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Abstract

Horizontal and vertical distributions of complex zeros of the Riemann zeta-function in the
critical region are being found in general form in the paper on the basis of standard methods of
function theory of complex variable.
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1 Introduction
Let’s state in short, to make the picture complete, some elementary properties of zeta-function
and point out its role in analytical number theory.

The Riemann zeta-function is defined by the Dirichlet series [1]:

ζ(s) =
∞∑

n=1

n−s, (1.1)

where s = σ + iλ, and a series converges to analytical function when σ > 1. To be exact [2], the
series

∑∞
n=1 n

−s evenly converges when Re s > 1 + ε, and the function, defined by this series,
is regular in the semi - plane Re s > 1. In this connection n−s for complex s is given by the
equality n−s = e−s ln n, where lnn means a real logarithm of the positive number n.

The link between prime numbers and zeta-function is established in the following way [1,2]:
when σ > 1 the next equality takes place

∏
p

(
1− 1

ps

)−1

=
∑

n

1
ns

= ζ(s), (1.2)

where n runs through numbers 1, 2, 3, . . . , and p runs through all prime numbers 2, 3, 5, 7, 11, . . . .
Let’s remind, that the main problem of the distribution of prime numbers theory is in inves-

tigation of π(x), that is, of a quantitiys of prime number, which are less than or equal to x. If we
consider sufficiently large number of terms in the sequence of prime numbers it is obvious that
there is probably no elementary function, whith the help of which it will be possible to represent
π(x) for all integers x > 0, since the increase π(x) occurs very uneven [2].

In 1896, Hadamard and (independently of him) Vallee Poussin proved a theorem on prime
numbers with the help of the theory of whole functions of the finite order [2]. Its content consists
of the description of asymptotical law of prime numbers distribution [2]:

lim
x→∞

π(x) lnx
x

= 1. (1.3)

In this connection we had to prove, that there are no zeros ζ(s) on the straight line Re s = σ = 1.
Vallee Poussin proved more precise ratio [2]:

π(x) =

x∫
2

d ξ

ln ξ
+R(x), (1.4)
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where for sufficiently large x
|R(x)| < c1xe

−c2
√

ln x,

i.e. the error is less than x/ lnA x when the constant number A is as large as possible. Hence, it
was shown, that the function

lix =

x∫
2

d ξ

ln ξ
+ C (C = li 2 = 1, 04 . . . )

only gives a good approximation for the π(x) function.
Earlier in his famous memoirs of 1860, Riemann showed [2], that the key for deep investigation

of the prime numbers distribution is in study of ζ(s) as the function of complex variable s.
Two main results, proved by Riemann, are [3]:

1) ζ(s) function can be analytically extended all over the whole plane C; it is meromorphic
there and has a single simple pole with a residue 1 in the point s = 1. Otherwise, the
function ζ(s)− (s− 1)−1 is whole.

2) ζ(s) satisfies the functional equation:

π−
1
2 sΓ

(
1
2
s

)
ζ(s) = π−

1
2 (1−s)Γ

(
1
2
(1− s)

)
ζ(1− s), (1.5)

which is equivalent to the statement that the function at the left, is an even function from(
s− 1

2

)
.

It is convenient to rewrite the equation (1.5) in the most concise form [4, 5, 10]

ϕ(s) = ϕ(1− s),

where function ϕ(s) = π−s/2Γ(s/2)ζ(s).
Functional equation permits to derive properties of ζ(s) when σ < 0 from its properties when

σ > 1. In particular, the only zeros of ζ(s) when σ < 0 are the poles Γ(s/2), i.e. the points
s = −2,−4,−6, . . . . They are called trivial zeros. The rest part of a plane, where 0 6 σ 6 1, is
called a critical zone.

Besides, Riemann made a series of remarkable assumptions [3]:

1′) ζ(s) has indefinitely many zeros in the critical zone. They are located symmetrically along
the real axis, and also the central line σ = 1

2 (the last by virtue of the functional equation).

2′) The numberN(T ) of zeros ζ(s) in the critical zone with 0 < λ 6 T satisfies the asymptotical
ratio [1,2]

N(T ) =
T

2π
ln

T

2π
− T

2π
+O(lnT ).

At first it was proved with rather weak residual term by Mangoldt in 1895, and it was fully
proved in 1905 [3].

3′) The whole function ξ(s) determined by the equality

ξ(s) =
1
2
s(s− 1)π−

1
2 sΓ

(
1
2
s

)
ζ(s),

assumes representation in the form of the product

ξ(s) = eA+Bs
∏
ρ

(
1− s

ρ

)
es/ρ, (1.6)
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where A and B are constants, an ρ runs through zeros ζ(s) in the critical zone. This equality
and the assumption 1′) were proved by Hadamard in 1893, [2]. It played an important role
when Hadamard and Vallee Poussin were proving the distribution of prime numbers law.

4′) ) There exists the exact formula for π(x)− lix, which is true when x > 1, the most essential
part of which is the sum distributed on complex zeros ρ of the function ζ(s). Since it has a
rather complicated form, let’s replace it by the simplest, but closely related to it, formula
for ψ(x) − x (definition of the related to π(x) function ψ(x) see, for example, in [2,3]). It
has the following form under some deals [3]:

ψ(x)− x = −
∑

ρ

xρ

ρ
− ζ ′(0)
ζ(0)

− 1
2

log(1− x−2). (1.7)

This fact was proved by Mangoldt in 1895, [3] (in the initial statement, belonging to
Riemann).

Therefore, it turned out that zeros of ζ(s) in the zone 0 6 σ 6 1, σ = Re s play an
exceptional role in many questions of prime number theory.

5′) The remarkable Riemann hypothesis which has not been proved yet: all zeros of ζ(s) in
the critical zone are located on the straight line σ = 1/2. In 1914, Hardy proved, that an
indefinite number of zeros were located on that line [1], and in 1942 Selberg proved, that
they had a positive density in the set of all zeros [3].

The given report is devoted to the Riemann hypothesis proof 5′) with the help of complex in-
tegration methods, and also to the determination of the general expression describing distribution
of all complex zeroes of zeta - function in the critical zone.

2 Necessary and sufficient condition
There exists a great number of conditions for the Riemann hypothesis to be true. For in-
stance, Titchmarsh concretely gave two such conditions [1]. The first of them states that a series
∞∑
1
µ(n)n−s converges, and its sum is equal to 1

ζ(s) for all values of σ > 1
2 , and µ(n) being the

Mobius function [2] (µ(1) = 1, µ(n) = 0, if n is divided by the square of a number other than
one, and µ(n) = (−1)k otherwise, where k is a number of prime divisors of the number n).

The next necessary and sufficient condition [1] is that

∞∑
n=1

(−1)n−1xn

(n− 1)!ζ(2n)
= O

(
x

1
4+ε

)
, when x→∞.

Franel [1] gave the condition of an absolutely another type. It’s easy to see that these
conditions are rather complicated by themselves and as a rule do not facilitate the problem of
the Riemann hypothesis proof. For example, according to Titchmarsh, "problems dealing with

1
ζ(s) , are, apparently, extremely difficult" [1].

In this connection let’s use (it seems to us more easy) "functional" condition given in details
below. In fact, the given condition is an overformulating of the Riemann hypothesis from the
function ζ(s) into the related to it function F2ω(s) in the sense of zeros.

Consider the class of functions giving by the expression:

Ff (z) =
1

z2 − 1
4

+ Φf (z), (2.1)
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Φf (z) =
1
2

∞∫
1

f(x)x−3/4(xz/2 + x−z/2) dx, z = σ + iλ, (2.2)

where continuous functions f(x) : [1,+∞) → R may belong to diffinent functional spaces (the
detailed definitions of which we omit).

Class {Ff (z)} in (2.1) is initially considered in the zone Π = {z ∈ C : |Re z| < 1/2} or in
the closed zone Π = {z ∈ C : |Re z| 6 1/2}.

Here we shall be interested only in one private case of the function f(x), namely, the function
f0(x) = 2ω(x), where ω(x) is the function used by Riemann when studying of zeta-function ζ(s)
and which is equal to [1]:

ω(x) =
∞∑

n=1

e−πn2x. (2.3)

First of all, let’s find the connection of F2ω(z) and the Riemann zeta-function ζ(s).

Lemma 2.1 In any finite part of the plane C the following ratio is true:

F2ω(z) =
Γ( 1

4 + z
2 )

π
1
4+ z

2
ζ

(
1
2 + z

)
, z ∈ C.

