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1 Definition

Let f be a linear map1, of a real linear vector space Rn into itself, an endomor-
phism

f : a ∈ Rn → a′ ∈ Rn. (1)

This map is extended by outermorphism (symbol f) to act linearly on multi-
vectors

f(a1 ∧ a2 . . . ∧ ak) = f(a1) ∧ f(a2) . . . ∧ f(ak), k ≤ n. (2)

By definition f is grade-preserving and linear, mapping multivectors to mul-
tivectors. Examples are the reflections, rotations and translations described
earlier. The outermorphism of a product of two linear maps fg is the product
of the outermorphisms f g

f [g(a1)] ∧ f [g(a2)] . . . ∧ f [g(ak)] = f [g(a1) ∧ g(a2) . . . ∧ g(ak)]

= f [g(a1 ∧ a2 . . . ∧ ak)], (3)

with k ≤ n. The square brackets can safely be omitted.
The n–grade pseudoscalars of a geometric algebra are unique up to a scalar

factor. This can be used to define the determinant2 of a linear map as

det(f) = f(I)I−1 = f(I) ∗ I−1, and therefore f(I) = det(f)I. (4)

For an orthonormal basis {e1, e2, . . . , en} the unit pseudoscalar is I = e1e2 . . . en
with inverse I−1 = (−1)qenen−1 . . . e1 = (−1)q(−1)n(n−1)/2I, where q gives the
number of basis vectors, that square to −1 (the linear space is then Rp,q).
According to Grassmann n-grade vectors represent oriented volume elements
of dimension n. The determinant therefore shows how these volumes change
under linear maps. Composing two linear maps gives the product of these
volume factors

f g(I) = f [det(g)I] = det(g)f(I) = det(g) det(f)I. (5)

Therefore
det(fg) = det(g) det(f). (6)

1The treatment in this section largely follows [1].
2The symbol (∗) means the (symmetric) scalar product of two multivectors, i.e. the scalar

(0–grade) part of their geometric product.
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2 Adjoint and Inverse Linear Maps

For every linear map f : Rn → Rn exists3 a unique adjoint linear map f : Rn →
Rn, such that

b ∗ f(a) = f(b) ∗ a, ∀a,b ∈ Rn. (7)

The adjoint linear map extends again via outermorphism

f(a1 ∧ a2 . . . ∧ ak) = f(a1) ∧ f(a2) . . . ∧ f(ak), k ≤ n. (8)

In general we have for multivectors A,B that

B ∗ f(A) = f(B) ∗A, (9)

which can be applied to the defining4 relationship[3] for the (right) contraction

(C A) ∗B = C ∗ (A ∧B), ∀ multivectors A,B,C. (10)

For simple grade c-vectors C and a-vectors A, the right contraction (C A)
is a grade c − a sub-space multivector of C perpendicular to A. We now get
∀A,B,C

f(C A) ∗B = (C A) ∗ f(B) = C ∗ (A ∧ f(B))

= C ∗ (f(f−1(A)) ∧ f(B)) = C ∗ f(f−1(A) ∧B)

= f(C) ∗ (f−1(A) ∧B) = (f(C) f−1(A)) ∗B, (11)

and therefore
f(C A) = f(C) f−1(A). (12)

Similarly we obtain

f(C A) = f(C) f
−1

(A). (13)

Reversion gives two more identities

f(A C) = f−1(A) f(C), f(A C) = f
−1

(A) f(C). (14)

By substituting in f(C A) the pseudoscalar I for C and left multiplying with
the inverse I−1 we get a general formula for calculating the inverse of f

I−1f(IA) = I−1(f(I) f−1(A)) = I−1f(I)f−1(A) = det(f)f−1(A),

⇐⇒ f−1(A) =
1

det(f)
I−1f(IA) (15)

3An explicit definition for the adjoint linear map can be given as f(a) = ek(f(ek)∗a), with
ek∗el = δkl (the Kronecker deltasymbol), where 1 ≤ k, l ≤ n. Here the vectors {e1, e2, . . . , en}
form (a not necessarily orthonormal nor orthogonal) basis of Rn.

4The symbols (∗) and (∧) denote the (symmetric) scalar and the antisymmetric outer
product parts of the geometric product of multivectors.
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where we used the fact that right contraction with a pseudoscalar is nothing
but the geometric product and that f is grade preserving.

In the derivation of f−1 we tacitly used the following property of the deter-

minant obtained by applying B ∗ f(A) = f(B) ∗A

det(f) = f(I) ∗ I−1 = I ∗ f(I−1) = f(I) ∗ I−1 = det(f), (16)

because of the symmetry of the scalar product and because I−1 = (−1)q

(−1)n(n−1)/2I.

An analogous explicit expression can be derived for f
−1

f−1(A) = det(f)−1f(AI)I−1 = det(f)−1I−1f(IA),

f
−1

(A) = det(f)−1f(AI)I−1 = det(f)−1I−1f(IA). (17)

These formulas are very compact and computationally efficient. They show
that for invertible maps (det(f) 6= 0) the inverse mappings can be easily con-
structed as double-dualities. Duality here means multiplication with the pseu-
doscalar I or I−1.
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