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Introduction

We employ orbital averages for the analytical and nu-
merical determination of the secular part of the variation
of the elements a, e, ω (semi-major axis, eccentricity, ar-
gument of perihelion) of an elliptic orbit due to perturb-
ing forces. The derivations are developed thorough an
averaging process of the first-order equations arising from
the method of variation of the arbitrary constants. We
shall use the formalism of complex variables, as we con-
sider only the perturbations acting in the orbital plane.
As a byproduct of our work we deduce some useful meth-
ods for the computation of certain awkward integrals re-
lated to the geometry of the ellipse.

I. UNPERTURBED MOTION

We begin with a short review, in the complex nota-
tion, of the principal formulas and results of the two-body
problem employed in this work.
The position of a planet on the orbital plane we sup-

pose lying on the complex plane, is given by the vari-
able r = r(t), where r = r(t) = x(t) + iy(t). Then
r2 = rr̄, r̄ being the complex conjugate of r. The real
and the imaginary parts of a complex number r are de-
noted by R(r) = (r + r̄)/2 and by I(r) = i(r̄ − r)/2.
Then R(r) = R(r̄) = I(ir), I(r) = −I(r̄) = −R(ir).
In polar coordinates r = r eiθ = r(cos θ + i sin θ), θ

being the true longitude, measured from the arbitrary
fixed axis x. The function r(t) will be known as soon
as we found the time dependence of θ, so that r(t) =
r[θ(t)] exp iθ(t); we have also

ṙ =

(
1

r

dr

dt
+ iθ̇

)
r. (1)

If we write µ = k2(M + m) ≈ k2M , where M is Sun’s
mass which we take as unity, k is Gauss’ gravitational
constant, the initial value problem

Z ≡ r̈ + µ
r

r3
= 0, r(0) = r0, ṙ(0) = ṙ0, (2)

is solved if are known four independent integrals of the
motion, that can be found introducing the following in-

tegral operations on Z

C(Z) ≡
∫
dt I(r̄Z) = 0, (3)

H(Z) ≡
∫
dt R( ˙̄rZ) = 0, (4)

E(Z) ≡
∫
dt I(r ˙̄r) i Z = 0. (5)

We so easily obtain three constant functions, two real
and one complex. They are

1. Area integral: C(Z) = 0 → I(ṙ r̄) = i( ˙̄rr −
ṙ r̄)/2 = r2θ̇ = c = real const. It follows: dt =
r2dθ/c .

2. Energy integral: H(Z) = 0 → |ṙ|2/2− µ/r = h,
h = −µ/2a, ṙ ˙̄r = µ (2/r− 1/a).

3. Eccentricity vector: E(Z) = 0 → ṙ =
(iµ/c)(r/r+e), e ≡ e exp(iω), the eccentricity vec-
tor, is a complex constant, e is the eccentricity and
ω is the argument of perihelion.

4. Elliptic orbit in terms of the true longitude:
I(ṙ r̄) = c → r = r eiθ = (c2/µ) eiθ[1 + e cos(θ −
ω)]−1, a is the semi-major axis, c2 = µa(1 −
e2), f ≡ θ − ω is the true anomaly, eiθ =
eiωeif , df = dθ. Elliptic orbit in terms of the ec-
centric anomaly η: r = r(η) = (a cos η + ib sin η −
ae) eiω r =

√
rr̄ = a(1− e cos η) (origin of coordi-

nates at the center of the ellipse), rdη = an dt.

5. Third law: cT =
∫ T

0
c dt = I

(∫ T

0
ṙ r̄ dt

)
=

I
(∮

r̄ dr
)

= I
(∫ 2π

0
r̄(η) dr(η)

)
= 2πab =⇒

T 2/a3 = 4π2/µ.

6. Other definitions: b = a
√
(1− e2), n2 ≡ µ/a3

(n is the mean motion), T = 2π/n is the period of
motion. The mean longitude is defined as ℓ ≡ nt.

II. ORBITAL AVERAGES

In presence of perturbations, each orbital element Ei ≡
a, c, e, becomes a function of time, and the perturbation
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equations are first-order equations for the elements of the
form

Ėi = g
(
r, ṙ, r̄, ˙̄r, t

)
. (6)

To obtain the secular part of the perturbations of the
elements we average with respect to time the right-hand
side of the perturbation equations, and obtain so the sec-

ular values
⟨
Ėi

⟩
. For this, we need to know the mean

value of some orbital variables and functions over the un-
perturbed motion, where with the word orbital we mean
periodicity sharing the same period of the elliptical mo-
tion. By definition, the temporal average of a periodic
function g(t) over the periodicity interval (0, T ) is

g(t)av ≡ ⟨g(t)⟩ = 1

T

∫ T

0

g(t) dt. (7)

If g(t) is a total derivative of a periodic function h(t),

g(t) =
dh(t)

dt
, then g(t)av =

h(T )− h(0)

T
= 0,

because of the periodicity of motion. If g is a constant,
then ⟨g⟩ = g. The temporal averages can be also calcu-
lated by means of angular variables in the range [0, 2π]
employing the following relations:

dt

T
=
ndt

2π
=

rdη

2π a
=

r2df

2π a b
=
dℓ

2π
, (8)

applied respectively to the functions g(t), g(η), g(f), g(ℓ).
In the following we shall give properties, methods of

calculation and averages of the orbital functions we need
to know. We shall use the notation Fav to indicate the
average force exerted by the perturbing planet, while the
notation ⟨Fav⟩ is reserved to the successive average with
respect to the orbit of the perturbed planet.

III. THE PLANETARY EQUATIONS

When the motion is perturbed, the equation of motion
becomes

r̈ = −µ r

r3
+ F, (9)

where F = F (r, r̄, ṙ, ˙̄r, t) is the perturbing force in the
plane xy. The force F is central if F = g(r) r, where g(r)
is a real function of r. It is assumed that F is of small
magnitude as compared to the Keplerian term. There-
fore, the planet moves on a weakly perturbed elliptic or-
bit. The time scales of variation of its elements are a
few orders of magnitude longer than the orbital period.
Hence, one might perform the averaging of the quantities
of interest over fast evolution, the mean anomaly, or any
other angular variable according to the relations (8). The
planet will move along a variable orbit which at every in-
stant t can be described as an osculating ellipse, in which

the orbital elements are supposed slowly changing with
the time. Mathematically this concept can be treated
with the method of variation of arbitrary constants that
can be reduced to action, on the generic integral of the
motion Ei = Ei(r, r̄, ṙ, ˙̄r), of the differential operator
d/dt

Ėi =
dEi

dt
≡ ∂Ei

∂ṙ

dṙ

dt
+
∂Ei

∂ ˙̄r

d ˙̄r

dt
= F

∂Ei

∂ṙ
+ F̄

∂Ei

∂ ˙̄r
,

(10)

which means to consider each element as variable and to
perform the ordinary time derivatives of the integrals of
the motion with the convention that1

dr

dt
= 0,

dṙ

dt
= F, (11)

for the perturbed motion, evidencing so only the acceler-
ations produced by the perturbing forces. Thus we find,
from the integrals

c = I(ṙ r̄), (12)

−1

a
=

1

µ
ṙ ˙̄r +

2

r
, (13)

e = − i c
µ

(
ṙ − r

r

)
, (14)

the following expressions of the planetary equations in
the plane

ċ = I(F r̄), (15)

ȧ =
2 a2

µ
R(F ˙̄r), (16)

ė = − i

µ

(
cF + ṙ I(F r̄)

)
, (17)

were we can put

ṙ =
i n a2

b

(r
r
+ e

)
, ˙̄r = − i n a

2

b

(
r̄

r
+ ē

)
.

