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1. Preface/Introduction 
 
It is very well known how to calculate the magnetic effect. The transformations in other reference systems 
also can be explained very well with the special relativity. 
But how does the magnetic effect arise? 
Although it is obvious that the magnetic effect is connected with the electrical effect it cannot be 
recognized how this connection takes place. 
I have found a very simple and new way to describe or to explain the emergence of the magnetic effect. 
To this, I need only and alone the electrical effect, which is regarded as given. The constancy of the speed 
of light [1] is presupposed. 
The electrical field leaves its charge with the speed of light (c

r
). If one generalizes this, then one can 

represent the field with the velocity with which it leaves its charge. From this simple approach the 
magnetic effect arises obviously and mandatorily. 
But, of course, there are still some additional conditions which have to be examined more exactly... 
To prevent wrong expectations: In this work here, I explain only the emergence of the magnetic effect in 
dependence of the observer. Hence the magnetic effect still stays velocity dependent. The transformations 
into other inertial systems are carried out just normally with the special relativity. 
 
2. The strength and the direction of the electrical field 
 
The electrical field of an electrical charge Q leaves this charge with the velocity c

r
. This can be 

understood as if the electrical field is produced (arises) continuously (permanent) newly at the place of the 
charge. 
The electrical field has an effect on charges by a force. The strength and the direction of this force depend 
on the electrical field. Having this dynamic effect (of the force) means that the field transfers energy to 
charges. The field has an energy-density corresponding to its field-strength. 

The field-strength W
r

 (effect-strength) - said more exactly: the strength and the 
direction of the field at its emergence (at the place of the charge Q) - can be 
represented by c

r
 (therefore by the velocity, with which the field leaves of Q). 

(Figure 1) 
So, here, the strength and the direction of the field of a charge are represented 
at every point of the field by the velocity with which the field leaves at its 

Q
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beginning its charge. (Of course, the strength of the field depends on the distance to the charge with 1/r2.) 

If this is so, then, of course, the velocity QV
r

, with which the field producing charge Q moves, must be 

taken into account too. When the charge Q moves with the velocity QV
r

, then the strength and the 

direction, that is the effect of the field (W
r

), of this charge must change in this representation here by QV
r

. 

Said more exactly: If W
r

 and c
r

 shall point in the same direction, then the QV
r

−  must be taken for the 

change of W
r

 since c
r

 leaves Q. (Of course, the actual effect-direction depends on the signs of the charges 
which are just interacting with each other. - To this later more.) 
The connections are represented in Figure 2: 

If QV
r

 and c
r

 point in the same direction, then the field leaves its 

charge more slowly, and therefore it has a smaller effect (W
r

). 

If QV
r

 and c
r

 point in opposite directions then the effect W
r

 gets 

correspondingly bigger. 

Vertically to QV
r

, the angle φ results between the propagation-

direction of the field (which propagates with c
r

) and its effect-

direction (direction of W
r

). It is: 
c

VQarctan=ϕ . 

 
2.1 Quanta 
But the strength and the direction of the effect of the field of a 

charge is not allowed to change due to the velocity QV
r

 of the charge. 

The problem is solved, if one assumes that the electrical field is 
quantized [2]. 
The quanta of the field are emitted evenly in all directions, and in the same intervals.  

At first we look at the direction parallel to QV
r

: 

If QV
r

 and c
r

 point in the same direction then the emitted quanta are closer together. Simultaneously the 

effect W
r

 of every quantum becomes smaller in the same measure. So, the number of the quanta per 

distance (that is the density) increases with QV
r

 and at the same time their effect-strength decreases with 

QV
r

. This compensates each other exactly. 

The analogue is valid, if QV
r

 and c
r

 point in opposite directions. Then the number of the quanta per 

distance (that is the density) decreases with QV
r

 and their strength increases with QV
r

. This compensates 

each other exactly too. 
So, the field-strength (which corresponds to the energy-density of the field) doesn't change in the direction 

of QV
r

. Only the quantization of the field changes. 

Said differently: the normal electrical effect remains unchanged. 

We are looking at the direction vertical to QV
r

 now: 

The density of the quanta of the electrical field doesn't change here. But, instead, the direction of the effect 

changes. Here we have the angle φ between the effect W
r

 and the propagation-direction (with c
r

) of the 

Q
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field. This angle is not compensated by anything and is naturally part of the field of a charge Q which 

moves with QV
r

. 

Since we have cVQ

rr
⊥ , the effect-strength doesn't change in the direction of c

r
. But, an additional effect 

arises in the direction of QV
r

. The meaning of this additional effect in the direction of QV
r

 is an important 

component of this work and will get clear in the further course. 
 
2.2 Tension condition 
To be able to imagine the connections better, the effect-strength and the effect-direction of the quanta of 
the electrical field can be explained also as follows: 
When a point of the field leaves the charge, a kind of tension condition arises due to the distance which 
arises between the field-point and the charge. The longer the distance between the field-point and the 
charge is, all the bigger the tension is also. Since the field is quantized, after the time 0t∆  a new field-

point must be taken - which leaves the charge - and which builds up the tension once more. So, one can 

assign a (one-dimensional) length to a quantum of the electrical field. For 0=QV
r

 this length is 

ctS *00 ∆=∆ . In general we have: ( )QVctS
rr +∆=∆ *0 . 

The bigger S∆  is, all the bigger the tension is also. The quanta of the electrical field always move with 
c
r

. So, the bigger S∆  is, all the bigger the time is which passes until such a quantum has passed a point 
on which it has an effect, too. On the other hand, the number of the quanta which can act (have an effect) 
on this point (some other charge) gets all the smaller the bigger S∆  becomes. This compensates each 
other exactly. The bigger the tension of a quantum of the electrical field is, all the longer it is, too, and all 
the longer it takes until it has acted. One can imagine this effect of the quantum of the electrical field on a 
charge also as an "absorption" - the larger its length is, the longer its absorption takes, too. 

