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1 Introduction

The non-strictly thermal character [1, 2] of the Hawking radiation spectrum [3] shows that

the emission of Hawking quanta is also a non-strictly continuous process, by enabling a

natural correspondence between Hawking radiation and BH QNMs [4, 5].

Working with G = c = kB = ~ = 1
4πε0

= 1 (Planck units), in a strictly thermal

approximation the probability of emission is [1–3]

Γ ∼ exp

(
− ω

TH

)
, (1.1)

where TH ≡ 1
8πM is the Hawking temperature and ω is the energy-frequency of the emitted

radiation.

By considering the important deviation from the strictly thermal character, the correct

probability of emission is indeed [1, 2]

Γ ∼ exp

[
− ω

TH

(
1− ω

2M

)]
. (1.2)

The additional term ω
2M takes into due account the conservation of energy, which arises

from the fact that the BH contracts during the process of radiation [1, 2].

By introducing the effective temperature [4, 5]

TE(ω) ≡ 2M

2M − ω
TH =

1

4π(2M − ω)
, (1.3)

eq. (1.2) can be rewritten in Boltzmann-like form [4, 5]

Γ ∼ exp[−βE(ω)ω] = exp

(
− ω

TE(ω)

)
, (1.4)

where βE(ω) ≡ 1
TE(ω) and exp[−βE(ω)ω] is the effective Boltzmann factor appropriate

for an object with inverse effective temperature TE(ω) [4, 5]. The effective temperature

represents the temperature of a strictly thermal body that would emit the same total
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amount of radiation [4, 5] and the ratio TE(ω)
TH

= 2M
2M−ω represents the deviation of the

radiation spectrum of a BH from the strictly thermal feature [4, 5]. In other words, M

is called the initial mass of the BH before the emission and M − ω is the final mass of

the BH after the emission, where eqs. (1.2) and (1.3) permit the BH effective mass and

effective horizon definitions during the particle emission, i.e. during the BH’s contraction

phase [4, 5]

ME(ω) ≡M − ω

2
, rE(ω) ≡ 2ME(ω). (1.5)

The effective quantities introduced above are average quantities between the two states

before and after the emission [4, 5]. TE is the inverse of the average value of the inverses of

the initial and final Hawking temperatures before the emission TH initial = 1
8πM and after

the emission TH final = 1
8π(M−ω) , respectively, while ME is the average of the initial and

final masses, and rE is the average of the initial and final horizons [4, 5].

The interpretation of the particle emission is in terms of a quantum transition of

frequency ω between the two discrete states before and after the emission [4, 5]. From the

tunneling point of view, two separated classical turning points are joined by a trajectory

in imaginary or complex time when a tunneling happens [1, 4, 5]. As a consequence, the

radiation spectrum is also discrete. The reason is that, even if the statistical probability

distribution (1.2) and the statistical energy distribution are continuous functions at a fixed

Hawking temperature, such a Hawking temperature varies in time with a discrete character

in (1.2). The size of the forbidden region that the tunneling particle traverses is finite [1]

and this issue enables the introduction of the effective temperature (1.3). Indeed, in a

strictly thermal approximation the turning points look to have null separation [1]. In that

case, we do not know which joining trajectory needs to be considered [1]. In fact, there is

not any barrier [1]. When the spectrum is instead not strictly thermal the tunneling particle

traverses a finite forbidden region from rinitial = 2M to rfinal = 2(M−ω), which works like

a barrier [1]. As a consequence, the Hawking temperature and the energy emissions are

also discrete quantities.

We recall that the emitted energies are not only discrete, but also countable. In fact,

they have been counted in [6, 7], where non-trivial correlations among radiations have been

found in energies governed by the spectrum (1.2). The occurrence probability for a specific

sequence of n subsequent energies Ei = (E1, E2, . . . , En) is [6, 7]

Γ(E1, E2, . . . , En) = Γ

(
n∑
1

Ei

)
. (1.6)

If one considers two emissions with energies E1 and E2, or one emission with energy E1+E2,

the function1

C [(E1 + E2), E1, E2] = ln Γ(E1 + E2)− ln [Γ(E1)Γ(E2)] = 8πE1E2 (1.7)

represents the statistical correlation between the emissions [6, 7].

