
P A T H - D E P E N D E N T  F U N C T I O N S  

R . I .  K h r a p k o  

Various path-dependent functions are  descr ibed in a uniform manner  by means of 
a se r i e s  expansion of Taylor  type. Fo r  this, "path in tegrals"  and "path t ensors"  
are  introduced. They are  sys t ems  of multicomponent quantities whose values are  
defined for an a rb i t r a ry  path in a coordinated region of space in such a way that 
they c a r r y  sufficient information about the shape of the path. These construct ions 
are  regarded as e lementa ry  path-dependent functions and are  used instead Of the 
power monomials  of an ord inary  Taylor  se r i e s .  The coefficients of such expansions 
are  interpreted as part ial  der ivat ives ,  which depend on the o rde r  of differentiation, 
o r  as nonstandard covariant  der ivat ives ,  called two-point der ivat ives .  Examples of 
path-dependent functions are  given. We consider  the curvature  t ensor  of a space 
whose geometr ica l  proper t ies  are  specified by a t r ans la to r  of parallel  t ranspor t  of 
general  type (nontransitive). A covar iant  operat ion leading to "extension" of 
t ensor  fields is descr ibed.  

1 .  I n t r o d u c t i o n  

Path-dependent  functions are  widely used in physics .  It is true that they are  frequently called 
functionals, but we shall use the word "function" because it is s impler .  A good example of a path-dependent 
function is the opera to r  (or matrix) of paral le l  t r anspor t  f rom one point x" of a curved space to another 
point* x ~'. We call this ope ra to r  the t r ans la to r  of paral lel  t r anspor t  and usually denote it by the Greek 
le t t e r  @. The equation Vc"=O~'~V ~ expresses  the fact that by applying the t r ans la to r  0~'~ to the vector  V ~ 
at the point x we obtain the vec tor  V ~' at the point x p. As argument  of the t r ans la to r  we shall somet imes  
indicate the points that a re  the beginning and end of the path: O~',(x ', x). The resul t  of this operat ion depends 
on the t ranspor t  path, and 0~'~ can be determined in some manner  o r  other  in a space with given affine 
connection F~(x) .  Recently,  Eins te in ' s  equation of the general  theory of relat ivi ty for empty space has 
been expressed direct ly as an equation for  this t r ans la to r  [4]. 

Another example of the use of path-dependent functions is given in [5], in which an extended group 
of coordinate t ransformat ions  is considered with a view to the construct ion of a unified quantum field theory .  
The idea is that in place of the ord inary  one- to-one  coordinate t ransformat ion  x -)  x '  one introduces a 
multiply valued t ransformat ion  under which the image of the point x consis ts  of different points x '  depending 
on the path P among those that lead to the point x which is taken into considerat ion.  Thus, x '  is a function of 
the path P:  x ' {P}  (notation of [5]). 

In the well-known paper  [6], a path-dependent function is used as a field variable in quantum e lec t ro -  
dynamics.  Similarly,  in [7] a path-dependent gauge phase factor  in the theory of gauge fields is considered.  

A very  simple example of a path-dependent function is the work in a nonpotential force field F,,  
which can be represented  by the integral  

x '  

W(x' ,  x) = jF;.d~. (1.1) 
x 

We re s t r i c t  ourse lves  to these examples of path-dependent functions, fully aware of the extreme 
incompleteness  of our  list,  and point out that at the present  t ime we lack a unified construct ive definit ion of 

*v, v r = 1, 2 . . . . .  N: N is the dimension of space.  We use the sys tem of notation employed in the books 
[1, 2, 3] and e lsewhere  according to which pr imes  and other  symbols  used to distinguish different points are  
t r ans fe r red  to the coordinate index, i . e . ,  we wri te  ~" instead of z '~ to denote a point o r  ~, instead of ~(x') 
to denote a covector .  The differentiation is denoted s imi lar ly :  0r instead of 0/oz'~. 
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the var ious  path-dependent  functions such as is provided,  for  example ,  by the Tay lo r  s e r i e s  (or F o u r i e r  
expansion) for  o rd ina ry  functions.  The a im  of the p r e sen t  p a p e r  is to fill this gap by c rea t ing  a cons t ruc t ion  
which we may natura l ly  call  T a y l o r  expansion for  path-dependent  functions.  In accordance  with this ,  we 
shall  call  the functions cons idered  he re  (real) analyt ic  path-dependent  functions.  * 