C From definitions (2.1) and (2.2) for function Ff (z) when f = f0 = 2ω we find the general
expression for F2ω:

F2ω(z) =
1

z2 − 1
4

+

∞∫
1

ω(x)x−3/4(xz/2 + x−z/2) dx, (∗.1)

where z is a complex number from some finite subregion U ⊂ C.
Let’s replace the variable z = it, where t ∈ C in (∗.1). Elementary transformations give the

expression for F2ω(z) :(
−1

2

) (
t2 +

1
4

)
F2ω(it) =

1
2
−

(
t2 +

1
4

) ∞∫
1

ω(x)x−3/4 cos
(
t

2
lnx

)
dx. (∗.2)

Following [1] and introducing functions

ξ(s) = Ξ(t) =
1
2
s(s− 1)Γ(s/2)π−s/2ζ(s), (∗.3)

where s = 1
2 + it, while

Ξ(t) =
1
2
−

(
t2 +

1
4

) ∞∫
1

ω(x)x−3/4 cos
(
t

2
lnx

)
dx, (∗.4)

at once we find, that (
−1

2

) (
t2 +

1
4

)
F2ω(it) = Ξ(t), t ∈ C, (∗.5)

or

F2ω(it) = −2
ξ( 1

2 + it)
t2 + 1

4

, (∗.6)

since Ξ(t) = ξ( 1
2 + it). For the last function (when s = 1

2 + it) we have representation:

ξ( 1
2 + it) = −1

2
(
t2 + 1

4

)
π−

1
4−i t

2 Γ
(

1
4 + i t

2

)
ζ( 1

2 + it), (∗.7)
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which being substituted in (∗.6) gives the required result

F2ω(it) =
Γ( 1

4 + i t
2 )

π
1
4+i t

2
ζ

(
1
2 + it

)
, t ∈ C. (∗.8)

Returning to the initial designation z = it in (∗.8) we get the statement of lemma. B
Using the principle of analytical continuation, it is easy to show, that lemma 2.1. is true

everywhere on the complex plane C, but not only in some of its finite subregion. In particular,
the statement of lemma 2.1. is true in the closed zone − 1

2 6 σ 6 1
2 , σ = Re z, where zeros of

function F2ω(z) coincide with zeros of zeta-function because the function π−
1
4−

z
2 Γ( 1

4 + z
2 ) has no

zeros. To be exact, it follows from lemma 2.1. that zeros of the Riemann zeta-function ζ(s) in
the critical region 0 6 σ 6 1 fully coincide with zeros of the F2ω(z) function in the closed zone
− 1

2 6 σ 6 1
2 , σ = Re z. Hence, we can formulate the following

Condition 2.1 For the Riemann hypothesis on zeros of zeta-function ζ(s) in the critical zone
0 6 σ 6 1, to be true, it is necessary and sufficient, the equation F2ω(z) to be true only
when σ = 0 for the F2ω(z) = 0 function in the closed zone − 1

2 6 σ 6 1
2 , σ = Re z.

In other words, for the Riemann hypothesis to be true a strict imagination of roots of the
equation F2ω(z) = 0 in the zone − 1

2 6 σ 6 1
2 is required.

3 Diverging equations
In this item we shall demonstrate difficulties typical for the theory of zeta- function emerging
when working with it in the critical region. Such situation appears in the attempt of the direct
use of the condition 2.1 for the Riemann hypothesis proof.

Let’s consider condition 2.1 in details.

Lemma 3.1 The equation F2ω(s) = 0, s = σ + iλ in the closed zone

Π0 ≡ {s ∈ C : −1
2

6 σ 6
1
2
, −∞ < λ <∞}

is equivalent to the system of two equations

∞∫
0

ω(e2t) et/2 coshσt cosλt dt =
λ2 + 1/4− σ2

4δ
, (3.1)

∞∫
0

ω(e2t) et/2 sinhσt sinλt dt =
σλ

2δ
, (3.2)

in the semi-open zone

Π+
0 ≡ {s ∈ C : 0 6 σ <

1
2
, 0 6 λ <∞}.

C Let the equation F2ω(s) = 0, where s = σ+iλ, (σ = Re s, λ = Im s) be given in the closed zone
Π0, and the F2ω(s) function be given by the expression (∗.1) of lemma 2.1. Perform technical
replacement of variables, x = et in the last one to represent F2ω(s) in more convenient form. As
a result of the replacement we get:

F2ω(s) = A1 +B1 + i(A2 +B2), (∗.1)
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where

A1 = 4

∞∫
0

ω(e2t) et/2 coshσt cosλt dt, (∗.2)

A2 = 4

∞∫
0

ω(e2t) et/2 sinhσt sinλt dt, (∗.3)

B1 =
σ2 − λ2 − 1/4

δ
, B2 = −2σλ

δ
, (∗.4)

and
δ =

[
(σ − 1/2)2 + λ2

]
·
[
(σ + 1/2)2 + λ2

]
. (∗.5)

Summing up the right part of (∗.1) to zero from independence of real and imaginary parts of
F2ω, we get a system of two equations:

A1 +B1 = 0, (∗.6)
A2 +B2 = 0. (∗.7)

Hence, by substituting expressions (∗.2) – (∗.4), in them, and taking into account the character
of evenness with respect to σ and λ, and the fact that zeta-function has no zeros [1] on the
straight line σ = 1, we find the truth of lemma. B

It is seen from lemma 3.1., that basic technical difficulty, under such way of consideration
is reduced to computation of two integrals in the left side of the equations (3.1) and (3.2)
respectively.

To find them we shall prove the following additional statement.

Lemma 3.2 For the integral jn(s; ε, η) the following equality is true:

jn(s; ε, η) ≡
∞∫
0

e−πn2e2t

et/2 e[(−1)εσ+i(−1)ηλ]t dt =

=
[1 + (−1)η]

2
π−

1
4−

s̃
2 Γ( 1

4 + s̃
2 )n−( 1

2+s̃),

where n is arbitrary natural; parameters ε, η = ±1; argument s = σ + iλ ∈ Π+
0 , and finally,

s̃ = (−1)εσ + i(−1)ηλ ∈ Π̃0, Π̃0 ≡ Π0 \ {σ = ± 1
2}.

C (a) Let’s make replacement of the variable et = y in the integral jn(s; ε, η). After substitution
find:

jn(s; ε, η) =

∞∫
1

e−πn2y2
y−

1
2+s̃ dy. (∗.1)

The integral (∗.1) can be rewritlen as well as

jn(s; ε, η) = j∞n (s; ε, η)− j1n(s; ε, η), (∗.2)

where addends are obviously equal to integrals:

j∞n (s̃) ≡
∞∫
0

e−πn2y2
y−

1
2+s̃ dy, (∗.3)

j1n(s̃) ≡
1∫

0

e−πn2y2
y−

1
2+s̃ dy, (∗.4)
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where s̃ ∈ Π̃0.
(b) The first integral (∗.3) is calculated easily.
According to [6], the integral

∞∫
0

xα−1 e−ρxµ

dx =
1
µ
ρ−α/µΓ

(
α

µ

)
,

if µ,Reα,Re ρ > 0. In our case α = 1
2 + s̃, µ = 2 > 0, ρ = πn2 > 0. As it is already known

that there are no roots of the equation F2ω = 0 on the straight line σ = 1
2 , they will also be out

on the line σ = − 1
2 due to symmetry, and thus, it may be supposed that Reα > 0. Then the

integral (∗.3) is equal to:

j∞n (s̃) =

∞∫
0

e−πn2y2
y(

1
2+s̃)−1 dy =

1
2
π−

1
4−

s̃
2 Γ( 1

4 + s̃
2 )n−( 1

2+s̃). (∗.5)

Computation of the second integral (∗.4) demands the usage of some facts of theory of functions
of complex variable.

(c) By virtue of even convergence of the series
∞∑

k=0

(−1)k

k! xk to the function e−x on the

segment [0, 1], we can perform integrating term by term in the integral (∗.4) which will lead
j1n(s̃) to representation in the form of a series:

j1n(s̃) =
∞∑

k=0

(−πn2)k

k!

1∫
0

y2k− 1
2+s̃ dy =

∞∑
k=0

(−πn2)k

k!
· 1
2k + ( 1

2 + s̃)
. (∗.6)

(d) For finding the series (∗.6), let’s consider the function of complex variable z:

f(z) ≡ az

z!(z + µ)
, (∗.7)

where a = −πn2 ∈ R, n ∈ N, µ ≡ 1
2 ( 1

2 + s̃), s̃ ∈ Π̃0. Write the function f(z) in the form of:

f(z) =
ϕa(z)
z + µ

, (∗.8)

where ϕa(z) ≡ azΓ−1(z + 1) is a whole function everywhere in the plane C . Therefore, the
function f(z) has a pole in the point:

z0 = −µ = −1
2

(
1
2

+ s̃

)
= −

[
1 + 2(−1)εσ

4

]
− i

(−1)ηλ

2
. (∗.9)

Since for all σ ∈
(
− 1

2 ,
1
2

)
the inequality − 1

2 < Re z0 < 0, where Re z0 = − 1
4 [1 + 2(−1)εσ] is true,

the region Uz0 of the possible state of the pole z0 always belongs to the initial region Π̃0, i.e.
Uz0 ⊂ Π̃0.

Let’s consider a module of the function f(z):

|f(z)| =
∣∣∣∣ϕa(z)
z + µ

∣∣∣∣ 6
|ϕa(z)|
|z| − |µ|

= |z|−1 · |ϕa(z)|

1− |µ|
|z|

. (∗.10)

Take into account the asymptotical formula [7]:

Γ(z + 1) ∼
√

2π e−z zz+1/2, z →∞, | arg z| < π,
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from which evaluate the module of the function ϕa(z) as:

|ϕa(z)| =
∣∣∣∣ ez ln a

Γ(z + 1)

∣∣∣∣ ∼ 1√
2π

∣∣∣z−z− 1
2 · ez(ln a+1)

∣∣∣ =
1√
2π

∣∣∣ e−(z+ 1
2 ) ln z

∣∣∣ · ∣∣∣ ez(ln a+1)
∣∣∣ . (∗.11)

Noting in (∗.11), that | zz| = ex ln |z|−y arg z, (x = Re z, y = Im z), and
∣∣ ez ln a

∣∣ = ex ln t−πy, since∣∣ ez ln a
∣∣ =

∣∣∣ e(x+iy)(ln t+iπ)
∣∣∣ =

∣∣ ex ln t−πy
∣∣ · ∣∣∣ ei(πx+y ln t)

∣∣∣ ,
where t = −a = πn2 > 0, n = 1, 2, . . . , for |ϕa(z)| we find:

|ϕa(z)| ∼ 1√
2π|z|

· ex(1+ln t
|z| )+y(arg z−π). (∗.12)