In an analogous way an additional tension condition also arises vertically to c
r

, if QV
r

 is vertically to c
r

; or 

if a c
r

 which is vertically to QV
r

 is considered. (Of course, it is the same, if a component of QV
r

 which is 

vertically on c
r

 is considered.) Here, a resulting effect W
r

 arises which has the angle φ to c
r

. 

Summarizing, it can be said that the field-strength doesn't change by QV
r

 in the direction of c
r

, and that the 

angle φ arises between W
r

 and c
r

, if QV
r

 has a vertical component on c
r

. 

 
(Smaller quanta have less energy and have instead a greater density (one could say that every quantum has 
a smaller field-strength but that there are more of them). Altogether, the strength of the field remains the 
same. So it has the same total energy.) 
 
Extra note: In case the field isn't quantized (which means that it can be regarded as homogeneous) one 

gets a compression or stretching of the field-strength in or contrary to the direction of QV
r

. This could be 

relevant for greater charge accumulations which move together with grate speed. This isn't relevant for the 
considerations to be made here, however. Here, it is primarily all about the angle φ. 
 
In the following, special attention will be given on the meaning which the angles φ has when the field has 
an effect on a charge. 
 

An important note: of course, the velocity QV
r

 depends on the observer. This means that φ depends on the 

observer too. The transformation in other reference systems is simply carried out via the special relativity. 
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This seems a little surprising from the everyday view: if one could visualize the angle φ, then two 
different observers could see respectively different angles (φ) for the same electrical field. Their 
observations, regarding the angle, wouldn't match. Such differences are already known from the theory of 
special relativity. In the end they all arise from the constancy of the speed of light. For the angle φ it is 
exactly so. The speed of light shall be constant here too, of course. Actually, the constancy of the speed of 

light is one of the most important prerequisites for this concept here. The velocity QV
r

 doesn't influence 

the c
r

. Since QV
r

 depends on the observer and c
r

 doesn't, φ changes inevitably. 

 
3. Anti-field 
 

Because of the angle φ, the effect-direction (W
r

) of the field changes in respect to its propagation-
direction (with c

r
). An effect vertical to c

r
 arises. But this can not be. 

The problem is solved very simply, if one assumes that, additionally to the field, an anti-field arises while 
the field acts (has an effect) on a charge. Said more exactly: to every field-quantum an anti-quantum 
arises. 
What is that anti-field? 
The anti-field is a field that acts exactly in the opposite direction to the field. In addition, it also moves 
exactly in the opposite direction. The anti-field has the same field-strength as the field. The angle φ has 
the same amount, but it is reflected, which corresponds to the fact that the anti-field moves in the opposite 
direction to the field. 
When the field acts on a charge E, then the anti-field arises at this charge. Both the field and the anti-field 
have an effect on the charge E. The anti-field acts exactly in the opposite direction to the field; since it 
also moves in the opposite direction, it finally (resulting) acts in the same direction as the field. 
So, the effect of the field on a charge consists of two components: the one of the field and the one of the 
anti-field. 
Said more exactly: To every field-quantum an anti-quantum arises at E. The effects of the quantum and of 
the anti-quantum add up to the overall-effect. The anti-quantum of the electrical field absolutely 
corresponds to an anti-particle [3]. The energy which the field transfers to the charge is the addition of the 
energy of the field plus the energy of the anti-field, or of the energy of the quantum plus the energy of the 
anti-quantum. So, the energy of the anti-field is already existing in the energy of the field. 
 
Remark: One can imagine the creation of the anti-field also as a kind of reflection of the field from the 
charge (E). If the effect of the field corresponds to an absorption, then the reflection corresponds to an 
emission. The emission corresponds to a repulsion and therefore acts in the same direction as the original 
field. However, this comparison doesn't always work particularly well. 
 
If, now, we represent the effect of the field or of the field-quanta by c

r
 again, and if we represent the 

effect of the anti-field or of the anti-quanta logically by cc
rr −=´  then the overall-effect gW

r
 of the 

electrical field on a resting charge E ( 0=EV
r

), when 0=ϕ , is cccWg

rrrr
*2)( =′−−= . 

This is the normal electrical effect between two resting charges. It always consists of the effects of the 
field and of the anti-field, in principle. 
 

We now will look at the case that 0≠ϕ , with 0=EV
r

. This is represented in Figure 3. 

The effect of W
r

 in the direction of c
r

 is cW
rr

=// , and the effect of W
r

 vertically to c
r

 is QVW
rr

−=⊥ . 

We also get correspondingly: ccW
rrr

=′−=′//  and QQ VVW
rrr

+=−−=′⊥ )( . 

This means: ⊥W
r

 and ⊥′W
r

 abolish each other, while we get cWW
rrr

*2//// =′+ . 
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Initially we had the problem that there 
was an effect vertically to c

r
 caused by 

φ. We recognize here now that the 
problem is solved by the anti-field 
because the two components of the field 
and of the anti-field which are vertically 
to c

r
 abolish each other exactly. 

Additionally, the two components 
parallel to c

r
 of the field and of the anti-field yield exactly the normal electrical effect. 

 

Until now we have had 0=EV
r

. When the charge E, on which a field has an effect, moves with the 

velocity EV
r

 ( 0≠EV
r

), then a magnetic effect arises, if also 0≠QV
r

, therefore if 0≠ϕ . In the following 

I will show how the magnetic effect arises from EV
r

 and φ. 
 