The Tay l o r  expansion for  two-point  functions that do not depend on the path can be readi ly  cons t ruc ted  
by analogy with the o rd ina ry  Tay l o r  expansion using par t ia l  de r iva t ives  at  the point of expansion (see Eq.  (2,3) 
below). Such an expansion,  but using covar ian t  de r iva t ives ,  was  given in [8]. It  is ve ry  impor tan t  that  in 
[8] the path- independence of the expanded functions made it poss ib le  to use  only the s y m m e t r i c  pa r t s  of the 
covar ian t  de r iva t ives .  The informat ion contained in the nonsymmet r i e  p a r t s  was superf luous .  This  l a s t  
c i r c u m s t a n c e  sugges ts  that the use of all the informat ion  that may  be contained in the n o n s y m m e t r i c  d e r i v a -  
t ives  (covariant  and, as  we shall  see~ par t ia l )  makes  it poss ib le  to cons t ruc t  an expansion of pa th-dependent  
functions.  The p resen t  pape r  is devoted to the rea l iza t ion  of this idea.  The ma te r i a l  of the pape r  was 
pa r t l y  published in [9, 10, 11]. It is p resen ted  in detail  in [12]. 

2._ P a t h - I n d e p e n d e n t  F u n c t i o n s  

As is well  known, an analyt ic  (real) function ~(x '  ) defined at the points x ~' of an "ord inary"  N-  
dimensional  space  [1] can be defined by the se t  of values  of i ts  par t ia l  de r iva t ives :  

d e f  
, . .  ~ X f ~.  ~,~ [a~, : . . .~ , (D(x ' ) ]~ ,==[(D,~ , . .~ , (  )]~,=~ 

at a ce r t a in  point x if  they a re  used as  coeff ic ients  of the power  s e r i e s  

n ~ o  

(2 .1 )  

We have he re  introduced notation for  the d i f fe rence  between the coord ina tes  of the points x ~' and x~: (x'-x)~= 
x~'.&,~-x~. Note also that in the sum (2.1), as in all such exp re s s ions  in this paper ,  the indices % a re  
annihilated for  n = 0, this happening m o r e o v e r  f requent ly  toge the r  with the radica l  symbol  (this will be 
c l e a r  f rom the context) .  F o r  example ,  the ze ro th  t e r m  of the sum (2.1) is  s imply  @ (x) .  Because  of the 
(unavoidable) complex i ty  of the employed notation, mul t ip l icat ion in the fo rmu la s  is a lways indicated by a 
ra i sed  dot. 

If  we change the point x of the expansion (2,1) but r equ i re  that the value of ~(x '  ) should r e m a i n  
the s a m e ,  i . e . ,  r equ i re  the de r iva t ives  of the s e r i e s  (2.1) at the point x to be equal to ze ro ,  we can 
read i ly  obtain a re la t ionship  between the pa r t i a l  de r iva t ives  ~ ...... (x) as  functions of x: 

r ........ (x) =0 ....... r ~(x) =q) (x). (2.2) 

We point out that this (ordinary) re la t ion  is a consequence of (2.1) being a s ingle-point  function. One can 
give up this r equ i remen t ,  and then the s e r i e s  (2.1) de t e rmines  a ce r t a in  two-point  function: 

co 

I 
(x', z) = ~ ~ v,...,~, (x). (x' - -  x) ~'. . . . .  (x' - z) v~. 7 "  

~t ~ 0  

(2.3) 

The coeff ic ients  qD ......... (x) of the s e r i e s  (2.3), which a r e  functions not re la ted  to each other ,  will be cal led 
the functions of the de te rmin ing  s y s t e m  of the two-point  function ~ ( x '  x ) when it is expanded at the point 
of the r ight -hand a rgument ,  this  l as t  c i r c u m s t a n c e  being indicated by the placing to the r ight  of the indices 
v , , . . . ,  v, of the a s t e r i s k ;  for  now it is poss ib le  to expand the s a m e  two-point  function at the point of  the 
lef t -hand a rgumen t  or ,  putting it br ief ly ,  at the lef t  point: 

cQ 

O ( x ' ,  x)----- ~-7 %,  . . . .  " t "i'..-*~" ( x ) . ( x  - -  x ) . . . . .  (x - -  x') *~'. n-i-. ' 
7t ~ 0  

a different  de te rmin ing  s y s t e m  being now used.  We shall  a lways denote a two-point  function by a capi ta l  
Greek  l e t t e r ,  and the functions of i ts  de te rmin ing  s y s t e m s  by cor respond ing  l o w e r - c a s e  l e t t e r s .  

