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Abstract

Lower fractal dimensionality of the early Universe at higher energies is an
theoretical possibility as recently pointed out in [1].Gravitational-wave experiments
with interferometers and with resonant masses can search for stochastic
backgrounds of gravitational waves of cosmological origin.In this paper using
cosmological models with fractional action and Calcagni approach to cosmology in
fractal spacetime [18], we will examine a number of theoretical aspects of the
searches fractal dimensionality from a stochastic fractal background of GWs.
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I.Introduction

It has been recently urgently declared [1] that quantum gravity models where the
number of dimensions reduces at the ultraviolet (UV) exhibit a potentially observab-
le cutoff in the primordial gravitational wave (GW) spectrum.A new framework was
proposed in which the structure of spacetime is fundamentally (1  1)-dimensional
universe, but is "wrapped up" in such a way that it appears even higherdimensional
at larger distances.
Furthermore, the problems plaguing (3  1)-dimensional quantum gravity quanti-
zation programs are solved by virtue of the fact that spacetime is dimensionally-
reduced. Indeed, effective models of quantum gravity are plentiful in (21) and
even (11) dimensions.

However as pointed out in paper [2] this claim problematic and even misleading for
two distinct reasons.
I.Definition of dimensionality [2]: "It is completely ambiguous to which definition
of “dimension” is being used when referring to vanishing dimensions [1].
The only papers cited there which discuss vanishing dimensions in quantum
gravity are [3]-[4],which discuss the “spectral dimension” (SD).In particular [2]
refers to casual dynamical triangulations [CDTs], where it is the SD that flows to 2
in
the UV,not the topological [physical] dimension. The latter remains 4 [3]. It is not
true that CDTs “demonstrate that the four-dimensional spacetime can emerge
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from two-dimensional simplicial complexes”, as stated in [1]. 4-dimensional CDTs
by construction arise from 4-dimensional simplices.The SD is an analytic feature
that provides information about short-distance dispersion relations. The fact that it
runs to 2 at short distances does not mean that any physical modes decouple
there.
Consider, for instance, Hořava gravity,which is another theory where (Lorentz
violating) dispersion relations lead to a SD of 2 in the UV.The spin-2 graviton does
not decouple at high energies, it remains part of the physical excitation spectrum,
albeit with a strongly Lorentz violating dispersion relation.That is, in a wide class of
models where some notion of dimension is scale dependent, this is the SD.But the
SD is not the quantity that appears in the Feynman loop integrals (as in the
suggestions made in [1]); that is the physical dimension 4,which is not running".
Remark 2.However as pointed out in [16] for every SDl that flows to 2 or even to 0
in the UV regime,i.e.at short distances l, l  0,exists effective QGR theory on
SDl-dimensional fractal spacetime, which imbeded in canonical 4-dimensional
spacetime.In this approach in contrast with CDTs, the SDl is the quantity which
appears generically in the Feynman loop integrals. The spin-2 graviton does not
decouple at high energies,it remains part of the physical excitation spectrum,albeit
with a strongly Lorentz violating, but in contrast with Hořava gravity,only for any
fractional values of SDl.
II.Dimensionality and dynamics [2]: "Though there are some heuristic models
cited in [1] where it is the physical dimension that is running, e.g. [17],these are
quantum field theory models which do not include gravity.Let us nevertheless
entertain the idea that it is indeed the number of physical dimensions that reduces
in the UV in a quantum gravity model and one ends up with a lower-dimensional
theory.The argument used in support of the claim that such a theory would have no
local degrees of freedom is essentially that 2  1-dimensional general relativity
(GR) has this property [1].However, there is no particular reason to believe that a
generic quantum gravity model which reduces to a 2  1-dimensional theory at
high energies should share this characteristic".
Remark 2. As pointed out in [6],[16],[17] low dimensional general relativity (GR) in
fractal spacetime in contrast with classical 2  1, 1  1-dimensional general
relativity does not degenerate. For instance S.Vacaru [6] proved that even black
holes really exist in low dimensional fractional gravity.Consequently a generic
quantum gravity model which reduces to a low dimensional theory on fractal at high
energies, does not share specified above degenerative characteristic.
III. Additionally [2]: "There is no reason whatsoever for the theory in question to
be close to 2  1 dimensional GR in the UV. Clearly,if this is a to be a viable gravity
theory it should resemble 4-dimensional GR at low energies".
Remark 3. In contemporary GR and cosmology fractal nature of physical
spacetime is proposed even declared and argued in many papers [18]-[27].
Thus there is a reason in question: is fractal dimension of the real physical
spacetime chainges or not chainges,during the Universe evolution?
Remark 4. From general reasons specified in [2],heuristic model of physical
dimension crossover which proposed in [1] and which based on jumping crossover
1  1  2  1  3  1-dimensional spacetime is problematic.
Remark 5.[1] However, exactly at the crossover the description could be very
complicated.For example,systems whose e ective dimensionality changes with the
scale can exhibit fractal behavior, even if they are defined on smooth manifolds. As
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a good step in that direction,in [18]-[19] a field theory which lives in fractal
spacetime and is argued to be Lorentz invariant, power-counting renormalizable,
and causal was proposed.

II. Spacetimes with non-integer dimensions.

II.1.Ggeometric formalism with the fractional
Caputo derivative.

We assume that fx is a derivable function f : 1x, 2x  .The fractional
Caputo derivatives are defined respectively by formulae

left :
1x


x fx  1

s  

1x

x

x  x s1 
x 

s
fx dx ,

right : x


2x
fx  1

s  

x

2x

x   xs1  
x 

s
fx dx  .

2.1.1

We denote by x1x, 2x the set of those Lesbegue measurable functions fx on

1x, 2x for which fz  
1x

2x
fxdx

1/z
 .

For any real–valued function fx defined on a closed interval 1x, 2x there is a
function Fx  1x


Ix fxdx defined by the fractional Riemann–Liouville integral

1x

Ix fxdx  1 

1x

x
x  x 1fx dx ,when the function fx 

1x


x Fx, for all

x  1x, 2x satisfies the conditions
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1x


x 1x


Ix fxdx  fx,  0,

1x


x 1x


Ix Fxdx  Fx  F1x,

0    1.

2.1.2

Definition.2.1.1. A fractional volume integral is a triple fractional integral within a
region X  3, for instance, of a scalar field fxk :


I f 


I xk  fxk 


I x1 


I x2 


I x3  fxk. 2.1.3

For   1


I f 


I xk  fxk  

V
dVfx1,x2,x3. 2.1.4

An exterior fractional differential can be defined through the fractional Caputo
derivatives which is self–consistent with the definition of the fractional integral
considered above. We write the fractional absolute differential


d in the form


d  dxj 0


j ,


d x j  dxj xj1

2  
,

2.1.5
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where we consider 1x  0.

Definition.2.1.2. An exterior fractional differential is defined via formula


d  2  

j1

n
xj1


d xj 0


j . 2.1.6

Definition.2.1.3.The fractional integration for differential forms on an interval  
1x, 2x is defined




I x

1x


dx fx  f2x  f1x. 2.1.7

Definition.2.1.4.The exact fractional differential 0-form is a fractional differential of
the an function fx :

1x

dx fx  dx 1x


x fx , 2.1.8

where the equation (2.1.7) is considered as the fractional generalization of the
integral for a differential 1-form.
Thus the formula for the fractional exterior derivative can be written as

1x

dx  dxi

1x


i . 2.1.9

The fractional differential 1-form

 with coefficients ixk is
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  dxiixk. 2.1.10

The exterior fractional derivatives of a fractional 1-form

 is a fractional 2-form

1x

dx


  dxi  dxj

1x


j ixk. 2.1.11

II.2.Einstein Equations on Fractional Manifolds.

Definition.2.2.1. A real manifold M, with integer dimension dimM  n, can be
endowed on charts of a covering atlas with a fractional derivative-integral structure
of Caputo type as we explained above. In brief, such a space (of necessary smooth
class)


M will be called a fractional manifold.

A tangent bundle TM over a manifold M of integer dimension is canonically defined
by its local integer differential structure i.A fractional generalization can be
obtained directly if instead of i we consider the left Caputo derivatives 1xi


i of type

(2.1.1), for every local coordinate xi.
On


T M, an arbitrary fractional frame basis is


e  e 

u

 , 2.2.1

where


 


j 

1x
j


j ,


b 

1y
b


b 2.2.2
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when j   1,2, . . . ,n and b  n  1,n  2, . . . ,n  n. There are also fractional
co-bases which are dual to (2.2.1)


e

 e

 u

d u , 2.2.3

where the fractional local coordinate co–basis is


d u  dxi, dya , 2.2.4

when the h- and v - components, dxi  and dx  are of type (2.1.10).