4. The magnetic effect 
 

We remember: At the creation of the field of a charge Q the velocity QV
r

 of the charge had to be taken into 

account. The effect W
r

 of the field is represented by QV
r

 and c
r

. 

In an analogous way the velocity EV
r

 of the charge E, on which the field has an effect, also must be taken 
into account. 
At this it is of decisive importance to pay attention to the correct application of the signs. 
Another important point is the quantization of the effect of the field on the charge. 
 
4.1 Parallel velocities 
We want to approach gradually to the conditions. To this purpose we look at first at a simple case: the 

field producing charge Q, which moves with 0≠QV
r

, and the charge E, on which the field has an effect 

and which moves with 0≠EV
r

, move on the same straight line. This can be seen in Figure 4. 
 
4.1.1 Signs 
We have already seen that the effect (or the field-strength) of the 

field of Q doesn't change by QV
r

 in the direction of QV
r

. Only the 

quantization changes. 

So, in the direction of QV
r

 the effect W
r

 of the field can be 

represented by c
r

. ( cWQ

rr
=̂ ) 

In a corresponding way the effect W′
r

 of the anti-field can be 

represented by c′− r
 since the field and the anti-field act exactly equally strong. ( cWQ ′−=′ rr

ˆ ) (Remember: 

c′r  points in the opposite direction to c
r

, but the anti-field acts in the opposite direction to the field. For 
this reason the "-" is necessary in front of c′r .) 
 

Very analogous to this that the field changes by QV
r

 at its emergence on Q, now the effect of the field on E 

shall change by EV
r

, too. 

The effect of the field on E changes by EV
r

 in the following way: 

E

c

W

Figure 3
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When E moves towards Q, which means that c
r

 and EV
r

 point in opposite directions, then the effect 

extends by the amount of EV
r

 since here E moves towards the field. When c
r

 and EV
r

 point in the same 

direction, then the effect reduces by the amount of EV
r

 since here E runs away from the field. 
So we get: 

)( EE VcW
rrr

−+=  

))(())(( EEE VcVcW
rrrrr

−+−−=−+′−=′  

Therefore: cVcVcWW EEEE

rrrrrrr
*2=++−=′+  

We recognize here that the effect-changes which arise by EV
r

 at the field and at the anti-field abolish each 
other exactly. Exactly the normal electrical effect arises resulting. (In this simple case described here.) 
 
4.1.2 Quanta 
How does it behave with the quanta? 

We had noticed that the quantization of the field depends on QV
r

. A (one-dimensional) length S∆  had 

been assigned to every quantum. The S∆  moves with the speed c
r

. The time, which E needs to pass 

through S∆ , changes by EV
r

, of course (in Figure 4, it gets smaller). Consequently, one could think now 

that the number of the quanta which have an effect on E changes by EV
r

. But this isn't so. 
Here it is necessary to take the following into account: a quantum is defined by its effect or by its energy-
transfer. But the effect of a quantum always consists of the addition of the effects of the quantum plus that 
one of the anti-quantum. The anti-quantum in turn moves in an opposite direction to the quantum. 
So, the effect or the energy-transfer to E in a time unit 0t∆  arises from the addition of the quanta plus the 

anti-quanta. Since the effect of the anti-quanta changes by EV
r

 in exactly the opposite way as the effect of 

the quanta do, the same overall-effect (gW ) always results after the time 0t∆ , independently of EV
r

. 

So, the number of the quanta (gW ) which have an effect on E is independent of EV
r

. Of course this is valid 

in particular if cVE

rr
⊥ . 

 
Every quantum always becomes a quantum and an anti-quantum. This means that both the number of the 

quanta and that of the anti-quanta doesn't change by EV
r

. 

Every quantum or anti-quantum of the field of Q can be represented by c
r

 or c′− r
. 

The effect of every quantum or anti-quantum changes correspondingly because of EV
r

 by )( EVc
rr −+  or 

))(( EVc
rr −+′− . 

This corresponds exactly to the conditions which one also finds at the considerations about the field. 
 
Remark: For having the same conditions for the field as for the quanta in this simple way it is decisive that 

the number of the quanta doesn't change by EV
r

. If one liked to regard the emergence of the anti-field as a 

reflection, then the numbers of the quanta change by EV
r

, what can lead to very complicated conditions. 
This isn't made in this work here. 
 
The analysis of the quanta can be renounced in the following. Instead, it suffices to look at the field and at 
the anti-field. 
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4.2 General case 
We have seen until now: 
As long as Q and E move on the same straight line, no additional effect to the normal electrical effect 
arises, therefore there is no magnetic effect. 
Such an additional effect which corresponds to the magnetic effect arises only, if the field has the angle φ 
between its propagation-direction (with c

r
) and its effect-direction, and if E moves with a velocity 

0≠EV
r

. It was already shown that the angle φ doesn't yield any additional effect to the normal electrical 

effect when 0=EV
r

. It was already shown, too, in principle, that a 0≠EV
r

 with a 0=ϕ  doesn't yield 

any additional effect since a cVE

rr
⊥  doesn't change the number of the quanta - this will get clearer in the 

considerations following now. 
 
For the better understanding we approach the connections best by having first a look at two special cases, 
before we then calculate the general case in the next chapter. 
The two special cases are: 

1.) cVQ

rr
⊥  and cVE

rr
//  

2.) cVQ

rr
⊥ and cVE

rr
⊥  

 
But at first, I describe the general procedure (without calculations), before I then will apply this procedure 
to these two special cases. 
 
