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• ABSTRACT: We study a generalization of the zeta regularization method applied to the 

case of the regularization of divergent integrals  
0

sx dx
∞

∫  for positive ‘s’ , using the Euler 

Maclaurin summation formula, we manage to express a divergent integral in term of a 
linear combination of divergent series , these series can be regularized using the 
Riemann Zeta function  ( )sζ  s >0 , in the case of the pole at s=1 we use a property 

of the Functional determinant to obtain the regularization ( )
0

1 '

( )n

a
n a

∞

=

Γ= −
+ Γ∑ , with 

the aid of the Laurent series in one and several variables we can extend zeta 

regularization to the cases of integrals 
0

( )f x dx
∞

∫  , we believe this method can be of 

interest in the regularization of the divergent UV integrals in Quantum Field theory 
since our method would not have the problems of the Analytic regularization or 
dimensional regularization

• Keywords: =  Riemann Zeta function, Functional determinant, Zeta regularization, 
divergent series .

ZETA REGULARIZATION FOR DIVERGENT INTEGRALS:

Sometimes in mathematics and physics , we must evaluate divergent series of the form 

1

k

n

n
∞

=
∑ , of course this series is divergent unles Re (k) >1 , however cases  like k=1 or 

k=3 appear in several calculations of string theory and Casimir effect , for the case of 

Casimir effect [3] the result  
3

1

1

120n

n
∞

=

=∑  appears to give the correct result for the 

1



Casimir force  
2

4240
cF c

A a

π= − h  here A is the area and ‘d’ the separation between the 2 

plates , c and  h  are the speed of ligth and the Planck’s constant. The idea behind the 
Zeta regularization method is to take for granted that for every ‘s’  the identity 

1

( )s

n

n sζ
∞

−

=

=∑ , follows although this formula is valid just for Re (s) > 1 , to extend the 

definition of the Riemann Zeta function to negative real numbers, one need to use the 
functional equation for the Riemann function

( )(1 ) 2 2 ( ) cos ( )
2

s s
s s s

πζ π ζ−  − = Γ   
               ( ) (1 )

sin( )
s s

s

π
π

Γ Γ − =             (1)

This gives the expressions  
0 1

2n i

n
∞

=

= −∑   ,   
1

12n i

n
∞

=

= −∑    and  
2 0

n i

n
∞

=

=∑  due to the pole 

at s=1 , the Harmonic series  
1

1n

n
∞

−

=
∑  is NOT zeta regularizable, although it can be given 

a finite value  
1

1

0.577215..
n

n γ
∞

−

=

= =∑  , this value can be justified by using the theory of 

Zeta-regularized infinite products (determinants) , as we shall see later in the paper

o Zeta regularization for divergent integrals:

Let be  ( ) m sf x x −=  with Re(m-s) < -1 , then the Euler-Maclaurin summation formula 
(see [1] and appendix A formula (A.2)  )for this function reads

( )(2 1) (2 1)2

1 1

( ) ( )
( ) ( ) ( ) ( )

2 (2 )!
k kk

n a ka

Bf a f
f n f x dx f f a

k

∞∞ ∞
− −

= + =

+ ∞= − + ∞ −∑ ∑∫
     (2)
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2

( 1)
( 2 1 )

(2 )! ( 2 2 )

a
m s m s m s m s

ia a

m r sr

r a

m s
x dx x dx s m i a

B m s
m r s x dx

r m r s

ζ
∞ ∞

− − − − −

=

∞∞
− −

=

−= + − − +

Γ − +− − + −
Γ − + −

∑∫ ∫

∑ ∫
          a N∈        (3)

Here in formula (2) all the series and integrals are convergent, formula (2) is usually 

worthless , since it is trivial to prove that  
1

1

k
k

a

a
x dx

k

∞ −
− =

−∫  for Re(k) >1 ,and the Riemann 

zeta function  ( )
1

m s

i

m s iζ
∞

−

=

− = ∑ , so nothing new can be obtained from (2) 

The idea is to use the Functional equation (1) for the Riemann and Zeta function to 
extend the definition of equation (2) to the whole complex plane except s=1 , in case 
(m-s) is positive  there will be no pole at x=0 , so we can put a=0  and take the limit 

0s +→  
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1 22

10 0 0

!( 2 1)
( )

2 (2 )!( 2 1)!
m m m rr

r

B m m rm
x dx x dx m x dx

r m r
ζ

∞ ∞ ∞∞
− −

=

− += + − −
− +∑∫ ∫ ∫             (4)

Formula (4) is the Analytic continuation of formula (3) with a=0 and can be used to 
obtain a finite definition for otherwise divergent integrals ,apparently this recurrence 
equation has an infinite number of terms but the Gamma function has a pole at x= 0 and 

at x being some negative integer , also if the function is of the form ( )f x xα=  with 
0 1α≥ > −  we can us the Euler-Maclaurin formula directly, since the sum ( ) ( )f f a∞ +  
and its derivatives are finite.

some examples of formula (4)  
0

n
nI x dx

∞

= ∫

( )

0
0 1

0 0

20 2
2 21 0

0

32
3 0 21 0 2 31 0

0

(0) 1     ( 1)
2

( 1)
2 2

3 1
( 1) ( 3)

2 2 2

I
I dx I xdx

I B
I a I x dx

B
I I a I B a I x dx

ζ ζ

ζ

ζ ζ

∞ ∞

∞

∞

= + = = + − =

 = + − − =  

 = + − − + − − =  

∫ ∫

∫

∫

   (5)   

So our method can provide finite ‘regularization’ to divergent integrals , with the Aid of 
the zeta regularization algorithm. 