(18)

In the right-hand side of these equations, in the first-
order of approximation, all the elements are considered as
constants. The equation for ċ is useful in the treatment
of central perturbing forces, because then ċ = I(F r̄) = 0,
whereby the first equation for ė is simplified to

ė =

(
ė

e
+ iω̇

)
e = − i c

µ
F =⇒ ė

e
+ iω̇ = − i

c

µ e
F. (19)

Equating separately the real and the imaginary part we
get

ė = −c e

µ
R
(
i F

e

)
=

c e

µ
I
(
F

e

)
, (20)

ω̇ = − c

µ
I
(
iF

e

)
= − c

µ
R
(
F

e

)
. (21)
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If the force F is central, then ⟨F ⟩ = Ke, with K real
constant. From this we deduce that

⟨ė⟩ = −c e

µ
I
(
⟨F ⟩
e

)
= −c e

µ
I(K) = 0, (22)

so that we can write

⟨ė⟩ = i ⟨ω̇⟩ , ⟨ω̇⟩ = − c

µ e
⟨F ⟩ = − c

µ
K. (23)

In this circumstance the eccentricity vector e rotates uni-
formly about the origin in the r-plane, with a constant
length. In general we can write, by averaging,

⟨ȧ⟩ = 2 a2

µT
R
(∮

F dr̄

)
=
na2

π µ
R
(∮

F dr̄

)
, (24)

⟨ė⟩ = − ic
µ

⟨F ⟩ − i

µ T

∮
I(F r̄) dr

=− ic
µ

⟨F ⟩− i n

2πµ

∮
I(F r̄) dr, (25)

in which there appear closed contour or loop integrals2

over the unperturbed ellipse. From Eq. (24) we see that if
F is central then ⟨ȧ⟩ doesn’t have secular terms, because
the integral is a pure imaginary number.

IV. SECULAR PERTURBATIONS

A. Third-body perturbations

Suppose that another planet P ′ is moving on a copla-
nar orbit around the Sun in the hypothesis that the sys-
tem P, P ′ be non-resonant, so that the respective mean
motions are non-commensurable. If we denote with r, r ′

the position vectors of P and P ′, and with µ′ the quan-
tity k2m′, being m′ the mass of P ′, the perturbing force
on P is given by3–5

F = µ′
(

r ′ − r

|r ′ − r|3 − r ′

r′3

)
. (26)

The first term is the direct force of P ′ on P , while the
second term is the inertial indirect force due to the choice
of the Sun as origin of the reference frame.5 The deter-
mination of the secular perturbations requires a double
averaging process: first, we average the perturbing force
with respect to P ′ and obtain thus Fav, after we average
respect to P the perturbation equations for ȧ, ė after the
substitution of F with Fav, obtaining thus ⟨ȧ⟩ , ⟨ė⟩. This
procedure is allowed for the first-order perturbations, be-
cause r does not contain terms depending from P ′. No-
tice that the indirect term of the force gives a null con-
tribute to any secular perturbation, since

⟨
r ′r′−3

⟩
= 0.

We have, by definition

Fav =
µ′

2πa′b′

∫ 2π

0

r ′ − r

|r ′ − r|3 r′2 df ′ =
µ′

T

∫ T

0

r ′ − r

|r ′ − r|3 dt,

(27)

and it follows Gauss’ theorem, because with

dµ′ = µ′ r′2 df ′

2π a′ b′
= µ′ dt

T
, (28)

we can write

Fav =

∮
r ′ − r

|r ′ − r|3 dµ
′,

where the integral is taken along the ellipse of the dis-
turbing body in the direction of motion. So the problem
is reduced to that of determining the secular orbital ef-
fects of a massive ring whose elementary distribution of
mass has the measure given by Eq. (28).6–8 For the ana-
lytical determination of this force, we must approximate
the irrational factor

|r ′ − r|−3 =
(
r2 + r′2 − 2rr′ cos(θ′ − θ)

)−3/2

= r′−3

(
1 +

r2

r′2
− 2

r

r′
cos(θ′ − θ)

)−3/2

≡ r′−3∆
−3/2
1 , r′ > r, (29)

≡ r−3∆
−3/2
2 , r > r′, (30)

where ∆
−3/2
2 is as ∆

−3/2
1 , but with r and r′ interchanged.

We develop these expressions in powers of the ratios
r/r′ or r′/r. This requires, when applied to planetary
perturbations, a great number of terms for an acceptable
convergence, but the hard work is done by computer alge-

bra. We can also write ∆
−3/2
i = ∆−1

i ∆
−1/2
i and expand

in powers of r/r′ or r′/r only the second factor. These two
choices, when applied to the same problem, are equiva-
lent, but they codify differently the information on the
perturbing force in their succession of terms. For our
purposes it is more advantageous to use the first option
in the later treatment of an elliptical perturbing orbit,
while for the circular orbit we shall use the second one,
that has the advantage to give more compact expressions.

B. Average force of a planet on a circular orbit

Let be a planet P ′ of mass m′ in a circular orbit, so
that r ′ = a′eiθ

′
= a′ein

′t, where n′ is the constant mean
motion. Consider the force F e on the point r = reiθ of
the orbit of an internal planet P lying in the same plane.
With the notation

α = r/a′ < 1, ∆α = 1 + α2 − 2α cosϕ, (31)

ϕ = θ′ − θ, dϕ = dθ′, (32)

we have

F e = µ′

(
a′eiθ

′
− r
)

|a′eiθ′ − r|3
= µ′

(
eiϕ eiθ

a′2
− r

a′3

)
1

∆
3/2
α

. (33)

Therefore, averaging with respect to P ′

F e
av =

1

2πa′b′

∫ 2π

0

F exr′2dθ′ =
1

2π

∫ 2π

0

F ex dϕ

=
µ′

2π

∫ 2π

0

dϕ

∆
3/2
α

(
r

r

eiϕ

a′2
− r

a′3

)
. (34)
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In this integral we write

F e
av =

µ′

2π

∫ 2π

0

dϕ

∆α

(
r

r

eiϕ

a′2
− r

a′3

)
1

∆
1/2
α

≈ µ′

2πa′2
r

r

∫ 2π

0

dϕ

∆α

(
eiϕ − α

)
×

×
(
1 + α cosϕ+

α2

4
+

3

4
α2 cos 2ϕ+ . . .