Substituting (∗.12) into (∗.10) for the module of the function f(z) we get an asymptotic expres-
sion:

|f(z)| . |z|−3/2

√
2π

· e
x(1+ln t

|z| )[
1− |µ|

|z|

] · e−y(π−arg z), (∗.13)

where | arg z| < π, |z| → ∞, t = πn2, n ∈ N.
For further reasonings rewrite the expression (∗.13) in the form of:

|f(z)| . ϕ+(z) · e−y(π−arg z) (∗.14)

where the function ϕ+(z), equal to

ϕ+(z) ≡ |z|−3/2

√
2π

· e
x(1+ln t

|z| )[
1− |µ|

|z|

] (∗.15)

is introduced. The function ϕ+(z), defined for all x ∈ (0,+∞) as:

ϕ+(x) ≡ ϕ+(Re z) =
x−3/2

√
2π

· e
x(1+ln t

x )[
1− |µ|

x

] (∗.16)

adjoins directly in form to the function ϕ+(x).
From the comparison (∗.15) and (∗.16) it is seen, that

ϕ+(z) 6 ϕ+(x) (∗.17)

for any z from the right semi-plane C (i.e. for Re z > 0).
Let’s define asymptotical behaviour of the function ϕ+(x) when x→ +∞. We have:

lim
x→+∞

ϕ+(x) =
1√
2π

· lim
x→+∞

1[
1− |µ|

x

] · lim
x→+∞

ex(1+ln t
x )

x3/2
∼

∼ lim
x→+∞

ex ln t
x

√
2π x3/2

= o
(
e−x

)
, x→ +∞. (∗.18)

Thus, the function ϕ+(x) is limited on the semi-axis (0,+∞) and hence, there is an integral

+∞∫
0

ϕ+(x) dx <∞, (∗.19)
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Actually, as it follows from (∗.18):∣∣∣∣∣∣
+∞∫
0

ϕ+(x) dx

∣∣∣∣∣∣ 6
1√
2π

+∞∫
0

∣∣∣∣∣ ex(1+ln t
x )

x3/2 (1− |µ|/x)

∣∣∣∣∣ dx ∼
+∞∫
0

o
(
e−x

)
dx.

Now let’s consider an "argumental" part of the inequality (∗.14). From condition | arg z| < π
it follows: arg z = π−|β|, when arg z > 0 and arg z = π+|β|, when arg z < 0, while 0 < |β| < 2π.
Hence, π−arg z = π−(π−|β|) = |β| > 0 when arg z > 0 and π−arg z = π−(π+ |β|) = −|β| < 0
when arg z < 0. Thus; −y(π − arg z) = −|β| y when arg z > 0 and −y(π − arg z) = |β| y when
arg z < 0. Supposing that β > 0 when arg z < 0 and β < 0 when arg z > 0 and taking into
account the limit 0 < |β| < 2π, let’s rewrite the last equalities in a single form:

− y(π − arg z) = β|y| = β |Im z| , (∗.20)

where −2π < β < 2π.
Taking into account (∗.17), (∗.19) and (∗.20), finally find inequality in sought for the function

f(z), proceeding from the expression (∗.14):

|f(z)| 6 eβ| Im z| ϕ+(Re z), (∗.21)

where −2π < β < 2π and
+∞∫
0

ϕ+(x) dx <∞, ϕ+(x) being given by the expression (∗.16).

(e) Condition (∗.21), proved in item (d), permits to use for the function f(z) the method of
summing of the form of [8,9]:

+∞∑
k=−∞

f(k)−
+∞∫
−∞

f(x) dx = −π
∑

Im ak>0

res
z=ak

f(z)(cotπz + i)+

+π
∑

Im ak<0

res
z=ak

f(z)(cotπz − i). (∗.22)

For this let’s finish to define the function f(x) on the semi-interval (−∞, 0) as identically equal
to zero, i.e. f(x) ≡ 0 when x < 0. Then it follows from (∗.22):

+∞∑
k=0

f(k) =

+∞∫
0

f(x) dx− π · res
Im z0>0

[f(z)(cotπz + i)]+

+π · res
Im z0<0

[f(z)(cotπz − i)] . (∗.23)

First of all calculate the integral being a part of (∗.23). From the above, it can be concluded,
that the function f(z) is regular in the semi-plane Im z > 0 when Im s̃ > 0 (i.e. when η = 2)
or in the semi-plane Im z < 0 when Im s̃ < 0 (i.e. when η = 1),with the exception of ordinary
pole z0, and it is continuous up to the boundary (with the exception of the same pole). Let’s
show, that function f(z) satisfies the condition f(z) = o

(
1
z

)
, when z → ∞ in the semi-plane

Im z > 0 (Im z 6 0).
In fact, when z →∞ we have:

f(z) =
ez ln a

(z − z0) Γ(z + 1)
∼ 1√

2π
· ez(1+ln a)

zz+1/2 (z − z0)
∼ ez(1+ln a)

√
2π zz+3/2

=

=
1
z

{
1√
2πz

[
e(1+ln a)

z

]z
}

= o

(
1
z

)
, (∗.24)
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since it is obvious, that when |z| → ∞∣∣∣∣∣ 1√
2πz

[
e(1+ln a)

z

]z
∣∣∣∣∣ → 0.

The asymptotical formula Γ(z + 1) (see item (d)) is used in (∗.24). The property (∗.24) permits
to use theorem on residues [8,9] for the integral in the left part of the expression (∗.23):

+∞∫
−∞

f(x) dx =

+∞∫
0

f(x) dx = 2πi · res
z=z0

f(z) = 2πi · a
z0

(z0)!
. (∗.25)

Substituting (∗.25) into (∗.23) and performing elementary transformations, find an expression
for the series (∗.6) :

∞∑
k=0

(−πn2)k

k!
· 1
2k + ( 1

2 + s̃)
=

=
π

2
· (−πn2)−

1
4−

s̃
2

Γ
(

3
4 −

s̃
2

) ·
[
i+ (−1)η+1 cot

π

2
(

1
2 + s̃

)]
. (∗.26)

(f) Transform and simplify the expression (∗.26). For this purpose let’s perform a number
of elementary transformations. We have [6]:

i+ (−1)η+1 cot
π

2

(
1
2

+ s̃

)
=

(−1)η+1 cos π
2

(
1
2 + s̃

)
+ i sin π

2

(
1
2 + s̃

)
sin π

2

(
1
2 + s̃

) .

Calculating the numerator of the given expression, we get:

(−1)η+1 · exp
[
i(−1)η+1π

2

(
1
2

+ (−1)ε σ

)
+ (−1)η πλ

2

]
.

Further:

(−1)−
1
4−

s̃
2 = e

±i
π
2

(
1
2+σ̃

)
· e∓

πλ̃
2 .

By virtue of randomness of signs selection let’s choose them in this way:

(−1)−
1
4−

s̃
2 = exp

[
i(−1)η π

2

(
1
2

+ (−1)ε σ

)
+ (−1)η+1πλ

2

]
.

Multiplication of the last expression by the numerator of the considering fraction, probably leads
to the quantity (−1)η+1. Taking also into account that [7]:

π

sinπ
(

1
4 + s̃

2

) = Γ
(

1
4 + s̃

2

)
Γ

(
3
4 −

s̃
2

)
,

find the representation of the series (∗.26) in the form of:

j1n(s̃) =
∞∑

k=0

(−πn2)k

k!
· 1
2k + ( 1

2 + s̃)
=

=
(−1)η+1

2
· π−

1
4−

s̃
2 · Γ

(
1
4 + s̃

2

)
· n−( 1

2+s̃). (∗.27)

And finally, substitution of (∗.5) and (∗.27) into (∗.2) proves the result of lemma. B
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Lemma 3.3 The direct application of lemma 3.2. to lemma 3.1. leads to the system of two
diverging equations:

∞∑
n=1

{
π−

1
4−

σ
2−i λ

2 · Γ
(

1
4 + σ

2 + iλ
2

)
· n−

(
1
2+σ+iλ

)
+

+π−
1
4+ σ

2−i λ
2 · Γ

(
1
4 −

σ
2 + iλ

2

)
· n−

(
1
2−σ+iλ

)}
= λ2+1/4−σ2

δ , (3.3)

∞∑
n=1

{
π−

1
4−

σ
2−i λ

2 · Γ
(

1
4 + σ

2 + iλ
2

)
· n−

(
1
2+σ+iλ

)
−

−π− 1
4+ σ

2−i λ
2 · Γ

(
1
4 −

σ
2 + iλ

2

)
· n−

(
1
2−σ+iλ

)}
= 2i · σλ

δ , (3.4)

for all s = σ + iλ ∈ Π+
0 .