Also our formulae (3) (4) and (5) are consistent with the usual summation properties , in 

fact if  
0

mx dx
Λ

∫  is finite for finite  Λ  and we use the property of the Riemann and 

Hurwitz Zeta  function [ ] to get the sum of the k-th powers of n on the interval  [0, Λ ] 
1

0

( ) ( , )m

i

i m mζ ζ
Λ−

=

= − − − Λ∑  ,  
0

( , ) ( ) s

n

s nζ
∞

−

=

Λ = + Λ∑  defined for Re(s) >1 (of course for 

positive ‘s’ as  Λ → ∞  the second term goes to 0 )

1 22

10 0 0

!( 2 1)
( ) ( , )

2 (2 )!( 2 1)!
m m m rr

r

B m m rm
x dx x dx m m x dx

r m r
ζ ζ

Λ Λ Λ∞
− −

=

− += + − − − Λ −
− +∑∫ ∫ ∫     (6)

For integer ‘m’   1( )
( , )

1
m

H

B x
m x

m
ζ +− = −

+
 we find the Bernoulli Polynomials , the powers 

of  Λ  would cancel the integral 
1

0 1

m
mx dx

m

Λ +Λ=
+∫   , so in the end in formula (6) we would 

get the usual definition of Zeta regularization 1(0)
( )

1
m

H

B
m

m
ζ +− = −

+
 for integer ‘m’. Of 
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course one could argue that a ‘simpler’ regularization of the divergent integrals should 

be  
1

0

( ) ( )
1

s
s a

I s dx x a
s

∞ +

= + = −
+∫  and 

1

0

( 1) ( ) logI dx x a a
∞

−− = + = −∫   , this is just dropping 

out the term proportional to log ∞  or 1s+∞  inside the integral to make it finite, however 
if wi plugged this result into the Euler-Maclaurin summation formulae (3) (4) or (6) the 
terms involving ‘a’ would cancel  and we would finally find that ( ) 0H mζ − =  for every 
‘m’ which clearly is against the definition of zeta regularization of a series, for the case 
of the logarihmic divergence , obtained from differentiation with respect to the external 
parameter ‘a’ this is a result of taking the finite part of the integral ,which apparently 

works. For the case of the integrals  log ( )m s k

a

x x dx
∞

−∫  , we can simply differentiate k-

times with respect to regulator ‘s’ inside (3) in order to obtain finite values in terms of 
( )sζ −  and '( )sζ −  for negative values of ‘s’ unless m=-1 (for other negative values of 

m we can make a change of variable 1xq =  )  , this is treated in the next section

o Zeta-regularized determinants and the Harmonic series:

Given an operator A with an infinite set of nonzero Eigenvalues  { } 0n n
λ ∞

=  we can define 

a Zeta function and a Zeta-regularized determinant , Voros [10] 

{ }
0

( )s s
A n

n

Tr A sζ λ
∞

− −

=

= = ∑       
0

(0)
det( ) exp A

n
n

d
A

ds

ζλ
∞

=

 = = −  
∏             (7)

The proof of the second formula inside (7) is pretty easy, the derivative of the 

Generalized zeta function will be 
0

log
'( ) n

A s
n n

s
λζ

λ

∞

=

= −∑  now let s=0 , use the property of 

the logarithm log( . ) log loga b a b= +  and take the exponential on both sides.

For the case of the Eigenvalues of a simple Quantum Harmonic oscillator in one 
dimension [10]   n n aλ = +  , the Zeta function is just the Hurwitz Zeta function, so we 
can define a zeta-regularized infinite product in the form

0

(0, )
( ) exp H

n

d a
n a

ds

ζ∞

=

 + = −  
∏               ( )(0, )

log ( ) log 2Hd a
a

ds

ζ π= Γ −       (8)

In case we put a=1 we find the zeta-regularized product of all the natural numbers 

0

( 1) 2
n

n π
∞

=

+ =∏  ,see [5] if we take the derivative with respect to ‘a’ , we would find 

the same regularized Value Ramanujan did [2]  precisely  
0

1 '
( )

( )n

a
n a

∞

=

Γ= −
+ Γ∑   a > 0 

Harmonic series appear due to a logarithmic divergence of  the integral 
0 ( )

dx

n a

∞

+∫  , if we 

put m= -1 inside formula (3) , using a regulator ‘s’ ,  0s +→  we have the Euler 
Maclaurin summation formula
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2 1
2

1 1 2 1 1
0 10 0

1 1 1

( ) 2 ( ) (2 )! ( )

r
r

s s r s
n r x

Bdx

n a a n a r u x a

∞ −∞ ∞

+ + − +
= = =

 ∂= − + +  + + ∂ + 
∑ ∑∫       (9)

Since s >0 the integral and the series inside (9) will be convergent, now we can integrate 

over ‘a’ inside (9) and use the definition of the logarithm  
0

1
lim log

s

s

x
x

s+→

− =  , to 

regularize the integral  1
0 ( )s

dx

n a

∞

++∫  as  0s +→  in terms of the function 
'
( )a

Γ−
Γ

  plus 

some finite corrections due to the Euler-Maclaurin summation formula.

A faster method is just simple differentiate with respect to ‘a’ inside the integral 

2
0 ( )

dx dI

n a da

∞

= −
+∫  , now this integral is convergent for every ‘a’ and equal to 

1

a
 , 

integration over ‘a’ again gives the value log a c− +  plus a constant ‘c’ that will not 
depend on the value of a inside the integral in question , the proof that ‘c’ is unique no 

matter what a is comes from the fact that the difference  
0

1 1
log

b
dx

x a x b a

∞    − =   + +   ∫ . 