4.2.1 General procedure 

As long as Q and E, or c
r

 and EV
r

, were moving only on the same straight line, the meaning of EV
r

 could 
be understood easily. 

But as soon as the angles φ results for the effect-direction by cVQ

rr
⊥ , it is very important to use the EV

r
 

correctly. 

First it makes sense to represent the EV
r

 by two components: one component parallel to c
r

, this is //EV
r

, 

and one component vertical to c
r

, this is ⊥EV
r

. 

For the component parallel to c
r

, this is //EV
r

, it is in principle the same as in the case in which c
r

 and EV
r

 

are on the same straight line. But here, though, Q moves with QV
r

 vertically to this straight line, so that for 

W
r

 the angle φ arises. Therefore the //EV
r

 is added to c
r

 so that W
r

 changes correspondingly. At this, the 

effect-change W
r

∆  has the same angle as W
r

. 

This is represented in Figure 5 for a //EV
r

 which points in an opposite direction to c
r

 so that the effect W
r

 

gets greater by the amount W
r

∆ . 

Remember: if EV
r

 and c
r

 point in opposite directions, then the effect enlarges, and if 

EV
r

 and c
r

 point in the same direction, then the effect reduces. This is valid too, of 

course, when the effect W
r

 has an angle φ to c
r

. 
 
For the anti-field it is also the same, of course, in an analogous way. But for the anti-
field the c′r  is taken instead of c

r
 since the anti-field moves with c′r  (in an opposite 

direction to c
r

). So, when EV
r

 and c′r  point in opposite directions, then the effect W′
r

 of the anti-field gets 
greater. Here it is necessary to take into account that the anti-field acts resulting in the same direction as 

c

Figure 5

-VQ
W

VE//

VE//

DW
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the field since its actually opposite effect-direction is cancelled out by its opposite movement-direction. 

So, when the EV
r

 and the c′r  point in opposite directions, then the W′∆
r

 has the same direction as the W′
r

. 

And finally, when EV
r

 and c′r  point in the same direction, then the W′
r

 gets smaller. 
Said briefly: for the field and the anti-field it is always: if E moves toward a field, then the effect gets 
greater, and if E co-moves with a field, then the effect gets smaller. 

So, the component parallel to c
r

 causes an additional effect (with signs) in the direction of W
r

 (or W′
r

). 

So, an additional effect arises parallel to W
r

. 
 

For the component of EV
r

 which is vertically to c
r

 (this is ⊥EV
r

) it is a little different. The ⊥EV
r

 causes an 

effect of its own which is vertically to the effect W
r

 (or W′
r

). That the ⊥EV
r

 causes an effect of its own is 

logical since the field doesn't have any effect vertically to W
r

 yet. We have already noticed that the effect 
of the field arises by the velocity with which the field leaves Q. And a corresponding additional effect 

arises from QV
r

. So, the ⊥EV
r

 also will cause an additional effect vertically to W
r

. 

The //EV
r

 strengthens or weakens an already existing effect. For the ⊥EV
r

 the effect arises from the field to 

which its relative motion is. It has to be taken into account that ⊥− EV
r

 must be taken for the anti-field. It is 

clear that for the effect-direction of the additional effect, which arises from ⊥EV
r

, the effect-direction of the 

field, relatively to which the ⊥EV
r

 is regarded, must be taken. And the anti-field acts in an opposite 

direction to the field. But differently than at //EV
r

 the opposite effect-direction of ⊥EV
r

 is not abolished by 

an opposite motion-direction. 

So, a new additional effect ⊥∆W
r

 arises by ⊥EV
r

 for which the φ of the field has to be 

taken into account likewise. Therefore the ⊥∆W
r

 is vertically to W
r

. In Figure 6 this is 

represented for the field W
r

. For the anti-field W′
r

 the ⊥′∆− W
r

 has to be taken. 
 
Still a word about the representation: as long as 0=ϕ , it sufficed to represent the effect 

of the field simply by c
r

. This was so because although a velocity of Q in the direction of c
r

 (with 

0=⊥QV
r

) changed the kind of the quantization it did not change the strength of the field. There wasn't any 

additional effect (as already stated). But when there is an angle 0≠ϕ , then the effect must be represented 

by the vectorial addition of c
r

 and QV
r

− , because here the QV
r

 causes an additional effect. Taken exactly, 

this additional effect (that is the angle φ) arises by the component of QV
r

 which is vertically to c
r

, this is 

⊥QV
r

. I will say something more about that later. 

 
For the clarification we will now apply the described procedure to the two mentioned special cases. 
 

1.) cVQ

rr
⊥  and cVE

rr
//  (Figure 7a) 

Since cVE

rr
// , it is 0=⊥EV

r
 and //EE VV

rr
= . The effect-changes, which arise from //EE VV

rr
= , are 

represented in Figure 7b. For the field this is W
r

∆  and for the anti-field it is W′∆
r

. 

Since //EV
r

 moves towards c
r

, the W
r

∆  points in the same direction as the W
r

. 

Since //EV
r

 runs away from c′r , the W′∆
r

 points in the opposite direction as the W′
r

. 

c

Figure 6

-VQ
W

DW^

VE^
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The amounts of W
r

∆  

and W′∆
r

 are equally 

big. The addition of 

W
r

∆  and W′∆
r

 yields 

rW
r

∆ . 
If one looks at Figure 7b, one already recognises only and alone by the geometry, without carrying out any 

calculations, that rW
r

∆  is vertically to EV
r

. 

An effect-change in the direction of EV
r

 (therefore parallel to EV
r

) doesn't arise. 