1Notice that refs. [23, 24] are the first papers where the Parikh-Wilczek method has been used in order

to check if there are correlations between emitted quanta.
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On the other hand, we recall that there are interesting proposals on the non-strictly

continuous character of Hawking radiation in the literature [8, 9]. In general, quantum

systems of finite size are inclined to have a discrete energy spectrum instead of a continuous

one [8]. In fact, the dynamics of a BH responsible for the spectrum’s character refer to

both of the finite region enclosed by the horizon [8] and the finite size of the forbidden

region that the tunneling particle traverses [1]. It is exactly such a finite size which makes

the process of tunneling to be discrete instead of continuous [4, 5]. Hence, the BH energy

spectrum is discrete [4, 5, 8, 9].

The discrete character of the emission process and of the emission spectrum implies a

natural correspondence between Hawking radiation and BH QNMs [4, 5]. Hence, QNMs can

be naturally interpreted in terms of quantum levels for both the emission and absorption

of particles [4, 5, 10].

By calling l the angular momentum quantum number, the QNMs are usually labeled

as ωnl. For each l (l ≥ 2 for gravitational perturbations), there is a second quantum

number, namely the “overtone” one n (n = 1, 2, . . .), which labels the countable sequence

of QNMs [4, 5, 11–13]. For large n the QNMs of the Schwarzschild BH (SBH) become

independent of l, and, in a strictly thermal approximation, have the following structure [4,

5, 11–13]

ωn = ln 3× TH + 2πi

(
n+

1

2

)
× TH +O

(
n−

1
2

)
=

ln 3

8πM
+

2πi

8πM

(
n+

1

2

)
+O

(
n−

1
2

)
.

(1.8)

Eq. (1.8) was originally obtained numerically in [14, 15]. It was re-obtained through an

analytic proof in [16, 17].

The non-strictly thermal character of the BH spectrum permits us to replace eq. (1.8)

with [4, 5, 10]

ωn = ln 3× TE(|ωn|) + 2πi

(
n+

1

2

)
× TE(|ωn|) +O

(
n−

1
2

)
=

ln 3

4π(2M − |ωn|)
+

2πi

4π(2M − |ωn|)

(
n+

1

2

)
+O

(
n−

1
2

)
.

(1.9)

The Hawking temperature in eq. (1.8) has been replaced by the effective temperature in

eq. (1.9) [4, 5, 10]. The physical interpretation is that the deviation of the spectrum of

BH QNMs from the strictly thermal feature implies that the spacing of the poles in (1.9)

coincides with the spacing 2πiTE(ω) expected for a non-thermal Green’s function as a

dependence on the frequency is present, while in eq. (1.8) the spacing of the poles coincides

with the spacing 2πiTH for a thermal Green’s function, see [4, 5, 10] for details.

The physical solutions for the absolute values of the frequencies in eq. (1.9) is [4, 5, 10]

(ω0)n ≡ |ωn| = M −

√√√√
M2 − 1

4π

√
(ln 3)2 + 4π2

(
n+

1

2

)2

. (1.10)
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In [4, 5, 10] this solution has been used to analyze important properties and quantities of the

SBH, like the horizon area quantization, the area quanta number, the Bekenstein-Hawking

entropy, its sub-leading corrections and the number of micro-states, i.e. quantities which

are considered fundamental to realize the underlying unitary quantum gravity theory. In

this work, we generalize the SBH results in [4, 5, 10] to the framework of KBHs.