For the case a=0 , the derivative of the Hurwitz Zeta is  ( )(0,0)
log 2Hd

ds

ζ π= −  so if 

we approximate the divergent integral by a series, then we can get the regularized result 

00

1
0

n

dx

x n

∞ ∞

=

≈ =∑∫  . 

Apparently it seems that using two different regularizations we get some different 
results , the idea is that if we use the Stiriling asymptotic formula 

( ) ( )
1 2

2

1

1 1
log ( ) log log 2

2 2 2 2 1

n
r

r

B z
z z z z

r r
π

−∞

=

 Γ = − − + +  − 
∑      (10)

If we take the derivative with respect to ‘z’  inside (10) , is now more apparent that for 

the logarithmic derivative  
0

log
dx

x a a

µ∞  ≈  +  ∫  here  logc µ=  is a constant obtained from 

differentiation with respect to ‘a’ to regularize the divergent  integral , this constant ‘c’ 
must be related to some physical constant or in case the quantity ‘a’ has dimension of 
Energy then µ  must have also dimensions of energy so the logarithm is dimensionless, 
this constant ‘c’ would be the only free adjustable parameter that would appear inside 
our calculations to regularize integrals. 

If ‘a’ is negative there is an extra term due to the value log( 1) iπ− = , for more complex 

logarithmic integral one can use the definition 
1

0

log ( ) 1
log

1

k
kx a dx

x a k a

µ∞
++  ≈  + +  ∫  with 

the same energy scale  logc µ=
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So if we take formula (3) and the identity  inside Zeidler [12] , page 55 

( )
{ }

0

( , )     \ 1

'( )
       1

( )

H
s

reg
n

s a s C

n a a
s

a

ζ
∞

−

=

 ∈
+ = Γ − = Γ

∑
 then we can regularize any divergent integral 

0

( )mx a dx
∞

+∫
  to get a finite result by analytic continuation. 

This result is justified by taking the limit 0s +→  inside the formula for the Digamma 

function 
( ) 1( ) ( 1) ( 1) ( 1, )s s

Hz s s zζ+Ψ = − Γ + +
  

Also formally is possible to get the result  
1

1

n n
γ

∞

=

=∑  , if we introduce the following 

regulator  ( , ) cosh( log )R s n s n=  , 0s →  , inside the regularized Harmonic series 

1

( , )

n

R s n

n

∞

=
∑  so we get the limit  

0

(1 ) (1 )
lim

2
H H

s

s sζ ζ γ
→

+ + − =  , which is precisely the 

Euler-mascheroni constant.

o Regularization of divergent integrals 
0

( )dxf x
∞

∫  :

In general, the divergent integrals that appear in Quantum Field Theory [12] are 

invariant under rotations, for example  ( )
4

22 2

d p

p m+
∫   or  ( )

4

22 2

1

( )

d p

pp q m− +∫  , if we 

use 4-dimesional polar coordinates we can reduce these integrals to the case 

( )
/ 2

1

0

2
( )

/ 2

d
ddrf r r

d

π ∞
−

Γ ∫  then the UV divergences appear when  r → ∞ , here d=4 is the 

dimension of the spacetime, depending on the value of ‘d’ we can have several types of 

divergences  
1 1

0

( ) logd mdrf r r a b
Λ

− +≈ Λ + Λ∫  , if b =0 for m =2 the UV divergences are 

quadratic if m =0 the divergences are linear , in case a = 0 and b =1 the divergences are 

of logarithmic type , for example  ( )
4

22 2

d p

p m+
∫  has only a logarithmic divergence in 

dimension 4 , for a lower value of the dimension  (d=3 ) this integral exists.

To study the rate of divergence , we can expand the function into a Laurent series valid 

for  z → ∞   , ( ) ( )
n k

n
n

n

f x c x a
=

=−∞

= +∑  ‘k’ is a finite number and means that the function 

( )f x  has a power law divergence for big ‘x’ , then the idea to compute a divergent 
integral would be this, we add and substract a Polynomial plus a term proportional to 

1

x a+
 to split the integral into a finite part and another divergent integral, in both cases 

6



we must also introduce a regulator ( ) sx a −+  for natural number ‘a’ so we make the 
integrals converget for some Re(s) >0 

1
1 1

0 00 0 0

( ) ( ) ( )
( ) ( )

k k
n n s

n ns s
n n

bdx dx
f x b x a b x a dx b

x a x a x a

∞ ∞ ∞
−−

− +
= =

 − + − + + + + + + 
∑ ∑∫ ∫ ∫         (11) 

Also we can use the change of variable ( )x a x+ →  , so the new limits of integration 
would be  ( , )a ∞   , since ‘a’ is a natural number , then the following indentity 

1

0 0

( ) ( )
a

m s m s m s

n n a n

n a n m s nζ
∞ ∞ −

− − −

= = =

+ = = − +∑ ∑ ∑  holds for every positive ‘a’ and ‘m’ in the 

sense of a zeta regularized series.   

Now, we have to regularize the integrals inside (11)  
n s

n

a

x dx I
∞

− =∫  , this can be made 

using formula (3) to get only FINITE results for  these integrals nI  , see (5) , in general 

for every ‘n’ this divergent integral  in the limit  0s →  will be of the form ( )i
i

c iζ −∑  , 

where ‘i’ runs from 0 to n-1 , for the logarithmic divergent integral, we can regularize it 

by using the identity  
1

1n

n γ
∞

−

=

=∑   plus the Euler-Maclaurin summation formula so we 

get only finite (regularized) results, we are using zeta regularization plus formula (3) to 
get only finite results, this is the main key of our method.