Similarly to

T M, we can define a fractional vector bundle


E on M, when the fiber

indices of bases run values a,b, . . . n  1,n  2, . . . ,n  m.
Definition.2.2.2. Let us consider now a ”prime” (pseudo) Riemannian manifold V is
of integer dimension dim V  n  m, n  2,m  1. Its fractional extension is
modelled as a fractional nonholonomic manifold


V defined by a quadruple


V  V,


N,


d,


I,where


N-is a nonholonomic distribution defining a nonlinear

connection structure, the fractional differential structure

d is given by Eq.(2.2.1),

Eq.(2.2.3) and the non–integer integral structure

I.

Definition.2.2.3. A nonlinear connection (N–connection)

N for


V is defined by a

nonholonomic distribution (Whitney sum) with conventional h- and v-subspaces,
h

V and v


V,


T


V h


V v


V 2.2.5

Nonholonomic manifolds with a nonlinear connection

N are called, in brief,

N–anholonomic fractional manifolds. Locally, a fractional N–connection is defined
by its coefficients,


N  

Nia, when
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N 

Niaudxi 

a . 2.2.6

For a N–connection

N we can always a class of fractional (co) frames linearly

depending on Ni

e 
ej 


j 

Nja

a ,

eb 

b ,

e   ej  dxj, eb  dyb  Nkbdxk.

2.2.7

The nontrivial nonholonomy coefficients are computed Wib
a 


b Nia and Wij

a 
ji

a  ei Nja  ej Nia (where ji
a are the coefficients of the N-connection

curvature) for e, e   e e  e e 
W

 e.
Definition.2.2.4. A fractional metric structure


g g is defined on a


V by a

symmetric second rank tensor


g 

gudu  du. 2.2.8

For N-adapted constructions, it is important to use the property that any fractional
metric


g can be represented equivalently as a distinguished metric (d–metric),


g gkj, gcb ,where
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g 

gkjx,yek ej  gcbx,yec eb 

kj ek
 ej  cb ec

 eb ,

2.2.8

where matrices kj  diag1,1, . . . ,1 and cb  diag1,1, . . . ,1 are obtained
by frame transforms

kj  e k
k e j

j gkj, cb  e a
a e b

b gab.

Definition.2.2.5.A distinguished connection (d-connection)

D on a


V is a linear

connection preser- ving under parallel transports the Whitney sum (2.2.5).

To a fractional d-connection

D we can associate a N-adapted differential 1-form of

type (2.1.10)

 
 

 
 e, 2.2.9

where the coefficients are computed with respect to Eqs.(2.2.7) and parametrized
the form

 
 

Ljki ,
Lbka ,

Cjci ,
Cbca , 2.2.10

On fractional forms on

V, one can act with the absolute fractional differential

d  1x

dx  1y


dy . In N-adapted fractional form, the value d  e e consists

from exterior h-and v-derivatives of type (2.1.9), i.e.
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1x

dx  dxi, 1x


i 

ej ej,

1y

dy  dxa, 1x


a 

eb eb,

2.2.11

Definition.2.2.6.The torsion and curvature of a fractional d–connection

D  

 
 

are computed, respectively,as fractional 2-forms,

T 

D e  d e   

  e,

R 
 


D 

 



d 
 

  

   
 

R 
 e  e,

d 
e e.

2.2.12

Definition.2.2.7. The fractional Ricci tensor Ric   R 
R 

  is

Rij 
R ijk

k , Ria  
R ika

k , Rai 
R aib

b , Rab 
R abc

c . 2.2.13

Definition.2.2.8.The scalar curvature of a fractional d-connection

D is

s
R 

g R 
R  S, R 

gij Rij,
S  gab Rab, 2.2.14

defined by a sum the h- and v-components of (2.2.13) and contractions with
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the inverse coefficients to a d-metric (2.2.8).

Definition.2.2.9.We introduce the Einstein tensor G

G 
R  12

g s
R. 2.2.15

Note that for applications in geometry and physics, there are considered more
special classes of d-connections:
1.On a fractional nonholonomic


V, there is a unique canonical fractional

d-connection

D  
 




Ljk
i
, 

Lbk
a
, Cjc

i
, Cbc

a
 2.2.16

which is compatible with the metric structure,i.e.

D g  0, 2.2.17

and satisfies the conditions

T jk
i
 0, 


T bc
a
 0. 2.2.18

2.The Levi–Civita connection

  

 
  can be defined in standard from but by

using the fractional Caputo left derivatives acting the coefficients of a fractional
metric (2.2.8).
The coefficients of the fractional Levi–Civita and canonical d-connection satisfy the
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distorting relation


 
 

 




Z 
 . 2.2.19

The Einstein equations on a spacetime manifold V of integer dimension,for
anenergy-momentum source of matter T, are written in the form

E  R  12 gR  T. 2.2.20

where  const and the Einstein tensor is computed for the Levi–Civita connection
.The Einstein equations (2.2.20) can be rewritten equivalently using the canonical
d-connection D  


,

E  R  12 g 
sR  £, 2.2.21


Laj
c
 ea Nj

c ,Cjb
i
 0,ji

a  0, 2.2.22

where R is the Ricci tensor for R, sR  gR and £ is such a way
constructed that £ reduced to T when D  .
Remark 2.2.1.[6].There are two possibilities to make equivalent two different
systems of equations for  and, respectively, for D. In the first case, we can include
the contributions of distortion tensor Z

 from Eq.(2.2.19) into the source £ ~
T  z£Z

  in such a form that the system (2.2.21).The second case that is £
 T
but in order to keep fundamental the Einstein equations for .
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Introducing the fractional canonical d-connection D (2.2.15) into the Einstein
d-tensor,following the same principle of constructing the matter source £ as in
general relativity but for fractional d-connections, one derive geometrically a
fractional generalization of N-adapted Einstein equations

E  £. 2.2.23

Such a system can be restricted to fractional nonholonomic configurations
for  if we impose a fractional analog of constraints (2.2.22).

Laj
c
 ea Nj

c , Cjb
i
 0, ji

a  0. 2.2.24

Let us consider a fractional metric


g   ixk,vgixk, tdxidxi 

axk,vhaxk,veaea

e3  dv   i3xk,vwixk,vdxi,

e4  dy4   i4xk,vnixk,vdxi,

2.2.25

where the coefficients will be defined below and shall work with the ”prime”
dimension splitting of type 2  2 when coordinated are labeled in the form
u  x j,y3  v,y4, for i, j, . . . 1,2.
Remark 2.2.2.[6].The solutions of Einstein equations will be constructed for a
general source of type
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£ 
  diag £;

£1 
£2 

£2xk,v; £3 
£4 

£4xk . 2.2.26

A straightforward computation of the components of the Ricci and Einstein
d-tensors corresponding to ansatz (2.2.25) reduces the Einstein equations (2.2.23)
to system of partial differential equations [6]:

a R 11 
R 22 

 1
2g1g2

g2 
g1 g2 
2g1

 g2 2

2g2
 g1 

g1 
2

2g1


 £4,

b R 33 
R 44 

 1
2h3h4

h4 
h42

2h4


h3
 h4
2h3

  £2,

R 3k 
wk
2h4

h4 
h42

2h4


h3
 h4
2h3



c
h4
3h4

1xi

xi

h3

kh4

h4
 1xk


xkh4
2h4

 0,

d R 4k 
h4
2h3

nk 
h4
h3

h3  32 
h4

nk
2h3

 0,

2.2.27

where we wrote the partial derivatives in the brief form:
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a 

1a  1x1


x1a,

a 

2a  1x2


x2a,

a 

va  1v


va.

2.2.28

Configurations with fractional Levi–Civita connection  can be extracted by
imposing additional constraints

wi  ei ln|h4 |,
ekwi  wkei,

ni  0,

ink 


kni.

2.2.29

satisfying the conditions (2.2.24).
Remark 2.2.3.[6].One can construct ’non-Killing’ general fractional solutions
depending on all coordinates when:

g  gixkdxidxi  2x j,v,y4 hax k,v eaea,

e3  dy3  wixk,vdxi,

e4  dy4  nixk,vdxi,

2.2.30

for any  for which

ek 

k   k  nk


4   0, 2.2.31

where 2  1.

16



I.Solutions with h3,4  0 and £2,4  0.
Such metrics are defined by ansatz:

g  expxkdxidxi  h3x k,v e3e3 

h4x k,v e4e4,

e3  dv  wi x k,v dxi,

e4  dy4  nixk,vdxi,

2.2.32

with the coefficients which is solutions of the system

a 
     2£4xk,

b h4 
2h3h4£2xi,v


,

2.2.33

a 
wi   i  0,

b ni  ni  0,
2.2.34

where
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a 
  ln

h4

|h3h4|
,   ln |h4 |3/2

|h3 |



,

b 
 i  h4


k ,   h4.

