Exact solution of the reduced version of PWE (paraxial wave equation) in bipolar coordinate system.

Sergey V. Ershkov
Institute for Time Nature Explorations, M.V. Lomonosov's Moscow State University, Leninskie gory, 1-12, Moscow 119991, Russia e-mail: sergej-ershkov @ yandex.ru

Keywords: Helmholtz equation, PWE, paraxial approximation, bipolar coordinates.

A new type of exact solution of the reduced 3 dimensional spatial PWE (paraxial wave equation) for the case of bipolar coordinates is presented here.

First, we consider a self-similar representation of the solution in a bipolar coordinate system, the second we additionally reduce PWE under a proper paraxial assumption. Analyzing the structure of the final equation, we obtain the simple exact solution which is proved to satisfy to such an equation in bipolar coordinates.

Besides, there is a limitation of the components of self-similar solution of a new type.

1. Introduction.

The full 3 dimensional spatial PWE (paraxial wave equation) should be presented in a bipolar coordinate system σ, τ, z as below [1-2]:

$$
\begin{equation*}
\Delta_{t} \psi+2 i k \frac{\partial \psi}{\partial z}=0 \tag{1.1}
\end{equation*}
$$

- here ψ - is the slowly varying complex envelope of a paraxial field, satisfying the PWE, $\psi=\psi(\sigma, \tau, z), \sigma \in[0,2 \pi), \tau \in(-\infty, \infty) ; k$ - is the wave number; $i=\sqrt{-1}-$ is the imaginary unit.

Besides, in bipolar coordinate system [3-4]:

$$
\begin{aligned}
& \Delta \psi=\frac{(\cosh \tau-\cos \sigma)^{2}}{a^{2}}\left(\frac{\partial^{2} \psi}{\partial \sigma^{2}}+\frac{\partial^{2} \psi}{\partial \tau^{2}}\right)+\frac{\partial^{2} \psi}{\partial z^{2}} \\
& \Delta_{t} \psi=\frac{(\cosh \tau-\cos \sigma)^{2}}{a^{2}}\left(\frac{\partial^{2} \psi}{\partial \sigma^{2}}+\frac{\partial^{2} \psi}{\partial \tau^{2}}\right)
\end{aligned}
$$

In accordance with the assumption of self-similarity, we should find an exact solution of equation (1.1) in a form below:

$$
\begin{equation*}
\psi(\sigma, \tau, z)=U(\sigma) \cdot V(\tau) \cdot Z(z) \tag{1.2}
\end{equation*}
$$

- then having substituted (1.2) into (1.1), we obtain $(\psi \neq 0)$:

$$
\begin{equation*}
\frac{(\cosh \tau-\cos \sigma)^{2}}{a^{2}} \cdot\left(\frac{1}{U(\sigma)} \frac{\partial^{2} U(\sigma)}{\partial \sigma^{2}}+\frac{1}{V(\tau)} \frac{\partial^{2} V(\tau)}{\partial \tau^{2}}\right)+\frac{2 i k}{Z(z)} \cdot \frac{\partial Z(z)}{\partial z}=0 \tag{1.3}
\end{equation*}
$$

- where for self-similarity we should choose as below (m - is the real number):

$$
\begin{equation*}
-\frac{2 i k \cdot z^{2}}{Z(z)} \cdot \frac{\partial Z(z)}{\partial z}=m \tag{1.4}
\end{equation*}
$$

Let us express the Cartesian components x , y in bipolar coordinate system [4]:

$$
x=a \frac{\sinh \tau}{(\cosh \tau-\cos \sigma)}, \quad y=a \frac{\sin \sigma}{(\cosh \tau-\cos \sigma)},
$$

- but if the paraxial assumption is valid for $P W E$, it means

$$
\begin{equation*}
\left(\frac{a^{2}}{z^{2}}\right) \frac{\sinh ^{2} \tau+\sin ^{2} \sigma}{(\cosh \tau-\cos \sigma)^{2}}=\frac{x^{2}+y^{2}}{z^{2}}=\varepsilon^{2} \rightarrow 0 \tag{1.5}
\end{equation*}
$$