Of course inside (11) in our substraction we can include non-integer powers of ‘x’ since 
the recursion formula (3) is still valid for them. 

The number of terms ‘k’ is chosen so the first integral is FINITE , this first integral can 
be computed by Numerical or exact methods and yields to a finite value , the rest of the 
integrals are just the logarithmic and power-law divergences, they can be regularized 
with the aid of formulae  (3) (4) (5) (7) (9) to get a finite value involving a linear 
combination of   ( )mζ −  m=0,1,2,....,k  and  another value proportional to 

0

log
dx

x a a

µ∞  ≈  +  ∫  , this appear because in renormalization/regularization we must 

obtain only finite values, so  
0

log( )
dx

a
x a

∞

= −
+∫  , since the divergent term log ∞  is 

erased by adding a counterterm to our Lagrangian defining our quantum theory so , we 

have that the (regularized)  integrals 
0 1

dx

x

∞

+∫   
0

dx

x

∞

∫  
1

0

dx

x∫  after renormalization must have 

a value equal to ‘0’ , if we insert these integrals inside the Euler-Maclaurin formula then 

we get a ‘finite’ value for the Harmonic series 
0

1 '
( )

( )n

a
n a

∞

=

Γ= −
+ Γ∑  , which is finite and 

it is the only value that an Harmonic series can admit after regularization 
renormalization, so even the Riemann and Hurwitz function have a pole at s=1 we can 
get a finite value for the Harmonic series.
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As an exampleto understand our method better, we can analyze this simple divergent 
integralwith  a > 0

 

2 2 2

2 1
2

2 1
1 0

1 (0) 1
1

1 1 2 2 2

' 1 1
( ) ( 1)

(2 )! 2

s

a a

r
r

r
r x

x dx x a
dx x a

x x x a

B
a

r u x a

ζ

ζ

∞ ∞−

−∞

−
= =

 
= − + + + − + + + + + 

Γ ∂  − − − + Γ ∂ + 

∫ ∫

∑
     0s →   (12)

The first integral in (12) is convergent and have an exact value of  
1

log
a

a

+ 
  

 , in order 

to regularize the logarithmic integral we have used the result  
0

1 '
( )

( )n

a
n a

∞

=

Γ= −
+ Γ∑  plus 

the Euler-Maclaurin summation formula . 

The mathematical justification of this is the following, given a divergent integral 

( )
a

dxf x
∞

∫  we introduce a regulator  ( ) ( )
s

a

dx
F s f x

x

∞

= ∫  so the integral F(s) exists for some 

big ‘s’ , if we add and substract powers of the form k sx − for integer k and ( ) 1s
x a

++  , we 

can split F(s) into a convergent integral I (s) valid for  0s +→  and some divergent 

integrals of the form 
m s

a

x dx
∞

−∫  and ( ) 1
0

s

dx

x a

∞

++∫  , using formulae (3) (4) (5) and (9) we 

can express these integrals in terms of the series  1
0

1

( )s
n n a

∞

+
= +∑   and  

0

1

( )s m
n n a

∞

−
= +∑  , 

which will be convergent for Re( ) 1s m− >   and Re( 1) 1s + >  , now using the 
Functional equation for the Hurwitz and Riemann Zeta function we can make the 
analytic continuation of both series to 0s +→  avoiding the pole at  s=1  by the use of 
Riemann Zeta function at negative integers  ( )nζ −  plus some corrections involving 

'
( )a

Γ−
Γ

 of course the rules for change of variable and still valid so 

( )
0

( ) ( )
s s

a

dxf x a x a duf u u
∞ ∞

− −+ + =∫ ∫  this can be used to avoid some IR divergences at x 

= 0 by splitting the integral into an IR divergent part and an UV divergent part 

0 0

a

a

du du du
∞ ∞

= +∫ ∫ ∫ . For other types of divergent integrals like  log ( )
a

dx x xβ α
∞

∫  for 

positive  α  and β  one could differentiate with respect to ‘m’ or ‘s’ inside formula (2) 

in order to obtain a recurrence equation for the integrals  log ( )
a

dx x xβ α
∞

∫ , this recurrence 

equation is finite (approximately) since for ( )Re 1p >  
log ( )

p
a

x
dx

x

β∞

∫  is finite and do not 

need to be regularized provided a > 0 . Other useful identities can be 
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( )
2

1/ 2
1 1

2 2.4

x x
x+ ≈ + −   or the expansion of the logarithm valid for any x > 0 

2 1

0

1 1
log 2

2 1 1

n

n

x
x

n x

+∞

=

− =  + + 
∑ to make logarithms more tractable , also we could use 

Laurent expansions to handle complicate non-Polynomial expressions like ( ) kn nx µ+  

by expanding it for big ‘x’ into asymptotic (inverse) power series.