2 Quasi-normal modes in Kerr black holes

Following [18], the strictly thermal approximation of KBH QNMs is given by [18–21]

ω(n) = ω̃0 − i
[
4πT0

(
n+

1

2

)]
, (2.1)

where ω̃0 is a function of the BH parameters [18]. Although T0 is called “effective temper-

ature” in [18], it is not the same concept of effective temperature introduced in [4, 5, 10]

that we discuss in the present paper. Indeed, T0 is a quantity introduced in [20] within the

framework of Boltzmann weights and resonances. The two concepts must not be confused.

Calling J the angular momentum of the BH and assuming

M2 � J (2.2)

gives

T0(J) ≈ −TH(J = 0)

2
, (2.3)

where TH(J = 0) is the Hawking temperature of the SBH. If one wants to go beyond the

strictly thermal approximation, then the replacement TH → TE is needed, as TE (instead

of TH) is the quantity associated to the emitted particle, i.e. the inverse of the average

value of the inverses of the initial and final Hawking temperatures (before the emission and

after the emission, respectively). Hence, eq. (2.3) becomes

T0(J) ≈ −TE(J = 0)

2
, (2.4)

where TE(J = 0) is the effective temperature of the SBH given by eq. (1.3).

As we are interested in highly excited BHs, i.e. n is large, the imaginary part of

eq. (2.1) becomes dominant. Thus, setting (ω0)n ≡ |ω(n)|, by using eqs. (2.1) and (2.4) we

immediately get

4Mn = (ω0)n−1 − (ω0)n = 4πT0 = −2πTE(J = 0), (2.5)

for an emission involving the quantum levels n and n− 1.

The result (2.5) is totally consistent with the results in [4, 5, 10] for the SBH. In fact,

in [4, 5, 10] we find

4Mn = (ω0)n−1 − (ω0)n

=

√√√√
M2 − 1

4π

√
(ln 3)2 + 4π2

(
n+

1

2

)2

−

√√√√
M2 − 1

4π

√
(ln 3)2 + 4π2

(
n− 1

2

)2

,

(2.6)
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which for large n becomes

4Mn ≈

√
M2 − 1

2

(
n+

1

2

)
−

√
M2 − 1

2

(
n− 1

2

)
. (2.7)

On the other hand, by recalling that, as the BH’s mass is decreasing due to emissions of

Hawking quanta, the BH’s mass becomes [4, 5, 10]

Mn−1 ≡

√√√√
M2 − 1

4π

√
(ln 3)2 + 4π2

(
n− 1

2

)2

(2.8)

and

Mn ≡

√√√√
M2 − 1

4π

√
(ln 3)2 + 4π2

(
n+

1

2

)2

, (2.9)

at the levels n− 1 and n, respectively. By using eq. (1.3), we find that the BH’s effective

temperature for an emission involving the quantum levels n and n− 1 is given by

TE(ωn) =
1

4π(2M − ωn)
=

1

8πME(ωn)

=
1

4π

[√
M2 − 1

4π

√
(ln 3)2 + 4π2

(
n− 1

2

)2
+

√
M2 − 1

4π

√
(ln 3)2 + 4π2

(
n+ 1

2

)2] .
(2.10)

For large n eq. (2.10) becomes

TE(ωn) ≈ 1

4π
[√

M2 − 1
2

(
n+ 1

2

)
+
√
M2 − 1

2

(
n− 1

2

)] . (2.11)

Thus, by combining eqs. (2.5), (2.7) and (2.11), we see that the result (2.5) is consistent

with the results in [4, 5, 9] for the SBH if√
M2 − 1

2

(
n+

1

2

)
−

√
M2 − 1

2

(
n− 1

2

)
= −

1
2√

M2 − 1
2

(
n+ 1

2

)
+
√
M2 − 1

2

(
n− 1

2

) .
(2.12)

By multiplying each side of eq. (2.12) by
√
M2 − 1

2

(
n+ 1

2

)
+
√
M2 − 1

2

(
n− 1

2

)
one easily

obtains the identity −1
2 = −1

2 .