2.2.35

For h4  0  £2  0 we have also   0.The exponential function
expxk
in (2.2.32) is the fractional analog of the ”integer” exponential functions and
called the Mittag–Leffer function E x  1x


.We shall write usual symbols for

functions as in the case of integer calculus,but providing a label  considering such
fractional construction.
It is possible to consider any nonconstant   xi,v as a generating function,
we can construct exact solutions of Eq.(2.2.33)-Eq.(2.2.34).One have to solve
respec- tively the two dimensional fractional Laplace equation, for g1  g2 
 expxk Then one integrate on v, in order to determine h3, h4, ni,and
solving algebraic equations, for wi. Thus one obtain:

g1  g2  expxk, h3  
|xk,v|

£2
,

h4  0h4xk  2  1v


I v

exp2xk,v
£2

,

wi  

i /,

ni  1nkxi  2nkxi  1v


I

h3
|h4 |

3 ,

2.2.36

where 0
h4xk, 1nkxi and 2

nkxi are integration functions, and 1v


I  is the

fractional integral on variables v.To construct exact solutions for the Levi-Civita
connection , we have to constrain the coefficients (2.2.36) to satisfy the
conditions (2.2.29). For instance, we can fix a nonholonomic distribution when
2
nkxi  0 and 1

nkxi are any functions satisfying the conditions
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i1nkxj 


k1nixj. 2.2.37

The constraints on xk,v are related to the N-connection coefficients wi 



i / following relations

wi  wih4 

ih4  0,


i1wkxj 


k1wixj,

2.2.38

where we denoted by wi and h4 the functional dependence on .Such
conditions are always satisfied for   v or   const where wixk,v can be
any functions.
II.Solutions with h4  0
The equation (2.2.27.b) can be solved for such a case h4  0, only iff £2  0.
Any set of functions wixk,v obviously define a solution of Eq.(2.2.27.c),and its
equivalent (2.2.34.a),because the coefficients ,  i are zero.The coefficients ni
are determined from Eq.(2.2.34.b) h4  0 and any given h3 which results in

nk  1nk  2nk 1v


Iv h3 . 2.2.39

It is possible to choose g1  g2  expxk with xk determined by
Eq.(2.2.33.a) for any given £4xk.This class of solutions is given by ansatz [6]:

g expxkdxidxi  h3xk,ve3e3 

0
h4xke4e4,

e3  dv  wixk,vdxi,

e4  dy4  1nk  2nk 1v


Iv h3  dxi,

2.2.40
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for every fractional functions h3xk,v, 0h4xk, wixk,v and integration fractional
functions 1nk, 2nk.A subclass of solutions for the Levi–Civita connection can be
obtained from (2.2.40) by using the conditions

2
nkxi  0,


i1nk 


k1ni,

wi 

i0h4  0,


i1wk 


k1wi,

2.2.41

for any such wixk,v and 0
h4xk

III.Solutions with h3  0 and h4  0.

The ansatz for metric is of the type

g expxkdxidxi  0
h3xke3e3 

h4xk,ve4e4,

e3  dv  wixk,vdxi,

e4  dy4  nixk,vdxi,

2.2.42

where g1  g2  expxk with xk determined from Eq.(2.2.33.a) for
any given £4xk.A function h4xk,v solves the equation (2.2.33.b) for h3  0
which can be represented in the form

h4 
h42

2h4
 20h3h4£2xk,v  0. 2.2.43
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The solutions for the N-connection coefficients are

wi  

i 


 / 



 ,

ni  1nkxi  2nkxi 1v


Iv 1/ |h4 |

3 ,



  ln

h4

|0h3h4|
.

2.2.44

The Levi–Civita conditions for ansatz (2.2.42) is

1
nkxi  0,


i1nk 


k1ni,

wi 




 wi 


 h4 








i h4 


  0,


i 1

wk 

 


k 1

wi 

 .

2.2.45

Note that for small fractional deformations, it is not obligatory to impose such
conditions.One can consider integer Levi-Civita configurations and then to
transform them nonholonomically into certain d-connection ones.
IV.Solutions with   const.

Fixing in (2.2.35.a)   0  const and considering h3  0 and h4  0, we get
that the general solutions of Eq.(2.2.33)-Eq.(2.2.34) are
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g expxkdxidxi 

0
h2fxi,v2£xi,ve3e3  f2xi,ve4e4,

e3  dv  wixi,vdxi,

e4  dy4  nkxi,vdxi,

2.2.46

where 0
h  const and g1  g2  expxk with xk determined from

Eq.(2.2.33.a) for any given £4xk.
By using the fractional function

£xi,v  40xi  0
h2
16 1v


Iv £2xk,v f 2xi,v 2 2.2.47

we write the fractional solutions for N-connection coefficients Ni
3  wi and

Ni
4  ni in the next form

wi 

i

£xk,v/£xk,v 2.2.48

and

nk  1nkxi  2nkxi 1v


Iv

f xi,v 2

f xi,v
2.2.49

If £xi,v  1 for £2  0,we take 40xi  1.For such conditions,the
functions
h3   0

h2 f xi,v 2 and h4  f 2xi,v satisfy the equation (2.2.33.b),when
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|h3 | 
0h |h4 |


2.2.50

is compatible with the condition   0  const.

II.3.Fractional Spacetimes and Black Holes.
Fractional deformations of the Schwarzschild

spacetime.

In the paper [6], was proved that black holes really exist in fractional gravity
contrary to the hope that involving a new type of derivative calculus,and changing
respectively the differential spacetime structure, we may eliminate ”ambiguities”
with singularities etc.The concepts of black hole,singularity and horizon seem to be
fundamental ones for various types of holonomic and nonholonomic, commutative
and noncommutative, pseudo–Riemanann and Finlser like,fractional and integer
etc. theories of gravity.
We consider a diagonal integer dimensional metric g depending on a small real
parameter 1    0,

g  dd  r2dd  r2 sin2dd  2dtdt 2.3.1

The local coordinates and nontrivial metric coefficients are parametrized:

x1  ,x2  ,y3    ,y4  t,

g 1  1,g 2  r2,h 3  r2 sin2,h 4  2,

   dr 1  2m0r  
r2

1/2
,

2r  1  2m0r  
r2
.

2.3.2
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For   0 in variable r and coefficients, the metric (2.3.1) is just the the
Schwarzschild solution written in spacetime spherical coordinates r,,, t with a
point mass m0.
In paper [6] was introduced a class of exact fractional vacuum solutions of type ( )
when the fractional metrics are generated by nonholonomic deformations

gi 

 ig i,ha 


ah a. 2.3.4

and some nontrivial wi, ni [where g i,h a are given via Eqs.(2.3.2)] and
parametrized by ansatz


g   1,, d d  2,,r2dd 

3,,,r2 sin2  4,,,2tt

  d  w1,,, d  w2,,, d ,

t  dt  n1,, d  n2,, d .

2.3.5

where the coefficients will be constructed determine solutions of the system of
equations ()–() with £  0.The equation () for £2  0 is solved via formulae

h3   0h2b2  3,,,r2 sin2,

h4  b2 4,,,2,

|3 |  0h2
h 4
h 3

|4 |
 2
.

2.3.6

Assume 0
h  const. It must be 0

h  2 in order to satisfy the condition () with zero
source, where 4 can be any function satisfying the condition 4  0.This way, it
is possible to generate a class of solutions for any function b,,, with
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b  0.
Remark 2.3.1.[6] Note that for classes of solutions with nontrivial sources, it is
more convenient to work directly with fractional polarizations 4 with 4  0.
In another turn, for vacuum configurations, it is better to chose as a generating
function, for instance,h4 with h4  0.
The fractional polarizations 1 and 2,when 1  2r2  exp,,
from () with £2  0, i.e.      0.
Putting the above coefficient in Eq.(2.3.5), we construct a class of exact vacuum
solutions in fractional gravity defining stationary fractional nonholonomic
deformations on a small parameter  of the Schwarzschild metric,


g   exp,, d d  dd 

4 |4,,,|
2
2 

4,,,2tt,

  d  w1,,, d  w2,,, d ,

t  dt  n1,, d  n2,, d .

