A formula that generates a type of pairs of Poulet numbers

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract

Starting from the observation that the number 13^2 + 81*13 + 3*13*41 is a Poulet number (2821), and the number 41^2 + 81*41 + 3*13*41 is a Poulet number too (6601), and following my interest for the number 30, I found a formula that generates such pairs of Poulet numbers like (2821,6601).

Observation: The formula $p^{\wedge} 2+81 * p+3 * p * q$, where p is a prime of the form $30^{*} k+13$ and q is a prime of the form $30 * k+41$ (case I), or, vice versa, p is a prime of the form $30^{*} k+41$ and q is a prime of the form $30 * k+13$ (case II), generates Poulet numbers.

Examples:

```
: for (p,q) = (13,41), we got 2821, a Poulet number;
: for (p,q) = (41,13), we got 6601, a Poulet number;
: for (p,q) = (43,71), we got 14491, a Poulet number;
: for (p,q) = (71,43), we got 19951, a Poulet number.
```

Conjecture 1: There is an infinity of Poulet numbers of the form $p^{\wedge} 2+81 * p+3 * p * q$, where p is a prime of the form $30 * k+13$ and q is a prime of the form $30 * k+41$, where k is an integer, $k>=0$.

Conjecture 2: There is an infinity of Poulet numbers of the form $p^{\wedge} 2+81 * p+3 * p * q$, where p is a prime of the form $30 * k+41$ and q is a prime of the form $30 * k+13$, where k is an integer, $k>=0$.

Conjecture 3: If the number $p^{\wedge} 2+81 * p+3 * p * q$, where p is a prime of the form $30 * k+13$ and q is a prime of the form $30^{*} k+41$, is a Poulet number, then the number $p^{\wedge} 2+$ $81 * p+3 * p * q$, where p is a prime of the form $30 * k+41$ and q is a prime of the form $30 * k+13$ is a Poulet number too (k is an integer, $k>=0$).

Note: The differences between the two numbers that form such a pair might also have interesting properties; in the examples above, we have 6601 - $2821=3780$ and 19951 $-14491=5460$. Note that $5460-3780=1680=41^{\wedge} 2-1$.

Note: There are many Poulet numbers that can be written as $p^{\wedge} 2+81 * p+3 * p * q$, where p, q primes, but it's not satisfied the reciprocity from the formula above.