(2 ,4)  

*The path length l, for  example ,  does not belong to functions of this kind because  its i nc remen t  obviously 
cannot be r ep re sen t ed  in the f o r m  dl = [v.dx~ , s ince the path length i n c r e a s e s  for  any d i rec t ion  of the 
inf ini tes imal  d i sp lacement  dx v of the end of the path.  
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p 
Different ia t ing mult iply the s e r i e s  (2.3) at the point x , and the s e r i e s  (2.4) at the point x with 

the subsequent  equating x = x, we find that the de te rmin ing  functions a re  "coincidence l i m i t s "  of par t ia l  
de r iva t ives :  

......... ( z ) = [ 0 , ,  ...... , r  x ) ] . , = , ,  (2.5) 

r  ....... (z)  = [0 ....... r (x ' ,  x ) . l , ,= , .  (2.6) 

3 .  P a t h  I n t e g r a l s  

The s e r i e s  (2.3) and (2.4) de te rmine  the function ~(x ' ,  x )  by expanding it with r e spec t  to the 
e l e m e n t a r y  two-point  functions 

t 
( x ' - x ) ~ ' . . . .  . ( x ' - x )  . . . .  ( 3 . 1 )  

which depend only on the points x '  and x and do not contain the concept  of the path between these points .  
To go o v e r  to path--dependent functions,  we rep lace  the functions (3.1) by path in tegra l s  (x', x) ....... , which 
a re  defined by the r e c u r s i v e  fo rmula  

x r 

(x ' ,  x )  ...... , = ~8~' .  (~, x)  ........ dx  ~, (3.2) 
x 

in which the in tegra t ion is o v e r  the path which s e r v e s  as the a rgument  of the function. By x ~ we he re  
denote the in t e rmed ia te  "running" point of the path, while x and x '  a r e  the initial and final points of the 
path.  F o r m u l a  (3.2), which r e l a t e s  path in tegra l s  of neighboring o r d e r s ,  a r i s e s  natura l ly  by analogy with 
the re la t ion  

t 

which the functions (3.1) sa t i s fy .  But path in tegra l s  a re  nonsymmet r i c  with r e spec t  to the indices v~ . . . . .  v,, 
and by vi r tue  of this the countable se t  of them contains all informat ion about the or iented  path between the 
points x and x r. The or ienta t ion  is specif ied by the d i rec t ion of integrat ion.  

The definition (3.2) does not impose  any r e s t r i c t i ons  on the smoothness  of the path and does not 
depend on the poss ib le  p a r a m e t r i z a t i o n  of the path x~(t). Moreover ,  this  definition can also be used when 
the path cons i s t s  of a finite o rde r ed  set  of disconnected continuous paths since the definition contains only 
the different ia l  dxL It is t rue  that in tegra l s  of such a path a re  identical  to the path in tegra ls  obtained by 
displacing all the paths in such a way that the beginning of a subsequent  path coincides  with the end of the 
p reced ing  one. This shift  is to be unders tood in the coordinate  sense  as a change in the coordina tes  of all 
points of the path by the s a m e  numbers ,  dx ~ the reby  remain ing  unchanged. In exact ly  the s ame  way, the 
path in tegra l s  a re  not changed if at any point we add to the path an "appendix" t r a v e r s e d  f i r s t  in one direct ion 
and then immedia t e ly  a f t e rwa rds  in the o ther .  Thus,  in this pape r  a path is an e lement  of the group of paths 
introduced by Menskii  (see, for  example ,  the book [13]), and (3.2) defines a mapping of this group onto a 
group of se t s  of a countable number  of mul t icomponent  quant i t ies  cal led path in tegra l s .  An explici t  express ion  
for  the group opera t ion  can be readi ly  wr i t ten  down. If the path (x ' ,  x)  cons i s t s  of the pa r t s  (x ' ,  ~)  and 
(~, x ), then 

' = ' " " ' " ' ~ m "  ( ~ ' '  . . . .  ~ ( 3 . 3 )  

However ,  we defe r  the proof  of this f o rm u l a  to Sec. 4. With this we conclude the d iscuss ion  of the group 
p r o p e r t i e s  of path in tegra l s .  We m e r e l y  mention that the equivalence re la t ion  that,  through d isp lacement ,  
combines  disconnected (and "f ree '9  paths into e lements  of a group of paths depends on the coordinate  s y s t e m  
employed.  

