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Abstract. In vivo tracer kinetics, as probed by current tomographic techniques, is

revisited from the point of view of fluid kinematics. Proofs of the standard intravascular

advective perfusion model from first premises reveal underlying assumptions and

demonstrate that all single input models apply at best to undefined tube-like systems,

not to the ones defined by tomography, i.e. the voxels. In particular, they do not and

cannot account for the circulation across them. More generally, it is simply not possible

to define a single non-zero steady volumetric flow rate per voxel. Restarting from the

fact that kinematics requires the definition of six volumetric flow rates per voxel, one

for each face, minimalist, 4D spatiotemporal analytic models of the advective transport

of intravascular tracers in the whole organ of interest are obtained. Their many

parameters, plasmatic volumetric flow rates and volumes, can be readily estimated

at least in some specific cases. Estimates should be quasi-absolute in homogeneous

tissue regions, regardless of the tomographic technique. Potential applications such

as dynamic angio-tractography are presented. By contrast, the transport of mixed

intra/extravascular tracers cannot be described by conservation of the mass alone and

requires further investigation. Should this theory eventually supersede the current

one(s), it shall have a deep impact on our understanding of the circulatory system,

hemodynamics, perfusion, permeation and metabolic processes and on the clinical

applications of tracer tracking tomography to numerous pathologies.
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1. Introduction

For lack of a better terminology, by perfusion-weighted imaging, we mean any imaging

technique allowing to probe quantities such as blood flow or blood volume that are

related, directly or not, to hemodynamics, perfusion, permeation or metabolic processes.

By definition, they are invaluable tools for pathophysiology and for the clinical diagnosis,

prognosis and therapeutic decision-making of numerous pathologies, from vascular

diseases to metabolic disorders.

A particularly powerful kind of perfusion-weighted imaging techniques is tracer

tracking tomography, i.e. any dynamical technique allowing to monitor signals over time

that are related to the mass concentrations of an exogenous or endogenous indicator,

contrast agent or tracer in voxels of tissue located in some organ of interest. Tracer

tracking tomography encompasses a wide range of clinical imaging modalities, including

X-ray perfusion computed tomography (CTP) (Konstas et al. 2009) also known as

dynamic contrast-enhanced computed tomography (DCE-CT), dynamic susceptibility

contrast(-enhanced) magnetic resonance imaging (DSC-MR) (Fieselmann et al. 2011),

dynamic contrast-enhanced magnetic resonance imaging (DCE-MR) (Tofts et al. 1999),

arterial spin labeling (ASL) (Liu & Brown 2007), ultrasound perfusion or contrast-

enhanced imaging (Wiesmann & Seidel 2000), dynamic positron emission tomography

(PET) (Watabe et al. 2006) and single photon emission computed tomography (SPECT)

(Murase et al. 1992) to name a few.

In this paper, we are interested in tracer kinetics, not in any specific tomographic

technique. In particular, we do not deal with the difficult problem of modeling the

relationship between measured signals and mass concentrations in each voxel (e.g. a

linear relationship in CTP, an exponential relationship in DSC-MR, etc.). We simply

assume that such a model is available, so that, given a kinetic model of the concentration-

time curves, we are provided with a full dynamical model of the tomographic signals for

all voxels.

If the contrast agent is confined to the intravascular space (e.g. CTP, DSC-MR or

DCE-MR imaging of the brain without blood brain barrier disruption), tracer kinetics

is usually described by a standard perfusion model (SPM) that goes back to the early

works of Stewart, Hamilton and Meier and Zierler (Meier & Zierler 1954, Zierler 1962).

The SPM regards each voxel as a single input, single output (SISO) dynamical

artery/tissue/vein system and subsequently describes the evolution of the contrast agent

mass concentration c(t) in the voxel by the differential equation

dc

dt
(t) = BF [ca(t)− cv(t)] (1)

where BF is the “blood flow”, ca(t) is the arterial input function (AIF) and cv(t) is

the venous output function (VOF). Since the SISO system is linear and time-invariant

(LTI), there exists an impulse response h(t) such that cv(t) = ca ⊗ h(t) and

c(t) = BFca ⊗R(t) (2)
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if c (0) = 0, where R(t) , u(t) −
∫ t

0

h (τ) dτ stands for the residue function,

u(t) for Heaviside unit step function and ⊗ for Volterra convolution product

f ⊗ g(t) ,
∫ t

0

f (τ) g (t− τ) dτ (Fieselmann et al. 2011, Østergaard et al. 1996).

If the tracer can leave the intravascular space and enter the extravascular space,

either because it can cross the intra/extravascular barrier (e.g. PET and SPECT

radiotracers, ASL arterial tagged blood for brain imaging), because there is no barrier

(e.g. liver imaging) or because the barrier is disrupted (e.g. CTP or DCE-MR imaging

of brain tumors), we find a variety of generic parametric permeability models such as the

Kety (Tofts et al. 1999), extended Kety-Tofts-Kermode (Tofts et al. 1999) or St Lawrence

and Lee (Tofts et al. 1999) models in DCE-CT and DCE-MR and Buxton model in ASL

(Buxton et al. 1998). See also Sourbron & Buckley (2012) for a fairly exhaustive survey

of perfusion and permeability kinetic models. In addition, we find many organ-specific,

single input multi-compartment models accounting for the underlying physiology.

Those models take root in various related fields such as indicator-dilution theory,

tracer pharmacokinetics, transport theory, Fick principle, compartmental analysis and

LTI system theory. But for our purpose, it is sufficient to notice that most of them

assume that the dynamical system has a single input, the AIF in DSC-MR (Fieselmann

et al. 2011, Østergaard et al. 1996), CTP (Konstas et al. 2009) and PET (Watabe

et al. 2006) or the plasmatic input function in DCE-MR (Tofts et al. 1999) (a notable

exception is the liver that has two inputs: the common hepatic artery and the portal

vein. But, as we shall see, this just makes our analysis more relevant). Accordingly,

each concentration-time curve is modeled as the convolution product of this input with

a convolution kernel or more generally as the solution of an inhomogeneous system of

ordinary differential equations (Keeling et al. 2007).

While the transport of purely intravascular tracers is a special case of the transport

of mixed intra/extravascular tracers, paradoxically the nonparametric convolution SPM

formally includes many parametric permeability models as special cases because the

residue function R(t) is left unspecified. This issue alone motivates an in-depth

investigation of the SPM.

We first undertake to derive the differential SPM for intravascular tracers advected

by the plasma from elementary kinetics in order to reveal all underlying assumptions.

Then, we discuss the applicability of single input models to tracer tracking tomography

and conclude that none of them can account for the underlying geometry and the

circulation across the voxels. Fixing this issue yields new standard local and global, 4D

spatiotemporal analytic models whose many parameters can be readily estimated at least

in some simple cases. The case of mixed intra/extravascular tracers is also examined.

Last, some applications of the new theory, such as dynamic angio-tractography, are

presented.
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2. Notations, definitions and elementary fluid kinematics

Consider a tridimensional flow. Fix an inertial frame of reference (O, ~x, ~y, ~z). Let

~v (x, y, z, t) be the Eulerian velocity vector field at time t. Let Σ be a given oriented

control surface, at rest relative to (O, ~x, ~y, ~z) and let
−→
dΣ be the locally normal unit

vector field on Σ.

The volumetric flow (rate) through surface Σ at time t is defined as the surface

integral

ΦΣ(t) ,
∫∫

Σ

~v (x, y, z, t) · −→dΣ [ΦΣ(t)] = L3T−1 (3)

or, equivalently, as

ΦΣ(t) ,
dVΣ

dt
(t) (4)

where VΣ is the volume flowing through Σ during the infinitesimal time interval [t, t+ dt].