In the Figure 7b I have labelled the perpendicular to EV
r

 to be ⊥∆ QV
r

. It is: 

c

VV
V

V

V

c

V EQ
Q

E

QQ *⊥
⊥

⊥⊥ =∆⇒
∆

=
r

. 

One recognises in Figure 7b that: 
c

VV
VW EQ

Qr

*
*2*2 ⊥

⊥ =∆=∆ . 

I will show the exact calculations in the next chapter, just at the calculation of the general case. Later on it 

will get clear, that the rW
r

∆  actually corresponds exactly to the magnetic effect. This example here is 
primarily for the illustration. 
 
The second special case which had to be regarded is: 

2.) cVQ

rr
⊥ and cVE

rr
⊥  (Figure 8a) 

Since cVE

rr
⊥ , it is 0// =EV

r
 and EE VV

rr
=⊥ . 

Here, the ⊥= EE VV
rr

 causes its own effect and that effect is vertically to W
r

 and vertically to W′
r

, 

therefore it is in the directions ⊥W
r

 and ⊥′W
r

 (Figure 8b). I label these two effects also with a " ∆ " 

(therefore they are ⊥∆W
r

 and ⊥′∆W
r

) since they also represent a change, compared with the situation in 

which 0=EV
r

. 

The effect in the direction of ⊥W
r

 keeps its sign while the anti-field (⊥′W
r

) acts in the opposite direction. 
One immediately recognizes 

here, too, that rW
r

∆  is vertically 

to EV
r

. In addition, we get here 
also: 

c

VV
W EQ

r

*
*2 ⊥=∆ . 

 
This two special cases here have 
shown in a graphic way that the 
principle works since an 

arbitrary EV
r

 can always be 
represented by the components 

cVE

rr
//  and cVE

rr
⊥ . 
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There was the question whether an additional effect arises additionally to the normal electric effect if 

0=ϕ  (therefore 0=QV
r

) while E moves with 0≠EV
r

. One recognises very well at these two examples 

(special cases) that for 0=ϕ  the components of EV
r

 of the field and of the anti-field always cancel each 

other out exactly. So, a EV
r

 alone (that is with 0=ϕ  or 0=QV
r

) doesn't cause any additional effect. 

 
5. Calculations of the general case 
 
Before, now, the general calculations can be carried out, two facts still must be cleared: 

1.) Reflection and 2.) The meaning of ⊥QV
r

 

 
5.1 About 1.) (Reflection) 
When the field acts on the charge E, then it moves with the speed c

r
 over E. When E moves with the 

velocity EV
r

, then EV
r

 can be represented by two components: one component parallel to c
r

, this is //EV
r

, 

and one component vertical to c
r

, this is ⊥EV
r

. 

For the effect-change which arises by //EV
r

 it suffices to simply add the //EV
r

 to the c
r

. 

Vertically to c
r

, the field doesn't has a velocity. Such a velocity arises from ⊥EV
r

. The effect, which arises 
from that, corresponds to the velocity, with which the field moves over E in this direction. This velocity is 

⊥− EV
r

. So, the ⊥− EV
r

 must be used and not the ⊥EV
r

. 

From //EV
r

 and ⊥− EV
r

, the reflection of EV
r

 from c
r

 arises. (In other words: having //EV
r

 and ⊥− EV
r

 

corresponds to a reflection of EV
r

 from c
r

. So, the reflection of EV
r

 from c
r

 has to be used.) 

The effects (or the effect-changes), therefore the signs, shall be determined only after EV
r

 is reflected from 

c
r

. 
I mention here, once again, that c′r  always points exactly in the opposite direction to c

r
. Since, therefore, 

c
r

 and c′r  are parallel, it does not matter whether EV
r

 is reflected from c
r

 or from c′r . 
 

Remark: In the two special cases of the previous chapter ( cVQ

rr
⊥  with cVE

rr
// , and cVQ

rr
⊥  with 

cVE

rr
⊥ ) the problem with the reflection hadn't stood out due to the symmetry; however, one should carry 

out the reflection nevertheless to get correct signs always. 

The reflection of EV
r

 from c
r

 takes place independently of φ (therefore QV
r

), of course. 

 
The second fact, which I mentioned at the beginning of this chapter, still must be cleared now: 

5.2 About 2.) (The meaning of ⊥QV
r

) 

Generally there is an angle between the velocity QV
r

 of the charge Q and the 

speed Ec
r

 (the speed of light) of the field in the direction of E (see Figure 9), this 

is the angle α. So, one can now represent QV
r

 by two components: one in the 

direction of Ec
r

, this is //QV
r

, and one vertical to Ec
r

, this is ⊥QV
r

. 

VQ//

Figure 9

-VQ^

E

Q

VQ

cE

a

W
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For the component //QV
r

 it is 0=ϕ . This means that by //QV
r

 no effect-change takes place. The effect of 

the field doesn't change by //QV
r

. So the //QV
r

 can be ignored. 

For the ⊥QV
r

 it is different. The ⊥QV
r

 changes the effect of the field exactly by the amount to which the 

⊥QV
r

 corresponds. The effect of the field (W
r

) results from the addition of c
r

 plus ⊥− QV
r

. 

The direction of the effect W
r

 arises exclusively from ⊥QV
r

 and c
r

. The //QV
r

 doesn't influences the 

direction of W
r

 just as it doesn't influences the amount of W
r

. 
 
5.3 Calculation of the general case 
Now we can carry out the general calculation. 

First, EV
r

 is reflected from c
r

. This yields EV
r

 (the vertical line besides EV
r

 shall symbolize EV
r

-reflected). 

Then the EV
r

 is represented by its components parallel and vertical to c
r

, these are //EV
r

 and ⊥EV
r

. 