3 Effective states of Kerr black holes

The introduction of the BH’s effective state enables the establishment of additional effective

quantities that should be important in the framework of BH physics. Here, for a KBH of

original mass M , we define the effective state after a transition with QNM frequency ω.
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Following [18], we define the KBH’s effective angular momentum JE(ω)≡ME(ω)αE(ω),

where αE(ω) is the KBH’s effective specific angular momentum. Thus, the KBH’s outer

and inner effective horizons can be defined as

rE+(ω) ≡ME(ω) +
√
M2
E(ω)− α2

E(ω)

rE−(ω) ≡ME(ω)−
√
M2
E(ω)− α2

E(ω).
(3.1)

Eq. (3.1) generalizes the results of eq. (1.2) in [18] to the non-strictly thermal case. The

two expressions in eq. (3.1) are the roots of the KBH’s effective quantity

4E(ω) ≡ r2 − 2ME(ω)r + α2
E(ω). (3.2)

If we also define

ΣE(ω) ≡ r2 + α2
E(ω) cos2 θ, (3.3)

then we can introduce the KBH’s effective line element(
ds2
)
E
≡−

(
1− 2ME(ω)r

ΣE(ω)

)
dt2 − 4ME(ω)αE(ω)r sin2 θ

ΣE(ω)
dtdϕ+

ΣE(ω)

4E(ω)
dr2

+ ΣE(ω)dθ2 +
(
r2 + α2

E(ω) + 2ME(ω)α2
E(ω)r sin2 θ

)
sin2 θdϕ2.

(3.4)

Eq. (3.4) takes into due account the dynamical geometry of the KBH which emits and/or

absorbs particles.

The introduced effective quantities permit us to define the KBH’s effective angular

velocity

ΩE(ω) ≡ αE(ω)

r2
E+(ω) + α2

E(ω)

=
JE(ω)

2ME(ω)
(
M2
E(ω) +

√
M4
E(ω)− J2

E(ω)
) . (3.5)

Therefore, we can define the KBH’s effective horizon area

AE(ω) ≡ 4π
(
r2
E+(ω) + α2

E(ω)
)

= 8π

(
M2
E(ω) +

√
M4
E(ω)− J2

E(ω)

)
, (3.6)

which permits us to define the KBH’s effective temperature

(TKBH)E (ω) ≡ rE+(ω)− rE−(ω)

AE(ω)

=

√
M4
E(ω)− J2

E(ω)

4πME(ω)
(
M2
E(ω) +

√
M4
E(ω)− J2

E(ω)
) . (3.7)

Now, the adiabatically invariant integral is written as [18, 22]

I =

∫
dM − ΩdJ

ω
. (3.8)
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So how do we adjust Vagenas’ eq. (3.8) to integrate with our KBH effective scenario? To

answer this question we must rewrite eq. (3.8) to establish an effective formula that accepts

the transition frequency ω as input. Then, the transition frequency given by eq. (2.5)

permits to define the KBH’s effective adiabatic invariant as

IE(ω) ≡
∫
dME(ω)− ΩE(ω)dJE(ω)

2πTE(ω)

= 2

(
M2
E(ω) +

√
M4
E(ω)− J2

E(ω)

)
− 2M2

E(ω) log

(
M2
E(ω) +

√
M4
E(ω)− J2

E(ω)

)
,

(3.9)

which generalizes the results of eqs. (3.3) and (3.4) in [18] to the non-strictly thermal case.