Flow rates are additive: if the fluid F is composed of immiscible fluids F1, F2, . . .

then ΦF
Σ(t) = ΦF1

Σ (t) + ΦF2
Σ (t) + .... For a given outward-oriented closed surface Σ, the

Gauss-Green-Ostrogradsky divergence theorem reads as

ΦΣ(t) =

∫∫
©

Σ

~v (x, y, z, t) · −→dΣ =

∫∫∫
V

~∇ · ~v (x, y, z, t) dxdydz (5)

where V is the volume enclosed by Σ. For a homogeneous or heterogeneous

incompressible flow, by definition we have ~∇ · ~v (x, y, z, t) ≡ 0 so that, by the Gauss-

Green-Ostrogradsky divergence theorem, the total volumetric flow rate through a given

oriented closed surface is equal to zero. The flow of any incompressible fluid is

incompressible.

For a steady flow, velocities and volumetric flow rates do not depend on time. In

this case, unless the flow is infinitely compressible, any volumetric flow rate through a

closed surface is equal to zero.

A volumetric flux is a volumetric flow rate through a given unit surface.

The principle of locality or separability of classical physics states that a physical

system is causally influenced directly only by its immediate surroundings.

3. Proving the standard perfusion model

Let us try to carefully prove the differential SPM for intravascular tracers from those

elementary premises. As we shall see, there exist different paths. We start with the

most natural one.

Consider the incompressible flow of a fluid mixed with a contrast agent in some

organ. Assume the organ to be at rest relative to (O, ~x, ~y, ~z) after a possible rigid (e.g.

motion correction) or non-rigid (e.g. for elastic organs such as the liver or the heart)

registration phase.

Consider with Zierler (1962), an outward-oriented closed surface Σ, at rest relative

to (O, ~x, ~y, ~z), comprising a single open input surface ΣI and a single open output surface



Theoretical basis of in vivo tomographic tracer kinetics 5

ΣO. Let ΣR be the remaining surface: Σ = ΣI ∪ ΣO ∪ ΣR. We can regard Σ as the

surface of a tube or a pipe, ΣI being the input cross-section of the tube, ΣO its output

cross-section and ΣR the surface of the tube itself. Let m(t) be the mass of contrast

agent in the volume of measure V enclosed by Σ at time t and let c(t) , m(t)/V be its

mass concentration.

Let ΦΣI
(t), ΦΣO

(t) and ΦΣR
(t) be the volumetric flow rates through surfaces ΣI , ΣO

and ΣR respectively at time t. By the Gauss-Green-Ostrogradsky divergence theorem

for incompressible flows and additivity, we have

ΦΣ(t) = ΦΣI
(t) + ΦΣO

(t) + ΦΣR
(t) = 0 (6)

By definition, ΦΣR
(t) ≡ 0, since the velocity is identically zero on ΣR, so that

ΦΣO
(t) = −ΦΣI

(t) , Φ(t). Hence we can define a single volumetric flow rate Φ(t) for

such a system, which is not necessarily identically equal to zero.

Consider that the matter flowing through Σ is composed of three immiscible

substances due to the intravascular/extravascular barrier:

• The extravascular fluid (EF);

• The blood vessels, i.e. the arteries, the veins and/or the capillary bed (BV);

• The intravascular fluid contained in the blood vessels, i.e. the blood mixed with

the tracer (IF) that we shall call blood in the sequel for the sake of simplicity.

By additivity, we have Φ(t) = ΦEF(t) + ΦBV(t) + ΦIF(t).

Assume that the tracer mass concentration in the blood remains sufficiently small

so that the mechanical properties (e.g. the viscosity) of the blood mixed with the tracer

and, subsequently, its flow (e.g. the volumetric flow rates) do not depend on it.

Because it is assumed, within the SPM, that the artery feeding system Σ through

ΣI and the vein draining it through ΣO contain only blood, we have de facto ΦEF(t) =

ΦBV(t) ≡ 0 so that Φ(t) = ΦIF(t).

The intravascular fluid is itself composed of the blood plasma (P) and of the blood

cells (C). Therefore, Φ(t) = ΦP(t) + ΦC(t).

The mass balance equation for the contrast agent in system Σ over time interval

[t, t+ dt] is

dm(t) = d [c(t)V ] = dc(t)V = mI(t)−mO(t) (7)

where mI(t) is the input mass of contrast agent entering Σ through ΣI over [t, t+ dt]

and mO(t) the output mass of contrast agent exiting Σ through ΣO.

Generally speaking, the intravascular tracer can enter and leave system Σ via two

different mechanisms: via deterministic advection (i.e. advective transport, bulk flow)

or stochastic diffusion. Therefore, we have for instance

mI (t) = mA
I (t) +mD

I (t) (8)

where mA
I (t) is the mass of tracer entering system Σ via advection and mD

I (t) is the

stochastic mass of tracer entering system Σ via diffusion. Whether the input diffusive

mass is negligible or not compared to the advective one depends on whether the expected
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diffusive mass EmD
I (t) and the root mean squared diffusive mass

√
E[mD

I (t)− EmD
I (t)]

2

are small compared to mA
I (t) or not. Both diffusive masses depend themselves on several

factors but both of them are small if the root mean squared displacement of the tracer

by diffusion during its advective residence, mean transit time in system Σ, which itself

depends on the diffusion coefficient of the tracer in blood at the body temperature, is

small compared to the geometric dimensions of system Σ.

At a first glance, in vivo apparent diffusion coefficients of gadolinium-based MR

contrast agents are of order D ' 10−11m2s−1 (Marty et al. 2013) so that the root

mean squared displacement
√

2Dt during a dynamic tomographic acquisition duration

of t = 100s is of order 4×10−5m, two orders of magnitude smaller than the characteristic

length of millimetric voxels (10−3m). A fortiori, the root mean squared displacements

during typical advective mean transit times are expected to be fairly negligible compared

to the voxels characteristic length. For this reason, we shall neglect the input and output

diffusive masses in the sequel, as precisely done within the SPM. More precisely, we shall

consider that the tracer undergoes advective transport and only advective transport: in

particular, no amount of tracer gets stuck in system Σ. As an example, let us consider

that the tracer is transported by the blood plasma.

Assume the plasmatic mass concentration of contrast agent to be uniformly equal

to cI(t) respectively cO(t) in the immediate surroundings of ΣI respectively ΣO. Then,

by definition, we have

mI(t) = mA
I (t) = cI(t)VI(t) = cI(t)

dVI
dt

(t)dt = cI(t)Φ
P
I (t)dt (9)

where VI(t) is the volume of plasma (mixed with the tracer) flowing through ΣI over

[t, t+ dt] and ΦP
I (t) is the plasmatic volumetric flow rate through ΣI at time t. Similarly,

mO(t) = cO(t)VO(t) = cO(t)ΦP
O(t)dt.

Because the mass concentration of contrast agent in a volume of measure V

contained in the artery feeding system Σ is assumed to be uniformly equal to ca(t) within

the SPM, the input plasmatic mass concentration is cI(t) = ca(t)V/V
P

AIF(t) , where

V P
AIF(t) is the measure of the volume of plasma contained in the volume of measure V

at time t. Accordingly, the output plasmatic mass concentration is cO(t) = c(t)V/V P(t)

where V P(t) is the volume of plasma enclosed by Σ, not cO(t) = cv(t)V/V
P

VOF(t) where

V P
VOF(t) is the volume of plasma at time t contained in a volume of measure V contained

itself in the vein draining system Σ.