C Calculate the integral in the left part of the equation (3.1) with the help of lemma 3.2. proved
above:

∞∫
0

ω(e2t) et/2 coshσt cosλt dt =

=
∞∑

n=1

∞∫
0

e−πn2e2t

et/2 · 1
4

{
e[(−1)2σ+i(−1)2λ]t + e[(−1)2σ+i(−1)1λ]t+

+ e[(−1)1σ+i(−1)2λ]t + e[(−1)1σ+i(−1)1λ]t
}
dt =

=
1
4

∞∑
n=1

{
π−

1
4−

1
2 (σ+iλ) · Γ

(
1
4 + σ+iλ

2

)
· n−

(
1
2+σ+iλ

)
+

+π−
1
4−

1
2 (−σ+iλ) · Γ

(
1
4 + −σ+iλ

2

)
· n−

(
1
2−σ+iλ

)}
. (∗.1)

Substitution of (∗.1) into the equation (3.1) gives the first equation (3.3). Doing the same with
the left part of the equation (3.2), let’s find:

∞∫
0

ω(e2t) et/2 sinhσt sinλt dt =

=
1
4i

∞∑
n=1

∞∫
0

e−πn2e2t

et/2 ·
{
e[(−1)2σ+i(−1)2λ]t − e[(−1)2σ+i(−1)1λ]t−

− e[(−1)1σ+i(−1)2λ]t + e[(−1)1σ+i(−1)1λ]t
}
dt =

=
1
4i

∞∑
n=1

{
π−

1
4−

1
2 (σ+iλ) · Γ

(
1
4 + σ+iλ

2

)
· n−

(
1
2+σ+iλ

)
−

−π− 1
4−

1
2 (−σ+iλ) · Γ

(
1
4 + −σ+iλ

2

)
· n−

(
1
2−σ+iλ

)}
. (∗.2)

From here by substitution of (∗.2) into the equation (3.2), find the second equation (3.4). In-
tegrating term by term in (∗.1) and (∗.2) is admitable due to uniform convergence of the series
ω(e2t), when t ∈ [0,∞), that in turn follows from the fact: ω(x) = O (e−πx), when x→ +∞ [3].
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Divergence of series in the left part of (3.3) and (3.4) for all s = σ+ iλ from Π+
0 is obviously

connected with impossibility to represent ζ-function in the critical region as absolutely converged
Dirichlet series [1,2]. B

4 Functional equation for ω̃(x)

Basic idea of this item is concerned with finding of the representation of the function ω(x) via
"related" to it ω̃(x) function (which will be defined below) with the help of functional equation.
In this case there will not be a problem of divergence in the critical zone for the ω̃(x) function.

Let’s preliminary state a number of well-known facts which are necessary here.
According to [8,9], when any complex α = Reα+ i Imα, the sum of ascending power series

ζ(α; z) ≡
∞∑

n=1

n−α zn, (z ∈ C), (4.1)

originally defined in the circle |z| < 1, may be analytically continued through the whole complex
plane C with the cut along the ray [1,∞].

Hence, everywhere in C, in particular, the function of complex α ∈ C has been defined:

ζ(α;−1) =
∞∑

n=1

(−1)n n−α. (4.2)

At the same time the equality [1,7] is true for zeta-function :

∞∑
n=1

(−1)n−1 n−s =
(
1− 21−s

)
ζ(s), s ∈ C, (4.3)

from which we easily find the connectoin with function ζ(s;−1) by comparison with (4.2):

ζ(s;−1) =
(
21−s − 1

)
ζ(s), (4.4)

true when any Re s > 0, as well as in the point s = 1, in which ζ(1;−1) = T1 = − ln 2 ≈
−0, 6931 . . . [6].

Remind that function ω(x), defined for all x ∈ [0,+∞) is subjected to functional equation
[1,3] by the expression (2.3):

ω(x) =
1√
x

[
ω

(
1
x

)
+

1
2

]
− 1

2
. (4.5)

Let’s introduce into consideration the function ω̃(x), x ∈ [0,+∞):

ω̃(x) =
∞∑

n=1

(−1)n e−πn2x. (4.6)

Lemma 4.1 For all x ∈ [0,+∞) the function ω̃(x) satisfies the following functional equation:

ω̃(x) =
1√
x

[
ω

(
1
4x

)
− ω

(
1
x

)]
− 1

2
. (4.7)

C According to [10] it is known that for a series

f(x) =
∞∑

n=1

(−1)n−1 nβ e−nαx, (∗.1)
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where β ∈ R, α > 0 is real, x ∈ [0,+∞), the integral representation is true:

f(x) =
1

2πi

σ+i∞∫
σ−i∞

Γ(s)x−s
(
1− 21+β−αs

)
ζ(αs− β) ds, (∗.2)

where σ > 0, σ > 1+β
α . Suppose, in (∗.2) β = 0, α = 2. Then

f(x) =
1

2πi

σ+i∞∫
σ−i∞

Γ(s)x−s
(
1− 21−2s

)
ζ(2s) ds, (∗.3)

where σ > 1/2. Replace x by πx2 and s by s/2 in (∗.3):

f(x2) =
∞∑

n=1

(−1)n−1e−πn2x2
=

1
4πi

σ+i∞∫
σ−i∞

π−s/2 Γ
(s

2

) (
1− 21−s

)
ζ(s)x−s ds, (∗.4)

σ > 1/2. If we transit in (∗.4) from the straight line of integrating Re s = σ > 1/2 to the straight
line Re s = σ0,− 1

2 < σ0 < 0, that is possible [10], then it is necessary to add residues in the
point s = 1 (the pole ζ(s)) and in the point s = 0 (the pole Γ(s)) in the zone σ0 6 Re s 6 σ
when transiting. Both poles of the first order, exactly for them respectively

lim
s→1

(s− 1)ζ(s) = 1,

lim
s→0

sΓ(s) = lim
s→0

Γ(s+ 1) = Γ(1) = 1.

That’s why the residue of sub-integral function in (∗.4) in the point s = 1 is equal to
π−1/2 Γ(1/2)x−1(1− 21−1) = 0, and in the point s = 0 it is equal to 2(1− 2)ζ(0) = 1.

Substituting residues and performing replacement of s by 1−s in (∗.4), we get an expression:

(−1)+2
∞∑

n=1

(−1)n−1e−πn2x2
=

=
1

2πi

1−σ0+i∞∫
1−σ0−i∞

π−
1−s
2 Γ

(
1− s

2

)
ζ(1− s) (1− 2s)x−1+s ds. (∗.5)

Taking into account in (∗.5) functional equation (1.5) for ζ-function, rewrite the first one in the
form of:

(−1)+2
∞∑

n=1

(−1)n−1e−πn2x2
=

=
1

2πix

σ+i∞∫
σ−i∞

π−s/2 Γ
(s

2

)
ζ(s) (1− 2s)xs ds, (∗.6)

where σ = 1− σ0 > 1.
Multiply the expression (∗.4) by 2 and consider integrals in its right part separately.
For the first integral, according to [10,4], we know that:

1
2πi

σ+i∞∫
σ−i∞

π−s/2 Γ
(s

2

)
ζ(s)x−s ds = 2

∞∑
n=1

e−πn2x2
. (∗.7)
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Then for the second integral in (∗.4) we have:

1
πi

σ+i∞∫
σ−i∞

π−s/2 Γ
(s

2

)
ζ(s) (2x)−s ds = 4

∞∑
n=1

e−πn2(2x)2 . (∗.8)

Expanding integral in the right part of (∗.6) by the same way we find:

1
2πi

σ+i∞∫
σ−i∞

π−s/2 Γ
(s

2

)
ζ(s) (1− 2s)xs ds =

= 2
∞∑

n=1

e−π n2

x2 − 2
∞∑

n=1

e−π n2

4x2 , (σ > 1). (∗.9)

From the expressions (∗.4) and (∗.7), (∗.8) it follows that:

∞∑
n=1

(−1)n−1e−πn2x2
=

∞∑
n=1

e−πn2x2
− 2

∞∑
n=1

e−4πn2x2
. (∗.10)

In its turn from expressions (∗.6) and (∗.9) it follows:

+∞∑
n=−∞

(−1)n−1e−πn2x2
=

2
x

∞∑
n=1

[
e−π n2

x2 − e−π n2

4x2

]
, (∗.11)

or
(−1)− 2ω̃(x2) =

2
x

[
ω

(
1
x2

)
− ω

(
1

4x2

)]
. (∗.12)

And finally, performing in (∗.12) replacement x2 → x, after elementary transformations, we find
the equation (4.7). B

Lemma 4.2 For all x ∈ [0,+∞) the function ω(x) satisfies the following functional equation:

ω(x) = ω̃(x) +
1√
x

[
ω̃

(
1
4x

)
+

1
2

]
. (4.8)

C For proof we shall use the expression (∗.10) of lemma 4.1., which can be written in the form
of:

ω̃(x2) = 2ω(4x2)− ω(x2), (∗.1)

or, performing replacement x2 → x, in the form of:

ω̃(x) = 2ω(4x)− ω(x). (∗.2)

If we perform replacement x→ 1
4x

in (∗.2), we shell come to the expression

ω

(
1
4x

)
− ω

(
1
x

)
= ω

(
1
x

)
− ω̃

(
1
4x

)
. (∗.3)

Substitution of (∗.3) into the equation (4.7) of lemma 4.1. leads to a new functional equation:

ω̃(x) =
1√
x

[
ω

(
1
x

)
− ω̃

(
1
4x

)]
− 1

2
. (∗.4)
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Transpose the second term in parentheses into the left side and add the addend
1

2
√
x

at the left

and at the right. Then

ω̃(x) + x−1/2 ω̃

(
1
4x

)
+

1
2
√
x

=
1√
x

[
ω

(
1
x

)
+

1
2

]
− 1

2
. (∗.5)

Comparing right sides of the expression (∗.5) and the equations (4.5) we convince in their identity
and, hence, in truth of the equation (4.8). B

Therefore, lemma 4.2. is the conversion of lemma 4.1.

5 Zeros of zeta-function
Let’s turn to the series (4.3) again:

∞∑
n=1

(−1)n−1n−s, s = Re s+ i Im s ∈ C.

When Re s = σ > 1 the series (4.3) converges absolutely, while in the critical region 0 < Re s < 1
the series (4.3) converges only conditionally [2]. Since when s ∈ C the limit of partial sums of
the series (4.3) is a complex number in any transposition of its terms, then for it, the Riemann
theorem [11] on complex conditionally converging series is true. According to the Riemann
theorem, a set of values MΣ of all possible sums of the series (4.3) is either a straight line T0,
passing through the origin, or the whole plane C, when every s ∈ C, Re s ∈ (0, 1).

