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Abstract

We investigate the spectrum of elementary particles and fields arising from the superposition
of string configurations weighted according to their entropy in the string phase space. We
find that this superposition describes a universe with a physical content phenomenologically
compatible with the experimental observations and measurements. Masses and couplings
are determined as functions of the age of the universe, with no room for freely-adjustable
parameters. They depend on time, with a scaling allowing this scenario to pass the tests
provided by cosmology and the constraints imposed by the physics of the primordial universe.
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1 Introduction

In Ref. [1] we have discussed a theoretical scenario in which the universe is given by the
superposition of all possible configurations which describe the assignment of a certain amount
of energy along a vector space, of any possible dimension. The time ordering of the history
of the universe is given by the inclusion of the sets containing all the configurations at a
certain total energy. All the information about the universe at total energy E is encoded in
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a ”partition function” that can be expressed as:

ZE =
∑

ψ(E≤E)

eS(ψ) , (1.1)

where ψ(E) indicates a configuration (i.e. a distribution of E energy units along space),
and S(ψ) is the entropy, i.e. the logarithm of the volume of occupation of the configuration
ψ in the phase space of all the possible configurations. The dominant configuration of the
universe is the one of highest entropy. The contribution of all the neglected configurations
falls under the error accounted for by the Heisenberg Uncertainty; indeed, 1.1 implies a
quantum scenario which also embeds special and general relativity, and therefore quantum
gravity. In Ref. [2] we identified in String Theory the theory which realizes a representation of
this scenario, i.e. the evolution of the superposition of geometries, in terms of propagating
fields. We discussed how free fields and particles can be investigated in a limit in which
gravity is decoupled and these degrees of freedom appear to propagate in a flat space. This
corresponds to a logarithmic representation of the theory, i.e. on the tangent space, where
groups and their multiplicative properties are approximated by algebras and sums instead
of products. The analogous of 1.1 on the continuum is:

ZV =

∫

V

Dψ eS(ψ) , (1.2)

where now ψ indicates a string configuration, and S(ψ) its volume in the phase space of
all string configurations at finite target-space volume V , measured in the duality-invariant
Einstein’s frame.

Object of this paper is the investigation of the properties of elementary particles and
fields. According to 1.2, in first order they are obtained by looking at the most entropic
string configurations. In our theoretical framework string configurations are in themselves
not backgrounds but full configurations of the universe, which already contain in the shape
of their geometry the field and particle perturbing the ground geometry. It is only when they
are perturbatively “flattened” that the string configurations appear as “vacua”, background
geometries on which field and particle excitations leave, as in the ordinary approach to string
theory. Investigating the configurations of highest entropy in the limit of flat geometry tells
us about the spectrum of the theory, i.e. which particles and fields we must consider as
the elementary excitations which propagate in the physical universe. Since the fundamen-
tal coupling of the theory is the gravitational coupling, by definition set to one being the
unit of scale (the Planck scale unit), the full theory is basically strongly coupled, and the
investigation of its properties can only be performed through comparison of a full bunch of
string dual constructions. Moreover, since the universe is the result of a superposition of
configurations, the properties of the spectrum of elementary particles too are not associated
to one single configuration, but result from the superposition of configurations. There is no
unique string vacuum which can be singled out as “the” right configuration, containing all
the physics we want. In particular, there is no single string configuration in which one can
observe the differentiation in the mass spectrum of elementary particles. The difference in
the masses of particles belonging to different families originates from the fact that families
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have a different weight in the phase space of string configurations, i.e. they do not appear
on the same number of configurations; the hierarchy of masses reflects the hierarchy of their
occurrence. Similarly it goes for any other symmetry: the fact of being the universe a super-
position of configurations with different degree of symmetry eventually produces a universe
in which any symmetry is broken. The lower is the difference in the weights of configurations
with different symmetry, the softer results to be the breaking of the symmetry.