2.3.7

III.COSMOLOGICAL MODELS WITH FRACTIONAL
ACTION FUNCTIONAL

III.1.Friedmann-Robertson-Walker cosmology with
a fractional time dimensions.
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Let’s consider a smooth manifold M and denote  :   TM   be the smooth
Lagrangian function. For any piecewise smooth path  : 0, t1    we define the
generalized fractional action S0, 

0,1
as corresponding Colombeau

generalized function via formula [11] :

S,1 
0,1

 1



0

t
 ,, d

t  1  i 



S0, 
0,1

 
0

t
 ,, d

t    i 

,

  , 1,

3.1.1

where   1  . For   0,1 generalized fractional action (3.1) can be rewritten
as the strictly singular Riemann-Liouville type fractional derivative Lagrangian

S0,1  1


0

t
 ,,t  1d 

S0,1  
0

t
 ,, d

t  
,

3.1.2

where   1  . Let  :   TM   be the Lagrangian map, p0, are two fixed
points and smooth path  : 0, t1    be a smooth path such that ti  pi, i  0,1

and S  S for any smooth path  joining from p0 to p1.Then,  satisfies the
fractional or modified Euler-Lagrange equation:



 d
d




 1  
t    i




. 3.1.3
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Let’s consider Lagrangian

x ,x,  gx ,xx x . 3.1.4

Then corresponding geodesic equation is

x    1
t  i

x   
 x x  0 3.1.5

where 
 is the Christoffel symbol.It was showed in [12] that equation (3.5) will

modify the General Relativity by perturbing the gravitational constant G by a certain
decaying factor given by:

G 
31  
4Gt

R
R , 3.1.6

where  being the fluid density and Rt is the scale factor of the universe.It is easy
to see that in Friedmann-Robertson-Walker cosmology (FRW cosmology), the term
G modifies the Friedman equations in the absence of the cosmological constant
as follows

R
R

2

2  1

t
R
R  k

R2

8G
3 ,

R
R    1

t
R
R   4G3   3p,

3.1.7  3.1.8

Where k  1,0,1 for open, flat and closed fractal spacetime respectively.For zero
pressure, while in case of radiation (  3p), from Eq.(3.1.7) one obtain
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R
R

2

2  1

t
R
R  k

R2

8G
3 ,

R
R 

2  1
t

R
R   8G3 .

3.1.9  3.1.10

Equations (3.1.7) and (3.1.9) can be rewritten like:

R
R

2
 k
R2

 8G
3   1  

t
3
4G

R
R 

8G
3   ,

3.1.11

where

 
31  R
4GRt . 3.1.12

This is to say that the density is perturbed.

III.2. (3 ) DIMENSIONAL FRACTAL
UNIVERSE.THE VACUUM CASE.

Let us now consider the very early universe and choose for simplicity the spatially
flat solution ( k  0 ). Eq.(3.1.9) with p   gives:

28



R
R

2

2  1

t
R
R  0. 3.2.1

Solution is

Rt  t21. 3.2.2

Solution (3.2.2) corresponds to an accelerated expansion for 0    1/2, to an
eternal expansion for 1/2    1 and to a decelerating expansion for   1.

III.3.(3  ) DIMENSIONAL UNIVERSE.THE

RADIATION-DOMINATED EPOCH.

This is characterized by the equation of state p  /3 and is modeled by
equations (8) and (9) combined in the following form (k  0) :

R
R 

4  1
t

R
R  R

R
2
 0. 3.3.1

A possible solution is given also by the power-law Rt  tp,p  5  4/2.
p  1 for     1 and the acceleration of the universe may be attributed of the
fractional dissipative force. For   1 the usual (31)-dimensional behavior is
permitted:
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Rt  t . 3.3.2

III.4.(3   ) DIMENSIONAL UNIVERSE.THE

INFLATIONARY EPOCH.

We consider the spatially flat solution ( k  0 ). From equation (3.1.7), we obtain:

R
R

2

2  1

t
R
R 

8G
3 . 3.4.1

In the absence of the gravity perturbations (  1), the solution of Eq.(3.4.1) is
given by the classical de-Sitter inflationary solution:

Rt  expHt,

H 
8G
3  const,

3.4.2

where  and G are constants. In the presence of the perturbed gravity, a possible
inflationary solution is given via formula [11] :
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Rt  H et
21  



exp 
2  Ht2   2  Ht2

2  Ht2   2  Ht2
 ln 

Ht 
2

Ht2
 1

3.4.3

where   1   and     1.

3.4.4

III.5. (3  ) dimensional Universe. Cosmological
models of scalar field with fractional action.

The classical Einstein-Hilbert action-like functional for FRW model of the (3  1)
dimensional Universe ds2  N2tdt2  a2tdr2  frd2, where N is a laps
function, filled with a real homogeneous scalar field t, is:

SEH  1


0

t
Nt 

 3
8G

a2tät
N2t

 ata t
N2t

 a
2ta tN t
N2t

 kat  a3t
3

a3 
 2t
2N2t

 Vt dt.

3.5.1

where V is a potential of the field. By variation over at,t and Nt (with the
subsequent choice of the gauge N  1) in the action (3.5.1), one obtains the
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following standard Friedmann and scalar field equations:

a   3 aa   
dV
d  0,

b 2 äa  a
a

2
 k
a2

  8G3  2  V  
3 ,

c a
a

2
 a

a  k
a2

 8G
3 

 2

2  V  
3 .

3.5.2

Remark 3.5.1.Besides, instead of Eq.(3.5.2.b) one frequently uses the following
equation:

ä
a  k

a2
  8G3  2  V  

3 , 3.5.3

which follows from Eq.(3.5.2.b)-Eq.(3.5.2.c).One can rewrite Eq.(3.5.2.a) -
Eq.(3.5.3.c) in terms of effective energy density t and pressure pt, taking into
account standard expressions:

  
 2

2  V,p  
 2

2  V.
3.5.4

From Eq.(3.5.2)-Eq.(3.5.4) one obtains

a   3 aa   p  0,

b äa   8G3   3p  
3 ,

c a
a

2
 k
a2

 8G
3   

3 .

3.5.5
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Let’s remind how these equations play out in the simplest universe,the Einstein-
de Sitter universe. This is a universe that is spatially flat and consists only of matter
(w  0).It is NOT the real universe because it doesn’t have a  (  0).Density
today is given by the Friedmann equation in terms of the Hubble constant is:

H02  8
3 G0,

0 
3H02
8G .

3.5.6

The scale factor at as a function of time t is

at  3
2 H0t

3/2
. 3.5.7

The time t as a function of scale factor is

t  2
3H0

a3/2t. 3.5.8

The Hubble constant Ht as a function of scale factor is

Ht  H0a3/2t. 3.5.9

The conformal time   t is
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t  2
H0
a1/2t. 3.5.10

From Eq.(3.5.9)-Eq.(3.5.10) one obtain

Htt  2a1t, 3.5.11

and

t  2
atHt

. 3.5.12

We consider now the generalized cosmological model of a scalar field,which
follows from the variational principle for the fractional action (3.1.2). In this section
we have use the modified Einstein-Hilbert action [15]:

SEH  
0

t
EH d 3.5.13

as the following fractional integral:

SEH  1


0

t
Nt 

 3
8G

a2tä
N2t


ata t
N2t

 a
2aN
N2t

 kat  a3t
3

a3 
 2t
2N2

 Vt t  t 1d,

3.5.14
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where all functions in EH depend on the intrinsic time t, and   1,1 for the
usual and phantom scalar fields respectively.Varying the action (3.5.14) over t,
at and Nt with the subsequent choice of the gauge N  1, we obtain the
following equations:

a   3 a
a  1  3t   

dV
d  0,

b äa  1  2t
a
a  1  2  

2t2
  8G3  2  V  

3 ,

c a
a

2
 1  

t
a
a  k

a2
 8G

3 
 2

2  V  
3 .

3.5.15

One can rewrite equations (3.5.15.a) - (3.5.15.c) in terms of effective energy
density t and pressure pt, taking into account the well known expressions:

  
 2

2  V,p  
 2

2  V.
3.5.16

From Eq.(3.5.15)-Eq.(3.5.16) one obtain

a   3 a
a  1  3t   p  0,

b äa  1  2t
a
a  1  2  

2t2
  8G3   3p  

3 ,

c a
a

2
 1  

t
a
a  k

a2
 8G

3   
3 .

3.5.17

It is easy to integrate equation (3.5.17.a) for the perfect fluid with equation of state
p   :
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t  0
a31t11a

. 3.5.18

Let us consider an example of an exact solution for the flat model (k  0) and for
the quasivacuum state of matter:  1.From (3.5.18) it follows that t  0 
 constant.Then, the remaining equations of (3.5.17) for the Hubble parameter and
-term can be rewritten as follows:

a H  1  2t H  1  2  
2t2

 0,

b H2  1  
t H  k

a2
 8G

3 0  
3 .

3.5.19

From Eq.(3.5.19.a) one obtain

Ht,  c
t  H0t

1
2 ,c 

1  2  
3  

,

H0  const.