Another method to deal with 
2

1

s

a

x dx

x

∞ −

+∫  , would be to expand the integrand into a 

convergent Laurent series valid for x >a  so  
2

1

3

1
1 ( 1)

1
n n

n

x
x x

x x

∞
−

=

= − + + −
+ ∑  and use the 

equations (2-5) term by term to obtain finite results for the integrals 
0

m sx dx
∞

−∫  with 

m=0,1,-1 however this is a bit trickier than (12).

o Pauli Villars regularization example for logarithmic divergent integrals:

To end with this section we will give another example of how can an integral with a 
logarithmic divergence be regularized, for example we set

( )
4 2

2 2 22
( , )

d k
s

kk s iε
−Λ∏ Λ =
− Λ− +

∫
        Λ → ∞    0ε →       (13)

Here the regulator for small ‘k’ is 1 and ‘s’ is a physical parameter , this examples 
appears in Newcomb [8] page 233 , in the renormalization process we have that 0s s→  
so , we must take into account the difference between the bare value of the parameter 
and the measured one  0( , ) ( , )s s δ∏ Λ − ∏ Λ = ∏  , in this case after renormalization, the 

integral inside (13) has the value  
2

0

log
s

i
s

δ π
 

∏ = −  
 

 

REGULARIZATION FOR IR  DIVERGENT INTEGRALS:

If the integrand has a pole at x a=  so is a IR divergent integral , we can make the 
Taylor substraction

( )

1

0

00 0

( ) ( )

( )

n
n

nn
n

n

f x b x a

dx b dx x a
x a

λ

λ
λ

λ

−

∞ ∞
−=

=

 − −   + −
−

∑
∑∫ ∫

             

( ) ( )

!

n

n

f a
b

n
=

                  (14)

For the case 1λ =  we have   
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2 2 2 2
0 0 0 0

( )

( ) ( ) ( ) ( ) ( )

dx dx x a dxx dx
a

x a x a x a x a x a

∞ ∞ ∞ ∞+= = +
− − + − −∫ ∫ ∫ ∫

             (15)

To avoid the pole at x =a we inserta n small complex quantity Epsilon so a a iε→ +  , 
then formula (14) can be griten

( ) 22
0 0 0

2
( ) ( ) ( )

dx dx dx

x a i x a i x a iε ε ε

∞ ∞ ∞

= +
− − + + − +∫ ∫ ∫

      (16)

Then inside (15) we have only a UV logarithmic divergence , for 1λ >  there are only 
IR divergences , if we use the Binomial theorem

0 ( )

dx

x a λ

∞

=
−∫

 
2 2

0 0

( )

( ( ) )

k k

k

a i x
dx

k x a i

λλ

λ

λ ε
ε

∞ −

=

  +
  − + 

∑ ∫
                 (17)

Integrals inside (16) and (17) can be evaluated with the expression

( ) 1 21

2 2
0

1
( 1) 2

( , , )
1( ( ) ) 2sin ( 1)!

2 3

m rrm

r

m
iax dx

I a m r
m mx a i r

r

π
π πε

+ −−∞
+ Γ − −  = =

+ +− +    − Γ   −   

∫          0ε →          (18)

o Regularization of integrals  0
m

dx

x

∞

∫
      1m ≥  :

There are 2 cases, for m=1 we have 

0 0 0 0

( )

(1 )

dx dx x a dx dx
a

x x x a x a ua

∞ ∞ ∞ ∞+= = +
+ + +∫ ∫ ∫ ∫

 

Where we have made the change of variable 1xu =  inside the last integral  to turn the 
IR divergence into a Logarithmic UV divergence.

For 1m >   we introduce a regulator 
sx  to make the IR divergent integral to converge

0 0 1/

a
m s

m s m s m s m s
a a a

dx dx dx dx
duu

x x x x

∞ ∞ ∞ ∞
−

− − − −= + = +∫ ∫ ∫ ∫ ∫
     1xu =                 (19)    
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The last integral inside (18) is divergent in the limit 0s →  and can be regularizad with 

formula (3). If many IR divergences appear 
1 2

1 2( ) .( ) .......( ) m
mx a x a x aλ λ λ− − −  we must 

perform the Taylor substraction (14) on each point ( )i
ix a−

REGULARIZATION OF MULTIPLE INTEGRALS:

In general in QFT there will be also multi-loop (multiple) integrals so we will also have 
to regularize integrals in the form.

( )
4 4 4

1 2 1 22
1

1
( ) .......... ( , ,....., )

1
n n

i i

I s d q d q d q F q q q
q

∞

=

=
+∏∫ ∫ ∫       (20)

Here we have introduced a regulator depending on an external parameter ‘s’ in order the 
integral (20) to converge for big ‘s’ and then use the analytic regularization to take the 
limit 0s +→  , this regulator must be chosen with care in order not  to spoil any 
symmetries of the Physical system.

Another method is to consider the multiple integral as an interate integral and then make 
the substraction for every variable for example

1 1, 2 1 1 1 1 1
1 10

( ,......, ) ( ,....., )(1 ) ( ,....., )(1 )
k k

i i
n i n i n

i i

q F q q q a q q q q a q q q
∞

=− =−

 ∂ − + + ∂ +  
∑ ∑∫ ∫    (21)

The symbol  1q∂  means that the integral is made over the variable 1q  keeping the other 
variables constant , the number ‘k’ is chosen so the first integral is finite , this integral 
will depend on  1( ,........, )nI q q  , the divergent integrals (even for the logarithmic case 
i=-1) can be regularized.

Now we have regularized the first integral, we have reduced in one variable  the 
multiple integral, repeating the iterative process for the functions  2( ,........, )i na q q

2 2 2 2 2 2 2
1 10

( ......, ) ( ,....., )(1 ) ( ,....., )(1 )
k k

i j
i n j n i n

j j

q a q q b q q q q b q q q
∞

=− =−

 
∂ − + + ∂ + 

 
∑ ∑∫ ∫       (22)    

                                                                                                                            
Using (21) and (22) on every variable we can reduce the dimension of the integral until 
we reach to the one dimensional case, which is easier to handle. 