)
. (35)

From the formula∫ 2π

0

e±inϕ

∆α
=

∫ 2π

0

cosnθ

∆α
=

2παn

1− α2
, (36)

with α < 0, n = 0, 1, 2, . . . we see that to order α5 in
the numerator only the following terms contribute to the
total mean force

F e
av =

µ′

2πa′2
r

r

∫ 2π

0

dϕ

∆α

[(
1− 3

8
α2 − 5

64
α4

)
cosϕ

+

(
α

2
− α3

4

)
cos 2ϕ+

3

8
α2 cos 3ϕ

− α

2
− α3

16
− 3

128
α5

]
(37)

so that, after the integration we have

F e
av =

µ′

a′2

(
α
(
64 + 8α2 + 3α4

)
128 (1− α2)

)
r

r
(38)

=
µ′

128 a′2

(
75α

(1− α2)
− 11α− 3α3

)
r

r
(39)

=
µ′

128 a′

(
75 r

(a′2 − r2)
− 11r

a′2
− 3r3

a′4

)
r

r
(40)

It easily seen that also to higher approximations F e
av

retains the same general structure with the same first
term and more terms with higher odd powers of the ratio
r/a′. This averaged perturbing force is central, so that
we can employ the simplified perturbation equation for ω̇.
As value of the radius a′ of the circular orbit we take the
semi-major axis of the true elliptical orbit of P ′ because
the average value of the modulus of the radius vector r′

is a′ to order e′. We find

⟨r⟩ = −3

2
a e ≡ A e, (41)⟨

rr2
⟩
= −5

8
a3
(
4 + 3 e2

)
e ≡ B e, (42)⟨

r

(a′2 − r2)

⟩
=
a(1−e2)(A−B)− a′(A+B)+ 2AB

2a e2AB
e

(43)

≡ C e, (44)

where

A ≡
√

(a+ a′)2 − a2e2, B ≡
√

(a− a′)2 − a2e2.
(45)

A is real for every positive value of a′, while B is real
for a′ outside a definite interval, that, for the Earth, is

(0.9833... , 1.0167...), where the formula is meaningless.
We have then to order α5

⟨F e
av⟩ =

µ′

128

(
75

a′
C− 11

a′3
A− 3

a′5
B
)
e, (46)

and so

⟨ω̇⟩′′ = −κ c

µ e
⟨F e

av⟩ , (47)

in which κ is a numerical factor for the conversion from
radian/day to arcsec/century given by

κ =
365.25× 100× 180× 3600

π
≈ 7.533822048× 109.

(48)

Then, recalling that µ′/µ = m′, the centennial preces-
sion rate is

⟨ω̇⟩′′ = −κ m′c

128 a′

(
11

a′
A+

3

a′2
B+

75

a′4
C
)
. (49)

If we expand F e
av in powers of α, we have

F e
av = µ′r

(
1

2 a′3
+

9 r2

16 a′5
+

75 r4

128 a′7
+ . . .

)
, (50)

the first term it is proportional only to the position vec-
tor r. Thus an external planet exerts an approximately
linear repulsive force, directed away from the center, on
a particle located somewhere near the center of the orbit.
We have to push the approximation as far as the term
rr10 because of the relative greatness of the ratio r/a′ for
the internal planets Mars, Earth, Venus and Mercury.
In the literature9 was obtained with another method the
approximation (see Eq. (38))

F e
av =

µ′

2a′
r

(a′2 − r2)
, (51)

for a numerical evaluation of the classical part of the
motion of Mercury’s perihelion. To this regard we note
that the computation can be done analytically since we
know that in this case by Eqs. (43), (47) we get

⟨ω̇⟩′′ = −κ c

µ e
⟨F e

av⟩ = −κc
2µ

∑
i

µ′
i

a′
Ci, (52)

with the obvious meaning of the symbolism. We find so
the value of 532.53”, very near to the exact value ob-
tained by treating the problem in its full generality. Ob-
viously this is only a coincidence, due to an almost exact
compensation among the various planets, but it leaves
the false impression that the omitted terms do not de-
stroy this excellent agreement. With the more complete
expression of F e

av we obtain the value of 553.97”. The
difference is due to the fact that we have neglected the
ellipticity of the orbits of the disturbing planets, other
that the mutual inclination of orbits, which in this case
is rather significant.
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We consider now the situation in which the orbit of P ′

is internal to that of P . With

∆β = 1 + β2 − 2β cosϕ, β = α−1 = a′/r < 1, (53)

we have, at the order β3

F i
av =

µ′

2π

r

r3

∫ 2π

0

dϕ

∆
3/2
β

(
β eiϕ − 1

)
=
µ′

2π

r

r3

∫ 2π

0

dϕ

∆β

(
β eiϕ − 1

) 1

∆
1/2
β

≈ µ′

2π

r

r3

∫ 2π

0

dϕ

∆β

(
β eiϕ − 1

)(
1 + β cosϕ+

β2

4

)
≈ µ′

2π

r

r3

∫ 2π

0

β2/4− 1

∆β
dϕ = µ′ r

r3
β2 − 4

4(1− β2)

= −µ′ r

r3
a′2 − 4r2

4(a′2 − r2)
= −µ′ r

r3
(a′2 − r2)− 3r2

4(a′2 − r2)

= −µ
′

4

r

r3
+

3

4
µ′ r

r

1

(a′2 − r2)
. (54)

By developing in powers of β we find

F i
av = −µ′ r

r3
+

3

4
µ′a′2

r

r5
+ . . . . (55)

Now we have (m′ ≡ µ′/µ)

⟨ω̇⟩ = −κ c

µ e

⟨
F i
av

⟩
= −κ3

4
m′

c

⟨
eiθ

a′2 − r2

⟩
, (56)

where⟨
eiθ

a′2 − r2

⟩
=
a(1− e2)(A+B)− a′(A−B)

2a a′e2AB
e ≡ D e,

(57)

with A,B defined as before, so that

⟨ω̇⟩′′int = −κ3
4
m′cD. (58)

C. Average force of a planet in an elliptical orbit

Let us suppose the orbit of P ′ elliptical. Then Fav

depends also from the mutual geometrical disposition of
the two orbits, i.e. from the angular distance ω′ − ω of
the respective perihelia.
If P ′ is external, with ψ = f ′ − f +ω′ −ω, γ = r/r′, we

have

F e = µ′ r ′ − r

|r ′ − r|3 =
µ′(r ′ − r)

(r2 + r′2 − 2 rr′ cosψ)3/2

=
µ′(r ′ − r)

r′3 (1 + γ2 − 2γ cosψ)3/2
≈ µ′(r ′ − r)

r′3

(
1 +

9

4
γ2

+
225

64
γ4 + · · ·+ 3γ cosψ +

15

4
γ2 cos 2ψ + . . .

)
= µ′(r ′ − r)

∑
j

Hj cos jψ, j = 0, 1, 2 . . . (59)

where the coefficients Hj are power series in γ, given,
with ν = 3/2, by

H0 =
1

r′3
(
1 + ν2γ2 + ν′2γ4 + . . .

)
, (60)

H1 =
2

r′3
(
ν γ + ν ν′γ3 + ν′ν′′γ5 + . . .