Multiple different ia t ion of path in tegra l s  with r e spec t  to the coordinates  of the ends leads  to d e r i v a -  
t ives  that a r e  nonsymmet r i c  with r e s p e c t  to the indices ,  dependent on the o r d e r  of differentiat ion:  

Oltm'...~t 1" (X r, X f f  l ' ' ' v n  - -  ~vl Vm ., ~m+l-..vn - -  ~1 . . . .  8 ~ m . . ( x  , x )  , ( 3 . 4 )  

0 k t m . . . ~ l  ( X , '  X)  ~ql . . . .  n = ( _ _  t ) m .  (X , ,  X)~r . . . . .  I~-m * ~ V n - m  + l p m  " " ' * " ~l~'t" ( 3 .  5 )  
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Equation (3.4) is obtained d i rec t ly  f r o m  (3.2), and (3.5) is  proved by induction. In both c a s e s ,  we have in 
mind different ia t ion with r e s p e c t  to the coord ina tes  of the ends of the path, the ends acquir ing an inf ini tes imal  
d i sp lacement  while all of the r e m a i n d e r  of the path r e m a i n s  unchanged. It is in this sense  that the der iva t ive  
of a path-dependent  function is unders tood in [5] and in the e a r l i e r  s tudies  [14, 15]. 

4 .  P a t h - D e p e n d e n t  F u n c t i o n s .  N o n c o v a r i a n t  

E x p a n s i o n  

The use of the path in tegra l s  (3.2) in (2.3) and (2.4) leads  to the path-dependent  functions 

(I) (xt x) --.~-- ~ (~ %" 1 . . . .  n. (X)'(XP, .T)'~'I"" vn ~-- ~ (~. ,ql,... VrZ (X') "(X, X')'~'I'"" v~'. (4,1) 
n ~ 0  n ~ 0  

Here ,  %v ........ and %,~,, ..... , a r e  now n o n s y m m e t r i c  functions of the de termining  s y s t e m s  for  which (2.5) and 
(2.6) r ema in  valid by v i r tue  of (3.4). Thus,  the pa r t i a l  de r iva t ives  of a path-dependent  function depend on 
the o r d e r  of different iat ion,  l ike the de r iva t ives  of  path in tegra l s .  

If  the functions of the de termining  s y s t e m  a re  s y m m e t r i c ,  ~ ......... =~,( ....... )., then the function (4.1) 
does not depend on the path, l ike (2.3) and (2.4), because  

1 
(x', x) ( ....... ) = (x', x)~' " .. .  �9 (x', x) . . . .  . (4,2) 

n! 

Thus,  when the nonsymmet r i c  functions of a de te rmin ing  s y s t e m  a re  made s y m m e t r i c  in a ce r t a in  coordinate  
sy s t em,  the path-dependent  function is t r a n s f o r m e d  into a path- independent  two-point  function equal to the 
values  of the or iginal  functions for  paths that a re  s t ra igh t  in the coordinate  sense ,  i . e . ,  have the equation 

= x + kt .  Pa th- independent  functions will be r e f e r r e d  to by the abbrevia t ion  of s table  functions.  

If  we cons ide r  a t en s o r  path-dependent  function, then the functions of the s y s t e m s  that  de te rmine  it 
in the expansions 

co 

~, , q~ x)"~-.. ~ _~ (I) b ( x , x ) = ~ " ~  ,%'~..~.b(x).(x', (4.3) 
n ~ 0  

-~ 6~'. s ~,~, ~ ,  ~, (x')(x, x'y~" "~' (4.4) 
/ t ~ 0  

have specia l  t r a n s f o r m a t i o n  p r o p e r t i e s  under  changes  of the coordina tes  x = x ( ~ ) .  They a re  not t enso r s ,  
s ince the path in tegra l s  a r e  nontensor ia l .  In this paper ,  we shall  not give the cor responding  fo rmu la s .  
We note that the K r o n e c k e r  del ta  with indices r e f e r r i n g  to different  points of space  is nontensor ia l .  This  
symbol  is widely used below. Natura l ly ,  the functions of the de termining  s y s t e m s  for  the expansions  at the 
left  and r ight  points of a two-point  function a r e  connected by ce r t a in  re la t ions .  They can be obtained by 
mult iple  different ia t ion of the identity (4.3), (4.4) with al lowance fo r  (3.4) and (3.5) and with the subsequent  

f 
equating x = x. The r e su l t s  a re  given in the Appendix (Eq. (9.1)). 

The function (4.3), which has  the Latin indices a '  and b, is said to be t ensor ia l  only for  def in i teness .  
In rea l i ty ,  the s ignif icance of these  indices ,  i . e . ,  the r ep re sen t a t i on  of the group of coordinate  t r a n s f o r m a -  
t ions,  a t tached to the geome t r i ca l  quantity to which they a r e  appended can be a r b i t r a r y .  

