{\mathrm{r} 2}
$$

as-and-to-be: "an algebraically-defocusing family of partially-unstable-internal-type-mappings", and
as such prove: (for any- $f_{1} \in\left[\ldots[] S_{L S / R S(d) m} \ldots\right] r_{1}$ that such a [coarsely bound] descriptive interior-shell provides-for: the choice of (and so, there latently-exists) a same-side color-preserving companion

$$
\begin{aligned}
& \left(f_{1}+f_{2}\right) \in[\ldots[] \operatorname{SLS/RS}(\mathrm{d}) \neq \ldots] \mathrm{r}_{1}+\mathrm{r} 2 \quad\left(\in \mathbb{R}_{+}: \text {and which is also of-the same-side }\right) \\
& \text {). } \uparrow
\end{aligned}
$$

the proof is obvious:
first since: we have assumed $f_{1} \in\left[\ldots[\quad]\right.$ SLS/RSS(d)m....] r_{1}, rewritten here (by 17.a) as $\left(f_{1}=\operatorname{Cr}_{1} \mp{ }^{*} f_{1}\right)$;
 such that, in effect, besides constant-representative offsetting, ${ }^{*} f_{1}$ is added to itself; that is then, since $\left\{\right.$ for-all 'r.' $\in \mathbb{R}_{1} \mid$ (r. + r. = (2)r.) \}, essentially from the properties of a (complete, ordered,field see 2.) , and so byy (term-by-term substitution see: 15 ., and the above), then $\left.\left(f_{1}+f_{2}\right)=\left(\mathrm{Cr}_{1}+\mathrm{Cr}_{2}\right) \mp \mathrm{C}_{\mathrm{r}(2 .)}\right)^{*} f_{1}$ where $\mathrm{C}_{\mathrm{r}(2 .)}$ is,as such, a sequencially derived and then forced positive-constant-representive. next by(18.e), since
$\mathrm{C}_{\mathrm{r}(2 .)} \in \mathrm{e}_{\mathrm{i} \otimes}$ <ie. is of the (multiplicitive)-spectral-identity-class for the "over-all" distributed-internal- domain >: and as ($\mathrm{Cr}_{1}+\mathrm{C}_{2}$) is simply the root-and/or-trunking (as it were) to the offset-foliation provided by ($\mp \mathrm{C}_{\mathrm{r}(2 .)}{ }^{*} f_{1}$) the result ..follows.

* a. then notice:this event,is completely-independent of underlying type.that is under the current spentralizaton
every-*f $\in \mathrm{e}_{\mathrm{i} \oplus\left({ }^{*} f\right)} \quad$ (ie... is-of the (additive)-spectral-identity-class associated-with that "particular" ${ }^{*} f$) restate this again: in effect "addings of [(exactly-similar)-name-element(s)] to themselves preserves color..."
b. finally: as sequencial addition is algebraically-localized by defining it to be term-by-term(again see: 15.); then the commutative-(and other)-properties of such binary-additions pass through uneffected into the internal-domain. and as such both, here and in the previous (see:26. et pre alibi.), ordering(s) of operands is irrelevant then to the-discussions for such families of mappings,
and as : in both the cases:(26. and 28.)
(LS/RS same-side ness) follows simply-then and-again from (22.c) same-side-addition, .and.
(d) and/or ei-disconnected iness from (23.) color-dominance,
c. then: by the immediately above (28.), and/or, by a demonstration of an existence of both-cases...it follows that, with-in the courseness of our descriptive-binding, the partially-unstable claim (ie. a potential loss of (any specific)- mononotic- spectralization) may be robustly represented--and- notationalized here then as;

$$
\left[\ldots[]_{\mathrm{SLS} / \mathbb{R S}(\mathrm{d}) \mathrm{m}} \ldots\right]_{\mathrm{r}_{1}}+[\ldots[] \mathrm{SLS} / \mathbb{R S}(\mathrm{d}) \mathrm{m} \ldots]_{\mathrm{r}_{2}} \Rightarrow\left[\ldots[] \mathrm{SLS} / \mathbb{R S}(\mathrm{d})^{\Rightarrow} \ldots\right]_{\mathrm{r}_{1}+\mathrm{r} 2}
$$