If the integrand  1 2( , ,......., )nF q q q  had no singularities for every 0jq >  , we may 
expand this integrand into a multiple Laurent series of several variables, and then 
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perform the substraction  ( ) ( ) ( )
1, 2,...,

1 2

1, 2,...., 1 1 2 2
1, 2,....., 1

......
s s sn

m m mn

m m mn n n
m m mn

C q b q b q b
=−

+ + +∑  in 

order to define a finite part of the integral

( ) ( ) ( )
1, 2,...,

1 24 4 4
1 2 1, 2,...., 1 1 2 2

1, 2,....., 1

.......... ......
s s sn

m m mn

n m m mn n n
m m mn

d q d q d q F C q b q b q b
=−

 
− + + + 

 
∑∫ ∫ ∫  

(23)

Plus some corrections due to divergent integrals 
0

( )m
i i iq b dq

∞

+∫  m=-1,0,1,..... .

In many cases although the integrals given in (22) and (23) are finite they will have no 
exact expression or the exact expression will be too complicate, in this case we can use 
the Gauss-Laguerre Quadrature formula (in case the interval is  [0, )∞  ) to approximate 

the integral by a sum over the zeros of Laguerre Polynomials  1 2 1
0

( , ,....., , )
n

i n i
i

w f q q q x−
=
∑  

with the weigth expressed in terms of Laguerre Polynomials and their roots 

( ) 22
1( 1) ( )

i
i

n i

x
w

n L x+

=
+     , ( ) 0n iL x =      (24)

unAs an example we will regularize the simples 2-loop integral 

2 2
0 0

1 1

( ) ( )

l
dldk

k k p k l

∞ ∞

+ +∫ ∫
  

We introduce the 2 zeta regulators   s sk l  to get finite results and avoid divergences, the 
regulator will be eliminated after calculations. Integration over ‘l’ gives (here ‘p’ is a 
constant)

1

2
0 0 0

(1 )
( ) ( )( 1) 1 2

s s sl l dl l dl
dl k

k l k l l l

π∞ ∞ ∞− − −

= − + −
+ + + +∫ ∫ ∫         (25)

To perform integration over ‘k’ we will need to regularize the integrals

( ) 2
0

sk dk
A

k k p

∞

+∫        2 1/
0 0

(1 )

( ) ( )( 1)s

k dk dl

k p k k l l

∞ ∞−
+ + +∫ ∫      A = 

0 1 2

dx

x

π∞

−
+∫    (26)

The first integral becomes an logarithmic  UV divergent integral ( )
1

2
0 1

su du

up

∞ −

+∫  with the 

change of variable 1xu =  ( as always the regulator ‘s’ tends to 0 ), this can be 

regularized by addition and substraction  to this integral of the factor  
0 1

dx

x

∞

+∫  , this 

logarithmically divergent integral can be regularized with the Euler Maclaurin formula 

and the identity 
1

1

n regn
γ

∞

=

=∑  .

12



To evaluate the second integral we will use the Laguerre quadrature formula in order to 
simplify calculations

( ) ( )2 2
0 0 0

(1 )(1 )
    

( ) ( )( 1) ( ) 1
j

j

x j
j

x j j

w k dkk dk dl
w dke

k p k k l l k p k k x x

∞ ∞ ∞ −− →
+ + + + + +∑∫ ∫ ∫     (27)

Expression (27) is legitimate since the integral over ‘l’ is convergent, with a change of 
variable 1xu =  each integral of the sum inside (27) becomes a logarithmic divergent 

integral ( )2
0

( 1)

(1 ) 1
j

j

w u u du
dk

up ux

∞ −
+ +∫  , this is again a logarithmic divergent integral and can be 

evaluated by adding /substracting a term of the form 
0 1

dx

x

∞

+∫ . Using the equations (24 

-27) we have shown an example of how a 2-loop integral can be ζ − regularizad , by 
applying the zeta regularization method of our paper on each variable , first over ‘l’ 
keeping ‘k’ constant and then over ‘k’ to get finite results, each UV divergent integral 
can be regularized with the formulae (2-5)

o An easier example of a 2-loop integral and zeta regularization:

If the integral 
2 2

0 0

1 1

( ) ( )

l
dldk

k k p k l

∞ ∞

+ +∫ ∫
 seems too complicate we will give an easier 

model of how Zeta regularization Works beyond the 1-loop integral, let be the divergent 

integral  
0 0

1

1
dx dy

x y

∞ ∞

+ +∫ ∫  , this is divergent , and has also an overlapping divergence in 

‘x’ and ‘y’ , integration and regularization over the sub-divergence on the variable  ‘x’ 
gives (regulator ( ) sxy − assumed implicitly).

0 0 0 0 0 0

1

1 ( 1)( 1) 1

y dx
dx dy dx dy dy

x y x y x x

∞ ∞ ∞ ∞ ∞ ∞−= +
+ + + + + +∫ ∫ ∫ ∫ ∫ ∫     (28)

The first integral inside (28) is convergent 
0 0 ( 1)( 1)

y
dx dy

x y x

∞ ∞ −
+ + +∫ ∫  so we can use the 

Laguerre Quadrature formula to evaluate it ( 1)( 1)
jx

j
j j j

y
e

x y x
ω −

+ + +∑   , we have now a 

sum of finite term, each term will be a function of ‘y’ , regularization in the variable ‘y’ 
gives finally (for each term of the Laguerre quadrature)

     
0 0 0

( 1)
( 1)

( 1)( 1) ( 1)( 1) 1
j j

j
j j j j

x xy dy
dy dy x

x y x x y x y

∞ ∞ ∞− +− = − + +
+ + + + + + +∫ ∫ ∫             (29)

Where, we must apply the regularization inside (29) to every term of the Laguerre 

Quadrature formula ( 1)( 1)
jx

j
j j j

y
e

x y x
ω −

+ + +∑  to obtain a finite result
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 Now integral inside (29) 
0

( 1)

( 1)( 1)
j j

j j

x x
dy

x y x

∞ − +
+ + +∫  is convergent (integration over ‘y’) so 

it can be evaluated without any regularization renormalization. 