The re  ex i s t s  an impor tan t  c l a s s  of path-dependent  functions containing, in pa r t i cu l a r ,  the t r a n s l a t o r  
of para l le l  t r a n s p o r t  and the path-dependent  functions of [6, 7]. They sa t i s fy  equations of the type 

O~'~=O~'~.O~ (4.5) 

whenever  the path (x ' ,  x )  cons i s t s  of the paths  (x ' ,  ~)  and (~, x ) .  We shall  say  that such functions a re  
P 

t r ans i t i ve .  Different ia t ing Eq. (4.5) n t imes  at the point x '  with the subsequent  equating ~ = x , we obtain 
(cf. the notation f r o m  (8.4)) 

a" a '  c" 
0"*~2" . .V]" 0 b ~ 0 , %'1" "'" V~ '*  C'"  0 b o ( 4 ,  6 )  

Fur the r ,  di f ferent ia t ing (4.6) at the point x '  with subsequent  equating x" = x, we obtain the r e c u r s i o n  
re la t ion  

' u " "  %'n+1 *b - -  %'n+1U , %'1"'" vn*b - ~  , Vl . . .  Vn ,C  �9 0 , %'n+l*b~ 
(4.7) 
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which shows that  t r ans i t ive  path-dependent  functions a re  de te rmined  by the specif icat ion of only s ing le - symbol  
functions of the de te rmin ing  sys t em,  in con t ra s t  to path-dependent  functions of genera l  type,  for  which all 
the functions of the de te rmin ing  s y s t e m s  must  be specif ied independently.  F o r  the t r a n s l a t o r  of pa ra l l e l  
t r anspo r t ,  s ing le - symbol  de te rmin ing  functions a re  the connection coeff ic ients :  

0 ~, ~,~ = - -  r~., (4.8) 

as can be seen  by compar ing  the definition 

V~'=~= ' . (6~-r~,~. dx~). V~ 

of para l le l  t r a n s p o r t  of a vec to r  with the f i r s t  t e r m s  in the expansion of the t r a n s l a t o r  0"'~ in accordance  
with (4.3). 

Thus,  speci f ica t ion  of the affine connection in space  is equivalent  (in accordance  with (4.7)) to the 
speci f ica t ion  of a t r ans i t ive  t r a n s l a t o r .  Note however  that the geome t r i ca l  p r o p e r t i e s  of space can be d e t e r -  
mined d i rec t ly  by a t r a n s l a t o r  o f  genera l  type,  which s imply  spec i f ies  the opera t ion of t r a n s p o r t  of the geo -  
me t r i ca l  entity along any path, the informat ion  about the manner  in which such t r a n s p o r t  mus t  be made being 
so extensive  that  it cannot be included in the field of the coeff ic ients  r ~ .  

Determining the de r iva t ives  of path in tegra l s  by means  of the exp res s ions  (3.4) and (3.5), we 
t 

thereby  de termined  the de r iva t ives  of the path--dependent function 6(x ' ,  x)  at the point x o r  x.  In the i r  
turn,  these  der iva t ives  make it poss ib le  to wr i te  down an expansion of the function ~(x ' ,  x)  at an in te rmedia te  
point ~ on the path (x ' ,  x ) .  F o r  example ,  

@ (z', x) = Z 0~ ...~, r (~, x). (x', ~)~'".~. (4.9) 

The validi ty of this fo rmula  is es tab l i shed  by the identi ty of all the de r iva t ives  of the l e f t -  and r ight-hand 
s ides  at the point ~. Applying (4.9) to path in tegra l s ,  q)(x', x )= (x ' ,  x) "'..."~, and taking into account the 
re la t ions  (3.4), we obtain the expres s ion  (3.3). 

5.  P a t h  T e n s o r s .  C o v a r i a n t  E x p a n s i o n  

o f  P a t h - D e p e n d e n t  F u n c t i o n s  

To obtain the t en s o r  expansion of path-dependent  functions,  it is n e c e s s a r y  to rep lace  the noncovar -  
iant path in tegra ls  (3.2) by path t en s o r s  X ....... (x', x), for  the cons t ruc t ion  of which the Kronecke r  del ta  in 
fo rmula  (3.2) is rep laced  by a ce r t a in  t r a n s l a t o r ,  * say X~,": 

X ....... (x ' ,  z)  = J X~,  .X ....... (~, x ) .  dx ~. (5.1) 
z 

As the root  l e t t e r  for  denoting path t en s o r s  and the t r a n s l a t o r  which genera tes  them we have chosen the 
Greek  l e t t e r  X, this being the one mos t  s i m i l a r  to the Latin l e t t e r  x assoc ia ted  with the components  of a 
radius  vec to r .  Using the path t en s o r s  (5.1), we can specify  a t en so r  expansion of the path-dependent  function 
q)~'a by means  of one fu r the r  t r a n s l a t o r ,  denoted by W~'b, instead of the Kronecke r  delta of fo rmula  (4.3): 