3.5.20

The scale factor at, as a function of time t is

at,  a0tc exp 3  
2 H0 t

3
2 . 3.5.21

while the cosmological t,-term as a function of time t is
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t,  3H02t1  3H0
1  2  

3  
t 12 

31  22  5  2
3  2

t2  8G0.

3.5.22

The conformal time t is

t  
t0

t dt
at,

 1
a0 t0

t
tc exp  3  2 H0 t

3
2 . 3.5.23

It is obvious that in the limit   1, the solutions (3.5.20) - (3.5.23) reduce to the
well known exponential expansion of the (3  1)-dimensional Universe :

at  a0 expH0t,Ht  H0  const,

t,  3H02  8G0.

3.5.24

Let us consider now the dynamics of the flat model of the Universe (k  0) filled by
a scalar field .It is convenient to rewrite equations (3.5.17.a) - (3.5.17.c) in terms
of the Hubble parameter H  a

a in the following form:

a   3 H  1  3t   
dV
d  0,

b H  1  2t H  1  2  
2t2

 4G 2,

c H2  1  
t H  k

a2
 8G

3 
 2

2  V  
3 .

3.5.25

It is easy to see that the given set of the independent equations can contain some
arbitrariness in a choice of unknown functions, for instance Ht or Vt, only if the
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cosmological -term depends on time t. However, it is possible to proceed from
some dependence t. Let us rewrite Eqs.(3.5.25) in the form [15]:

H  3H2  24  t H  1  2  
2t2

 t
1   ,

3H2  35  2t H  31  2  
2t2

 4G 2  t
1   ,

8GV   
37  3

2t H 
31  2  

2t2
,

  1.

3.5.26

IV.Crossover from low dimensional to 3  1-
dimensional universe.

IV.1. Mureika and Stojkovic crossover from

(2  1)- dimensional fractal universe to standard
(3  1)-dimensional universe.

In order to determine an approximate value for the frequency of the PGWs,we
revisit the current state of PGW detection. Standard cosmological theory
generalizad on the case of fractal spacetime MDt,Df , predicts that gravitational
waves in fractal spacetime MDt,Df  will be generated in the pre/postinflationary
regime due to quantum fluctuations of the fractal spacetime manifold MDt,Df .
At temperatures below the Dt  3,Df  2  Dt  3,Df  3 cross-over scale, a
standard 3Dt FRW cosmology is assumed, with the usual radiation- and matter-
dominated eras.Gravity waves can be produced at different times t  t0  H1,
when the temperature of the universe was T. The co-moving entropy per volume of

38



the universe at temperature T can be expressed as a function of the scale factor
Rt as

S ~ gSTR3tT3, 4.1.1

where the factor gS represents the effective number of degrees of freedom at
temperature T in terms of entropy by formula

gST  i
Ti
T  78  j

Tj
T . 4.1.2

The parameters i, j runs over all particle species.In the standard model, this
assumes a constant value for T  300 GeV, with gST  106.75 due to the fact that
all species were thermalized to a common temperature. Assuming that entropy is
generally conserved over the evolution of the universe, one can write

gSTR3tT3  gST0R3t0T03. 4.1.3

The characteristic frequency of a gravitational wave produced at some time t in the
past is thus redshifted to its present-day value

f0  f
Rt
Rt0

4.1.4

by the factor [13]

f0  9.37  105HzH  1mm1/2  g1/12 g
gS

1/3
T2.728, 4.1.5
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where the original production frequency f0 is bounded by the horizon size of the
universe at time t,i.e. f ~ 1 ~ H1.Note that this is an upper bound,and the
actual value may be smaller by a factor H1although the final result is weakly
sensitive to the value   1.This quantity can be related to the temperature T by
noting that, during the radiation-dominated phase, the scale is

H2 
83gT4

90MPl
4
. 4.1.6

Remark 4.1.1.[1].Note that above was used equations valid only in the 3  1-
dimen- sional regime.Without the details of an underlying lower dimensional
cosmology we do not know the size of a lower dimensional Hubble volume as a
function of the temperature. However, in order to estimate the frequency cut-off ,
we are approaching the dimensional cross-over from the known
3  1-dimensional regime. Thus, while Eq.(4.1.6) is not valid in a lower
dimensional regime, it is valid a few Hubble times after the dimensional crossover.
Since most of the 3D volume of the universe comes from the last few Hubble times,
this will be a reasonable
estimate of the size of the 3D Hubble volume after the dimensional cross-over.

If we plug T  1TeV,we see that H1~1mm, which is much larger than TeV1.This
is not in contradiction with our assumption that the cross-over happened at T  1
TeV since the size of a 2-dimensional plane/universe could be arbitrarily large
before the cross-over.Since the size of the 2D universe does not matter (no gravity
waves), the crucial thing here is that the highest frequency that PGWs can carry is
limited by the size of a 3D Hubble volume right after the dimensional cross-over,
which is given by Eq.(4.1.6).With above assumptions, combining Eq.(4.1.5) and
Eq.(4.1.6), the frequency of PGWs that would be detectable is

f  7.655  105g1/6 T
TeV Hz 

1.67  104 Hz,

4.1.7

where the latter equality holds for g~102. When T  1 TeV, the frequency is
f ~ 104 Hz. This is well below the seismic limit of f ~ 40 Hz on ground-based
gravity wave interferometer experiments like LIGO or VIRGO [1], but sits precisely
at the threshold of LISA’s sensitivity range.
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FIG.4.1.Frequency threshold for primordial gravitational
waves produced when the universe was at temperature T

LISA.[1].

A (2  1)-dimensional FRW metric is

ds2  dt2  R2t dr2
1  kr2

 r2d2 . 4.1.8

where Rt is the scale factor and k  1,0,1.The Einstein’s equations for this
metric are

R
R

2
 2G  k

R2
,

d
dt R

2  p ddt R
2  0

4.1.9

where G is the (21) dimensional gravitational constant, p is the pressure and is the
energy density. In a radiation dominated universe p  1/2 and R3  0R03  const.
For k  0 the solution to these equations is
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Rt  9
2 G0R0

3 t2/3. 4.1.10

Remark 4.1.2. Note that three-dimensional solution Rt  t2/3 is different from the
usual four-dimensional behavior Rt  t in radiation dominated era.
Assume that the crossover from (2  1)-dimensional to (3  1)-dimensional
universe happened when the temperature of the universe was T2D3D ~ 1 TeV [1].
Working backwards,we can estimate the size of the Universe at the transition from
the ratio of scale sizes at various epochs, speci cally between present day (ttoday 
1017 sec), the radiation/matter-dominated era (tRM  1010 sec) and the TeV-era
(tTeV  1012 sec).

RTeV
Rtoday

 tTeV
tRM

1/2 tRM
ttoday

2/3


1012
1010

1/2 1010
1017

2/3
 1011  1014/3  1015.6.

4.1.11

The scale factor at the latter epoch is thus RTeV  1015.6Rtoday.

This value may also be obtained by noting that conservation of entropy requires the
product RtTt to be constant,and so RTeV  1015.6Rtoday (since Ttoday ~ 103eV).
Eq.(4.1.11) implies that the size of the currently visible universe (1028cm) at
T  1 TeV was 1013.6cm. This distance is macroscopic but it is not in contrast with
assumption [1] that the crossover from (2  1)-dimensional to (3  1)-dimensional
universe happened when the temperature of the universe was T ~ 1 TeV, since the
causally connected universe today contains many causally connected regions of
some earlier time.
Going towards even higher temperatures, the spacetime becomes (1  1)-
dimensio-
nal [1]. To avoid large hierarchy in the standard model, the crossover from an
(1  1)-dimensional to (2  1)-dimensional universe needs to happen when the
temperature of the universe was T1D2D  100 TeV. Conservation of entropy (if
between T  1 TeV and T  100 TeV nothing nonadiabatic happened) requires
RtTt  const. This implies
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R2D3D
R1D2D

 T1D2D
T2D3D

~ 100 4.1.12

and R1D2D  102R2D3D  1011.6 cm.