)
, (61)

H2 =
3

r′3
(
ν′γ2 + ν ν′′γ4 + ν′ν′′′γ4 + . . .

)
, (62)

H3 = . . . (63)

with

ν′ =
ν (ν + 1)

2!
, ν′′ =

ν (ν + 1)(ν + 2)

3!
, . . . (64)

By developing the above expression of F e after the sub-
stitution

cos jψ =
r ′j r̄j + r̄ ′jrj

2r′jrj
, (65)

we can write the force as the sum

F e

µ′ = F 0 + F 1 + F 2 + F 3 + . . . , (66)

where

F 0 =
∑
j

h0
j rr

2j 1

r′2j+3
, F 1 =

∑
j

h1
j r

2j r′

r′2j+3
, (67)

F 2 =
∑
j

h2
j r

2r2j
r̄′

r′2j+5
, F 3 =

∑
j

h3
j r̄r

2j r′2

r′2j+5
, (68)

F 4 =
∑
j

h4
j r

3r2j
r̄′2

r′2j+7
, F 5 =

∑
j

h5
j r

2r2j
r′3

r′2j+7
, (69)

and so on. The coefficients hij (i, h = 0, 1, 2 . . . ) are
rational numbers. After the average with respect to P ′,
F e
av will have terms proportional to

ē′k

a′2j+n−k
rir2j ,

e′k

a′2j+n−k
r̄ir2j .

where n = 3, 5, 7 . . . . From this we are lead to the
following conclusions as regard to F e

av:

• All terms go to zero as the ratio ai+2j

a′2j+n−k for
i, j, k, n→ ∞.

• F 0
av is a force of the central type that coincides

(with e′ = 0) with the expression of F e
av already

found for the circular orbit.

• F 1
av gives the contributes of order e′, while all the

successive terms give contributes containing the
product of powers of e, e′.

• F 2
av and F 3

av, F
4
av and F 5

av, and in general F i
av and

F i+1
av give contributes of the same order of great-

ness, so that they must be calculated always to-
gether.
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As regard to ⟨ȧ⟩, the demonstration that at the first order
this element does not have secular terms arising from the
planetary perturbing force here is immediate only for the
central part F 0

av. The other forces F i
av will give little

positive and negative contributes, that in the long run
counteract themselves.
Now we insert F e

av in the perturbation equations and
we get, for the secular part,

⟨ȧ⟩ = a2n

π µ
R
(∮

F e
av dr̄

)
, (70)

⟨ė⟩ = − ic
µ

⟨F e
av⟩ −

i n

2π µ

∮
I(F e

av r̄) dr, (71)

and, dividing by e,

⟨ ė⟩
e

+ i ⟨ω̇⟩ = − ic

µ e
⟨F e

av⟩ −
i n

2π µ e

∮
I(F e

av r̄) dr, (72)

so that we must find ⟨F e
av⟩ and loop integrals of the form∮

rir2jdr̄,

∮
r̄ir2jdr̄, (73)∮

I
(
ri−1r2j+2

)
dr,

∮
I
(
r̄i+1r2j

)
dr. (74)

Considerations of the same type can be made when the
orbit of P ′ is internal. Then we have the force

F i

µ
= FO + F I + F II + F III + . . . (75)

FO =
∑
j

koj
r

r2j+3
r′2j , F I =

∑
j

kIj
1

r2j+3
r ′r′2j ,

(76)

F II =
∑
j

kIIj
1

r2j+3
r ′r′2j , F III =

∑
j

kIIIj
r2

r2j+5
r̄ ′r′2j ,

(77)

F IV =
∑
j

kIVj
r̄

r2j+5
r ′2r′2j , FV =

∑
j

kVj
r2

r2j+7
r ′3r′2j ,

(78)

and so on, where kNj are rational numbers. Then the

typical terms of F i
av are

e′ka′2j+k ri

r2j+n−i
, ē′ka′2j+k r̄i

r2j+n−i
. (79)

• All terms go to zero as the ratio a′i+2j

a2j+n−k for for
i, j, k, n→ ∞.

• FO
av is a force of the central type that coincides

(with e′ = 0) with the expression of F i
av already

found for the circular orbit.

• F I
av gives the contributes of order e′, while all the

successive terms give contributes containing the
product of powers of e, e′.

• F II
av and F III

av , F IV
av and FV

av, and in general FN
av and

FNI
av give contributes of the same order of greatness,

so that they must be calculated always together.

At last, we must find
⟨
F i
av

⟩
and loop integrals of the form∮

ri dr̄

r2j+n−1
,

∮
r̄i dr̄

r2j+n−1
, (80)∮

I
(

ri−1

r2j+n−3

)
dr,

∮
I
(

ri+1

r2j+n−1

)
dr. (81)

V. APPLICATIONS

After the formal development of the planetary perturb-
ing force, we are left with the practical application of the
formulas. For the secular perturbations in the planetary
problem,10,11 we have some possibilities, each depending
from the concrete problem at hand. So, after the choice
of the order of approximation, we can proceed first sym-
bolically, and then we shall have the characteristic struc-
ture of each of the particular terms considered, and after
the successive numerical determination we shall have the
contribution to the secular variation of the same term.
All this it is possible because we are in a linear environ-
ment: first-order perturbations, integrations of a sum of
elementary terms, real and imaginary parts determina-
tions. We can verify the work done with a direct de-
termination of ⟨ȧ⟩ and ⟨ė⟩. For this it is required the
numerical computation of the double integrals

am′

2π2a′b b′

∫ 2π

0

∫ 2π

0

R(F ˙̄r) r2r′2df df ′, (82)

im′

4π2a a′b b′

∫ 2π

0

∫ 2π

0

(
ṙ I(r ′r̄)

|r ′ − r|3 +
c (r ′ − r)

|r ′ − r|3

)
r2r′2df df ′,

(83)

where

ṙ =
iµ

c

(r
r
+ e

)
. (84)

At last we get, for a century,

ȧsec = 36525 · ⟨⟨ȧ⟩⟩ , (85)

ėsec = 36525 · e · R
⟨
ė

e

⟩
, (86)

ω̇′′
sec = κ · I

⟨
ė

e

⟩
. (87)

For a numerical verification of the method applied to the
motion of the perihelion, we preferred to consider the
Earth instead of the usual Mercury, because the copla-
narity of the orbits involved is best verified for the former
planet. The results for the Earth to order α5 are given in
the following tables, where we have employed the plane-
tary elements given in the Appendix for the epoch Jan-
uary 1, 2000. In the second table, relative to the Earth’s
perihelion in arcsec/century, the first column is referred
to the full classical approximation, while the others give
respectively the contributions, computed by our method,
of the circular (by Eq. (50)) and elliptical parts, and their
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sum. The diction ”Theory” is referred to complete pub-
lished calculations, which however make reference to a
slightly different epoch.12

Planet Theory (A) e = 0 e ̸= 0 Total (B) (B-A)