From this representation the effect-components to the field, these are W
r

∆  and ⊥∆W
r

, and these to the 

anti-field, these are W′∆
r

 and ⊥′∆W
r

, yield. 
Then the signs of the effect-changes have to be determined. 

For ⊥∆W
r

 and ⊥′∆W
r

 this is easy. The ⊥∆W
r

 keeps its sign, and for the anti-field the ⊥′∆− W
r

 must be 
taken. 

For W
r

∆  and W′∆
r

 it is exactly the opposite: The W′∆
r

 keeps its sign and for the field the W
r

∆−  is 

taken. This is explained as follows: The direction of c
r

 is defined as the positive direction. If c
r

 and //EV
r

 

point in the same direction, then this 

weakens the effect, therefore W
r

∆−  must 

be taken. If c
r

 and //EV
r

 point in opposite 

directions, then this strengthens the effect. 

But here the //EV
r

 is negative. This would 

yield a weakening of the effect. So, 

W
r

∆−  must be taken again. 
Similar considerations apply to the anti-
field. But it has to be taken into account 
that c′r  is negative here while the anti-
field acts in the same direction as the 
field. This abolishes each other so that 

W′∆+
r

 must be taken. 
 

At next, the effect-components (W
r

∆ , 

⊥∆W
r

, W′∆
r

 and ⊥′∆W
r

) are analysed 
once more and represented by 
components, too. We want to know, 

whether an effect arises (by EV
r

) in the 

direction of EV
r

 (therefore parallel to EV
r

). 
In addition, we want to know how great 

the effect is vertically to EV
r

. Therefore 

W´VE

W

c

DW´^y

j

q

c^

+

W^

VE^

a

W´^

VE

DW´y

DWy

DW^y

DW´x

DW^x

DW´^xDWx

- W´D ^

DW^

VE^

DW´

- WD

VE//

q

q

q

j
j

j

j
j

j
j

c W´ VE

W

VE^

W´^

c^

W^

Figure 10-

-

+

VE
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we represent the effect-components by components vertically to EV
r

, this are xW
r

∆ , xW⊥∆
r

, xW′∆
r

 and 

xW⊥′∆
r

, and by components parallel to EV
r

, this are yW
r

∆ , yW⊥∆
r

, yW′∆
r

 and yW⊥′∆
r

. 

These steps are carried out in Figure 10. 
The straight lines W  and W′  (dotted lines) are the effect-directions of the field and of the anti-field. The 
straight lines ⊥W  and ⊥′W  are the lines vertical to W  and to W′ . The straight line ⊥EV  (dotted line, not 

to be mistaken for the velocity ⊥EV , which is vertically to c
r

) is the vertical direction to EV
r

. The straight 

line ⊥c  is the vertical direction to c
r

. 

We define the direction of c
r

 as the positive direction. This is the simplest. The signs of the xW
r

∆ , xW⊥∆
r

, 

xW′∆
r

, xW⊥′∆
r

, yW
r

∆ , yW⊥∆
r

, yW′∆
r

 and yW⊥′∆
r

  yield correspondingly. 

The angle θ is the angle from c
r

 to EV
r

 (take into account the sign). The correct signs of the effect-

components parallel and vertical to EV
r

 arise from the correct ascertainment of the angles (with signs) of 
these components. (As an alternative, one can simply always calculate with the amounts and then gather 
the correct signs from the Figure 10.) 
It is: 

θθ cos*cos //
//

EE
E

E VV
V

V
=⇒=  

θθ sin*cos EE
E

E VV
V

V
=⇒= ⊥

⊥  

By the reflection of EV
r

 we get: 

θsin*EE VV −=⊥  

The angle between //EV
r

 and c
r

 is zero. 

The angle between ⊥EV  and c
r

 is 90°. 

The angle between ⊥− EV  and c
r

 is 270°. 
We also have: 

ϕ
θ

ϕ
ϕ

cos

*

cos
cos

siVV
W

W

V EEE ==∆⇒
∆

= ⊥
⊥

⊥

⊥  The angle to c
r

 is ϕ−270 . 

ϕ
θ

ϕ
ϕ

cos

*

cos
cos

siVV
W

W

V EEE ==′∆⇒
′∆

= ⊥
⊥

⊥

⊥  The angle to c
r

 is ϕ+270 . 

The amounts of ⊥∆W  and ⊥′∆W  are equally grate. For the ascertainment of the angle, the ⊥− EV  must be 

taken. (From this the angle of 270° to c
r

 arises.) Between c
r

 and W
r

 the angle is ϕ− , and between c
r

 and 

W′
r

 the angle is ϕ+ . This means correspondingly that here also the ϕ−  must be added to ⊥∆W
r

, and the 

ϕ+  must be added to ⊥′∆W . 

For (instead of) the ⊥′∆W  the ⊥′∆− W
r

 must be taken, as already explained. Therefore +180° must be 
added. Therefore we have: 
For ⊥′∆W  the angle is: ϕϕϕ +°=+°+°=°++° 9090360180270 . 
 
Furthermore we have: 

ϕ
ϑ

ϕ
ϕ

cos

cos*

cos
cos //// EEE VV

W
W

V
==∆⇒

∆
=   The angle to c

r
 is ϕ− . 
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ϕ
ϑ

ϕ
ϕ

cos

cos*

cos
cos //// EEE VV

W
W

V
==′∆⇒

′∆
=   The angle to c

r
 is ϕ+ . 

The amounts of W∆  and W′∆  are equally grate. For the ascertainment of the angles the //EV
r

+  must be 

taken. 
For (instead of) the W∆  the W∆−  must be taken, as already explained. Therefore +180° must be added. 
Therefore we have: 
For W∆  the angle is ϕ−°+180 . 
 