Similarly one obtain

R1D2D
R#

 T#
T1D2D

4.1.13

where R# and T# are the scale factor and temperature of the universe the first time
it appears classically. It is tempting to set R#  MPl

1 and T#  MPl .However
MPl  1019 GeV is inherently (3  1)-dimensional quantity whose meaning is not
quite clear in the context of evolving dimensions.
A pure (1  1)-dimensional FRW metric is

ds2  dt2  R2t dx2
1  kx2

. 4.1.14

The denominator in the second term in Eq.(4.1.14) can be absorbed into a
definition of the spatial coordinate x. Moreover, all (1  1)-dimensional spaces are
conformally
flat,i.e. one can always use coordinate transformations (independently of the
dynamics) and put the metric in the form g  exp .
Remark 4.1.3. [1] Einstein’s action in a twodimensional spacetime is just the Euler
characteristics of the manifold in question, so the the theory does not have any
dynamics, unless the scalar eld is promoted into a dynamical eld by adding a
kinetic term for it. Even in this case there are no gravitons in theory, so there are no
gravity waves and the threshold of importance remains the 1  1  2  1 transi-
tion.
Remark 4.1.4.[1] However, exactly at the crossover the description could be very
complicated.For example,systems whose effective dimensionality changes with the
scale can exhibit fractal behavior, even if they are defined on smooth manifolds. As
a good step in that direction,in [18-19] a field theory which lives in fractal spacetime
and is argued to be Lorentz invariant, power-counting renormalizable, and causal
was proposed.
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Since entropy ST,Df is generally conserved over the evolution of the(Df  1)-
dimensional fractal universe, we obtain

sT,DfRDft,DfTDf  sT0, 3R3t0T0
3 4.1.15

[compare with standard case given by Eq.(4.1.3)]. From Eq.(4.1.15) one obtain

Rt,Df 
sT0, 3
sT,Df

1/Df R3/Dft0T0
3/Df

T
~

~ R
3/Dft0T 3/Df

T
.

4.1.16

Let us consider dimensional crossover from (Df  21)-dimensional fractal
Universe to (31)-dimensional standard Universe by using Eq.(4.1.15). Assume
that T0   Ttoday  103eV, T  1TeV  1012eV, Rt0  Rtoday  1028 cm. Thus

Rt,Df  2  T1R3/2t0T0
3/2 

1013Rtoday
3/2  1029 cm.

4.1.17

IV.2.Cross-over from (3   )- to (3 1)-dimensional

fractal universe using -FRW cosmology.

In the case of the RD epoch the -FRW solution is given also by the power-law
Rt  tp,p  5  4/2 i.e.,
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Rt  t 542 4.2.1

for     1.For   1 the usual (3  1)-dimensional behavior is permitted:

Rt  t . 4.2.2

Remark 4.2.1.We note that in (3  )-dimensional fractal universe standard
conservation law is permitted:

gST3Rt3T3  const. 4.2.3

Let us consider crossover from (3  1 )-dimensional fractal universe to (3  2)-
dimensional universe with 1  2  1.From Eq.(4.2.1) and Eq.(4.2.3) one obtain

RTeVt31 
RRMt32 


gST32 
gST31 

T32
T31

, 4.2.4

where

RTeVt31   t31

5  41
2 ,RRMt32   t32

6  42
3 ,

T31  Tt31 ,T32  Tt32 .

4.2.5

From Eq.(4.2.4)-Eq.(4.2.5) we obtain
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5  41
2 ln t31 

6  42
3 ln t32  ln

gST32 
gST31 

T32
T31

. 4.2.6

Assume for instance that crossover from (3  1)-dimensional fractal universe to
(3  2)-dimensional universe with 2  1 happened when the temperature of the
universe was T31 32   1TeV. The Universe at the transition from the TeV-era:
t31   tTeV  1012 sec, T31   1TeV  1012eV to radiation/matter-dominated era:
t32   tRM  1010 sec, T32  ~ 1MeV  0.7MeV. Note that at the energy scales
above  1 TeV,gSSMT  106.75 and gSMSSM  220 [34]. From Eq.(4.2.6) we obtain
1  30/24.

IV.3.Crossover from Df  Dt(1 -  )- to (3 1)-

dimensional universe by using G.Colgany
cosmology.

The Ansatz for the gravitational action of the G.Colgany gravity [18]-[19] in fractal
spacetime is

Sg  1
22  d

Dtx vx gx Rx  2  vxvx 4.3.1

where gx is the determinant of the metric tensor gx,2  8G is Newton’s
constant,  is a bare cosmological constant, and the term vxvx
proportional to  has been added, because vx is now dynamical variable.
Assuming that matter is minimally coupled with gravity, the total action is
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S  Sg  Sm,

Sm   vxmd4x.
4.3.2

If   p  0 from (4.3.1) one get a purely gravitational constraint [18]:

H  Dt  1H2  H vv  v
v  vv  v 2  0. 4.3.3

The continuity equation vxT
  vxm  0 gives

  Dt  1H  vv   p  0. 4.3.4

Substitution    2/2  V,p   2/2  V gives

  Dt  1H  vv   V   0. 4.3.5

For the case vx  tDf ,Df  Dt1   one obtain formulae

H vv  H 
t ,

v
v 


t Dt  1H 

1  
t . 4.3.6

Let us consider the cases   0 and   0 separately.

1.We assume: Dt  4,Df  2, vx  tDf ,   0.Solution is [18]:
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at  t9  c1/3

t2
,

Ht  t9  2c
tt9  c

,

   H
H2



t9  14  3 22 c t9  14  3 22 c

t9  2c2
,

4.3.7

where c is an integration constant. The energy density and pressure is

t   3
2

t9  4ct9  2c
 

,

pt   3
2

t9  14  3 22 c t9  14  3 22 c

t9  2c2

4.3.7

These expressions are sufficient to characterize three cases:
(a) c  0 : From t  t  2c1/9 to t  t1  14  3 22 c1/9, the universe expands
in superacceleration   0,while for t  t1 the expansion is only accelerated. The
energy density  is negative for t  t while the pressure p is always negative.
(b) c  0 : Linear (decelerating) expansion, a  t, while   p  0 always.
(c)
All these scenarios need a matter component with non-positive definite energy
density.
2.We assume: Dt  4,Df  2, vx  tDf ,   0.There is only one real solution to
the gravitational constraint,namely [18]:
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at  1
t2
 11

4 ,
13
4 ,

3
2t4

,

Ht   2t 
22
13t5

 15
4 ,

17
4 ,

3
2t4

 11
4 ,

13
4 ,

3
2t4

,

a,b, z  b
a n0

 a  n
b  n

zn
n! .

4.3.8

The formulae for t and pt are

t  22  3t43  4t4
t10

 482
132t10

 11
4 ,

17
4 ,

3
2t4

 11
4 ,

13
4 ,

3
2t4



 242  3t
4

13t10
2 11

4 ,
17
4 ,

3
2t4

2 11
4 ,

13
4 ,

3
2t4

,

pt  22  3t46  5t4
t10

 482
132t10

 11
4 ,

17
4 ,

3
2t4

 11
4 ,

13
4 ,

3
2t4

.

4.3.9

At early times one must distinguish between positive and negative . For   0,
the
universe is contracting and the fluid behaves like an effective cosmological
constant:
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at
t0
 const 

exp 
2t4
t4/3

, Ht
t0
  2

t5
,


t0
  5t

4

2 ,w t0
 1,

t
t0
 122

t10
, pt

t0
  12

2

t10
.

4.3.10

Figure1.The scale factor at,Hubble parameter H,slow-rollparameter ,
energy density and pressure pt dashed linefor   1. [18]
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Figure 2.The equation of state w  p
 for   1. [18]

For   0, at early times the universe expands and accelerates, even if the perfect
fluid is stiff:

at
t0
 const  t5/3,Ht

t0
 5
3t ,


t0
 3
5 ,t t0

 2||
t6
,

pt
t0
 2||

t6
,w

t0
 1.

4.3.11
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Figure 3.The scale factor at,Hubble parameter H,slow-roll parameter ,
energy density and pressure pt dashed linefor   1. [18]

Figure 4.The equation of state w  p
 for   1. [18]

The most natural possibility is that a classical FRW background,either exact or
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linearly perturbed, is not realistic. Then, one would have to treat the UV limit as
highly inhomogeneous.This is not at all unexpected,as we are dealing with
quantum scales where the minisuperspace equations (maximal symmetry) are
likely to fail.

V.Calculation of the primordial gravitational wave
Spectrum in fractal cosmology.

V.1.The power spectrum, h2k,, and relative
spectral energy density, hk,,of the fractional

gravitational wave background.

In this section we define the power spectrum, h2k,, and relative spectral energy
density, hk,,of the fractional gravitational wave background.Units are chosen

as c    kB  1 and 8G is retained.Indices ,,, . . . run from 0 to 3, and
i, j,k, . . . run from 1 to 3.Over-dots are used for derivatives with respect to
coordinate time t throughout the paper. In this section for instance we will be used
the perturbed -FRW metric, ds2  dt2  R2t,dr2  frd2  sin2d2.We
define the confor- mal time  by t  

t0

t dt
Rt

.When we do perturbation theory it

will be useful to write the metric ds2 with  instead of t. Since dt  ad (where we
denote by a, the scale factor Rt, as a function of the conformal time ) we
have
ds2  a2d2  dr2  frd2  sin2d2.
For tensor perturbations on an isotropic, uniform and flat background spacetime,
the metric is given by
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ds2  a2d2   ij  hijdxidxj ,

g  a2  h,

  diag1,1,1,1,

h00  h0i  0, |hij |  1.