Therefore, we have

dm(t) = dc(t)V = mI(t)−mO(t) =
[
ca(t)V ΦP

I (t)/V P
AIF(t)− c(t)V ΦP

O(t)/V P(t)
]

dt (10)

Now, as in Meier & Zierler (1954), let us assume that the ratio ΦC(t)/ΦIF(t)

is always and everywhere equal to the flow hematocrit fraction Ht so that ΦP(t) =

(1−Ht) ΦIF(t) and

Φ(t) = ΦIF(t) = ΦP(t) + ΦC(t) = ΦP(t)/ (1−Ht) (11)
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Therefore, there exists a single plasmatic volumetric flow rate, inward-oriented

through ΣI and outward-oriented through ΣO

ΦP(t) = ΦP
I (t) = ΦP

O(t) = Φ(t) (1−Ht) (12)

It follows that

dc

dt
(t) = ΦP(t)

[
ca(t)/V

P
AIF(t)− c(t)/V P(t)

]
(13)

For a steady flow, we have ΦP(t) ≡ ΦP, V P
AIF(t) ≡ V P

AIF and V P(t) ≡ V P, so that

we finally get the differential model

dc

dt
(t) = ΦP

[
ca(t)/V

P
AIF − c(t)/V P

]
(14)

whose formal solution is

c(t) = ΦP/V P
AIFca ⊗ e−ΦPt/V P

(15)

if c (0) = 0.

Unless c(t) = cv(t) and V P
AIF = V P, which are not necessarily true, this model does

not match the differential SPM

dc

dt
(t) = BF [ca(t)− cv(t)] (16)

but, on the contrary, Kety differential permeability model (Tofts et al. 1999)

dc

dt
(t) = Ktransca(t)− kepc(t) (17)

if we let Ktrans , ΦP/V P
AIF and kep , ΦP/V P.

So, it appears that the differential SPM does not apply to a fluid that is known a

priori to flow from the feeding artery to the draining vein, so that ΦP ≥ 0, because the

output plasmatic mass concentration must be a function of the mass concentration c(t)

in system Σ, not a function of the mass concentration cv(t) in the draining vein that plays

no role in the mass balance equation. But, by simply calling “arterial input function”

or “venous output function” the concentration-time curves ca(t) and cv(t) or by simply

assuming positive BF , we are actually assuming the direction of the flow to be known

a priori, from the feeding artery to the draining vein. It follows that the differential

SPM is not applicable and has to be replaced by the Kety-like model previously derived.

Hence, the differential SPM can apply at best to a flow whose direction is not known a

priori.

But in this case, the kinetic model is made of two a priori equiprobable models

conditional upon the global direction of the flow or, equivalently, upon the sign of the

volumetric flow rate ΦP

M:


M|ΦP ≥ 0 :

dc

dt
(t) = ΦP

[
ca (t) /V P

AIF − c (t) /V P
]

M|ΦP < 0 :
dc

dt
(t) = −ΦP

[
cv (t) /V P

VOF − c (t) /V P
] (18)

and still does not match the differential SPM that cannot be derived from fluid kinetics

only. Indeed, this model is not causal for it gives the state c(t) of the dynamical system
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as a “function” of its output cv(t) instead of giving its output as a “function” of its

state. Therefore, it actually does not pertain to dynamical system theory. In particular,

its formal solution is not given by equation 2 but simply by

c (t) = BF

t∫
t0

[ca (τ)− cv (τ)] dτ + c (t0) (19)

However, if the sign of ΦP is not known a priori, then by the theorem of total

probability, the Bayesian average, marginal, unconditional model is

1

2
M|ΦP ≥ 0 +

1

2
M|ΦP < 0 (20)

that is

dc

dt
(t) =

ΦP

2

[
ca (t) /V P

AIF − cv (t) /V P
VOF

]
(21)

and, if V P
AIF = V P

VOF,

dc

dt
(t) = BF [ca (t)− cv (t)] (22)

if we let

BF
∆
=

ΦP

2V P
AIF

(23)

Another line of reasoning yielding the same model is to acknowledge that the tracer

plasmatic mass concentration cI(t) flowing through ΣI cannot be equal to the tracer

mass concentration cP(t) in the plasma contained in system Σ nor to the tracer mass

concentration cP
AIF(t) in the plasma contained in the feeding artery. Indeed, if the global

direction of the flow is not known a priori, then the signed mass mI(t) of the tracer

circulating between the artery and system Σ through ΣI must be invariant, up to sign,

by permutation of the artery and system Σ (i.e. by inversion of the “tube axis”). Since

the flow rate ΦP
I (t) is, by definition, invariant up to sign by this permutation (i.e. skew

symmetric), cI(t) must also be invariant by this permutation, i.e. must be a symmetric

function of the mass concentrations cP(t) and cP
AIF(t) only. Thus, we are led to set

cI(t) ,
[
cP

AIF(t) + cP(t)
]
/2 with cP(t) = c(t)V/V P and cP

AIF(t) = ca(t)V/V
P

AIF. Similarly,

we set cO(t) ,
[
cP

VOF(t) + cP(t)
]
/2 with cP

VOF(t) = cv(t)V/V
P

VOF. Therefore,

dm(t) = dc(t)V = mΣI
(t)−mΣO

(t) ={ [
ca(t)/V

P
AIF + c(t)/V P

]
ΦP(t)−[

cv(t)/V
P

VOF + c(t)/V P
]

ΦP(t)

}
V dt/2

(24)

So, starting from the definition of the volumetric flow rate in fluid kinematics,

the Gauss-Green-Ostrogradsky divergence theorem for incompressible flows and the

principle of mass conservation, we have derived a Kety-like SISO differential kinetic

model for the flow of an intravascular tracer undergoing advective transport by the

plasma in a tube-like system when its global direction is known a priori and a Bayesian

SPM-like differential model when its global direction is not known a priori. This latter
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model being purely epistemic and not causal, we shall not consider it further in this

paper.

Instead of assuming incompressible flow at the beginning and steady flow at the end

of the proof, we could have assumed long-term steady flow from the very beginning. In

this case, unless the flow is infinitely compressible, the total plasmatic volumetric flow

rate ΦP
Σ through Σ is necessarily equal to zero, so that there is no need to assume constant

hematocrit fraction ΦC(t)/ΦIF(t) in order to define ΦP. However, while incompressibility

should not be a matter of discussion given the low physiological velocities, by definition

long-term steadiness may be well violated especially in acute pathologies.

Those proofs highlight the main limitation of SISO kinetic models: they apply at

best to tubes having a single inflow orifice and a single outflow orifice, as stated clearly

by Zierler (1962). This geometric condition is logically necessary in order to define a

single non-zero volumetric flow rate Φ(t) through an open surface and subsequently a

single non-zero plasmatic volumetric flow rate ΦP(t), the total volumetric flow rate ΦΣ(t)

through the closed surface Σ being identically zero by incompressibility or steadiness.

However, in tracer tracking tomography, SISO models are used to describe the

transport of contrast agents in voxels. Such a voxel is a rectangular parallelepiped

whose surface, which is closed, is composed of its six faces. Generally speaking, it is

therefore not possible to define a priori a single open input surface and a single open

output surface, so that it is not possible to define a single non-zero total volumetric flow

rate Φ(t) per voxel, as done within the SPM or the Kety-like model previously derived.