So,
MΣ(s0) ⊆ {T0 (s0) ,C} , (5.1)

where s0 is some complex number from the critical region. In this connection let’s denote a set
of series, formed from the series (4.3) by arbitrary transposition of its terms as ΣI ≡ {Σq}q∈I ,
where I is some index set. Prove the statement on one of the subsets of the set of conditionally
converging series {Σq}q∈I operating in the critical region which will be necessary for us further.

Lemma 5.1 Any converging series Σq, q ∈ I, taken from the set ΣI , and proportional to the
Riemann zeta-function in every point of critical semi-zone

K+ ≡ {s ∈ C : 0 < Re s < 1, 0 ≤ Imλ <∞}, can be presented in this area in the form of:

Σq(s) =
(
1− 21−s∆q

)
ζ(s), s ∈ K+, (5.2)

where ∆q is a real value, the inequality |∆q| ≤ ρ0 <∞ being true for all q ∈ I.

C (a) Instead of the set MΣ (s0) we shall consider the set MΣ̃ (s0), consisting of sums meanings,
forming by all possible transposition of auxiliary series:

Σ̃0 (s0) ≡ ζ (s0)−
∞∑

n=1

(−1)n−1
n−s0 , (∗.1)

when every fixed s0 ∈ K+. Then by virtue of (5.1) for the set MΣ̃ (s0) we can write at once, that

MΣ̃ (s0) ⊆
{

T̃0 (s0) ,C
}
, s0 ∈ K+. (∗.2)

Since in any case, a complex plane C can be considered as projective plane PC1, i. e. as a totality
of all straight lines passing through the origin, we can consider below a straight line TΣ̃0

(s0)
(that is, a straight line T̃0 (s0), passing through the "frame" point Σ̃0 (s0), when any arbitrary
s0 ∈ K+) which, at least, is exactly in MΣ̃ (s0).
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(b) At first we shall consider TΣ̃0
(s0) as a straight line, passing into C through the middle

of the segment, connecting points z1 and z2, perpendicular to this segment. According to, for
example [12,9], for any z ∈ TΣ̃0

(s0) the equation is true :

|z − z1| = |z − z2| , (∗.3)

which can be rewritten for arbitrary z = Re z + i Im z ∈ TΣ̃0
(s0), s0 ∈ K+ in the form of:

2 Re z
(y2 − y1)

+
2 Im z

(x2 − x1)
= (x2 + x1) + (y2 + y1) , (∗.4)

where z1 = x1+iy1, z2 = x2+iy2 are some fixed points from C. A pair of numbers
{

(x1+x2)
2 , (y1+y2)

2

}
is coordinates of the middele of the segment [z1, z2], which can conveniently be taken as an origin
in our case. Then the equation (∗.4) can be reduced to the simplest form:

Re z
Im z

= −γ, (∗.5)

where γ ≡ (y2−y1)
(x2−x1)

is a real value, constant (when z1 and z2 are fixed ) for all points of the
straight line TΣ̃0

(s0). In particular, applying the equation (∗.5) to "frame" point z̃0 = Σ̃0 (s0),
which according to (4.3) and (∗.1) is equal to z̃0 = 21−s0ζ (s0) , s0 ∈ K+, find the equation:

x

y
=
α̃0 Re ζ0 − β̃0 Im ζ0

α̃0 Im ζ0 + β̃0 Re ζ0
, (∗.6)

where x = Re z, y = Im z and α̃0 = Re
(
21−s0

)
, β̃0 = Im

(
21−s0

)
.

If we now consider only those conditional sums Σ̃q′ (s0) , q′ ∈ I ′ ⊂ I on the straight line
TΣ̃0

(s0) that

z = Σ̃q′ (s0) =
(
α̃+ iβ̃

)
ζ (s0) , (∗.7)

and α̃, β̃ ∈ R for all s0 ∈ K+, then we shall find an equality from (∗.6):

α̃

β̃
=
α̃0

β̃0

= (−1) cot
(
ln 2Im s0

)
. (∗.8)

Let’s denote sets of sums of the form of (∗.7), when arbitrary s0 ∈ K+, via ζTΣ̃0
(s0). Thus,

we have an embedding

ζTΣ̃0
(s0) ⊂ TΣ̃0

(s0) . (∗.9)

(c) Specify the following necessary moments here:
c.1) The quation of the straight line TΣ̃0

(s0) for any s0 ∈ K+ is the equation of the form of
(∗.6) and only such;

c.2) Equations (∗.6) for different s0 ∈ K+ uniquely define, generally speaking, different
straight lines TΣ̃0

(s0);
c.3) The equation (∗.8), obtaining from the equation (∗.6) under condition (∗.7), is the

only condition for defining a set of points ζTΣ̃0
(s0) ⊂ TΣ̃0

(s0) on every straight line TΣ̃0
(s0),

s0 ∈ K+;
c.4) In this connection the set ζTΣ̃0

(s0) is not uniquely defined by the condition (∗.8).
Actually, the condition (∗.8) uniquely follows from the equation (∗.6), but the uniqueness is
broken in the reverse side;
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c.5) Condition (∗.8) shows, that one and the same fixed equality α̃β̃0 = β̃α̃0 is true for the
whole (indefinite) set ζTΣ̃0

(
K+

λ0

)
of subsets ζTΣ̃0

(s), where
s ∈ K+

λ0
≡ {s ∈ C : 0 < Re s < 1, Im s = λ0}, located, generally speaking, on different straight

lines TΣ̃0
(s) , s ∈ K+

λ0
(i.e. from the fact that s′, s′′ ∈ K+

λ0
and s′ 6= s′′ it follows, that ζTΣ̃0

(s′) 6=
ζTΣ̃0

(s′′) even when combining the corresponding straight lines TΣ̃0
(s′) and TΣ̃0

(s′′)).
(d) From the condition (∗.8), when any λ0 = Im s0 ≥ 0, find that

α̃ = ∆q′ α̃0, (∗.10a)

β̃ = ∆q′ β̃0, (∗.10b)

where initially ∆q′ is a complex value for all q′ ∈ I ′ ⊂ I, depending upon the method of summing
up the series (4.3) (or the same series (∗.1)).

Substituting (∗.10a, b) into (∗.7) (and returning for convenience to previous designations
q′ → q and I ′ → I) find the representation for the arbitrary series Σ̃q(s), q ∈ I, or otherwise, for
the arbitrary element of the set ζTΣ̃0

(s), where s ∈ K+
λ0

, in the form of:

Σ̃q (s) = ∆q

(
α̃0 + iβ̃0

)
ζ (s) . (∗.11)

From here we find for initial series

Σq (s) =
(
1− 21−s∆q

)
ζ (s) , q ∈ I, s ∈ K+. (∗.12)

(e) Reality of ∆q for all q ∈ I is easily determined for three points on the straight line
TΣ̃0

(s), s ∈ K+. For this it is sufficient to take z1 = 0, z2 = z̃0 = 21−sζ(s) and z3 = z = Σ̃q(s) =
21−s∆qζ(s) (the last is possible by virtue of (∗.11)). Since according to condition for finding
three given points on the line, the value z3−z1

z2−z1
∈ R [12,9], it is obvious that:

z3 − z1
z2 − z1

=
z3
z2

=
z

z̃0
= ∆q ∈ R

for all q ∈ I.
(f) Now let’s consider a rule for finding four different points z1, z2, z3, z4

(zi ∈ C, i = 1, 2, 3, 4) on the line TΣ̃0
(s), s ∈ K+

λ0
. According for example to [12,9], for this

purpose there must be true the condition, under which the value z2−z1
z3−z1

: z2−z4
z3−z4

- is real.
Suppose that, z1 = 0, z2 = z̃0 = 21−sζ(s), z3 = z̃q1 = Σ̃q1(s) = 21−s∆q1ζ(s), z4 = z̃q2 =

Σ̃q2(s) = 21−s∆q2ζ(s), where q1, q2 ∈ I, s ∈ K+
λ0

and ∆q1 6= ∆q2 6= 1, 0 ≤ λ0 <∞.
In this case the condition takes the form of:

z2 − z1
z3 − z1

:
z2 − z4
z3 − z4

=
∆q1 −∆q2

∆q1 (1−∆q2)
∈ R. (∗.13)

Supposing that Re ∆q1 = x1,Re ∆q2 = x2 and Im ∆q1 = y1, Im ∆q2 = y2 let’s bring the condition
(∗.13) after elementary transformations to the equation:(

x2
1 + y2

1 − x1

)
y2 =

(
x2

2 + y2
2 − x2

)
y1. (∗.14)

If in the last equation y1 = y2 = y, no matter what the value of y is (is equal or not equal to
zero) the condition (∗.14) is reduced to the simple form:

x1 + x2 = 1. (∗.15)

(g) Imagine every real value ∆q in the form of the sum of two complex values ∆+
q and ∆−

q :

∆q = ∆+
q + ∆−

q ∈ R, q ∈ I, (∗.16)
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where ∆±
q =

∣∣∆±
q

∣∣ eiϕq , ϕq ∈ R, q ∈ I. In this connection modules of value ∆+
q ,∆

−
q , necessary

for the real ∆q formation must be, probably, equal between each other:∣∣∆+
q

∣∣ =
∣∣∆−

q

∣∣ = ρq/2, 0 < ρq <∞, q ∈ I. (∗.17)

Therefore, from (∗.16) and (∗.17) it follows that:

∆q = ρq cosϕq, 0 ≤ ϕq ≤ π, q ∈ I. (∗.18)

Consider the elements of the set ζTΣ̃0
(s0), located on the straight line TΣ̃0

(s0) when some fixed
s0 ∈ K+

λ0
. The equation (∗.15), rewritten here in the form of

ρq1 cosϕq1 + ρq2 cosϕq2 = 1, q1, q2 ∈ Iλ0 , (q1 6= q2) , (∗.19)

allows to draw a deduction on the limitation of the set of all ρq:{ρq}q∈Iλ0

≡ {ρq (λ0)}q∈Iλ0
, Iλ0 ⊂ I - is an index subset in I. From the limitation of the set {ρq (λ0)}q∈Iλ0

there follows the existence of two constant positive values ρ1 (λ0), ρ2 (λ0) > 0, such that:
ρ1 (λ0) ≤ ρq (λ0) ≤ ρ2 (λ0) for all q ∈ Iλ0 .