The three divergent integrals  
0

dy
∞

∫   
0 1

dx

x

∞

+∫  and  
0

ydy
∞

∫  can be regularized using the 

equations (2) (3) and (4) plus the identity  
0

1

1n n
γ

∞

=

=
+∑ .

Of  course we could have used the Euler-Maclaurin summation formula to replace the 

convergent integral 
0 0 ( 1)( 1)

y
dx dy

x y x

∞ ∞ −
+ + +∫ ∫  by a finite convergent series  whose terms 

will depend on the variable ‘y’ 
1 ( 1)( 1)n

y

n y n

∞

=

−
+ + +∑  , then we truncate the series and 

apply zeta regularization  (29) to each term of the series.

We would like to put much emphasis into this method of zeta regularization for multiple 
loop integral (2 –loop) with overlapping divergences, because we have had our paper 
rejected several times because of the cheap excuse that zeta regularization would not be 
valid for higher loops , with these examples we prove them wrong, we show how we 
can regularize a multiple integral using zeta regularization and iterated integration on 
each of variables, first over ‘x’ (subdivergence) and then over ‘y’ , of course this 
process can be generalized to n-loop multiple integrals too, so referee’s excuse is just 
wrong and zeta regularization is valid also for multiple integrals

CONCLUSIONS AND FINAL REMARKS:

We have extended the definition of the zeta regularization of a series to apply it to the 

Zeta regularization of a divergent integral  
0

mx dx
∞

∫  1 > m >0 by using the Zeta 

regularization technique combined with the Euler Maclaurin summation formula. 

For a good introduction to the Zeta regularization techniques , there is the book by 
Elizalde [4] or the Book by Brendt based on the mathematical discoveries of Ramanujan 
and its method of summation equivalent to the Zeta regularization algorithm [2] , 
another good reference (but a bit more advanced) is Zeidler [12] , for the case of Zeta-
regularized determinants [7] is a good online reference describing also the process of 
Zeta regularization via analytic continuation and how it can be applied to prove the 

identity 
0

( 1) log 2
n

n π
∞

=

+ =∏  .

 Apparently there is a contradiction, since the Riemann Zeta funciton has a pole at s=1 
so the Harmonic series could not be regularized, however using the definition of a 
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functional determinant 
0

n

n

E

µ

∞

=
∏    nE n a= + one gets the finite result for the Harmonic 

(generalized) series  
0

1 '( )

( )n

a

n a a

∞

=

Γ= −
+ Γ∑ , with the aid of the Euler-maclaurin summation 

formula  this result for the Harmonic series can be used to give an approximate 

regularized value of the logarithmic integral  
0

1
dx

x a

∞

+∫  , for the case of other types of 

divergent integrals ( )
0

m
dx x a

∞

+∫  we can use again Euler-Maclaurin summatio formula 

to express this divergent integrals in terms of the negative values of the Hurwitz or 
Riemann Zeta function   ( ,1) ( )H s sζ ζ=    ( ,1)H mζ −   (UV)           m= 
0,1,2,3,4,..........and the  value of the derivative of Hurwitz zeta function along s =0 

(0, )s H aζ∂ (logarithmic UV), these values encode the UV divergences [11] .  

For the case of the IR (infrared ) divergences in the form 
0

m s

dx

x

∞

−∫  one could make a 

change of variable   
1

x
q

→  to re-interpretate these integrals as  
2

0

m sq dq
∞

− −∫  , for the case 

m=1 we have a logarithmic divergence both at x= 0 an as x → ∞  so we must split the 

integral into a IR and an UV divergent part  
1/

0 0 1/

a

a

dx dx dx

x x x

∞ ∞

= +∫ ∫ ∫  after a few simple 

calculations this integral will be equal to 
0

2log
dx

x
µ

∞

=∫  , since we can simply introduce 

a formal UV and IR regulator so   ( )
1

lim 2log UV

dx

x−

Λ

Λ→∞
Λ

= Λ∫ , an UV regulator is 

introduced to ensure that the integral will be convergent .

We also believe that a similar procedure can be applied to extend our Zeta 
regularization algorithm to multiple (multi-loop)  integrals 

4 4 4
1 2 1 2......... ( , ,......., )n nd q d q d q F q q q∫ ∫ ∫

The advantages of zeta regularization are

 Zeta regularization gives only finite results without counterterms if we use the 

analytic continuation of Riemann zeta 
1

( )m s

n

n s mζ
∞

−

=

= −∑  and the regularizatio 

of the Harmonic series  
0

1 '( )

( ) ( )reg
n

a

n a a

∞

=

Γ= −
+ Γ∑

 Zeta regularization does not alter the dimension of space so we can work with 
Matrices 5 0 1 2 3iγ γ γ γ γ=  and Tensors ijkε  , unlike dimensional regularization.

 Zeta regularization respect many of the symmetries of the system
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 Zeta regularizatio is compatible with many other regularization methods: Pauli-
Villars, Cut-off regularization...