Ca'b = ~r~'~ �9 ~ ,  ~0~ I ,, .... . b  (x)- X"1""*n (x', x). (5.2) 

The coeff ic ients  (pal ,'r..% *b of this expansion a r e  t en so r s  by definition. This  is indicated by the fact  that the 

indices v , . . .  v, a r e  sepa ra ted  by a ve r t i ca l  b a r  r a t h e r  than a c o m m a .  We shall  say that these coeff ic ients ,  
which a r e  functions of the expansion point, f o rm a t ensor ia l  de termining  s y s t e m  of the path-dependent  
function ~)~'b. 

*We shall  give the name t r a n s l a t o r  to a function that takes  the value of the Kronecke r  delta when the path is 
cont rac ted  to a point: 

x~,~ -+ 8~ u, o~ '8 ~ 5~ ~ as (x', x)~ 0. 
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6.  T w o - P o i n t  C o v a r i a n t  D e r i v a t i v e  

The standard covar iant  derivative of a function r based on the t r ans la to r  Wb ~' can be expressed 

(6.1) 

in the form 

~F . - (De. 
V,,r ~ b = ion, (v-:%,. ~)];=~, 

(W-' denotes the inverse  t rans la tor :  W~, - ' " -W) '=8? ,  which, in fact, does not have any importance here) .  
Differentiating in (6.1), we readily a r r ive  at the usual express ion  for the standard covar iant  derivative:  

V~,'(D b --~ -:a" 

(we can denote ~-1(~,,, ~" = F"~.v). 

However. in this paper  we shall use a different definition for the covariant  derivat ive.  It can be 
shown that the tensors  ~paSv,...%.b in (5.2) can be given the meaning of coincidence l imits  of covariant  de r iva -  
tives if we introduce for t:he covariant  der ivat ives  the nonstandard definition 

a '  a" a c '  

We shall call the construct ion (6.2) the two-point covariant  derivative of the function r at the point x '  
based on the t rans la to r  ,I, with re fe rence  point ~. It is readily verified that such a derivative (in cont ras t  
to the standard derivative) vanishes when ~ = ,I, and when the reference  point coincides with the point of 
the right argument,  ~ = x: 

~ v , k F a ' b  = O. 
x 

In addition, for the same coincidence we have the following formula,  which is analogous to the nontensorial 
formula (3.4): 

x ~ ' ~  ' ~ . X  ~ + : '  ~ " (x ' ,  x), ~ , ,  ....,..X -(x.  x)---- X,."' . . . . .X,m. 

These proper t ies  ensure  the validity of (5.2) if we set 

a [ - X ~  r W |  "1 a '  

~p t ~ . . . . % . ~ = i v , ~ 1 6 2  ,~|,,,~. 

It is borne in mind that the derivatives here  are  based on the t r ans la to r  �9 with respec t  to the index a ~ and 
on the t r ans la to r  X with respec t  to the indices v~' . . . .  , v~_~. 

The definition (6.2) can be made standard if the re fe rence  point coincides with the differentiation 
point. However, the higher  two-point der ivat ives  cannot be made standard even when there is such coincid-  
ence, since in the case of multiple two-point differentiation the re fe rence  points of the foregoing different ia-  
tions are  assumed to be constants .  

For  the indicated coincidence of the differentiation point with the re fe rence  point it is possible to 
have a simplified notation of the two-point derivative by means of the addition of subscr ipts ,  which are  
separated,  not by a semicolon,  as in the case  of standard differentiation, but by a vert ical  bar :  

(iDa' de f  r iga '  
'Vn'...'vt" b ~ ,4~ [,Vl,...Vn, b. 

It is this that explains the appearance of the bar  in the notation of the tensorial  determining sys tem in (5.2). 

The two-point derivat ive does not depend on the position of the reference  point and in any o rde r  is 
identical to the standard covariant  derivative if it is based on a t ransi t ive t rans la to r .  This can be readi ly 
verified and evidently explains why the two-point derivat ive has not hitherto been introduced into tensor  
analysis .  