Hence, the genuine volumetric blood flow rate ΦIF = ΦP/ (1−Ht) of the Kety-like

model, which is equal to the total volumetric flow rate under the hypotheses of the

SPM, cannot be the volumetric flow rate (through the closed surface) of a voxel because

it is not necessarily equal to zero. Conversely, it is useless to estimate the volumetric

blood flow rate (through the closed surface) of a voxel because it is equal to zero within

the SPM. It follows that, generally speaking, SISO kinetic models are not suitable to

describe the transport of contrast agents as probed by tomographic techniques because

they define a single non-zero volumetric (blood) flow rate while the volumetric (blood)

flow rate (through the closed surface) of a voxel is necessarily equal to zero.

In other words, if ΦIF is ever a volumetric flow rate as defined within fluid

kinematics, it is necessarily taken through an open surface. As long as this open

surface remains undefined, i.e. not localized in space and time, this quantity cannot be

a volumetric flow rate because volumetric flow rates are extensive quantities defined

through given surfaces. Hence, unless we can define their open surface, we must

acknowledge that ΦIF is anything but a volumetric flow (rate). Anyway, the physical

dimension of BF is T−1 (not L3M−1T−1 as the standard unit ml/100g/mn indicates

(Østergaard et al. 1996)). Hence, it is neither a volumetric flow rate (L3T−1) nor a mass

flow rate (MT−1) nor a volumetric flux (LT−1).
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4. Can SI(SO) models ever apply to tomographic data?

Can SI(SO) kinetic models nevertheless apply to some special cases of interest?

Assume that the flow through a voxel is of the tube type, with a single open input

surface ΣI and a single open output surface ΣO. This is the case when the voxel contains

a single blood vessel.

We could apply the Kety-like model if those surfaces were known a priori. Indeed,

again a flow rate is defined through a given surface. It is neither possible to define

a volumetric flow rate nor to write a mass balance equation on an undefined control

surface or system because they precisely depend on the surface(s). Generally speaking,

surfaces ΣI and ΣO, i.e. the position and direction of the blood vessel, are not known

a priori, at least not precisely. On the contrary, we may like to determine a posteriori

whether such surfaces exist or not, i.e. whether the flow is rather directional or isotropic,

and, in the former case, determine their positions. Thus, the Kety-like model does not

apply to a tube-like flow unless surfaces ΣI , ΣO and ΣR are given a priori.

Besides, by the principle of locality, ca(t) has to be taken in the immediate

exterior surroundings of the voxel-tube input orifice. This is not common practice,

in particular when a global, spatially separated AIF is used for all voxels (Fieselmann

et al. 2011, Østergaard et al. 1996), because it is simply impossible.

Now, let us assume that input surface ΣI is given a priori. Then the Kety-like

model can apply only if it is located on a single face of the voxel. Indeed, on the one

hand, it is assumed that the mass concentration is spatially uniform in the immediate

exterior surroundings of ΣI and identically equal to ca(t). On the other hand, the

mass concentrations in the (at most) six neighbor voxels of the current voxel are not

necessarily equal to each other. Hence, if the input surface spans several voxel faces,

the Kety-like model assumes equal mass concentrations that are not necessarily equal:

contradiction.

Last, we must keep in mind that Meier and Zierler tube, in particular its surface

ΣR, must be contained in the voxel. This is necessary in order for the volumetric flow

rate through the voxel surface minus ΣI ∪ ΣO to be equal to zero. This implies that

the cross-section of the tube-vessel must be small compared to the dimensions of the

voxel, a condition that is clearly violated for large arteries and veins, given the current

millimetric dimensions of the voxels. If it is not the case, i.e. if the cross-section

of the tube-vessel spans several adjacent voxels, we have to assume a priori the flow

trajectories to be parallel to the voxel faces (or even more unlikely hypotheses) in order

for the flow rates through them to be again equal to zero. But this geometric condition

has probability zero.

This analysis demonstrates, we hope, that SI(SO) kinetic models cannot apply to

any conceivable case of interest in tracer tracking tomography. This is the case for

all generic permeability models such as the Kety, extended Kety-Tofts-Kermode, St

Lawrence and Lee, Buxton as well as dynamic SPECT and PET models since they rely

on a single arterial or plasmatic input function and define a single “flow” (e.g. Ktrans
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for Kety and extended Kety-Tofts-Kermode models, F for St Lawrence and Lee model,

BF for Buxton, PET and SPECT models, etc.).

5. From tubes to voxels: local kinetic models

It is by now straightforward to derive the correct expression of the conservation of the

mass of an intravascular tracer undergoing advective transport by the blood plasma and

flowing through a parallelepipedic voxel.

Index the six neighbor voxels of the current voxel by i = 1, 6. Just like the voxel is

the elementary unit of volume in tomography, its faces Fi, i = 1, 6 are the elementary

units of open surface: Σ =
6⋃
i=1

Fi. Let us orient them outward and define the volumetric

flow rates

Φi(t) ,
∫∫

Fi

~v (x, y, z, t) · −→dΣ (25)

As before, we have Φi(t) = ΦEF
i (t) + ΦBV

i (t) + ΦIF
i (t). The mass balance equation

for the contrast agent in system Σ over time interval [t, t+ dt] becomes

dm(t) = dc(t)V = −
6∑
i=1

mi(t) (26)

where mi(t) is the tracer signed output mass through Fi, equal to

mi(t) = cOi (t)Vi(t) = cOi (t)ΦP
i (t)dt (27)

where Vi(t) is the signed volume of plasma (mixed with the tracer) flowing through Fi
over [t, t+ dt], ΦP

i (t) is the plasmatic volumetric flow rate through Fi at time t and

cOi (t) is the plasmatic mass concentration of the tracer flowing through Fi.

As before, we have 26 = 64 different sub-models conditional upon the signs of the

six volumetric flow rates and the plasmatic mass concentrations write accordingly as

cOi (t) =

{
c (t)V/V P(t) if ΦP

i (t) ≥ 0

ci (t)V/V
P
i (t) if ΦP

i (t) < 0
(28)

If we suppose that the flow is steady only at the time scale of the tomographic

acquisition duration, then we get the first 7-compartment local model

dc

dt
(t) = − 1

V

6∑
i=1

ΦP
i c

O
i (t) (29)

with constant plasmatic volumes. Note that this model is weaker than the SPM since

it does not require constant flow hematocrit fraction ΦC(t)/ΦIF(t), which would just

imply that ΦEF
Σ = −ΦIF

Σ if ΦBV ≡ 0 for an incompressible flow.

If we further assume that the flow is always steady and not infinitely compressible

then
6∑
i=1

ΦP
i = ΦP

Σ ≡ 0. Therefore, there are only five free plasmatic volumetric flow



Theoretical basis of in vivo tomographic tracer kinetics 12

rates per voxel and, if we discard for instance ΦP
6 , the second 7-compartment local model

reads as

dc

dt
(t) = − 1

V

5∑
i=1

ΦP
i c

O
i (t) +

1

V
cO6 (t)

5∑
i=1

ΦP
i (30)

with constant plasmatic volumes. See Appendix A for a short derivation of those models

from the local advection equation.

This second model is to a long-term steady flow in a voxel what the Kety-like

model previously derived is to a long-term steady flow in a tube. Indeed, should a voxel

have only two neighbors i = 1, 2 and should the global direction of the flow be known

a priori, for instance ΦP
1 < 0, we would have cO1 (t) = c1 (t)V/V P

1 since ΦP
1 < 0 and

cO2 (t) = c (t)V/V P since ΦP
2 = −ΦP

1 > 0 so that
dc

dt
(t) = −ΦP

1

[
c1 (t) /V P

1 − c (t) /V P
]
.