 Zeta regularization is valid also in curved spacetimes.
 For the case of IR divergences we can make the change of variable 1x u−=  so 

the IR divergent integral 
1

0
m s

dx

x −∫  turns into  
2

1

m su du
∞

− −∫ , for the logarithmic 

integral we get  
0

0
dx

x

∞

=∫  in the sense of zeta regularization.

 In the Zeta regularization method these 2 equations are equivalent 

0

logreg

dx
a

x a

∞

= −
+∫  and  

0

1 '( )

( ) ( )reg
n

a

n a a

∞

=

Γ= −
+ Γ∑  this may be proved using the 

Euler-Maclaurin formula
 If we use Numerical methods we can extend this zeta regularization algorithm to 

multiple loop integrals , see eqs. (20-29)
 Elizalde and others have proved that Zeta regularization is well defined [5] , also 

through history , zeta regularization has given correct values in several branches 
of math and physics , for example in the Casimir effect. [10]

In both cases zeta regularization and dimensional regularization are based on the 
principle of analytic continuation, however some people still have prejudices against 
zeta regularization and it is not commonly used , except for the evaluation of functional 
determinants. Dimensional regularization is just Zeta regularization in disguise, in fact 
when after calculations they take the limit  4d ε= −  as  0ε →  they find the expression 
1

( )Oγ ε
ε

+ +  , the Euler-Mascheroni constant appears in both regularization although in 

zeta regularization we do not have the pole 1/ ε  at the end of the calculations.

The imposition in formula (2) that ‘a’ must be a natural number is in order to avoid 
oddities in the process of Zeta regularization with the Zeta and Hurwitz Zeta function, 
since unless ‘a’ is a positive integer the equality 

0 0 0

1
( 1, ) ( )

12 2n n n

a
a n a n aζ

∞ ∞ ∞

= = =

−− = + ≠ + = −∑ ∑ ∑        (30)  does not hold . 

Equation (30) must be understood as 
0 0

( ) ( 1, )
a

n n a n

n a n a nζ
∞ ∞

= = =

+ = = − −∑ ∑ ∑  so zeta 

regularization is consistent and yields to correct results.

Another advantage is that we get only finite quantities, whereas in dimensional 

regularization you will always find poles of the Gamma function 
1

( ) ( )z O z
z

γΓ = + +  in 

the limit 0z →  this expression blows up, and need a counterterm to turn it finite.

The main advantage of our Zeta regularization method is that due to formula (3) and the 

regularized identity for the Digamma function 
0

1 '( )

( ) ( )reg
n

a

n a a

∞

=

Γ= −
+ Γ∑  , the relationship 
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between dimensional regularization and dimensional regularization is recovered if we 
use the following definition for the logarithmic divergent integral   
 

( )1
1

1
(1) log 4 2log   0

s

dx
s

x s
π µ

∞

+ = Ψ + + + →∫      (31)

Where we have introduced the Energy scale µ .

APPENDIX A: HOW TO OVERCOME THE POLE  (1)ζ = ∞

In this paper we have seen how due to the pole of the Riemann zeta at the point s = 1 we 

could not regularize the integral 
0

dx

x

∞

∫  unless we use the result for the Harmonic series 

( )
0

1 '

( ) reg
n

a
n a

∞

=

Γ= −
+ Γ∑  fro a > 0 and finite, then if we introduce this result inside the 

Euler-Maclaurin summation formula we can get finite results for 
0

dx

x

∞

∫ .

Another alternative is to use the identity

0

( )
1

!

n
x

n

x
e

n

∞

=

−= ∑       1
0

( )
log ( )

!

n
n

na a

dx dx
x

x n x α
α∞ ∞∞

−
=

−= ∑∫ ∫    (A.1)

In this case we can evaluate the integrals inside (A.1) by  the Euler Maclaurin formula 

( )(2 1) (2 1)2

1 1

( ) ( )
( ) ( ) ( ) ( )

2 (2 )!
k kk

n a ka

Bf a f
f n f x dx f f a

k

∞∞ ∞
− −

= + =

+ ∞= − + ∞ −∑ ∑∫
            (A.2)

Here The Bernoulli numbers on the last side of (A.2) are the coefficients of the Taylor 

expansion of   1x

x

e −  if we insert inside (A.2) the expresión  
1

log ( )
( )

n x
f x

a α−=

( )
2 1

( ) 2
1 1 1 2 1 1

1 1 0

log ( ) log ( ) log ( ) log ( )
1 (1 )

(2 )! ( )

n n n r na
n n r

r s
i ra x

Bdx x a i x a

x a i r u x aα α αζ α
∞ −∞

− − − − +
= = =

 ∂ += + − − − +  ∂ + 
∑ ∑∫

 (A.3)
Here α  is an small non integer, so the zeta function and its derivatives ( ) (1 )nζ α−  are 
FINITE

Another alternative is to look for a Pade or Rational approximation for the square root 
of ‘x’ for example.
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( )

( )

P x
x

Q x
≈         

1

2
2

0

( 1) (2 )!
1    1

(1 2 )( !) 4

n n

n
n

n
x x x

n n

∞ − +

=

−+ = >
−∑     (A.4)

In this case (A.4) we have the approximation  3/ 2

( )

( )a a

dx P x dx

x Q x x

∞ ∞

≈∫ ∫ , now if we apply the 

formula

3/ 20
03/ 2 5/ 2

( )

( )
i i

i i
i ia a a

cdx P x dx
c x c x dx c

x Q x x x

∞ ∞ ∞
− 

− − + + 
 

∑ ∑∫ ∫ ∫      (A.5)

Inside (A.5) now there are no logarithmic-divergent integrals , so the pole (1)ζ  will not 
now appear
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