Mercury -13.75 3.30 -15.01 -11.71 2.04

Venus 345.49 508.73 -151.97 356.76 +11.27

Mars 97.69 21.05 75.52 96.57 -1.12

Jupiter 696.85 709.79 -12.95 696.84 -0.01

Saturn 18.74 32.82 -12.85 19.97 +1.23

Uranus 0.57 0.60 -0.03 0.57 0.00

Neptune 0.18 0.18 0.00 0.18 0.00

Total 1145.77 1276.47 -117.29 1159.18 +13.41

Secular motion of the Earth perihelion

We have a rather good agreement between the two sets of
results. The discrepancies are mainly due to: 1) to having
neglected the non-coplanarity of planetary orbits, 2) to
having used elements related to different epochs, 3) the
order of approximation considered. As a further example
we consider the secular advance of the perihelion of Mars.
Here ”Theory” refers to the computation of Doolittle.13

Planet Theory (A) e = 0 e ̸= 0 Total (B) (B-A)

Mercury 0.62 0.64 -18.01 -14.71 -0.96

Venus 49.48 47.52 -2.2 45.32 -2.2

Earth 229.03 208.73 6.03 214.76 -14.27

Jupiter 1247.24 1468.28 -214.38 1253.90 +6.66

,Saturn 66.77 63.29 3.40 66.69 -0.08

Uranus 1.20 1.13 0.07 1.20 0.00

Neptune 0.34 0.34 0.00 0.34 0.00

Total 1594.67 1789.90 -207.75 1582.15 -12.52

Secular motion of the Mars perihelion

with the same restrictions as in the previous table. In
conclusion, are worth noting the significant corrections
to the secular motion of the perihelion due to the pres-
ence of ellipticity of the perturbing planets and to the
neglect of the relative inclinations of the orbits. It is also
evident that Venus and the Earth, for their respective
proximity to Mercury and Mars, would require the intro-
duction of more higher-order terms in the development
of their disturbing force.

A. Other force laws

We examine now the effects of some other force
laws,14,15 beginning from:

General relativity (GR). The general relativistic
correction to the gravitational law in the first approxi-
mation can be obtained introducing modifications to the
classical equation of the motion. If we put β = |ṙ|/c,
where c is the speed of light in vacuum (173.144 AU/day),

and set γ ≡
√
1− β2, GR requires the following correc-

tions to t, m, r:16

t→ t0γ
−1 ≈ t0

(
1 +

1

2
β2

)
= t

(
1 +

α

r

)
, (88)

µ→ µ0γ
−1 ≈ µ0

(
1 +

1

2
β2

)
= µ0

(
1 +

α

r

)
, (89)

r → ṙ0γ ≈ r0

(
1− 1

2
β2

)
= r0

(
1− α

r

)
, (90)

to the order β2, where the last is a pure general rela-
tivistic effect because involves the radial distance r, and
where we have put β2 ≡ |ṙ|2/c2 = (2µ)/(c2) = 2α/r,
with α ≡ µ/c2 defining the gravitational radius of the
mass M .

We make these substitutions in the equation of motion
by dropping the zero suffixes

r̈ + µ
r

r3
→ r̈(

1 + α
r

)2 +
µ
(
1 + α

r

)
r

r3
(
1− α

r

)3 = 0, (91)

and, to the O(α) we have:

r̈ +
µr

r3

(
1 +

2α

r

)(
1 +

α

r

)(
1 +

3α

r

)
= 0, (92)

r̈ +
µr

r3
= −6µαr

r4
= F. (93)

The perturbing force is central, with
⟨
rr−4

⟩
= e/(2 b3),

so that

⟨ω̇⟩′′ = −κ c

µ e
⟨F ⟩ = κ

3α c

b3
= κ

3αna b

c2b3

= κ
3αn

c2 a(1− e2)
(94)

For the centennial motion we have

∆ω′′ = κ

∫ T

0

3αn

c2a(1− e2)
dt = κ

6π α

c2a(1− e2)
. (95)

We see from the above developments that the variations
with the speed of the planet of time, mass and radial
distance give a respective contribution of 1/3, 1/6 and
1/2 to the perihelion precession.

Almost inverse-square law. Let us suppose that
the gravitational law goes as r−(2+ϵ), where 0 < ϵ ≪ 1.
Then by expanding in powers of ϵ

1

r(2+ϵ)
≈ 1

r2
− ϵLn(r)

r2
+ . . . , (96)

and we have the perturbing central force

F = −µ ϵLn(r)
r2

r

r
. (97)

The secular perihelion’s motion is given by

ω′′
av = −κ c

µ e
⟨F ⟩ = κ

ϵnab

e

⟨
Ln(r)

r2
eiθ

⟩
,

⟨ω̇⟩′′ = κ
ϵ

2πab

nab eiω

e

∫ 2π

0

Ln(r)

r2
r2eifdf (98)

= κ
nϵ

2πe

∫ 2π

0

Ln(r) eifdf (99)
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Now

Ln(r) ≈ Ln(a) + e cos f − e2
(
5

4
+

cos 2f

4

)
+ ...,

(100)

so

⟨ω̇⟩′′ ≈ κnϵ

(
1

2
+

1

8
e2 +

1

16
e4 +

5

128
e6 +

7

256
e8 + ...

)
.

(101)

Let us calculate ϵ for a tentative explanation of the non-
classical perihelion shift of Mercury. We find

42.95′′ = ϵ · 2.71937 · 108 =⇒ ϵ = 1.579 · 10−7. (102)

Weber’s Law. Now we briefly study a proposed alter-
native to the Newton’s law, Weber’s law,17 and apply it
to Mercury perihelion. This law it is interesting, other
than for historical reasons, also because it introduces ad-
ditional terms, containing the temporal derivatives of r,
to the inverse-square law. By equating the two expres-
sions of ṙ we find

dr

dt
+ i

c

r
=
iµ

c
+
iµ

c
e e−iθ, (103)

and, taking the real part

dr

dt
=
µ

c
R
(
i e e−iθ

)
=
µ

c
e sin(θ − ω) =

µ

c
e sin f,

(104)

d2r

dt2
=
µ

r2
e cos(θ − ω) =

µ

r2
e cos f, (105)

because, from the area integral

d

dt
=

c

r2
d

df
. (106)

Weber’s law is

F = −µ

[
1 +

1

c2

(
dr

dt

)2

− 2

c2
r
d2r

dt2

]
r

r3
, (107)

where c is the speed of light. Substituting for the deriva-
tive and introducing the true anomaly f = θ−ω we have

F = −eµ2

c2r2

(
eµ

2c2
− 2

r
cos f +

eµ

2c2
cos 2f

)
eif ,

(108)

and we find

Fav = − e

2πab

∫ 2π

0

µ2

c2

(
eµ

2c2
− 2

r
cos f+

eµ

2c2
cos 2f

)
eifdf

= − µ2

c2b3
e, (109)

a complex constant. The secular perihelion motion is
given by

⟨ω̇⟩′′ = −κ c

µ e
⟨Fav⟩ = κ

nµ

c2a(1− e2)
, (110)

and numerically for Mercury

∆ω′′ = κ
nµ

c2a(1− e2)
= 14.32′′. (111)

B. The lunar apse

As last application of the method of the averages, we
apply them to the derivation at order m3 of the part
of the motion of the lunar perigee independent from the
eccentricity, where m = n′/n is the ratio of the mean
motions of the Sun and the Moon, in the hypothesis of
the main lunar problem (the Sun in a circular orbit in
the same plane of Moon’s orbit). The perturbing force

F = µ′
(

r ′ − r

|r ′ − r|3
− r ′

r′3

)
, (112)

with r ′ = a′eiθ
′
= a′eiℓ

′
becomes, with µ′/a′3 = n′3 and

neglecting the solar parallax,

F = n′2(r ′ − r)
(
1 + 3

r

a′
cos(θ′− θ) + . . .