Using eq. (3.6), we can also generalize the result of eq. (3.5) in [18] to the non-strictly

thermal case

IE(ω) =
AE(ω)

4π
− 2M2

E(ω) log

(
AE(ω)

8π

)
. (3.10)

Let us consider a KBH of original mass M with the assumption (2.2). After a high number

of emissions (and potential absorptions as the BH can capture neighboring particles), the

mass of the BH changes from M to the quantity Mn−1 of eq. (2.8) [10]. In the transition

from the state with n−1 to the state with n the mass of the BH changes again from Mn−1

to the quantity Mn of eq. (2.9) [10]. Now, the BH is excited at the level n. We define the

effective state for an emission from the level n− 1 to the level n, with emission frequency

4Mn. Therefore, the BH’s effective mass is defined as

ME(4Mn) ≡ Mn−1 +Mn

2
=

2Mn −4Mn

2
= Mn −

4Mn

2
, (3.11)

where the BH’s effective horizon is defined as

rE(4Mn) ≡ 2ME(4Mn). (3.12)

Clearly, an absorption from the level n to the level n − 1 is now potentially possible. In

that case, the BH’s effective mass and the BH’s effective horizon are the same.

Second, the KBH’s effective angular momentum components are defined as

αE(4Mn) ≡ JE(4Mn)

ME(4Mn)
(3.13)

and using eqs. (3.2)–(3.3) to obtain

∆E(4Mn) ≡ r2 − 2ME(4Mn)r + α2
E(4Mn) (3.14)

and

ΣE(4Mn) ≡ r2 + α2
E(4Mn) cos2 θ. (3.15)

Hence, eqs. (3.1), (3.11), and (3.13) enable us to construct the KBH’s effective outer and

inner horizons

rE+(4Mn) ≡ME(4Mn) +
√
M2
E(4Mn)− α2

E(4Mn)

rE−(4Mn) ≡ME(4Mn)−
√
M2
E(4Mn)− α2

E(4Mn),
(3.16)
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which permit us to rewrite eq. (3.4) as

(
ds2
)
E
≡−

(
1− 2ME(4Mn)r

ΣE(4Mn)

)
dt2− 4ME(4Mn)αE(4Mn)r sin2 θ

ΣE(4Mn)
dtdϕ+

ΣE(4Mn)

4E(4Mn)
dr2

+ ΣE(4Mn)dθ2 +
(
r2 + α2

E(4Mn) + 2ME(4Mn)α2
E(ω)r sin2 θ

)
sin2 θdϕ2,

(3.17)

that takes into due account the dynamical geometry of the KBH which emits or absorbs

particles and the neighbouring quantum levels which are involved in the transition.

Thus far, the introduced effective quantities authorize us to rewrite the KBH’s effective

angular velocity in eq. (3.5) as

ΩE(4Mn) ≡ αE(4Mn)

r2
E+(4Mn) + α2

E(4Mn)

=
JE(4Mn)

2ME(4Mn)
(
M2
E(4Mn) +

√
M4
E(4Mn)− J2

E(4Mn)
) , (3.18)

to rewrite the KBH’s effective horizon area in eq. (3.6) as

AE(4Mn) ≡ 4π
(
r2
E+(4Mn) + α2

E(4Mn)
)

= 8π

(
M2
E(4Mn) +

√
M4
E(4Mn)− J2

E(4Mn)

)
(3.19)

and to rewrite the KBH’s effective temperature in eq. (3.7) as

(TKBH)E (4Mn) ≡ rE+(4Mn)− rE−(4Mn)

AE(4Mn)

=

√
M4
E(4Mn)− J2

E(4Mn)

4πME(4Mn)
(
M2
E(4Mn) +

√
M4
E(4Mn)− J2

E(4Mn)
) . (3.20)

The KBH’s effective adiabatic invariant in eq. (3.10) can be rewritten as

IE(4Mn) ≡ AE(4Mn)

4π
− 2M2

E(4Mn) log

(
AE(4Mn)

8π

)
. (3.21)

Considering eq. (3.19), one can show that

∆AE(4Mn) = 16πME(4Mn)

[
1 +

(
1−

J2
E(4Mn)

M4
E(4Mn)