5.1.1-5.1.3

We assume that hij,j  0,h i
i  0.We shall denote the two independent polarization

states of the perturbation as   , and sometimes suppress.We decompose hij
into plane waves with the comoving wave number, |k| k, as

hij,x 

 d 3k
23

h;kij expik  x, 5.1.4

where ij is the polarization tensor.The equation for the wave amplitude, h;k 
 h,k in the linear order is

 12 hij;
;  8Gij,

G  G  G

5.1.5

where G given by Eq.(3.1.6) and ij is the anisotropic part of the stress tensor,
defined by writing the spatial part of the perturbed energy-momentum tensor as
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Tij  pgij  a2ij 5.1.6

where p is pressure. For a perfect fluid ij  0. In the cosmological context, the
amplitude of gravitational waves is affected by anisotropic stress when neutrinos
are freely streaming (less than  1010K) As we only deal with tensor
perturbations,hij,
we may treat each component as a scalar quantity under general coordinate
transformation, which means e.g. hij;  hij,. The left-hand side of Eq. (5.1.5)
becomes

hij;
;  ghij,   hij, 

h ij  2
a2

hij  3 a
a h ij,

5.1.7

where equalities 00  00 ,ij0   ija a,gij   ija2 have been used. Commas denote
partial derivatives, while semicolons denote covariant derivatives in Eqs. (5.1.5)
and (5.1.7). Transforming this equation into Fourier space, we obtain

h ,k  3 a
a h ,k  k2

a2
h,k  16G,k. 5.1.8

Using conformal time derivative   


one obtain

h,k  2 a
a h,k  k2h,k  16Ga2,k. 5.1.9

This is just the massless Klein-Gordon equation for a plane wave in an expanding
space with a source term. Thus, each polarization state of the wave behaves as a
massless, minimally coupled, real scalar field.Let us consider the time evolution of
the spectrum. After the fluctuations left the horizon, k  aH, equation (5.1.9) would
become
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h,k ,
h,k ,

  2a
,
a,

. 5.1.10

Hence

h,k,  c1  c2 
0

 d 
a2 ,

, 5.1.11

where c1 and c2 are integration constants.Ignoring the second term that is a
decaying mode, one finds that h,k, remains constant outside the horizon.Note
that we have ignored the effect of anisotropic stress outside the horizon, as this
term is usually given by causal mechanism which must vanish outside the horizon.
Therefore, one may write a general solution of h,k, at any time as

h,k,  h,k
prim,,k,, 5.1.12

where h,k
prim,is the primordial gravitational wave mode in fractal spacetime that

left the horizon during inflation. The transfer function,,k,, then describes the
sub-horizon evolution of gravitational wave modes in fractal spacetime after the
modes entered the horizon.The transfer function is normalized such that,k,
 1 as k  0. The power spectrum of gravitational waves in fractal spacetime,
h2k,,may be defined as

hij,x,hij,x,   dkk h2,k,. 5.1.13

From Eq.(5.1.13) one obtain
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h2,k,  2k3
22 

|h,k,|2 . 5.1.14

From Eq.(5.1.14) and Eq.(5.1.12) one obtain the time evolution of the power
spectrum via formula

h2,k,  h,prim2 |,k,|2, 5.1.15

where

h,prim2   2k3
22 

|h,k |2 ~ Hinf
MPl

. 5.1.16

We have used the prediction for the amplitude of gravitational waves from de-Sitter
inflation in fractal spacetime at the last equality, and Hinf is the perturbed Hubble
constant during inflation. One may easily extend this result to slow-roll inflation
models in fractal spacetime.The energy density of gravitational waves in fractal
spacetime is given by the 0  0 component of stress-energy tensor of gravitational
waves:

, 
hij ,x,hij,x,

32Ga2,
5.1.17

The relative spectral energy density,h, k,, is then given by the Fourier
transform of energy density,
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,k,  dh,k,
d lnk

5.1.18

divided by the critical density of the fractal universe, cr,

h, k, 
,k,
cr,



h,prim2

a2,H2,
|,k,|2.

5.1.19

V.2.THE EFFECTIVE RELATIVISTIC DEGREES OF
FREEDOM: g(T).

During the radiation era many kinds of particles interacted with photons frequently
so that they were in thermal equilibrium. In an adiabatic system, the entropy ST
per unit comoving volume in (31)-dimensional spacetime must be conserved
[32],[34]:

ST  sTa3T,  const.

sT  22
45 gsTT

3.
5.2.1.a

In an adiabatic system in fractal spacetime, the entropy ST,Df per unit comoving
volume VDt,Df  in (Df1)-dimensional fractal spacetime must be conserved:

58



ST,Df  sT,DfaDfT,  const.

sT,Df  cDfgsT,DfT3,

5.2.1.b

see Appendix I.
The entropy density, sT,Df, is given by the energy density and pressure

sT,Df 
T,Df  pT,Df

T . 5.2.2

The energy density and pressure in such a plasma-dominant (31)-dimensional
universe are given by

T  2
30 gTT

4,

pT  1
3 T

5.2.3.a

respectively, where we have defined the “effective number of relativistic degrees of
freedom”, g and gs, following [14].
The energy density T,Df and pressure pT,Df in such a plasma-dominant
fractal universe are given by

T,Df  gT,DfT1Df ,

pT,Df  1
3 T,Df,

5.2.3.b

see Appendix I.Equation (5.2.2.a) and (5.2.3.a) immediately imply that energy
density of the (31)-dimensional universe during the radiation era should evolve as
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  ggs4/3a4. 5.2.4

Therefore, unless g and gs are independent of time, the evolution of  would
deviate from   a4. In other words,the evolution of  during the radiation era is
sensitive to how many relativistic species the universe had at a given epoch. As the
wave equation of gravitational waves contains a,Df/a,Dfh,k , the solution of
h,k would be affected by gand gs via the perturbed fractional Friedman equation
(3.3.1).Although the interaction rate among particles and antiparticles is assumed
to be fast enough (compared with the expansion rate) to keep them in thermal
equilib-
rium, the interaction is assumed to be weak enough for them to be treated as ideal
gases. In the case of the (31)-dimensional universe and ideal gas at temperature
T, each particle species of a given mass, mi  xiT,would contribute to g and gs
the amount given by formulae

gi  gi 154 xi

du

u2  xi2 u2

eu  1 ,

gs,i  gi 154 xi

du

u2  xi2 u2  xi2/4
eu  1 ,

5.2.5

where the sign is  for bosons and  for fermions and gi is the number of
helicity states of the particle and antiparticle.Note that an integral variable is
defined as
u  E/T,where E  |p|2  m2 .We assume that the chemical potential,i,is
negligible. One might also define a similar quantity for the number density,

nT  3
2

gnT3, 5.2.6

where 3  1.20206 is the Riemann zeta function at 3. Each species in case of
the (31)-dimensional universe would contribute to gn by
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gn,i  1
23 xi


du

u2  xi2 u
eu  1

5.2.7

The effective number relativistic degrees of freedom is then given by thetempera-
ture-weighted sum of all particles contributions:

gT  i
giT Ti

T
3
,

gsT  i
gs,iT Ti

T
3
,

gnT  i
gn,iT Ti

T
3
,

5.2.8.a

where we have taken into account the possibility that each species i may have a
thermal distribution with a different temperature from that of photons.
For the case of the (Df1)-dimensional fractal universe we obtain

gT,Df  i
giT Ti

T
Df
,

gsT  i
gs,iT Ti

T
Df
,

gnT  i
gn,iT Ti

T
Df
,

5.2.8.b
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FIG.5.2.1. [34].Evolution of the effective number of relativistic degrees of
freedom contributing to energy density,g,as a function of temperature T.
At the energy scales above  1TeV, gSM  106.75 and gMSSM  220.

V.3.ANALYTICAL SOLUTIONS OF PERTURBED
WAVE EQUATIONS.

In this section we shall discuss solutions of the equation of motion Eq.(5.1.9).While
we assume ij  0 in this section. Imposing appropriate boundary conditions
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a hk, 
16G

a, 2k
1  i

k expikk 

 
a,

8Gk h1
2kk - Inflation,

b hk,  j0khk
prim - RD,

c hk, 
3j1k
k hk

prim - MD,

j0k 
sink
k , j1k  1

k
sink
k  cosk ,

h1
2k   1k 1  i

k eik.