Both models are a priori relevant even if the second one may not be suitable

for acute pathologies. Thus, within the first one, the absolute value of the total

plasmatic volumetric flow rate

∣∣∣∣∣
6∑
i=1

ΦP
i

∣∣∣∣∣ provides an interesting measure of the long-

term unsteadiness of the flow.

6. From local to 4D tomographic kinetic models

Let us index the voxels by their integer coordinates (i, j, k) in (O, ~x, ~y, ~z). Let ci,j,k(t) be

the tracer mass concentration and Vi,j,k be the plasmatic volume in voxel (i, j, k). Let

us orient its six faces along the ~x, ~y and ~z axes and let us index them as well as the flow

rates by their half-integer coordinates (i± 1/2, j, k), (i, j ± 1/2, k) and (i, j, k ± 1/2).

In this way, the volumetric flow rate in voxel (i− 1, j, k) through its face

(i− 1 + 1/2, j, k) is actually Φ(i−1)+1/2,j,k = Φi−1/2,j,k, in accordance with skew

symmetry. Let αi,j,k , 1/Vi,j,k and

cO
i+ 1

2
,j,k

(t) = V

{
αi,j,kci,j,k (t) if Φi+ 1

2
,j,k (t) ≥ 0

αi+1,j,kci+1,j,k (t) if Φi+ 1
2
,j,k (t) < 0

· · ·

cO
i,j,k− 1

2

(t) = V

{
αi,j,kci,j,k (t) if Φi,j,k− 1

2
(t) < 0

αi,j,k−1ci,j,k−1 (t) if Φi,j,k− 1
2

(t) ≥ 0

(31)

With this new orientation convention, the first local model rewrites as

dci,j,k
dt

(t) = − 1

V


Φi+ 1

2
,j,kc

O
i+ 1

2
,j,k

(t)− Φi− 1
2
,j,kc

O
i− 1

2
,j,k

(t) +

Φi,j+ 1
2
,kc

O
i,j+ 1

2
,k

(t)− Φi,j− 1
2
,kc

O
i,j− 1

2
,k

(t) +

Φi,j,k+ 1
2
cO
i,j,k+ 1

2

(t)− Φi,j,k− 1
2
cO
i,j,k− 1

2

(t)

 (32)

for any voxel (i, j, k) having its six neighbor voxels in the volume of interest, voxels that
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we call interior. Similarly, if we discard Φi,j,k+ 1
2
, the second local model rewrites as

dci,j,k
dt

(t) = − 1

V



Φi+ 1
2
,j,k

[
cO
i+ 1

2
,j,k

(t)− cO
i,j,k+ 1

2

(t)
]
−

Φi− 1
2
,j,k

[
cO
i− 1

2
,j,k

(t)− cO
i,j,k+ 1

2

(t)
]

+

Φi,j+ 1
2
,k

[
cO
i,j+ 1

2
,k

(t)− cO
i,j,k+ 1

2

(t)
]
−

Φi,j− 1
2
,k

[
cO
i,j− 1

2
,k

(t)− cO
i,j,k+ 1

2

(t)
]
−

Φi,j,k− 1
2

[
cO
i,j,k− 1

2

(t)− cO
i,j,k+ 1

2

(t)
]


(33)

For exterior voxels, i.e. those having at most five neighbor voxels in the volume of

interest, two cases must be considered:

• Either it is known a priori, for instance thanks to the anatomy, that all volumetric

flow rates through the faces without a neighbor voxel are necessarily equal to zero.

Such voxels will be called boundary. In this case, we have reduced equations.

For instance, for a boundary voxel (i, j, k) without its (i− 1, j, k), (i, j − 1, k) and

(i, j, k − 1) neighbors, we have the reduced equation for the second local model

dci,j,k
dt

(t) = − 1

V

 Φi+ 1
2
,j,kc

O
i+ 1

2
,j,k

(t) + Φi,j+ 1
2
,kc

O
i,j+ 1

2
,k

(t)−(
Φi+ 1

2
,j,k + Φi,j+ 1

2
,k

)
cO
i,j,k+ 1

2

(t)

 (34)

• or, at least one volumetric flow rate through a face without a neighbor voxel is

not known a priori (to be equal to zero). In this case, there is no equation for

this voxel, otherwise the resulting system of equations would be underdetermined.

Hence, the concentration-time curves in those exterior, non-boundary voxels play

the role of global AIFs or VOFs for the tridimensional volume of interest.

Given the volumetric flow rates, the local equations of both models for all interior

and boundary voxels form a system of inhomogeneous first-order linear constant

coefficient ordinary differential equations that can be written as a matrix differential

equation

dc

dt
(t) = Ac(t) + BcI(t) (35)

where c(t) is the vector of all concentrations in the interior and boundary voxels at time

t, cI(t) is the corresponding vector for exterior, non-boundary input voxels and A and

B are large, too large to be written down, but sparse matrices whose coefficients depend

on the volumetric flow rates F , {Φ.,.,.}, the volumes V , {V.,.,.} or their inverses α

and on the geometry of the volume of interest. The formal solution of such system with

initial condition c (t0) = c0 is given by

c(t) = eA(t−t0)c0 + eA(t−t0)

∫ t

t0

e−A(τ−t0)BcI (τ) dτ

= eA(t−t0)c0 +

∫ t

t0

eA(t−τ)BcI (τ) dτ

(36)
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In particular, if c0 = 0 and t0 = 0, we have

c(t) =

∫ t

0

eA(t−τ)BcI (τ) dτ = eAt ⊗BcI (37)

Again, we recognize a Kety-like monoexponential convolution model, but matrix

and 4D.

By contrast to current single input models that describe the circulation of contrast

agents in voxels completely independently of other voxels, as if there were no inter-

voxel exchanges, the new models rely on the fact that, in virtue of the principle of

locality, a voxel does not exchange matter with one AIF and one VOF but with its

(at most) six immediate neighbor voxels. In other words, each voxel has now six local

inputs or outputs, depending on the posterior signs of the flow rates through each

face. Geometry and space are completely lost within current local SI(SO) models: for

example, shuffling the voxels has no effect on the parameter estimates when a global

AIF is used. By contrast, we are now provided with genuine 4D spatiotemporal models

of the circulation in the whole organ of interest, whose global AIF is the vector-valued

function cI(t) comprising the mass concentrations in the exterior, non-boundary input

voxels. For instance, in brain imaging, cI(t) may comprise the concentration-time curves

in the carotid and basilar arteries voxels.

7. General case: mixed intra/extravascular tracers

Let us examine the case where the contrast agent can leave the intravascular space, enter

the interstitial, extravascular, extracellular one and possibly go back to the intravascular

space.

Once in the extravascular space, we assume that the tracer undergoes only

diffusion (i.e. no advective transport) as usual. Assuming further, as before, that

the root mean squared displacements by diffusion in the blood and in the interstitium

during the dynamic tomographic acquisition duration are small compared to the voxels

characteristic length, no amount of mass enters or exits the voxel by diffusion during

the acquisition so that we shall neglect both the intravascular and extravascular signed

diffusive output masses.

Hence, the mass balance equation remains

dm(t) = dc(t)V = −
6∑
i=1

mi(t) (38)

if we also neglect the tracer signed output masses that are neither in the intravascular

space nor in the extravascular one, i.e. that are crossing the intra/extravascular barrier.