Thus, we could present Eq. (1.3) in a form below, taking into account the assumptions (1.4)-(1.5):

$$
\begin{align*}
& \left(\sinh ^{2} \tau+\sin ^{2} \sigma\right) \cdot\left(\frac{1}{U(\sigma)} \frac{\partial^{2} U(\sigma)}{\partial \sigma^{2}}+\frac{1}{V(\tau)} \frac{\partial^{2} V(\tau)}{\partial \tau^{2}}\right)= \tag{1.6}\\
& =m\left(\frac{a^{2}}{z^{2}}\right) \frac{\sinh ^{2} \tau+\sin ^{2} \sigma}{(\cosh \tau-\cos \sigma)^{2}}=m \varepsilon^{2} \rightarrow 0
\end{align*}
$$

- besides, we should obtain the reduced version of PWE as below:

$$
\begin{align*}
& \left(\sinh ^{2} \tau+\sin ^{2} \sigma\right) \cdot\left(\frac{1}{U(\sigma)} \frac{\partial^{2} U(\sigma)}{\partial \sigma^{2}}+\frac{1}{V(\tau)} \frac{\partial^{2} V(\tau)}{\partial \tau^{2}}\right) \cong 0 \tag{1.7}\\
& \Rightarrow \quad \frac{1}{U(\sigma)} \frac{\partial^{2} U(\sigma)}{\partial \sigma^{2}}=c^{2}=-\frac{1}{V(\tau)} \frac{\partial^{2} V(\tau)}{\partial \tau^{2}}
\end{align*}
$$

2. Exact solution of reduced PWE.

Adopting the assumption of self-similarity (1.2) as well as the paraxial assumption (1.6), we finally obtain the united system of equations (1.4)-(1.7):

$$
\begin{align*}
& \frac{1}{U(\sigma)} \frac{d^{2} U(\sigma)}{d \sigma^{2}}=c^{2}, \\
& \frac{1}{V(\tau)} \frac{d^{2} V(\tau)}{d \tau^{2}}=-c^{2}, \tag{1.8}\\
& \frac{2 i k \cdot z^{2}}{Z(z)} \cdot \frac{d Z(z)}{d z}=-m
\end{align*}
$$

- where the 1-st and 2-nd equation of (1.8) has a typical solution as below $(c \neq 0)$:

$$
\begin{aligned}
& U(\sigma)=A_{c} \cdot \operatorname{ch}(\sigma \cdot|c|)+B_{c} \cdot \operatorname{sh}(\sigma \cdot|c|) \\
& V(\tau)=A_{-c} \cdot \cos (\tau \cdot|c|)+B_{-c} \cdot \sin (\tau \cdot|c|),
\end{aligned}
$$

- let us remember that $\sigma \in[0,2 \pi), \quad \tau \in(-\infty, \infty)$. It means a limitation of the components of self-similar solution; besides, for the 3-d equation we obtain:

$$
Z(z)=Z_{0} \cdot \exp \left(-\frac{i m}{2 k z}\right) .
$$

3. Conclusion.

Let us present finally the self-similar solution of the reduced version of PWE (paraxial wave equation, under assumption (1.6)):

$$
\psi(\sigma, \tau, z)=U(\sigma) \cdot V(\tau) \cdot Z(z)
$$

- where

$$
\begin{gathered}
U(\sigma)=A_{c} \cdot \operatorname{ch}(\sigma \cdot|c|)+B_{c} \cdot \operatorname{sh}(\sigma \cdot|c|) \\
V(\tau)=A_{-c} \cdot \cos (\tau \cdot|c|)+B_{-c} \cdot \sin (\tau \cdot|c|), \\
Z(z)=Z_{0} \cdot \exp \left(-\frac{i m}{2 k z}\right),
\end{gathered}
$$

- here $\sigma \in[0,2 \pi), \tau \in(-\infty, \infty), z \in(0,+\infty)$.

References:

1. A.Sommerfeld (1949). Partial Differential Equations in Physics. Academic Press, New York.
2. Serway, Moses, and Moyer (2004). Modern Physics (3rd ed.). Brooks Cole. ISBN 0534493408.
3. E.Kamke (1971). Hand-book for ordinary differential equations. Science, Moscow.
4. Svelto, Orazio (2010). Principles of Lasers (5th ed.).