)− 1
2

]
4Mn, (3.22)

and therefore the KBH’s effective area quanta number is defined as

NE(4Mn) ≡ AE(4Mn)

|∆AE(4Mn)|
=
ME(4Mn)

24Mn

√
1−

J2
E(4Mn)

M4
E(4Mn)

, (3.23)

– 8 –
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which let us identify the KBH’s effective Bekenstein-Hawking entropy as

(SKBH)BH(4Mn) ≡ AE(4Mn)

4

= 4πNE(4Mn)ME(4Mn)

[
1 +

(
1−

J2
E(4Mn)

M4
E(4Mn)

)− 1
2

]
· 4Mn.

(3.24)

As one can confirm, for M2
E � JE , the mentioned equations reduce to those in [4, 5] for

the SBH.

We recall that, to the second order approximation, the BH’s entropy contains three

parts: the usual Bekenstein-Hawking entropy, and two sub-leading corrections, the loga-

rithmic term and the inverse area term [4, 5]

Stotal = SBH − lnSBH +
3

2A
. (3.25)

If one wants to satisfy the underlying quantum gravity theory, the logarithmic and inverse

area terms are requested [4, 5]. In fact, for a better understanding of a BH’s entropy in

quantum gravity it is imperative to go beyond Bekenstein-Hawking entropy and identify

the sub-leading corrections [4, 5]. Hence, the KBH’s total effective entropy is [4, 5]

Stotal(4Mn) ≡ (SKBH)BH(4Mn)− ln(SKBH)BH(4Mn) +
3

2AE(4Mn)
. (3.26)

At this point, we have successfully defined the KBH’s effective state.

We note that one can start with eq. (3.19) and show that eq. (3.24) is valid for JE �
M2
E . In fact, for JE �M2

E eq. (3.19) implies

AE(4Mn) = 16πM2
E(4Mn) . (3.27)

Using the area law with eq. (3.27), one obtains

(SKBH)BH(4Mn) = 4πM2
E(4Mn). (3.28)

Using eq. (3.23), which, for JE �M2
E , becomes

NE(4Mn) ≡ AE(4Mn)

|∆AE(4Mn)|
=
ME(4Mn)

24Mn
, (3.29)

one can replace one of ME(4Mn) in eq. (3.27) in the following manner

(SKBH)BH(4Mn) = 4πME(2NE(4Mn)4Mn), (3.30)

which is in agreement with eq. (3.24) when condition (2.2) is imposed on eq. (3.24).

4 Conclusion remarks

In the first section of this paper, we briefly explained the important issue that the non-

strictly continuous character of the Hawking radiation spectrum generates a natural corre-

spondence between Hawking radiation and BH QNMs [4, 5, 10]. In doing so, we found that
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exemplifying the discrete character of the BH energy spectrum, QNM transition process,

and radiation spectrum [4, 5, 10] is essential to BH physics because it authorizes us to

encode this information as quantized structures with well-defined effectives for mass, hori-

zon, and temperature that are fundamental to recognizing the underlying unitary quantum

gravity theory.

Next, we took into due account the non-strictly thermal character of the spectrum [4,

5, 10], which is also necessary to BH physics because it permits us to use the effective

quantities in [4, 5] to generalize the SBH results in [4, 5, 10] to the KBH framework. In

particular, we demonstrated in section 2 that QNMs can be naturally interpreted in terms

of KBH quantum levels, where the obtained KBH results are in full agreement with the

SBH results in [4, 5, 10]. Therefore, these findings are meaningful because the effective

quantities in [4, 5, 10] have been achieved for the stable four dimensional SBH and KBH

solutions in Einstein’s general relativity.

In section 3, we used the effective quantities in [4, 5, 10] as the foundation on which

to construct the “effective state” of a KBH by generalizing the non-strictly thermal case

results in [18]. It is imperative to express the KBH’s effective state because we need

additional features and knowledge to consider in future experiments and observations.
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