We still have mi(t) = cO,Pi (t)ΦP
i (t)dt and cO,Pi (t) =

{
cP(t) if ΦP

i (t) ≥ 0

cP
i (t) if ΦP

i (t) < 0
under

the intravascular uniform dilution assumption.

The total mass of contrast agent at time t in Σ is

m(t) = c(t)V = mP(t) +mI(t) = cP(t)V P + cI(t)V I (39)
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where mP(t) is the mass of tracer transported by the plasma, V P is the plasmatic volume,

mI(t) is the mass of tracer in the interstitial fluid and V I is the interstitial volume.

Neglecting the vessels volume, we have

V = V IF + V EF = V P(t) + V IC(t) + V I(t) + V EC(t) (40)

where V EC(t) and V IC(t) are the extravascular respectively intravascular cell volumes

and V I(t) is the interstitial, extravascular, extracellular volume. Assuming steady

volumetric hematocrit fraction V IC(t)/V IF ≡ ρP and interstitial cellular fraction

V EC(t)/V EF ≡ ρI, we have

V = V P/
(
1− ρP

)
+ V I/

(
1− ρI

)
(41)

and {
cP(t) =

[
c(t)V − cI(t)V I

]
/
[
V − V I/

(
1− ρI

)]
/
(
1− ρP

)
cP
i (t) =

[
ci(t)V − cI

i(t)V
I
i

]
/
[
V − V I

i /
(
1− ρI

)]
/
(
1− ρP

) (42)

so that

dc

dt
(t) = − 1

V

6∑
i=1

cO,Pi (t) ΦP
i (t)

= − 1

V

6∑
i=1

ΦP
i (t)


c(t)V−cI(t)V I

(1−ρP)[V−V I/(1−ρI)] if ΦP
i (t) ≥ 0

ci(t)V−cIi(t)V I
i

(1−ρP)[V−V I
i /(1−ρI)]

if ΦP
i (t) < 0


(43)

Assuming long-term steady flow, the total plasmatic flow rate vanishes so that

dc

dt
(t) = − 1

V

5∑
i=1

cO,Pi (t) ΦP
i (t) +

1

V
cO,P6 (t)

5∑
i=1

ΦP
i (t) (44)

In any case, the equations involve unknown interstitial or plasmatic mass

concentrations in addition to the mass concentrations in the voxels. It is therefore

necessary to introduce additional information or equations in order to separate the

plasmatic and interstitial components. Since we stick to fluid kinetics in this paper, i.e.

to the principle of mass conservation, we have to stop at this point.

8. Applications

We can define and estimate other quantities of interest as well.

The voxel faces being planar, we have for instance for a face F oriented along axis

~x

Φ =

∫∫
F

~v (x, y, z) · ~xdydz =

∫∫
F

vx (y, z) dydz = Sx 〈vx〉 (45)

where Sx is the measure of F and 〈vx〉 is the mean velocity on it along ~x or the flux

through it. Hence, we define canonically a mean velocity vector field over the boundary

and interior voxels by

~vi,j,k , (vx, vy, vz)i,j,k

,

(
Φ

i− 1
2 ,j,k

+Φ
i+1

2 ,j,k

2Sx
,

Φ
i,j− 1

2 ,k
+Φ

i,j+1
2 ,k

2Sy
,

Φ
i,j,k− 1

2
+Φ

i,j,k+1
2

2Sz

)
(46)
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and a local mean velocity scalar field by 〈vi,j,k〉 ,
√
v2
x + v2

y + v2
z . Let Si be the measure

of face Fi and Li, i = 1, 6 be the dimension of the voxel orthogonal to Fi. We define

the local signed mean transit time from the center of the current voxel to the center of

neighbor voxel i by

MTTi , Li/ 〈vi〉 = LiSi/Φi = V/Φi (47)

where Φi is the outward-oriented flow rate through Fi. Beyond, from the mean velocity

vector field ~vi,j,k, we can determine the streamlines, which coincide with the trajectories

for a steady flow, by solving the differential equation dx/vx = dy/vy = dz/vz as usual. In

this way, we get a dynamic angio-tractography technique via intravascular tomography.

In particular, we get the propagation delays along a given trajectory from a given origin,

the material acceleration (~v · ~∇)~v and its norm for a steady flow, the material jerk, the

material snap, etc.

Last, while the question “how is the tissue perfused?” remains ill-posed as long as

the open perfusion surface is not specified, we can nevertheless address the need for a

single voxel-wise perfusion measure by introducing the total absolute volumetric flow

rate
∑6

i=1 |Φi|, the total quadratic volumetric flow rate
∑6

i=1 Φ2
i , the maximum absolute

volumetric flow rate max
i=1,6
|Φi| or the maximum quadratic volumetric flow rate max

i=1,6
Φ2
i .

Let us just keep in mind that we are loosing information and that those quantities are

no longer physical quantities defined within fluid mechanics.

9. Parameter estimation

It remains to sketch out how parameters {F,α, t0} can be efficiently estimated with

conventional computational means if we want to render this theory applicable, especially

to clinical hyper-emergencies such as acute stroke.

First of all, strictly speaking continuous-time kinetic models have to be converted

into discrete-time ones. But, since this conversion may depend on the imaging technique

at hand (Clough et al. 2000), we do not deal with this issue here and we simply assume,

as usual, that the solutions of the continuous-time models at sampling times are good

approximations of the solutions of the corresponding discrete-time models.

Second, observe that the transformation (F,α) 7→ (λF,α/λ) leaves the equations

invariant for any λ > 0, so that F and α are globally underdetermined, nonidentifiable.

In order to fix λ in intravascular imaging, we have to set the plasmatic volumes to

V P
max , 1/αmin , (1−Ht′)V IF = (1−Ht′)V (48)

in voxels known to contain only blood (i.e. in large arteries and veins), where Ht′ is the

volumetric hematocrit fraction V C/V IF, assumed to be always and everywhere constant.

Suppose we are provided with a parametric model M : si,j,k(t) = f [ci,j,k(t),Θi,j,k]

linking the experimental tomographic signals si,j,k(t) to the theoretical mass

concentration-time curves ci,j,k(t) where Θi,j,k is the set of the model parameters to

be estimated. For instance, we typically have

M : si,j,k(t) = λi,j,kci,j,k(t) + s0
i,j,k + ξi,j,k (49)
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in CTP/DCE-CT and

M : si,j,k(t) = s0
i,j,ke

−λi,j,kTEci,j,k(t) + ξi,j,k (50)

in DSC-MR, where s0
i,j,k are the baselines, ξi,j,k the additive noises, TE is the echo

time and λi,j,k are conversion constants that have to be fixed a priori. For instance,

for white, stationary, uncorrelated Gaussian noises ξi,j,k ∼ N
(
0, σ2

i,j,k

)
, we have

Θi,j,k =
{
s0
i,j,k, σi,j,k

}
.

Bayesian parameter estimation (Jaynes 2003) is the method of choice because it

provides, in addition to admissible parameter estimators (e.g. minimum variance or

maximum a posteriori estimators depending on the loss function), credible intervals

and their odds, joint and marginal posteriors and the probability of the data given the

model. Moreover, the theoretical concentration-time curves in exterior, non-boundary

voxels have to be jointly estimated nonparametrically from the experimental ones, a

task that can be achieved rigorously only within Bayesian probability theory (Boutelier

et al. 2012). Spatial regularization via Markov random fields could also be easily

introduced if necessary. But parameter marginal posteriors require the evaluation of

multiple definite integrals whose dimension is roughly proportional to the number N

of voxels (e.g. O (5N) for the first model with heteroscedastic noises in CTP or DSC-

MR), up to N = 512 × 512 × 320 ' 84 × 106 in CTP. Analytic integration seems to

be precluded by double exponential integrals in CTP and triple exponential integrals

in DSC-MR with Gaussian ξi,j,k and by the fact that the definite integrals over the

volumetric flow rates on R have to be split into two orthant integrals on R− and R+.