Now the components parallel (yW , yW′ , yW⊥  and yW⊥′ ) and vertical ( xW , xW′ , xW⊥  and xW⊥′ ) to EV
r

 

will be ascertained. Here, the correct angles must be used directly. 

The ascertained angles, though, refer to c
r

 while we want to ascertain the components referring to EV
r

 or 

⊥EV . 

Between c
r

 and EV
r

 the angle is θ. This angle still must be subtracted from the ascertained angles. Doing 

so, one gets the angles related to EV
r

. We know from the trigonometrical functions: 

The cosine of these angles are parallel to EV
r

, and the sine of these angles are vertically to EV
r

. 

So, for the direction parallel to EV
r

 we get: 

)cos(*))(180cos(*)180cos( ϑϕϑϕϑϕ +∆−=+−∆=∆⇒
∆
∆

=−− WWW
W

W
y

y
 

 

)cos(*)cos( ϑϕϑϕ −′∆=′∆⇒
′∆
′∆

=−+ WW
W

W
y

y
 

 

)sin(*))(270cos(*)270cos( ϑϕϑϕϑϕ +∆−=+−∆=∆⇒
∆
∆

=−− ⊥⊥⊥
⊥

⊥ WWW
W

W
y

y
 

 

)sin(*))(90cos(*)90cos( ϑϕϑϕϑϕ −′∆−=−+′∆=′∆⇒
′∆
′∆

=−+ ⊥⊥⊥
⊥

⊥ WWW
W

W
y

y
 

 
These four parallel components are added. Before of that the W∆ , W′∆ , ⊥∆W  and ⊥′∆W  are inserted. 

The overall-effect in the parallel direction, this is gW// , yields: 

))sin(*sin)sin(*sin)cos(*cos)cos(*cos(*
cos// ϑϕϑϑϕϑϑϕϑϑϕϑ

ϕ
−−+−−++−= E

g

V
W  

If the first term inside the bracket is added to the third, and the second is added to the fourth, we get: 

00*
cos

))cos()(cos(*
cos// ==−−=

ϕ
ϕϕ

ϕ
EE

g

VV
W . 

 

As expected, no effect results in the direction of EV
r

. 
 

We calculate the sine for the direction vertical to EV
r

 in the same way: 
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)sin(*)180sin( ϑϕϑϕ +∆+=∆⇒
∆
∆

=−− WW
W

W
x

x  

 

)sin(*)sin( ϑϕϑϕ −′∆+=′∆⇒
′∆
′∆

=−+ WW
W

W
x

x  

 

)cos(*)270sin( ϑϕϑϕ +∆−=∆⇒
∆
∆

=−− ⊥⊥
⊥

⊥ WW
W

W
x

x  

 

)cos(*)90cos( ϑϕϑϕ −′∆+=′∆⇒
′∆
′∆

=−+ ⊥⊥
⊥

⊥ WW
W

W
x

x  

 
These four vertical components are added. Before of that the W∆ , W′∆ , ⊥∆W  and ⊥′∆W  are inserted. 

The overall-effect in the vertical direction, this is GW⊥ , yields: 

))cos(*sin)cos(*sin)sin(*cos)sin(*cos(*
cos

ϑϕϑϑϕϑϑϕϑϑϕϑ
ϕ

−++−−+++=⊥
E

G

V
W  

If the first term inside the bracket is added to the third, and the second is added to the fourth, we get: 

ϕ
ϕϕ

ϕ
ϕϕ

ϕ cos

sin
**2)sin(*2*

cos
))sin()sin((*

cos E
EE

G V
VV

W ==+−−=⊥  

 

It is: ϕ
ϕ
ϕ

tag=
cos

sin
. And as we know, it is: 

c

V
tag Q⊥=ϕ . Therefore the GW⊥  yields to: 

 

c

VV
W QE

G
⊥

⊥ +=
*

*2  

 

The positive sign means here that the angle from EV
r

 to ⊥⊥ EG VW //  is +90°, in which the angle θ from c
r

 

to EV
r

 is also positive. 
We recognize a resulting effect here which is independent of θ. 

The GW⊥  is proportional to EV
r

 and to ⊥QV
r

. This corresponds to the magnetic effect. In the following I 

will show exactly how this works. 
 

But first something about the effect-direction: The angle between QV
r

 and c
r

 is α. We consider the case 

°= 90α  and °= 90ϑ . This means that QV
r

 and EV
r

 are parallel and that they point in the same direction. 

In this case the GW⊥  points exactly in the opposite direction to the c
r

. This means that the GW⊥ , which 

corresponds to the magnetic effect, points exactly in the opposite direction to the electric effect. 
 
As already said repeatedly, the effects of the field and of the anti-field are added. In the direction of c

r
 the 

field and the anti-field act in the same direction. So, the normal electric effect (so e.g. at 0== QE VV ) 

can be represented by cFE *2= . So, the normal electric effect is represented by the light speed. 
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The GW⊥  is only a velocity in the end, too. But at its ascertainment the effect-directions W
r

 and W′
r

 had 

to be taken into account. So, we represent the magnetic effect by GW⊥ : 

c

VV
WF QE

GM
⊥

⊥ −=−=
*

*2  

 
Here the minus must be taken now since it was noticed that the GW⊥  counteracts the electric effect. 

One can now represent the magnetic force in relation to the electric force: 
 

22

*
*

*

*2

*
*2

c

VV
FF

c

VV

c
c

VV

F

F QE
EM

QE

QE

E

M ⊥⊥

⊥

−=⇒−=
−

=  

 

In the case that we have cVV QQ

rrr
==⊥  (at °= 90α ) and cVE

rr
=  we get EM FF −= . This meets exactly 

the expectations. The magnetic effect abolishes the electric effect at the speed of light exactly. 
 