7.  L o o p  F u n c t i o n s  

We call a closed path a loop. Because of the coincidence of the beginning and the end, such a path 
is conveniently denoted by a single le t ter ,  say l. Accordingly,  we denote loop integrals  by (/, x) . . . . . . .  . As 
b e f o r e  the orientation of the loop is specified by the direct ion of the integration in accordance  with (3.2). 
Single-symbol loop integrals  (l, x) ~, and, by vir tue of (4.2), the symmet r i c  par ts  of all loop integrals are  
equal to zero :  (/, x)(~'-."~)=0. The an t i symmetr ic  par t  of the two-symbol  integral (l, x) t~,~l of an infinitesimal 
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loop is a b ivec to r  cor responding  to the two-dimens iona l  e lement  with internal  or ienta t ion bounded by this 
loop, the or ienta t ion of the e lement  being opposi te  to that of the loop. This  can be seen f r o m  the fact that 
(l, x) t*,*,l c o r r e s p o n d s  in accordance  with (3.2) to the sum of t r i angu la r  a r e a s  dx~.5{~' . (~,  x)  ~ .  There fo re ,  if 
we denote by d/~'~ the b ivec to r  cor responding  to the two-dimensional  e lement  or iented in accordance  with 
the loop we shall  have d/~ . . . . .  (l, x)[,,~1. 

As can be seen  f r o m  (4.3), for  the t r a n s l a t o r  r the express ion  

d A  ~ -~  ~ ,  [v,v:l*b" (l, X) "~' "~" A b ~ - -  T ~, [v,%].b "dr ~'v~" A b, 

wri t ten  down for  an inf in i tes imal  loop, g ives  the change of a ce r t a in  geomet r i ca l  entity A b when it is t r a n s -  
por ted around the loop by means  of (I)='b in the d i rec t ion of the loop or ienta t ion.  The re fo re ,  independently of 
the t rans i t iv i ty  of the t r a n s l a t o r  q)='b it is natural  to call  a ,  [~,~].b the cu rva tu re  t ensor  of the space  whose 
geome t r i ca l  p r o p e r t i e s  a r e  specif ied by the t r a n s l a t o r  (D='~: 

a ]L a 

And it is only if the t r a n s l a t o r  q)~'b is t r ans i t ive  that fo rmulas  (4.7) lead to the o rd inary  express ion  for  the 
cu rva tu re  t ensor  in t e r m s  of s ing le - symbol  de te rmin ing  functions of the type (4.8). 

8 .  E x a m p l e s  o f  T w o - P o i n t  F u n c t i o n s  

The s imples t  example  of a path-dependent  function is the work (1.1). I ts  de termining s y s t e m  can 
be readi ly  found by mult iple  different iat ion*:  

a , de~ aVn....~Fv, ' (8.1) [ % , .  , , , ,W (x , x) ]~ ,=~  ~ w ...... ~ . -  

The function W(x ' ,  x)  obviously sa t i s f i e s  the re la t ion  W ( x ' ,  x )  = W(x ' ,  ~)  + W(#, x)  for  any path 
(x ' ,  x)  divided by the point ~ into two pa r t s :  (x ' ,  ~)  and (~, x ) .  It can be cal led an additive path function. 
It is  t he re fo re  not su rp r i s ing  that i ts  en t i re  de te rmin ing  s y s t e m  can be found f r o m  the s ing le - symbol  function 
w., , .=F, ,  in accordance  with (8.1). The expansion of the work  (1.1) with r e spec t  to path in tegra ls  takes  the 
f o r m  

W ( x ' , x ) =  ) , ~ O , ~ , . . , J ~ , . ( x ' , x )  ....... 
n ~ o  

We now cons ider  the path-dependent  function of [6]: 

x '  

O(x' 

(we have denoted it speci f ica l ly ,  indicating explici t ly the path ends x and x '  ). It  has  (apart  f rom the 
notation) the s a m e  s ing le - symbol  de te rmin ing  function 

[0vr (x', x)]x,=~ neff. (P .... = leAve, 

and the comple te  de te rmin ing  s y s t e m  can also be found f r o m  this s ing le - symbol  function (8.3). However ,  
the path-dependent  function (8.2) is ,  in con t r a s t  to (1.1), t r ans i t ive :  ~ (x', x) =O (x', 5) -O (~, x). The re fo re ,  
i ts  de te rmin ing  s y s t e m  can be found f r o m  a r e c u r s i o n  re la t ion  of the type (4.7): 

q~.~ . . . . . . .  = & ~ q D  . . . . . . . . . . .  +<p,~ ... . . . . .  . .r .... 