)
− n′2r ′

≈ −n′2r + 3n′2r ′ r

a′
cos(θ′− θ)

= −n′2r +
3

2
n′2eiθ

′
r
(
ei(θ

′−θ) + e−i(θ′−θ)
)

=
1

2
n′2r +

3

2
n′2r̄e2iθ

′
=

1

2
n′2r +

3

2
n′2r̄e2iℓ

′
. (113)

In the unperturbed motion at order e, we have for the
Moon’s orbit in terms of the mean longitude ℓ

r0 = aeiℓ − 3

2
a e+

1

2
a ē e2iℓ. (114)

In the first approximation, by solving the perturbation
equations, we find the evection, given by the following
terms18

δr = −45

16
a ēme2iℓ

′
+

15

16
a eme2(ℓ−ℓ′). (115)

In the second approximation we put r = r0 + δr in the
equation

ė = − i

µ

{
I(ṙ r̄)F + ṙ I(F r̄)

}
, (116)

with ṙ = ndr/dℓ. We cannot use Fav in this equation,
because in r, ṙ are present terms containing ℓ′. We find,
at order e, the following constant terms

− i

n2a3
I(ṙ r̄)F = i

(
3

4
m2 +

135

32
m3

)
n e, (117)

− i

n2a3
ṙ I(F r̄) = i

45

16
m3n e, (118)

and periodical functions of ℓ, ℓ′ that give a zero contribu-
tion to the double average. Thus

⟨⟨ė⟩⟩ = 1

4π2

∫ 2π

0

∫ 2π

0

ė dℓ′ dℓ = i

(
3

4
m2 +

225

32
m3

)
n e,

(119)

so that from Eq. (23)

⟨ė⟩ = 0, ⟨ω̇⟩ =
(
3

4
m2 +

225

32
m3

)
n. (120)
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The m3 term is that found for the first time numerically
by Clairaut and algebraically by D’Alembert in their re-
spective theories of lunar motion, and this solved an ap-
parent problematic aspect of the lunar orbit evidenced
since the publication of the Principia of Newton.

VI. ORBITAL AVERAGES - B

A. Analytical Methods

Some averages are immediate. So

⟨ṙ⟩ = 1

T

∫ T

0

dr

dt
dt =

1

T

∮
dr = 0, (121)

because this is a contour integral over a closed orbit.
In general for the analyticity of the integrands we have
⟨rnṙ⟩ = 0, n ≥ 0. From the orbital expression of ṙ we
have at once⟨r

r

⟩
=

⟨
eiθ

⟩
= eiω

⟨
eif

⟩
= − e →

⟨
eif

⟩
= −e,

(122)⟨
rn

r

⟩
= −

⟨
rn−1

⟩
e, (123)⟨

rn

rn+2

⟩
=
einω

2πab

∫ 2π

0

einf df = 0, n = 1, 2 . . . .

(124)

Many averages we must compute are of the type⟨
rmr±n

⟩
≡ ⟨m,±n⟩ , (125)

with m,n ≥ 0 positive integers. We can limit ourselves
to take m ≥ 0, because every combination of r, r can
be reduced to one of the precedent type employing the
equality r−1 = r̄/r2:

r−mrn = r̄mr−mr̄−mr±n = r̄mr±n−2m =rmr±n−2m.
(126)

An important property of these average is that they are
of the form⟨

rmr±n
⟩
= Kem, (127)

where K is real, because we have

⟨
rmr±n

⟩
=

e eimω

2πab e

∫ π

−π

g(r) e±imfdf, (128)

where g(r) is a periodical even function of f, and the in-
tegral of the imaginary part of g(r) e±imf is zero, because
this function is odd. In particular, if F is of central type,
F = g(r)r, we have ⟨F ⟩ = Ke.
It is also evident that in general⟨

rmr±n
⟩
= eimω

⟨
eimf rm±n

⟩
∼ emam±n. (129)

The calculations of an average will be done by adopting
the more convenient variable for the situation at hand.

If n = 0, it will be used the eccentric anomaly

⟨m, 0⟩ =
ameimω

2π

∫ 2π

0
(1−e cos η)(cos η−e+i

√
1−e2 sin η)mdη.

If m = 0, it will be convenient employ the eccentric
anomaly for n > 0, and the true anomaly for |n| < 2. So
we have, for (0, n) and for (0,−n)

⟨rn⟩ = 1

2πa

∫ 2π

0

rn+1dη =
an

2π

∫ 2π

0

(1− e cos η)n+1dη,

⟨
r−n⟩ = 1

2πab

∫ 2π

0

df

rn−2
=

an−3

2πb2n−3

∫ 2π

0

(1+e cos f)n−2df.

For m+ n+ 2 > 0 the computation with respect to the
true anomaly requires the integral

eimω

2πab

∫ 2π

0

eimf rm+n+2df, (130)

with r = a(1 − e2)/(1 + e cos f), that it can be done by
means of the repeated use of Cauchy integral formula2

for the derivatives. If we substitute in the integral

eif → s, e cos f → e(s2 + 1)

2s
, df → ds

is
, (131)

we obtain

1

2πiab

[
2a(1−e2)

e

]m+n+2 ∫
|s|=1

s2m+n+1

[(s−p)(s−q)]m+n+2
(132)

where |s| = 1 is the unitary circle centered at the origin
and where

p =

√
1− e2 − 1

e
, q = −

√
1− e2 + 1

e
,

(p− q) =
2
√
1− e2

e
. (133)

are the solutions of the equation in s

s2 +
2

e
s+

1

e
= 0. (134)

The pole within the circle |s| = 1 is p, of order m+n+2.
Then by Cauchy integral formula∫

|s|=1

f(s) ds

(s− p)k
=

2πi f (k−1)(p)

(k − 1)!
, (135)

we can write

(m,n) =
1

ab

[
2a(1− e2)

e

]m+n+2
f (m+n+1)̈(p)

(m+ n+ 1)!
,

(136)

with

f(s) =
s2m+n+1

(s− q)m+n+2
. (137)
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This formula fails for m+ n+ 1 < 0, and in this circum-
stance we resort to the calculation of

einω

2πab

∫ 2π

0

df einf
[
1 + e cos f

a(1− e2)

](m+n+2)

, (138)

for m− n+ 2 > 0. Some results:

⟨n,−n⟩ =
(√

1− e2 − 1
)n (

n
√
1− e2 + 1

)
e2n

en, (139)