Hence, we probably need to design dedicated numerical integration algorithms and this

is a non-trivial task to say the least. Variational Bayes may be?

By contrast, joint maximum a posteriori, maximum likelihood and nonlinear least

squares estimation is operational since efficient generic local optimization methods of

large nonlinear functions are available (Yuan 2011). Beyond, we may be able to take

benefit of the particular structure of our inference problem and to introduce dedicated

algorithms, perhaps similar to those used for inference in Markov random fields such as

iterated conditional modes (Besag 1986) for joint maximum a posteriori estimation.

Despite the large number of parameters, estimation can be made computationally

friendly, if not rigorous, by building for instance on a method that is well known in

DCE-MR (Murase 2004). Assume that the experimental concentration-time curves are

available (e.g. CTP). Integrating the local equations on both sides and replacing the

theoretical antiderivatives CO
.,.,.(t) ,

∫ t

t0

cO.,.,. (τ) dτ by their experimental counterparts
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CO,exp
.,.,. (t) ,

∫ t

t0

cO,exp
.,.,. (τ) dτ , yields for instance the pseudo-model from the second model

ci,j,k (t) = − 1

V



Φi+ 1
2
,j,k

[
CO,exp

i+ 1
2
,j,k

(t)− CO,exp

i,j,k+ 1
2

(t)
]
−

Φi− 1
2
,j,k

[
CO,exp

i− 1
2
,j,k

(t)− CO,exp

i,j,k+ 1
2

(t)
]

+

Φi,j+ 1
2
,k

[
CO,exp

i,j+ 1
2
,k

(t)− CO,exp

i,j,k+ 1
2

(t)
]
−

Φi,j− 1
2
,k

[
CO,exp

i,j− 1
2
,k

(t)− CO,exp

i,j,k+ 1
2

(t)
]
−

Φi,j,k− 1
2

[
CO,exp

i,j,k− 1
2

(t)− CO,exp

i,j,k+ 1
2

(t)
]


(51)

if ci,j,k(t0) = 0.

Compared to the analytic models that are nonlinear in the parameters, pseudo-

models are piecewise-bilinear in F and α, i.e. they are piecewise-linear in F given α

and linear in α given F. Hence, for white, stationary, uncorrelated and homoscedastic

Gaussian ξi,j,k and for each t0, we can get a least squares estimator FLS (α) of F given

α and the linear least squares estimator αLLS (F) of α given F. Let Ω be the set of all

interior and boundary voxels. Therefore, we can minimize

χ2 (F,α, t0) =
∑

(i,j,k)∈Ω

n∑
l=1

[
cexp
i,j,k (tl)− ci,j,k (tl)

]2
(52)

where cexp
i,j,k (tl) , l = 1, n is the experimental mass concentration at sampling time tl, by

using a fast sparse alternating least squares scheme (Berge 1993) such as

For each tl, l = 1, n∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α (tl)← α0

Repeat∣∣∣∣∣ F (tl)← FLS [α (tl)]

α (tl)← αLLS [F (tl)]

until [F (tl) ,α (tl)] converges

Compute χ2 [F (tl) ,α (tl) , tl]

Estimate (F,α, t0) as arg min
l=1,n

χ2 [F (tl) ,α (tl) , tl]

(53)

which provably converges to a local minimum.

The constraints αi,j,k ≥ αmin = 1/ (1−Ht′) /V in intravascular imaging can

be enforced by making the substitution α′ = α − αmin and by using non-negative

linear least squares (Kim et al. 2010) in the α (tl) ← αLS [F (tl)] step. If the ξi,j,k are

heteroscedastic, least squares have to be replaced by weighted least squares

χ2 (F,α, t0) =
∑

(i,j,k)∈Ω

n∑
l=1

[
cexp
i,j,k (tl)− ci,j,k (tl)

]2
/σ2

i,j,k (54)

and we have to resort to feasible weighted least squares estimators (Rao & Toutenburg

1999) unless the σi,j,k are estimated separately or marginalized, etc.
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The main problem occurs in the F (tl) ← FLS [α (tl)] step. Indeed, we have three

normal equations for each volumetric flow rate:
∂χ2

∂Φ.,.,.

= 0 with Φ.,.,. > 0,
∂χ2

∂Φ.,.,.

= 0

with Φ.,.,. < 0 and Φ.,.,. = 0. Hence, we should solve not less than 3|F| linear systems

of normal equations in this step, which is of course absolutely intractable. In order to

overcome this combinatorial issue, we have to pre-determine the signs of the volumetric

flow rates in order to pre-specify a suitable global kinetic sub-model among the 3|F| a

priori possible ones.

For this purpose, we first compute the probabilities of the local concentration-time

curve cexp
i,j,k (t) given the (at most) 26 = 64 local sub-models (i.e. the evidences) in all

interior and boundary voxels. For instance, if the six outward-oriented volumetric flow

rates are negative, we have the sub-model

dci,j,k
dt

(t) = −

 Φi+ 1
2
,j,kαi+1,j,kci+1,j,k (t)− Φi− 1

2
,j,kαi−1,j,kci−1,j,k (t) +

Φi,j+ 1
2
,kαi,j+1,kci,j+1,k (t)− Φi,j− 1

2
,kαi,j−1,kci,j−1,k (t) +

Φi,j,k+ 1
2
αi,j,k+1ci,j,k+1 (t)− Φi,j,k− 1

2
αi,j,k−1ci,j,k−1 (t)

(55)

from the first local kinetic model, whose identifiable parameters are the six terms

Φi+ 1
2
,j,kαi+1,j,k, Φi− 1

2
,j,kαi−1,j,k... Similarly, if the six outward-oriented volumetric flow

rates are positive, we have the sub-model

dci,j,k
dt

(t) = −αi,j,kci,j,k (t)

(
Φi+ 1

2
,j,k − Φi− 1

2
,j,k + Φi,j+ 1

2
,k−

Φi,j− 1
2
,k + Φi,j,k+ 1

2
− Φi,j,k− 1

2

)
(56)

whose identifiable parameter is the αi,j,k

(
Φi+ 1

2
,j,k − ....− Φi,j,k− 1

2

)
term.

The sub-model of highest evidence thus allows us to estimate the signs of the

six local volumetric flow rates. In this way, we get two estimates of the sign of each

volumetric flow rate through a face shared by two interior or boundary voxels. If both

estimates are consistent, then we specify the sign in the global kinetic sub-model. If

both estimates are inconsistent, we can compute the evidences of the 212−1 = 2048 sub-

models of the tracer kinetics in both voxels in order to estimate the problematic sign

one more time. Of course, despite this second estimation step, some inconsistencies will

unavoidably remain. However, the corresponding misspecifications in the global kinetic

sub-model should have only a local and mild impact for, by definition, they occur for

volumetric flow rates that are small in absolute value so that the erroneous terms in the

sub-model are also small in absolute value compared to other similar terms.

In fitting the global kinetic sub-model, we may better not constrain the volumetric

flow rates to have the pre-specified signs. Indeed, this shall allow us to check the

consistency of their signs a posteriori. Moreover, unconstrained estimation/optimization

is computationally more friendly than constrained estimation/optimization. In

particular, we can get the minimum variance Bayes estimator (i.e. the posterior

expectation) of each unconstrained volumetric flow rate of the global bilinear pseudo-

model in closed-form given α.
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10. Practical considerations

New models apply immediately to tracer tracking tomographic data available so far as

soon as they are volumetric, i.e. as soon as there is no void between consecutive slices.