We now turn to the t r a n s l a t o r  of pa ra l l e l  t r a n s p o r t  

(8.2) 

(8.3) 

~)~" - - 6  ~" ~-3 0 ~ ( / ,  ~:)w% - -  ~ . ~  ,~,...~'~" . . 
7 t ~ 0  

(8.4) 

If we s y m m e t r i z e  the functions of i ts  de termining  s y s t e m  in a normal  coordinate  s y s t e m  with pole at the 
point x, we obtain the s table  t r a n s l a t o r  of para l le l  t r a n s p o r t  along geodes ics  that Synge denotes by g/ '  ([3], 
p. 60 of the Russ ian  t rans la t ion) .  We have denoted such a t r a n s l a t o r  by Os~'~: 

~ ~ 0 ~ 0 , ~ , . . . v  ~*~ , ( ~ , . . . ~  ~;),b. 

*As an exception,  we use Lat in l e t t e r s  to denote a path-dependent  function and the s y s t e m  determining  it. 
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The le t ter  x above the equals sign means that the equation holds only in the normal  coordinate sys tem with 
pole at the point x (this is a cer ta in  modernizat ion of Schouten's  notation ~ [1]). 

We now introduce the dual t r ans la to r  @~,~: 0:,f~.0~'~=6~ ,~'. Integration of this t r ans la to r  along a cer ta in  
path in accordance  with (5.1) leads to a path-dependent path vec tor  

O~(x',x) = ~ O~-dzL (8.5) 
x 

Substituting in the integral in (8.5) an expansion of the type (4.3), 

0r = 6 r  0 ........ , . "  (~, x) ....... , 
n ~ 0  

and integrating, we find a nontensorial  expansion of the path vec tor  O~(x ', x): 

0 ~ (z', z) - )_~ 0 ....... . ~- (x ', x) ~'"'~", 
n ~ q  

where 0 ....... ~ "-- 0~,,~...~ .~ . . . .  If we symmet r i ze  with respec t  to the indices v~, , v~ the las t  expression in a 
cer ta in  coordinate sys tem,  we a r r ive  at a definite stable path vector .  We make this stabilization in a normal 
coordinate sys tem with pole at the point x and denote the stable path vec tor  then obtained by @'~(x', x): 

. . . . . . . .  " ( 8 . 6 )  O ~  = 0 "  ...... ...(x',z) ....... , 0"~, , , , . " - - - 0~  . . . . .  ~ ; .  

Differentiation of any stable path vec tor  leads to a so-ca l led  exponential t r ans la to r  [16]. Differentiation of 
the vec tor  (8.6) leads to the exponential t r ans la to r  

0%," = O, ,O~(z  ', x),  (8 .7)  

which is remarkable  in that in the chosen coordinate sys tem it takes a 6-function form: e'v~-~_~ 6~ ~, since 

for its determining sys tem 0%, ,,...%.~ we have the equations 

*d~ "r " ~ n *  

This follows f rom (4.7) and the fact that 0c~,i ..... Y~J----0 ([1], p. 158). Simultaneously, 0~ ', x) in the 
normal  coordinate sys tem is equal to the coordinate difference:  0 (x, x )=  (x -x )  . 

The vec tor  const ructed in a met r ic  space by differentiating Synge's  world function ~ (x ~, x ) [3] has 
the same proper ty .  Therefore ,  in a met r ic  space 0e"(x ', x)=-g"*.a~Q(x ', x) .  The vec tor  e '"(x ' ,  x), denoted 
by a,", is widely used (see, for example, [17]). 

We note finally a remarkable  proper ty  of the two-point derivative (6.2) based on the exponential 
t r ans la to r  (8.7) (it is not identical to the standard covar iant  derivative because the exponential t r ans la to r  
is nontransit ive).  In a normal  coordinate sys tem,  this derivative is identical to the part ial  derivative for 
X r = X: 

8 e 

,, --" %'n ...'r .~Vvn'...v," ~= 8 , 

And therefore  this derivative is p rec i se ly  the eovariant  operation that leads to the so-cal led  "extension" of 
tensors  introduced in [18]. 

9.  A p p e n d i x  

The relat ions connecting the functions (~a, "~*'"'~n *b and q~%b, v,...% in (4.3) and (4.4) can be conveniently 

represented in the recurs ive  form 

~ a . a %{q~. v,...%_l.b}. (9.1) 

Here,  the cur ly  brackets  with index v u preceding them denote the operation in which the index v n is added 
to all factors  of the express ion within the brackets ,  in turn, as in differentiation. At the same t ime, the 
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differentiation symbol 8 v is regarded as a factor, and the terms that do not contain a differentiation must 
be equipped on the left with the symbol 8 without indices (equivalent to unity). It is important that the 
addition of the index v n to the terms ~.b, ~,~-r ~, is made between the comma and the index vn-I with 

simultaneous change of sign. For example, 
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