⟨n,−(n+ 1)⟩ =
(√

1− e2 − 1
)n

ae2n
en, (140)

⟨n,−(n+ 2)⟩ = einω

2πab

∫ 2π

0

einfdf =

{
1
ab

n = 0

0 n > 0,

(141)

(142)

⟨1,−4⟩ = e

2b3
, (143)

⟨1,−5⟩ = a e

b5
, (144)

⟨1,−6⟩ = (12 + 3e2)a2e

8b7
, (145)

⟨1,−7⟩ = (4 + 3e2)a3e

2b9
, (146)

⟨0,−1⟩ = 1

a
(147)

⟨0,−2⟩ = 1

a2(1− e2)1/2
, (148)

⟨0,−3⟩ = 1

a3(1− e2)3/2
, (149)

⟨0,−4⟩ = e2 + 2

2a4(1− e2)5/2
, (150)

⟨0,−5⟩ = 3e2 + 2

2a5(1− e2)7/2
, (151)

⟨0,−7⟩ = 15e4 + 40e2 + 8

8a7(1− e2)11/2
, (152)

⟨0,−9⟩ = 35e6 + 210e4 + 168e2 + 16

16a9(1− e2)15/2
, (153)

⟨0,−11⟩ = 315e8 + 3360e6 + 6048e4 + 2304e2 + 128

128a11(1− e2)19/2
,

(154)

⟨r⟩ =
⟨
reiθ

⟩
=
⟨
reif

⟩
eiω, (155)

⟨r cos f⟩ = ⟨r cos(θ − ω)⟩ = R
(
⟨r⟩ e−iω

)
= −3

2
a e,

(156)

⟨r sin f⟩ = ⟨r sin(θ − ω)⟩ = I
(
⟨r⟩ e−iω

)
= 0. (157)

Sometimes it is possible to obtain the same result more
easily by means of a clever use of already known relations.
So, from the immediate averages⟨

1

r

⟩
=

1

2πa

∫ 2π

0

dη =
1

a
, (158)⟨

ṙ

r

⟩
=

1

T

∫ T

0

dr

dt

dt

r
=

1

T

∮
dr

r
=

2πi

T
= ni,

(159)

we have from the orbital expression of ṙ⟨
1

r

⟩
= −1

e

⟨
1

r

⟩
− ic

µe

⟨
ṙ

r

⟩
= − 1

a e
+

cn

µe
=

√
1− e2 − 1

a e
. (160)

From the expression

⟨rmrn⟩ = eiω

2π a

∫ 2π

0

[(
a cos η+ia

√
1−e2 sin η−a e

)]m
×

× [a(1− e cos η)]n+1 dη (161)

with m,n ≥ 0, we find

(0, 1) =
a (2 + e2)

2
, (162)

(0, 2) =
a2 (2 + 3e2)

2
, (163)

(1, 0) = −
3

2
a e, (164)

(1, 1) = −
a2(4 + e2)

2
e, (165)

(1, 2) = −
5a3(3e2 + 4)

8
e, (166)

(1, 3) = −
3a4(8 + 12e2 + e4)

8
e, (167)

(1, 4) = −
7a5(5e4 + 20e2 + 8)

16
e, (168)

(1, 6) = −
9a7(35e6 + 280e4 + 336e2 + 64)

128
e, (169)

(1, 8) = −
11a9(63e8 + 840e6 + 2016e4 + 1152e2 + 128)

256
e.

(170)

(1,−1) = −e (171)

(1,−2) =

√
1− e2 − 1

ae2
e, (172)

(1,−3) = 0, (173)

(1,−4) =
e

2 b3
, (174)

(1,−5) =
a e

b5
, (175)

(1,−6) =
3 a2(4 + e2) e

8 b7
, (176)

(1,−7) =
a3

(
4 + 3 e2

)
e

2 b9
, (177)

(1,−9) =
3 a5

(
5 e4 + 20 e2 + 8

)
e

8 b13
, (178)

(1,−11) =
a7

(
35 e6 + 280 e4 + 336 e2 + 64

)
e

16 b17
, (179)

(2, 0) =
5

2
a e2, (180)

(2,−5) = 0, (181)

(2,−7) =
3 e2

4a5(1− e2)7/2
, (182)

(2,−9) =
5(e2 + 2)e2

4a7(1− e2)11/2
. (183)
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⟨
eiθ

a′ + r

⟩
=

a(1− e2)−A+ a′

a e2 A
e, (184)⟨

eiθ

a′ − r

⟩
=

a(1− e2) +B − a′

a e2 B
e, (185)⟨

r

a′2 − r2

⟩
=

1

2

⟨(
eiθ

a′ − r
−

eiθ

a′ + r

)⟩
(186)

=
a(1− e2)(A−B)− a′(A+B) + 2AB

2a e2 AB
e,

(187)⟨
eiθ

a′2 − r2

⟩
=

1

2a′

⟨(
eiθ

a′ − r
+

eiθ

a′ + r

)⟩
(188)

=
a(1− e2)(A+B)− a′(A−B)

2a a′e2 AB
e, (189)

with

A ≡
√

(a+ a′)2 − a2e2, B ≡
√

(a− a′)2 − a2e2. (190)

Loop integrals of the type
∮
f(r, r̄) dr and

∮
f(r, r̄) dr

over an ellipse in the complex plane are present when
the expression to be averaged contains ṙ or ˙̄r. This is
accomplished by using the identity ṙdt = dr in the av-
erages ⟨f(r, r̄) ṙ ⟩ and ⟨f(r, r̄) dr/dt⟩, together with the
expressions

T =
2π

n
, ṙ =

iµ

c

r

r
+
iµ

c
e, ṙ ˙̄r = µ

(
2

r
+

1

a

)
,

(191)

dr

dt
=

1

2r

(
r ˙̄r + r̄ ṙ

)
=

R(r̄ dr)
rdt

= − ic
r

+
iµ

c
+
iµ

c

r̄

r
e.

(192)

These are easily computed when is is possible to
use, in the integrand, the eccentric anomaly in orbit’s
parametrization. We put

r = (a cos η + ib sin η − ae) eiω, (193)

r = a(1− e cos η), (194)

dr = −(a sin η − ib cos η) eiωdη. (195)

It is immediate to see that, when the force F is central,
the integral

∮
F dr̄ is a pure imaginary number, because

∮
F dr̄ =

∮
g(r) r dr̄ =∫ 2π

0
g(r)

[
(b2−a2)

2
sin 2η−a2e sin η−i(abe cos η+a b)

]
dη,

(196)

and, since g(r) is an even function of η, the terms con-
taining sin η, sin 2η are zero in the integration. In general
we have, with n relative integer,∮

rmrndr ∼ am+n+1em+1 m ≥ 0, (197)∮
rmrndr̄ ∼ am+n+1em−1 m ≥ 1. (198)

Some examples:⟨
r
dr

dt

⟩
=

1

T

∮
r dr =

1

2T

∮
r2

r
dr̄ +

1

2T

∮
r dr,

(199)∮
r dr = π i a b e,

∮
r dr = −π i a b e, (200)∮

r2

r
dr̄ = 2

∮
r dr−

∮
r dr = 3π i a b e, (201)

and ⟨
r
dr

dt

⟩
=

1

2
n i a b e. (202)

Curve rectification. From

|dr|
dt

=

√
2µ

r
− µ

a
, (203)∮

|dr| = 2π

n

√
µ

2πa3

∫ 2π

0

√
2 ar− r2 dη

= a

∫ 2π

0

√
1− e2 cos2 η dη = ellipse lenght.