Let ρ (λ0) = max (ρ1 (λ0) , ρ2 (λ0)). Then the set of numbers
{

∆q(λ0)
ρ(λ0)

}
q∈Iλ0

≡
{

ρq(λ0)
ρ(λ0)

cosϕq (λ0)
}

q∈Iλ0

may be mapped in a one-to-one manner into the segment [−1, 1] (as

always
∣∣∣∆q

ρ

∣∣∣ =
∣∣∣ρq

ρ cosϕq

∣∣∣ ≤ ∣∣∣ρq

ρ

∣∣∣ ≤ 1 for ∀q ∈ Iλ0). In other words, for all ∆q(λ0)
ρ(λ0)

there will be

found such number ψq (λ0) ∈ [0, π], that the equality ∆q

ρ = cosψq will be true for any q ∈ Iλ0 .
(h) Now consider the set of all straight lines TΣ̃0

(s0) , s0 ∈ K+:

TΣ̃0

(
K+

)
=

⋃
s0∈K+

TΣ̃0
(s0) , (∗.20)

when the parameter s0 runs through the whole region K+. Since every straight line TΣ̃0
(s0),

s0 ∈ K+ contains the corresponding subset ζTΣ̃0
(s0), then the set of all the subsets ζTΣ̃0

may
be represented ( similarly to (∗.20) ) as:

ζTΣ̃0

(
K+

)
=

⋃
0≤λ0<∞

ζTΣ̃0

(
K+

λ0

)
. (∗.21)

In its turn, the set ζTΣ̃0
(K+) (by the ratio (∗.11)) generates the common set of all ∆q:

{∆q}G
q∈I =

⋃
0≤λ0<∞

{∆q′ (λ0)}q′∈Iλ0
(∗.22)

In this connection, for convenience, we shall think that in the set {∆q}G
q∈I indexation of elements

was performed so that for different q there correspond different ∆q, i.e. from q′, q′′ ∈ I and
q′ 6= q′′ ⇒ ∆q′ 6= ∆q′′ . In item (g) it is shown, that for any λ0 ∈ [0,+∞) the equality∣∣∣∆q′ (λ0)

ρ(λ0)

∣∣∣ ≤ 1 is true, where q′ ∈ Iλ0 . Choose from the whole set {ρ (λ0)} , λ0 ∈ [0,+∞) a
maximum element:

ρ0 = max
0≤λ0<∞

{ρ (λ0)} . (∗.23)

Then, in complete similarity with reasonings in item (g), for every ∆q ∈ {∆q}G
q∈I there will be

found such number fq ∈ [0, π], that the equality

∆q = ρ0 cos fq (∗.24)

will be true for all q ∈ I. B
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Lemma 5.2 The equation F2ω(s̃) = 0 in the zone Π̃0 is equivalent to the system of two equations:

χq

(
1
2
− σ − iλ

)
· ϕ

(
1
2

+ σ + iλ

)
+

+ χq

(
1
2

+ σ − iλ

)
· ϕ

(
1
2
− σ + iλ

)
= 0, (5.3)

χq

(
1
2
− σ − iλ

)
· ϕ

(
1
2

+ σ + iλ

)
−

− χq

(
1
2

+ σ − iλ

)
· ϕ

(
1
2
− σ + iλ

)
= 0, (5.4)

where the coefficients χq are equal by definition:

χq(a) ≡
22a−1 + 1− 2a∆q

2a
, a ∈ C, q ∈ I. (5.5)

The system (5.3),(5.4) is given for the argument s = σ + iλ from the zone Π+
0 .

C We shall start from the statement of the equivalent system of equations (3.1) and (3.2) of
lemma 3.1., given in the zone Π+

0 . Consider the first equation (3.1). Substituting the functional
equation (4.8) of lemma 4.2. into the integral in the left part of (3.1) we shall get the sums of
three integrals:

∞∫
0

ω(e2t) et/2 coshσt cosλt dt =

=

∞∫
0

ω̃(e2t) et/2 coshσt cosλt dt +

+
1
2

∞∫
0

e−t/2 coshσt cosλt dt +

+

∞∫
0

ω̃

(
1

4e2t

)
e−t/2 coshσt cosλt dt. (∗.1)

Let’s do calculation of each of three integrals (∗.1) separately.
(a) For finding the first integral (∗.1), use the scheme of calculation of the expression (∗.1)

in the proof of lemma 3.3., and also the definition (4.2) and the property (4.4). We have:

∞∫
0

ω̃(e2t) et/2 coshσt cosλt dt =

=
1
4

{
π−

1
4−

σ
2−i λ

2 Γ
(

1
4

+
σ

2
+ i

λ

2

)
ζ

(
1
2

+ σ + iλ;−1
)

+

+ π−
1
4+ σ

2−i λ
2 Γ

(
1
4
− σ

2
+ i

λ

2

)
ζ

(
1
2
− σ + iλ;−1

)}
=

=
1
4

[(
2

1
2−σ−iλ − 1

)
ϕ

(
1
2

+ σ + iλ

)
+

(
2

1
2+σ−iλ − 1

)
ϕ

(
1
2
− σ + iλ

)]
. (∗.2)

19



Show here the assumption of integration term by term, used by default during the integral
(∗.2) calculation.

Let ϕ (x) be a non-negative continuous function on the interval [0,+∞) . Then ω̃ (ϕ) =
ω̃ (ϕ (x)) =

∑∞
n=1 (−1)n

e−πn2ϕ(x), x ∈ [0,+∞).
On the basis of convergence of series, it follows, that a series ω̃ (ϕ) is absolutely converging

for all x ∈ [0,+∞). In fact, the limit of ratio of terms of the sum ω̃ (ϕ) is equal to:

lim
n→∞

∣∣∣∣zn+1

zn

∣∣∣∣ = e−πϕ(x) lim
n→∞

e−2πnϕ(x) = 0,

since ϕ (x) ≥ 0 for all x ∈ [0,+∞).
Therefore, the integral

Iα
ω̃ (ϕ, f) ≡

∫ ∞

0

ω̃ (ϕ (x)) fα (x) dx =
∞∑

n=1

(−1)n
∫ ∞

0

e−πn2ϕ(x)fα (x) dx,

for each continuous, parametrical from α ∈ C (Reα ∈ (0, 1)), function fα (x), given on the
interval x ∈ [0,+∞).

(b) The second integral in (∗.1) has an elementary character, that’s why we write the result
for it at once:

1
2

∞∫
0

e−t/2 coshσt cosλt dt = −B1

4δ
=
λ2 + 1

4 − σ2

4δ
. (∗.3)

From (∗.3) it is seen, that the given integral fully coincides with the right side of the equation
(3.1).

(c) Now find the most complicated integral in (∗.1). Using term by term integration on the
same basis, as in item (a), we get:

∞∫
0

ω̃

(
1

4e2t

)
e−t/2 coshσt cosλt dt =

=
∞∑

n=1

(−1)n

∞∫
0

e−
1
4 πn2e−2t

e−t/2 coshσt cosλt dt. (∗.4)

Let’s consider an auxiliary integral:

j−n (s̃) ≡ j−n (s̃; ε, η) =

∞∫
0

e−
1
4 πn2e−2t

e−t/2 e[(−1)εσ+i(−1)ηλ]t dt, (∗.5)

where, as in lemma 3.2., s̃ = (−1)εσ + i(−1)ηλ and s̃ ∈ Π̃0, ε, η = 1, 2.
Performing in (∗.5) two successive replacements of variables y = et and u = 1

y , and also of
the parameter n = 2m (where m is rational), reduce the integral j−n (s̃) to the form of:

j−2m(s̃) =

1∫
0

e−πm2u2
u−

1
2−s̃ du. (∗.6)

From the comparison of (∗.6) and the integral j1n(s̃), defined by the expression (∗.4) of lemma
3.2. it is seen, that j−2m(s̃) = j1m(−s̃) (here rationality of m has no sufficient meaning). Returning
again to the parameter n = 2m, find that (see (∗.27) of lemma 3.2.):

j1n(s̃) = 2−( 1
2+s̃) (−1)η π−

1
4+

s̃
2 · Γ

(
1
4 −

s̃
2

)
· n−( 1

2−s̃). (∗.7)
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(d) Let’s give the following reasonings.
Let the series of the form

Σ0 (α) ≡
∞∑

n=1

(−1)n−1
n−α,

be given to us, where α ∈ C belongs to the critical region:

K ≡ {z ∈ C : 0 < Re z < 1,−∞ < Im z <∞} .

According to [2] a series Σ0 (α) is conditionally converging for all α ∈ K. Hence, the sum of
series "Σ" depends on the transposition p of the series Σ0 (α). Exactly, let p be an operator of
terms transformation of the initial series Σ0 (α), such as:

pΣ0 (α) ≡
∑
p(n)

(−1)p(n)−1 [p (n)]−α
, α ∈ K,

where there is a symbolical designation at the left, and a concrete representation in the form of a
series at the right, p being an arbitrary transposition from the set of all transpositions P, defined
on the set of natural numbers {1, 2, . . .}.