Of course, the law of Coulomb applies to the normal electric force: ε
2

*

r

QQ
F EQ

E =  [4]. According to 

the nomenclature used in this work till now it would be: the QQ  are the field producing charges, the EQ  is 

the charge on which the field has an effect, and r is the distance between these charges. 
 
To find out the magnetic effect of a current (which flows along a wire) on a 
charge EQ , it suffices to find out the electric effect and to multiply this electric 

effect with 
2

*

c

VV QE ⊥− . Here, of course, we have: 

αα sin*sin QQ
Q

Q VV
V

V
=⇒= ⊥

⊥
. 

In the case of a straight wire (conductor) one simply would integrate over the 
angle α (this is indicated in Figure 11). 
 
The magnitude of the magnetic force, found out here, depends, of course (!), 
on the observation location, therefore on the reference system. The magnetic 

force, found out here, depends on QV
r

 and on EV
r

. The QV
r

 and EV
r

 are observer 

dependent. The same also applies to the angle φ (as already mentioned). 
Different observers can observe different angles φ. The angle φ of the field is a 
field-characteristic which depends on the observer, it isn't independent of the 
observer. The transformations between the inertial systems are carried out 
normally via the special relativity. This applies to both to the forces (the 

magnetic and the electric forces), and to the speeds and angles (e.g. QV
r

, EV
r

 

and φ). 
 
The angle φ depends on the reference system. Nevertheless, φ is a field-characteristic. I have shown in this 
work that φ suffices completely to explain the emergence of the magnetic effect. The magnetic effect 
arises from φ in a completely natural and automatic way. The only prerequisite is that the electric effect of 
the field arises from the velocity with which the field moves relatively to the field producing charge. 

VQ

dQ

Figure 11
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dQ
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V =VQ Q^

dQ

c

c

c

c
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VQ^

VQ^

a

a

a
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6. Electrodynamic processes 
 
An important principle in this work is to represent the electric effect by the speed of light (c

r
). When the 

field producing charge Q moves with the velocity QV
r

, and when the charge E, on which the field has an 

effect, moves with the velocity EV
r

, then the changes of the electric effect, which arise by these two 

velocities ( QV
r

 and EV
r

), are represented only by these two velocities. 

When a charge E, on which a field has an effect, moves with the velocity EV
r

, then the distance to the field 
producing charge (Q) changes by this velocity, and therefore the field-strengths (both the magnetic one 
and the electric one) also change. (For a current, that flows along a straight conductor, this doesn't has any 
meaning since there is the same charge always at every place (point) on the conductor.) Turned around it 
is exactly the same: if the charge E rests while the field-strength is changing, then this corresponds exactly 
to a motion of E relatively to the field producing charge. This means that a change of the field-strength 

corresponds to a virtual velocity of the charge E, this is EVV
r

. This virtual velocity ( EVV
r

) of the charge E 

has the same meaning as EV
r

. In exactly the same way in which the EV
r

 can yield a magnetic effect, if the 

field has the angle φ, the EVV
r

 can yield a magnetic effect also. 

 
Both the electric and the magnetic field-strength can change. The special relativity must certainly be taken 
into account here. 
The magnetic field-strength can change in different ways: the distance to the field-source changes, or the 

number of the charges which move changes, or the velocities ( QV
r

) of the charges change. That last one 

means that φ changes. In each of these cases the change of the magnetic field corresponds to a virtual 

velocity ( EVV
r

) of the charge E. I mention this, to make clear that a change of the angle φ also corresponds 

to a EVV
r

. 

 

So, changes of the electric and magnetic field correspond to a virtual velocity EVV
r

 of the charges on 

which the fields have an effect. The changes of the electric and magnetic field don't take place 
independently of each other. The special relativity has to be taken into account here. At next, different 
cases should be analysed now. This will not be done here. The important cognition which arises from the 

virtual velocity EVV
r

 is the following: The principles of the electrodynamics are (of course) still valid 

completely independently from that that the emergence of the magnetic effect is described here by the 
angle φ. Said differently: The principles of the electrodynamics remain untouched from that that I explain 
the magnetic effect with the help of the angle φ. 
The Maxwell equations [5] can be used exactly in the usual, hitherto way. 
The arising of the electromagnetic waves also can be described as had. But, it has to be taken into account, 
though, that of course the electromagnetic waves contain the angle φ. 
 
7. Closing remark 
 
I could show that the emergence of the magnetic effect can be explained with the help of the angle φ. 
This is the way: 
The normal electric effect is represented by the light speedc

r
. The light speed c

r
 is the velocity with 

which the electric field leaves its charge. Because of the velocity QV
r

, with which the field producing 

charge moves, the effect of the electric field changes. Because of the quantization of the electric field the 
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effect of the electric field changes only vertically to QV
r

, namely by the angle φ. Because of the anti-field 

the effects of φ and φ´ (of the anti-field) abolish each other. Because of the velocity EV
r

, with which the 
charge on which the field has an effect moves, a resulting effect arises, which is the magnetic effect. 

Because of the virtual EV
r

, that is EVV
r

, the principles of the electrodynamics yield (remain unchanged). 

 
I think that the procedure shown here is plausible and justified. Most important of everything is the 
constancy of the light speed without which the magnetic effect couldn't be represented in the way shown 
here. 
At next (in further works), I would like to apply the procedure shown here concretely to special 
electrodynamic processes. 
In addition, I also would like to apply the procedure shown here to the gravitation. 
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