(204)

Some other integrals:∮
dr

r
=

2πi(
√
1− e2 + e2 − 1)

e2
√
1− e2

e, (205)∮
dr

rn
=

nπi

[a(1− e2)]n−1
e, n = 2, 3. (206)

∮
rn

rn
dr = (−e)n+1 2nπia(1−

√
1−e2)n((1−e2)3/2+ e2−1)

e2n+2
√
1− e2

.

(207)

In these expressions we may assume that ω = 0, e = e,
i.e. that the semi-major axis of the ellipse lies on the real
axis. ∮

rr dr̄ = π i a2b
(
e2 − 2

)
, (208)∮

rr2dr̄ = π i a3b
(
e2 − 2

)
, (209)∮

rr4dr̄ =
1

4
π i a5b

(
9e4 − 8e2 − 8

)
, (210)∮

rr6dr̄ =
1

8
π i a7b

(
25e6 + 30e4 − 72e2 − 16

)
, (211)∮

r2dr̄ = −4π i a2b e, (212)∮
r3dr̄ = −15

2
π i a3b e2, (213)∮

r4dr̄ = −14π i a4b e3, (214)∮
r5dr̄ = −105

4
π i a5b e4, (215)∮

r2dr̄ = 2πia2b ē, (216)∮
r4dr̄ = πia4b (3e2 + 4) ē, (217)∮
rndr = 0 because

∫ T

0

rnṙdt =

[
rn+1

n+ 1

]T
0

= 0.

(218)
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Loop integrals of the form∮
rndr

rm
,

∮
rndr̄

rm
, (219)

can easily be transformed to an orbital average in the
true anomaly we already have considered. For example,∮

rn

rm
dr =

∫ T

0

rn

rm
ṙ dt =

1

c

∫ 2π

0

rnṙ

rm−2
df

=
iµ

c2

∫ 2π

0

rn

rm−2

(r
r
+ e

)
df

=
iµ

c2

∫ 2π

0

rn+1

rm−1
df +

i eµ

c2

∫ 2π

0

rn

rm−2
df.

(220)

The independent variable f of each of these integrals can
be transformed, if more convenient, in η by means of the
relation df = (b/r) dη. This is an interesting by-product
of the calculus of orbital averages: the possibility of alter-
nate computations of certain integrals. Since an angular
average of a finite two-body expression can be done in two
ways, with f, η as independent variables, we can choice
the most convenient for the calculation, and automati-
cally we have the result of the corresponding integral in
the other variable. We denote as dual the two correlated
expressions. In practice, the method is the following:
given the integral of an expression derived from a two-
body orbital function, we can interpret it as an average in
f or η, and after the computation, made with the more
convenient variable, we have also the value of the dual
integral in η or f obtained by using the relations

df =
b

r
dη, dη =

r

b
df. (221)

We give here only the simplest example, which non re-
quires any integration at all. With α > β, β/α = e < 1∫ 2π

0

dθ

(α+ β cos θ)2
=

1

α2

∫ 2π

0

dθ

(1 + e cos θ)2

=
1

α2a2(1− e2)2

∫ 2π

0

r2dθ =
2πa2

√
1− e2

α2(1− e2)2
⟨1 ⟩

=
2π

α2(1− e2)3/2
=

2πα√
(α2 − β2)3

. (222)

Last, the Green’s theorem on the complex plane∫∫
D

∂f

∂r̄
dx dy =

1

2 i

∮
∂D

f(r, r̄) dr, (223)

where D is the simply connected domain bounded by
the unperturbed elliptic orbit ∂D, gives immediately, for
each computed value of a line integral, the value of a
surface integral over the domain and viceversa, given a
function g(r, r̄), we first integrate it∫

g(r, r̄) dr̄ = f(r, r̄), (224)

and after we calculate the line integral of f .
Some examples:∫∫

D

dx dy =

∫∫
D

∂r̄

∂r̄
dx dy =

1

2i

∮
∂D

r̄ dr = π a b,

(225)∫∫
D

r

r3
dx dy = −

∮
dr

r
=
π (1− e2 −

√
1− e2)

e
√
1− e2

.

(226)

All these results are purely geometrical, without refer-
ence to the underlying dynamical problem we employ as
solution device.

VII. DISCUSSION

We have given a rather consistent number of exam-
ples of application of the method of the orbital averages,
so it is now possible to draw conclusions about its pros
and cons. From the theoretical point of view, it reduces
the secular perturbation of two gravitationally interact-
ing bodies in complex geometric situations to a succes-
sion of ever smaller simple forces each of which provides a
contribution that can be computed exactly. Having avail-
able a literal expression deepens our knowledge about the
various factors that help produce the final result. An im-
portant point to emphasize is that, with the symbolic
formulas, the work can be done once and for all because
in actual cases will suffice replacing the various symbols
with the numerical values of the orbital parameters. We
have also harnessed the power of complex analysis to ob-
tain our results in an elegant way. This also paradoxically
constitutes the major drawback of the method: it works
under conditions of coplanarity or, at most, in situations
of almost coplanarity, but we believe that in its scope it
allows to obtain interesting results, especially in the cal-
culation of the effects of gravitational forces arising from
alternative theories to general relativity. In conclusion,
we think that this method represent a useful working tool
that can provide valuable services to the researcher in a
wide field of study.

VIII. APPENDIX

Tables of the planetary orbital elements.? The figures
are rounded to the fourth decimal.

Jan 1, 2000 a b e ω (rad.)

Mercury 0.3871 0.3788 0.2056 1.351870079

Venus 0.7233 0.7233 0.0067 2.295683576

Earth 1.0000 0.9999 0.0167 1.796767421

Mars 1.5237 1.5170 0.0934 5.865019079

Jupiter 5.2034 5.1973 0.0484 0.257503259

Saturn 9.5371 9.5231 0.0541 1.613241687

Uranus 19.1913 19.1699 0.0472 2.983888891

Neptune 30.0690 30.0679 0.0086 0.784898126
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Jan 1, 2000 m′ = µ′/µ c n

Mercury 1.67 · 10−7 0.010473 7.142 · 10−2

Venus 2.44 · 10−6 0.014629 2.796 · 10−2

Earth 3.01 · 10−6 0.017199 1.720 · 10−2

Mars 3.31 · 10−7 0.021142 9.143 · 10−3

Jupiter 9.59 · 10−4 0.039236 1.470 · 10−3

Saturn 2.87 · 10−4 0.053046 5.88 · 10−4

Uranus 4.37 · 10−5 0.075179 2.08 · 10−4

Neptune 5.18 · 10−5 0.094527 1.05 · 10−4
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