As it is shown above in item (c), the integral (∗.4) is reduced to the sums of the form:

∞∑
n=1

(−1)n
j−n (s̃) =

∑
m∈Q∗

(−1)2m
j1m (−s̃) =

∑
m∈Q∗

(−1)2m
∞∑

k=0

(
−πm2

)k

k!
1

2k +
(

1
2 − s̃

) =
1
2
π−

1
4+ s̃

2×

×Γ
(

1
4 −

s̃
2

) ∑
m∈Q∗ (−1)2m+η

m−( 1
2−s̃),

where Q∗ ⊂ Q+ is an isolated subset in the set of positive rational numbers, equal to Q∗ ={
1
2 , 1,

3
2 , 2,

5
2 , 3,

7
2 , . . .

}
. The latter expression is decomposed into two independent cases when

η = 1 and η = 2 respectively. It is easy to see, that in the second case, when η = 2 "previous"
equality (4.4) is formally preserved. That is, for all

α =
(

1
2
− s̃

)
=

[
1
2

+ (−1)ε+1
σ

]
− iλ ∈ K−,

where K− ≡ {z ∈ C : 0 < Re z < 1,−∞ < Im z ≤ 0} - is a lower critical semi-zone, the series

∞∑
n=1

(−1)n
j−n (s̃)

is reduced to the sum of the form ∑
m∈Q∗

(−1)2m
m−α,

which is uniquely expressed through the corresponding equality (4.4).
When η = 1, i.e. in the upper critical semi-zone K+, the situation with the series

∑∞
n=1 (−1)n

j−n (s̃),
generally speaking, sufficiently changes. It is connected with ambiguity of representation of the
series ∑

m∈Q∗

(−1)2m+1
m−α, α ∈ K+,

by means of formal sums ∑
m∈Q∗

(−1)2m
m−α, α ∈ K+.
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Note, that the series
∑

m∈Q∗ (−1)2m+1
m−α, α ∈ K+, may be interpreted as a result of analytical

continuation of the series ∑
m∈Q∗

(−1)2m+1
m−α, Reα > 1,

from the right semi-plane (where it absolutely converges) into upper critical semi-zone K+. In this
connectoin a whole equality (4.4) analytically continues into the critical semi-zone K+. Since
the right side of the equality (4.4) regularly continues in K+, then any representation of the
series

∑
m∈Q∗ (−1)2m+1

m−α by formal sums
∑

m∈Q∗ (−1)2m
m−α must always be proportional

to zeta-function in every point α ∈ K+.
Let’s perform formal decomposition:

∑
m∈Q∗

(−1)2m+1
m−α =

∑
m∈Q∗

(−1)2(m+ 1
2 )

[(
m+

1
2

)
− 1

2

]−α

=

= (−2)α
∞∑

k=0

k∑
q=0

(−1)k 2qCk
−αC

q
k

∑
m∈Q∗

(−1)2(m+1/2)
mq =

= (−2)α
∞∑

k=0

(−1)k
Ck
−α

∑
pk(q)∈[0,k]

2pk(q)C
pk(q)
k ×

×
∑

m∈Q∗

(−1)2(m+1/2)
mpk(q) → p

∑
m∈Q∗

(−1)2m+1
m−α =

∑
p(m)∈p(Q∗)

(−1)2p(m)+1 [p (m)]−α
,

where p ∈ Pζ is an arbitrary transposition from the set Pζ ⊂ P, that is, the set of all transpo-
sitions, preserving proportionality of the series of zeta-function; Cα

β are binomial coefficients, pk

is some finite transposition over the set [0, 1, . . . , k], k = 0, 1, 2, . . .. As it is seen from the given
decompositions, the transposition p appears because of the second sum in the second equality,
due to finiteness of which, when every k ∈ N, an arbitrary transposition pk of inner terms is
possible.

(e) Unite in this item the results of reasonings in item (d) and calculations in item (c) for
finding the integral (∗.4).

Substituting (∗.7) in (∗.4), using lemma 5.1 (see the expression (5.2)) and performing trans-
formations identical to those used in the conclusion (∗.2) (see item (a)), we get finally for (∗.4):

∞∫
0

ω̃

(
1

4e2t

)
e−t/2 coshσt cosλt dt =

=
1
4

{[
1− 2−( 1

2+σ+iλ)
]
ϕ

(
1
2
− σ − iλ

)
−

−
[
∆q − 2−( 1

2+σ−iλ)
]
ϕ

(
1
2
− σ + iλ

)
+

+
[
1− 2−( 1

2−σ+iλ)
]
ϕ

(
1
2

+ σ − iλ

)
−

−
[
∆q − 2−( 1

2−σ−iλ)
]
ϕ

(
1
2

+ σ + iλ

)}
, (∗.8)

where ∆q = ρ0 cos fq, fq ∈ R, q ∈ I. Remind, that ϕ (z) = π−z/2Γ (z/2) ζ (z) (see introduction).
So, the expression (∗.8) leads to the whole set of values of the integral (∗.4), emerging when ∆q

are different , q ∈ I. In this connection the capacity of the set of values (∗.8) evidently coincides,
with the capacity of index set I, i. e. it is equal to card(I).
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(f) Substituting (∗.2), (∗.3) and (∗.8) into the integral (∗.1) and then the last one into the
left side of the equation (3.1), we shall get the equation (5.3) after elementary transformations.
In this connection coefficients χq(a) appear to be equal:

χq(a) = (2a − 1)− 2−a (2a∆q − 1) + 2−(1−a)
(
21−a − 1

)
, (∗.9)

or

χq(a) ≡
22a−1 + 1− 2a∆q

2a
, q ∈ I.

(g) Thinking over the equation (3.2) of lemma 3.1, fully similar to reasonings given above
in items (a)− (f), we shall get the second equation (5.4) in sought. That’s why, in this item we
shall write out, for the sake of completeness, final expressions for corresponding integrals.

∞∫
0

ω(e2t) et/2 sinhσt sinλt dt = J1 + J2 + J3, (∗.10)

where

J1 ≡
∞∫
0

ω̃(e2t) et/2 sinhσt sinλt dt =

=
1
4i

{(
2

1
2−σ−iλ − 1

)
ϕ

(
1
2 + σ + iλ

)
−

(
2

1
2+σ−iλ − 1

)
ϕ

(
1
2 − σ + iλ

)}
; (∗.11)

J2 ≡
1
2

∞∫
0

e−t/2 sinhσt sinλt dt =
σλ

2δ
; (∗.12)

J3 ≡
∞∫
0

ω̃

(
1

4e2t

)
e−t/2 sinhσt sinλt dt =

=
1
4i

{[
1− 2−( 1

2+σ+iλ)
]
ϕ

(
1
2
− σ − iλ

)
+

+
[
∆q − 2−( 1

2+σ−iλ)
]
ϕ

(
1
2
− σ + iλ

)
−

−
[
1− 2−( 1

2−σ+iλ)
]
ϕ

(
1
2

+ σ − iλ

)
−

−
[
∆q − 2−( 1

2−σ−iλ)
]
ϕ

(
1
2

+ σ + iλ

)}
, q ∈ I. (∗.13)

B

Lemma 5.3 Let s±0 = 1
2 ± σ0 + iλ0 be two arbitrary zeros of zeta-function given symmetrically

with respect to central line Re s = 1
2 in the semi-zone K+. Then modules

∣∣∣∣ϕ(s+
0 )

ϕ(s−0 )

∣∣∣∣ of the ratio of

the function ϕ (s) in points s+0 and s−0 will be finite, not equal to zero value, for all 0 ≤ σ0 <
1
2 , 0 < λ0 <∞.

C For the proof of lemma let’s use the representation (1.6) for the whole function ξ(s), which
we shall rewrite here in the form of [1]:

ξ (s) = ξ (0) eb0s
∏
ρ

(
1− s

ρ

)
es/ρ, (∗.1)
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where ξ (0) = −ζ (0) = 1
2 , b0 = b− 1

2 lnπ =
(
ln 2π − 1− 1

2γ
)
− 1

2 lnπ, γ is the Euler constant.
Taking into account the connection between functions ϕ (s) and ξ (s) for all 0 < σ0 <

1
2 , 0 <

λ0 <∞, we find from (∗.1):

ϕ
(
s+0

)
ϕ

(
s−0

) = lim
s1→s+

0

s2→s−0

ϕ (s1)
ϕ (s2)

= e2σ0b0
s−0

(
s−0 − 1

)
s+0

(
s+0 − 1

) ∏
ρ6=s+

0

(
1− s+

0
ρ

)
es+

0 /ρ∏
ρ6=s−0

(
1− s−0

ρ

)
es−0 /ρ

×

× lim
s1→s+

0

s2→s−0

(
1− s1/s

+
0

)m1
ems1/s+

0

(1− s2/s
−
0

)m2
ems2/s−0

(∗.2)

Here
∏

ρ6=a means that ρ runs through all the complex zeros of ζ - function except ρ = a;
m1,m2 are multiplicities of zeros s+0 and s−0 respectively. Since ζ

(
1
2 + σ0 + iλ0

)
and ζ

(
1
2 − σ0 − iλ0

)
are connected by functional equation (1.5) and a pair of values ζ

(
1
2 − σ0 + iλ0

)
and ζ

(
1
2 − σ0 − iλ0

)
is complexly conjugate, then multiplicities of zeros s+0 and s−0 coincide: m1 = m2 = m, m always
being finite natural number.

Note that the products of
∏

ρ6=s±0

(
1− s±0 /ρ

)
es±0 /ρ consist of finite, not equal to zero factors,

and this leads, in combination with property of ζ - function regularity everywhere in the open
critical zone, to the conclusion of finiteness of products themselves.