5.3.1

where k is a generalized stochastic variable satisfying

kk  k  k. 5.3.2

We classify wave modes by their horizon crossing time, hc :

|k|  k
 keqthe modes that entered the horizon during RD:hc  eq

 keqthe modes that entered the horizon during MD:hc  eq
5.3.3

where eq denotes the time at the matter-radiation equality, and hc denotes the
time when fluctuation modes crossed the horizon, khc  1. Notice that |hk|2 for
each solution (5.3.1.a) - (5.3.1.c) does not depend on time ( |hk

prim|2) at the
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super-horizon scale, |k|  1.
The tensor mode fluctuations from the inflationary universe left the horizon and
froze out. Its dimensionless spectrum is given from Eq.(5.3.1.a) is

h2k,  4k3
hk
inf

2

22


4k3
22

16G
2ka2,

1  1
k22



64G 1
a2,

k
2

2
1  1

k22


64G
Hinf
eff  k
2

2

1  1
k22



 16


Hinf
eff
MPl

2

 4k3
hk
prim

2

22
,

|k|  1.

5.3.4

where Hinf is the effective Hubble parameter during inflation and

  1/a,Hinf
eff 5.3.5

is used in the fourth equality of the (5.3.4). Note that the conventional factor 4 is
from equality
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 dkk h2k,  hijhij   2|h |2   |h |2 

 4h2,
5.3.6

where |h |  |h |  h.The dimensionless spectrum (5.3.4) is nearly independent k.
This is the famous prediction well known from the standard inflationary scenario in
(31)spacetime known as a nearly scale invariant spectrum.
From the fractional Friedman equation (3.5.3) during inflation,one obtains

Hinf
eff  8

3MPl
2 V,

h,prim2   10
MPl
4 V.

5.3.7

Using the transfer function ,k, [Eq.(5.1.12)], we obtain the time evolution of
the amplitude of gravitational waves as

a   eq,k  keq  j0k,

b   eq,k  keq 
eq
 Ak,j1k  Bk,y1k,

c ,k  keq 
3j1k
k ,

y1k   1k
1
k cosk  sink .

5.3.8

Their conformal time derivatives are given as
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a   eq,k  keq  j1k,

b   eq,k  keq  
eq
 Ak,j2k  Bk,y2k,

c ,k  keq  
3j2k
k ,

j2k  1
k

3
k22

 1 sink  3
k cosk ,

y2k   1k
3
k22

 1 cosk  3
k sink .

5.3.9

Eqs. (5.3.9.a) and (5.3.9.b) are the evolution of modes which entered the horizon
during the radiation era, while Eq. (B8) is the evolution of modes which entered the
horizon during the matter era. Coefficients A(k) and B(k) are obtained by equating
a solution (B6) with (B7) and their first derivatives [(B11) and (B12)] at the
corespon-
ding matter-radiation equality.

Appendix I.Fractal equilibrium thermodynamics.

We assume the second law of thermodynamics in fractal spacetime with integer
fractal dimensions Df  Dt in the form:

TdS  d VDt,Df   pdVDt,Df   d   pVDt,Df   VDt,Df dp 1.1
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where  and p are the equilibrium energy density density and pressure. Moreover,
the integrability condition,

2S
TVDt,Df 

 2S
VDt,Df T

1.2

gives

T dpTdT  T  pT 1.3

or

dpT  T  pT
T dT. 1.4

Substitution Eq.(1.4) into Eq.(1.1) gives

dS  1
T d T  pTVDt,Df   T  pTVDt,Df  dT

T2


d T  pTVDt,Df 
T  const .

1.5

From Eq.(1.5) one obtain

SDf 
T  pTVDt,Df 

T  const. 1.6
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The law of energy conservation is

d T  pTVDt,Df   VDt,Df dpT. 1.7

Substituting Eq.(1.4) into Eq.(1.7), it follows that

d T  pTVDt,Df 
T  0. 1.8

Hence in thermal equilibrium, the entropy S per comoving fractal volume VDt,Df  is
conserved.
Let us define the fractal entropy density sDf :

sDf  S
VDt,Df 


T  pT

T . 1.9

Remind that in 3  1 spacetime the number density nT,,energy density T,
and pressure pT, of a dilute, weakly-interacting gas of particles with g internal
degrees of freedom is given in terms of its phase space distribution function f p is
[30]:

nT,  g
23

 f p d3p,

T,  g
23

 E p,m f p d3p,

pT,  g
23

 p 2

3E p,m
f p d3p,

E2 p,m  p 2
 m2.

1.10
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For a species in kinetic equilibrium phase space distribution function f p is

f p  exp
E p,m  

T  1
1

1.11

where  is the chemical potential of the species, and here and throughout 1 per-
tains to Fermi-Dirac species and 1 to Bose-Einstain species.
In Dt,Df  1 spacetime with Dt  3, the number density n ,Df  nT,,Df,energy
density Df  T,,Df and pressure pDf  pT,,Df of a dilute, weakly-interacting
gas of particles with g internal degrees of freedom is given in terms of its phase
space distribution function f p is

nT,,Df 
g

23
 f p d3,Df p  g

23
 f p p Ďfd 3p,

T,,Df 
g

23
 E p,m f p d3,Df p 

g
23

 E p,m f p p Ďfd 3p,

pT,,Df 
g

23
 p 2

3E p,m
f p d3,Df p 

g
23

 p 2Ďf

3E p,m
f p d 3p,

E2 p,m  p 2
 m2,

1.12

where Ďf  Dt  Df,Dt  3.

From Eq.(1.11)-Eq.(1.12) by using polar coordinate with   p , one obtain
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nT,,Df 
g
2

0

 2Ďf

expE,m  /T  1
d,

T,,Df 
g
2

0

 E,m2Ďf

expE,m  /T  1
d,

pT,,Df 
g
32 0

 4Ďf

E,mexpE,m  /T  1
d,

E,m  2  m2 ,Ďf  Dt  Df,Dt  3.

1.13

In the relativistic limit (T  m), for T  , from Eqs.(1.13) we obtain

nT,,Df 
g
2

0

 2Ďf

exp/T  1
d  gT3Ďf 1

2

0

 u2Ďf
expu  1

du ,

T,,Df 
g
2

0

 3Ďf

exp/T  1
d  gT4Ďf 1

2

0

 u3Ďf
expu  1

du ,

pT,,Df 
g
32 0

 3Ďf

exp/T  1
d  1

3 gT
4Ďf 1

2

0

 u3Ďf
expu  1

du ,

Ďf  3  Df.

1.14

From Eqs.(1.14) finally we obtain
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T,,Df  BDfgT4Ďf  cBgT1Df (BOSE)

T,,Df  FDfgT4Ďf  cFgT1Df (FERMI)

nT,,Df  nBDfgT3Ďf  nBgTDf (BOSE)

nT,,Df  nFDfgT3Ďf  nFgTDf (FERMI)

pT,,Df  1
3 T,,Df.

1.15

In Dt,Df  1 spacetime with Dt  3, the total energy density tot
Df  totT,Df and

pressure ptot
Df  ptotT,Df of all species in equilibrium can be expressed in terms of

the photon temperature T :

totT,Df  T4Ďfi1

N Ti
T

4Ďf


g
2

0

 E,mi/T2Ďf

expE,mi/T  i/T  1
d,

ptotT,Df  T4Ďfi1

N Ti
T

4Ďf


g
32 0

 4Ďf

E,miexpE,mi/T  i/T  1
d,

1.16

where N is a total number of all species, and we have taken into account the
possibility that the species i may have a thermal distribution,but with a different
temperature than that of the photons.
Since the energy density and pressure of a non-relativistic species i.e.,one with
mass mi  T, is exponentially smaller than that a relativistic species i.e.,one with
mass mi  T, it is a very good approximation to include only the relativistic species
in the sums for totT,Df and ptotT,Df. In this case the expressions given by
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Eq.(1.16) greatly simplify:

totT,Df  cDfggT,DfT4Ďf  cDfgT,DfT1Df ,

ptotT,Df  1
3 cpDfggT,DfT

4Ďf 1
3 cpDfgT,DfT

1Df ,
1.17

where gT counts the total number of effectively massless degrees of freedom
(those species with mass mi  T ), and

gT i1

NB gi Ti
T

4Ďf
 78 i1

NF gi Ti
T

4Ďf



i1

NB gi Ti
T

1Df
 78 i1

NF gi Ti
T

1Df
,

1.18

where NB is the total number of bosons and NF is the total number of fermions.
Hence the entropy density sT,Df is dominated by the contribution of the
relativistic particles and a very good approximation is

sT,Df  cDfgST,DfTDf , 1.19

where

gST,Df i1

NB gi Ti
T

1Df
 78 i1

NF gi Ti
T

1Df
. 1.20

Conservation of SDf implies that sT,Df  RDft,and therefore the quantity

gST,DfTDfRDf 1.21

remains constant as the Universe expands.
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