We should just better pre-segment the organ of interest in order to determine boundary

and exterior voxels (e.g. carotid and basilar voxels for brain imaging) and register all

signals on the same time grid because slices are generally not sampled simultaneously. In

fitting analytic models, this is achieved by jointly estimating theoretical concentration-

time curves on a fine time grid (Boutelier et al. 2012). In fitting pseudo-models, this is

achieved by pre-interpolating all signals on the same fine time grid.

By contrast to current models that allow estimating “blood flows” and “blood

volumes” only up to an unknown multiplicative constant (i.e. relative blood flows

rBF and relative blood volumes rBV ) due to the violation of the principle of locality,

volumetric flow rates F and volumes 1/α estimates should be quasi-absolute at least

in homogeneous tissue regions, regardless of the imaging modality. Indeed, first the

models do not suffer partial volumes effects because they are precisely taken into account

by design. Second, in homogeneous tissue regions, the relationships between signals

and concentration-time curves, in particular the values of the unknown conversion

constants λi,j,k, are expected to be locally quasi-identical on the average (of course

there can exist local MR field inhomogeneities, etc.). Hence, since the parameters

are essentially determined by the seven local concentration-time curves, if the seven

signal/concentration relationships are quasi-identical, their estimates should also be

quasi-absolute.

11. Discussion and conclusion

Current perfusion and permeability models have been revisited from the point of view of

fluid kinematics and kinetics. Elementary proofs of local advective intravascular kinetic

models reveal that none of them is applicable to tracer tracking tomographic techniques

because voxels are not SI(SO) dynamical systems. In particular, they do not and cannot

account for the circulation across the voxels and the underlying 3D geometry is lost.

The underlying fundamental geometric issue, one virtual input instead of six real

inputs/outputs, has been easily fixed by rewriting the mass balance equation for a tracer

undergoing incompressible or steady advective transport through a voxel. This yields

simple, global, 4D spatiotemporal analytic models of the tracer transport and the blood

circulation in the whole organ of interest. Their many parameters, short-term or long-

term steady volumetric flow rates and volumes, can be readily estimated at least in

some special cases. At a first glance, the new theory bridges the gap with techniques

such as perfusion tensor imaging (Frank et al. 2008), but the exact relationship needs

to be worked out.

Working hypotheses, mainly short-term or long-term steadiness and uniform

intravascular dilution/concentration, are minimalist and not stronger than before.
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Clearly, the uniform dilution/concentration assumption, while logically necessary, never

holds. As a consequence it is actually not an assumption but rather an application of the

principle of insufficient reason: if we partition the plasmatic space, then we have a priori

no sufficient reason to consider that a part should have a mass concentration different

from the mass concentration in any other part. Therefore, we should regard them as

equal. Besides, physiology indicates that we might better replace steady volumetric flow

rates and volumes by periodic ones in order to take the cardiac cycle into account.

From a logical standpoint, current single input perfusion and permeability models

are thus falsified by fluid kinetics, independently of their practical value, since either

they violate the principle of locality or they assert that a voxel has only two neighbors

instead of six in general. As a consequence, by the principle/theorem of explosion of

classical logic (i.e. ex falso sequitur quodlibet), any past, present or future Boolean

statement drawn under them is true and false at the same time. In particular, it does

not make sense to compare old and new experimental results: we just have to make a

choice.

From a mechanical standpoint, the present kinetic theory is nothing but the

conservative finite volume method of computational fluid dynamics with first-order

upwind numerical flow rates and piecewise-constant solutions (Barth & Ohlberger 2004).

The only difference is that the meshed geometry is not tunable but fixed, given a

priori by the tomographic technique at hand and that the equations are obtained

directly for the discrete, discontinuous tomographic medium, not by discretization of

the continuity equation. As a consequence, the resulting discrete solutions are not at

all expected to approximate the continuous ones because millimetric voxels are orders

of magnitude bigger than the maximum elementary volume (Schneider 2009) in the

tissue. Interestingly, the situation is quite different with micro-CT perfusion where the

characteristic dimensions of the voxels almost match those of the microcapillaries (Nett

et al. 2010).

Hence, we are provided with a logically simple, unified, fundamental theory of

intravascular imaging that spontaneously solves many current technical and conceptual

issues (Fieselmann et al. 2011). For instance, delay and dispersion effects actually arise

from the violation of the principle of locality and no longer exist within this theory. By

contrast, the mass balance equation for mixed intravascular/extravascular tracers alone

is not sufficient to describe the flow and to determine unknown plasmatic or interstitial

mass concentrations, volumetric flow rates and volumes. Since fluid kinetics does not

seem to permit writing down the mass balance equations for the intravascular and

extravascular compartments themselves unless they are given a priori, the possibility

of inferring intra/extravascular exchanges and permeation from mass concentrations in

voxels only may appear doubtful and requires further investigation. Besides, it remains

to express the conservation of linear momentum and energy in order to access other

useful physical quantities such as local mean pressures.

If something like the theory expounded here eventually supersedes the current

one(s), it shall have a deep impact on our understanding of blood circulation, perfusion,
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permeation and metabolism and on the clinical applications of perfusion-weighted and

tracer tracking imaging to numerous pathologies, from vascular diseases to metabolic

disorders. In particular, we would finally estimate real, quasi-absolute volumetric flow

rates, volumes, mean velocities, trajectories and propagation delays thanks to those

techniques. This is the purpose of a forthcoming paper.

Appendix A: a short derivation of local kinetic models

The local advection equation for an intravascular tracer transported by the plasma is

∂cP (x, y, z, t)

∂t
+ ~∇ ·

[
cP (x, y, z, t)~vP (x, y, z, t)

]
= 0 (57)

where cP (x, y, z, t) is the tracer plasmatic mass concentration and ~vP (x, y, z, t) is the

Eulerian velocity vector field of the plasma mixed with the tracer.

Integrating over the voxel volume V , we get on the one hand∫∫∫
V

∂cP (x, y, z, t)

∂t
dxdydz =

d

dt

∫∫∫
V\∂V

cP (x, y, z, t) dxdydz =

d

dt

[
V P (t) cP (t)

]
=

d

dt
[V c (t)] =

V
dc

dt
(t)

(58)

if cP (x, y, z, t) ≡ cP (t) over the plasmatic space. On the other hand, by the Gauss-

Green-Ostrogradsky divergence theorem, we have∫∫∫
V

~∇ ·
[
cP (x, y, z, t)~vP (x, y, z, t)

]
dxdydz =∫∫

©
∂V
cP (x, y, z, t)~vP (x, y, z, t) · −→dΣ =

6∑
i=1

∫∫
Fi

cP (x, y, z, t)~vP (x, y, z, t) · −→dΣ

(59)

Therefore, if cP (x, y, z, t) ≡ cOi (t) on the intersection of the plasmatic space and

face Fi, then we have∫∫∫
V

~∇ ·
[
cP (x, y, z, t)~vP (x, y, z, t)

]
dxdydz =

6∑
i=1

cOi (t)

∫∫
Fi

~vP (x, y, z, t) · −→dΣ =

6∑
i=1

cOi (t) ΦP
i (t)

(60)

Hence, we recover the general local kinetic model

dc

dt
(t) = − 1

V

6∑
i=1

ΦP
i (t) cOi (t) (61)
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