And, finally, writing variables s1, s2 ∈ K+ in the form of si = 1
2 + σi + iλi, where − 1

2 < σi <
1
2 , 0 < λi <∞, i = 1, 2 and calculating the limit in the right side (∗.2), we find once and for all

ϕ
(
s+0

)
ϕ

(
s−0

) = (−1)m
e2σ0b0

(
s−0
s+0

)m+1 (
s−0 − 1

)(
s+0 − 1

) ∏
ρ6=s+

0

(
1− s+

0
ρ

)
es+

0 /ρ∏
ρ6=s−0

(
1− s−0

ρ

)
es−0 /ρ

(∗.3)

when σ0 ∈ (0, 1/2), and
ϕ

(
s+0

)
ϕ

(
s−0

) = 1 (∗.4)

when σ0 = 0.
The statement of lemma follows directly from (∗.3) and (∗.4). B

Theorem 5.1 All complex zeros of the Riemann ζ - function in the critical region 0 < Re z < 1

are located on the straight line Re z =
1
2

and described by general expression:

z±0 (q) =
1
2
± i (log2 e)Arccos

+

(
∆q√

2

)
, (5.6)

in which q ∈ I; Arccos+x≡ 2kπ± arccos x, where arccos x - is the main value of arc cosine, k is
any natural number.

C First of all find complex roots of the equation χq(a) = 0 for arbitrary q ∈ I, where χq(a) is
defined by the expression (5.5) of lemma 5.2.

If we denote via x = 2a, then the equation χq(a) = 0 with respect to the unknown x will
have the form of:

x2 − 2∆qx+ 2 = 0, q ∈ I, (∗.1)

where, according to (∗.24) of lemma 5.1 ∆q = ρ0 cos fq, ρ0 > 0 is a constant independent of q,
fq ∈ [0, π] for all q ∈ I.

Roots of the equation (∗.1) are equal to:

x±q = ∆q

[
1±

√
1− β2

q

]
, q ∈ I, (∗.2)

24



where βq ≡
√

2
∆q

. As we are only interested in complex roots of (∗.1), then for all q ∈ I it should

be supposed β2
q > 1, i. e. |βq| > 1 and

√
β2

q − 1 > 0. Thus, the roots of (∗.2) should be written
in the form of:

x±q = ∆q

[
1± i

√
β2

q − 1
]
, q ∈ I. (∗.3)

Transforming the expression in brackets of (∗.3) to the form of

1± i
√
β2

q − 1 = βq exp
(
±iArctan+

√
β2

q − 1
)

and taking into account that βq∆q ≡
√

2 for ∀q ∈ I, we get:

x±q =
√

2 exp
(
±iArctan+

√
β2

q − 1
)
, q ∈ I. (∗.4)

The designation Arctan+x ≡ kπ+ arctan x, where x > 0, k ∈ N, arctan x - is the main value of
the arctangent (concluded for x ∈ (0,∞) in the limits (0, π/2)) is introduced here for convenience.

Returning to the variable a from (∗.4) we find:

a±0 (q) = log2 x
±
q =

1
2
± i

Arctan+
√
β2

q − 1

ln 2
, q ∈ I. (∗.5)

Substituting into (∗.5) concrete expressions of arguments of coefficients χq from the equations
(5.3), (5.4) of lemma 5.2, find an equation with respect to σ0(q) and λ0(q):

1
2
± σ0(q)− iλ0(q) = a±0 (q), q ∈ I. (∗.6)

From (∗.6) it follows that σ0(q) ≡ 0 for all q ∈ I, and

λ±0 (q) = ±
Arctan+

√
β2

q − 1

ln 2
, q ∈ I. (∗.7)

So, the roots of equations χq

(
1
2 ± σ − iλ

)
= 0 coincide and are equal to 1

2 + iλ±0 (q), when every
given q ∈ I.

Now let’s turn to the system of equations (5.3), (5.4) of lemma 5.2. Rewrite the given system
in a short form as

Aqϕ1 +Bqϕ2 = 0, (∗.8a)
Aqϕ1 −Bqϕ2 = 0, (∗.8b)

where Aq, Bq = χq

(
1
2 ∓ σ − iλ

)
and ϕ1, ϕ2 = ϕ

(
1
2 ± σ − iλ

)
respectively. In this connection the

system of (∗.8a), (∗.8b) is defined for every given q ∈ I.
Let Aq = 0, for some q ∈ I; then Bq = 0 too, and therefore the system (∗.8a), (∗.8b) becomes

an identity. According to lemma (5.2) the truth of equations (∗.8a), (∗.8b), i.e. equations (5.3),
(5.4) means the truth of the equation F2ω(s̃) = 0 in the zone Π̃0. Hence, by virtue of lemma 2.1.
and the equation ζ

(
1
2 + s̃

)
= 0 in the critical zone 0 < Re z < 1, z = 1

2 + s̃. Thus, from the fact
that Aq = Bq = 0, q ∈ I and from expressions (∗.5), (∗.6) it follows that ϕ1 = ϕ2 = 0.

Inversely, let ϕ1 = 0 and let Aq, Bq 6= 0 when no q ∈ I. Show, that these conditions are
incompatible. According to the symmetry [1,3] of zeros of ζ - function with respect to the straight
line Re z = 1

2 , from ϕ1 = 0 it follows that ϕ2 = 0 too. According to lemma 2.1. and lemma
5.2. the equality ϕ1 = ϕ2 = 0 is possible only when corresponding equations (∗.8a),(∗.8b) are
true. Hence, there exists such q ∈ I, that when ϕ1 = ϕ2 = 0 the system (∗.8a),(∗.8b) becomes
an identity.
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From the given system it formally follows: Aq = −Bq
ϕ2
ϕ1

= Bq
ϕ2
ϕ1

. Considering ϕ2
ϕ1

as a limit
ratio of two functions equally tending to zero under some σ0 (q), λ0 (q) and using the result of
lemma 5.3. we find, that Bq = −Bq = 0 from which Aq = 0 too when the given q ∈ I.

All the reasonings carried out here can be stated as follows.
For the functions ϕ1, ϕ2 to become zero it is necessary and sufficient the condition Aq =

Bq = 0 when corresponding q ∈ I is true. In other words, the Riemann zeta - function ζ(z) =
ζ

(
1
2 + s̃

)
, s̃ ∈ П̃0, in the critical zone 0 < Re z < 1 has no other zeroes z0 except the roots

of the equations χq

(
1
2 ± σ − iλ

)
= 0, q ∈ I. Since according to (∗.6) the roots of the equation

χq

(
1
2 ± σ − iλ

)
= 0 for all q ∈ I in the zone 0 < Re z < 1 are located on the straight line

Re z =
1
2
, then according to lemma 2.1. all the roots of the equation F2ω(z) = 0 in the zone П̃0

are located on the straight line Re z = 0, i.e. are clearly imaginary.
Hence, it is shown, that the condition 2.1 for the function F2ω(z) in П̃0 is true and thus, the

Riemann hypothesis on zeros of zeta - function in the critical zone may be considered to be fully
proved.

At last, let’s find the final expression (within the frameworks of given constructions) for zeros(
z±0 (q), q ∈ I

)
of ζ - function, located on the straight line Re z = 1

2 . By virtue of the symmetry
property of zeros of ζ - function on the straight line Re z = 1

2 with respect to the line 0x (see
(∗.5)), it is sufficient to consider zeros only in the upper part of the critical zone, i.e. for Im z > 0.

It is easy to note, that solutions of the equation (∗.1) with respect to constant ρ0, are generally
speaking, decomposed in form into two cases. In the first of them ρ0 =

√
2 and complex solution

(∗.3) are reduced to the simple form:

x±q =
√

2e±ifq , q ∈ I, (∗.9)

the expression:

fq = Arccos+
(

∆q√
2

)
≡ 2kπ ± arccos

(
∆q√

2

)
, (∗.10)

being conveniently used for fq, where q ∈ I, k ∈ N and arccos x - is the main value of the arc
cosine , enclosed in boundaries [0, π].

In the second case ρ0 6=
√

2, i. e. ρ0 can acquire any value from the region
(
0,
√

2
) ⋃ (√

2,+∞
)
,

but for all these values distribution of zeros will be given in the form of the general expression
(∗.5), that is, it is always expressed via Arctan+. It is obvious, that only one of these cases
truely describes zeros of ζ - function in the critical zone.

Suppose that ρ0 6=
√

2, from which it follows that zeros of ζ - function are given by (∗.5). As
the values of the expression Arctan+

√
β2

q − 1 for all q ∈ I belong to the region:

∞⋃
k=0

(
kπ,

(2k + 1)
2

π

)
, (∗.11)

the region
∞⋃

k=0

(
(2k + 1)

2
π, (k + 1)π

)
. (∗.12)

leaves "uncovered" by the distribution of (∗.5) on the straight line Re z = 1
2 , Im z > 0. Therefore,

it is sufficient to give an example, at least, of one zero of ζ - function, exactly located in the region
(∗.12) in units ln 2, in order the distribution (∗.5) to be false. Such example already supplies the
second zero of ζ - function α2

∼= 21, 0220 . . . [1]. Actually, α2 ln 2 ∼= 14, 5703 ∈
(

9
2π, 5π

)
.

Well, it is proved, that ρ0 =
√

2 and all complex zeros of ζ - function z±0 (q), q ∈ I, in the
region Re z ∈ (0, 1) are given by the expression (5.6). B

Note that theorem 5.1. doesn’t fully solve the question on vertical distribution of zeros of
ζ - function in the critical zone, as the order of zeros sequence on the straight line Re z = 1

2
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is not clear in its frameworks. Formula (5.6) only gives the general representation about this
distribution, connecting zeros of ζ - function on the straight line Re z = 1

2 with the set of sums
{Σ0(q)}q∈I - conditionally converging when Re z ∈ (0, 1) of the Dirichlet series.
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