As to be espected from the discussion in Ref. [2] the sum 1.2 turns out to imply the three-
dimensionality of space: in the configurations of highest entropy only a four-dimensional
subspace is allowed to expand, and indeed, owing to the presence in the spectrum of massless
fields, it expands; all the remaining coordinates are twisted. As expected, supersymmetry is
broken at the Planck scale. The spectrum of the elementary excitations corresponds to the
degrees of freedom of all the known elementary particles, and their interactions. Despite the
lack of low-energy supersymmetry, the cosmological constant is correctly predicted without
fine tuning because the string vacuum energy expectation value, in our case of order one 1,
does not correspond to an energy density, but to a quantity that, in order to be transformed
into a density, must be rescaled by a Jacobian accounting for the coordinate transformation
from the string to the Einstein’s frame; this introduces a suppression corresponding to a two-
volume, the square of the radius of space-time. The so produced true density is therefore
Λ ∼ 1/R2 ∼ H2, where H is the Hubble constant 2. It turns out to be not at all a constant,
evolving with the inverse square of the age of the universe. This reproduces what derived in
the original formulation of the scenario, Ref. [1].

The mass of a particle arises as its ground momentum in a compact space. The size of
the mass depends on the weight of the configuration containing this particle in the phase
space of all the configurations (i.e. it depends on the “multiplicity” of the momentum). This
means that it will be some fractional power of the fundamental momentum, and therefore of
the order of some root of the inverse of the age of the universe. The result is that all masses
depend on time. At present, their values can be seen to agree with the experimental ones.
The effect of the time-variation of masses can be observed in the time-variation of the cosmic
emission spectra, causing the apparent acceleration of the expansion of the universe, and in
other deviations of astrophysical observations from what expected on the basis of present-day
parameters. As according to Ref. [2] also couplings are related to volumes in the phase space,
and here are derived by comparing the ratios of volumes of the symmetry groups of the most
entropic string configurations. Since the relative weights of the configurations depend on
the size of the whole phase space at a certain age of the universe, like masses also couplings
turn out to depend on the age of the universe. Despite the absence of supersymmetry, they
naturally unify at the Planck scale: their running on the large scale is in fact here not related
to the logarithmic running we use in an effective action of the elementary particles.

Although almost any physically observable quantity receives a different explanation than

1Indeed it is precisely 1 by choice of normalization of the mean values.
2The basic absence of invariance under space-time translations implies, by construction, a different nor-

malization of string amplitudes, and therefore a different interpretation of the computed mean values: owing
to the absence of a normalization factor 1/V , where V , the four-volume of space, corresponds to the volume
of the group of translations, densities are now lifted to global quantities.
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in traditional field theory or cosmology approaches, it is nevertheless consistent with what
is experimentally measured. Indeed, precisely the high predictive power of this theoretical
scenario, due to the fact that there are no free parameters that can be adjusted in order to
fit data, enhances the strength of any matching with experimental results: any discrepancy
could in fact rule out the entire construction. Because of this, a large part of the inves-
tigation is devoted to re-analyzing the most important data and constraints, coming not
only from elementary particles physics but also from astrophysics and cosmology. Also here,
within the degree of approximation introduced in the computation predictions and results
are compatible with the experimental data.

Among the highlights of the predictions, for the elementary particle physics we mention here:

• - correct prediction of the present-time value of masses and couplings;

• - no low-energy supersymmetry (till the Planck scale);

• - no new elementary particles;

• - no Higgs mechanism to give rise to masses;

• - new resonances and possibly non-local correlation effects in LHC physics.

Indeed, the quantum mechanics arising from 1.1 implies departures from the quantum
behavior expected in the traditional models of electro-dynamics and weak interactions, es-
pecially in relativistic systems characterized by a high geometric complexity. These effects
can be viewed as due to the quantization of space, as implied in a quantum gravity scenario.
When one thinks at the contribution of gravity, one usually has in mind the contribution of
classical gravity, and thinks at quantization as something that involves only the description
of the graviton as a quantum field. Indeed, quantum gravity implies much more: it concerns
the quantization of the geometry, and its effects show up in any complex system, even in
conditions in which classical gravity can be neglected. For instance, as discussed in Ref. [3],
it allows to explain the correlation between complexity of the lattice structure and critical
temperature in high-temperature superconductors. Similarly, it predicts a higher degree of
non-locality of wave-functions in quantum systems at high energy. For instance, this should
show out in a higher degree of correlation among products of a high energy collision 3.

For what matters the large time-scale and cosmology we list then the following highlights
of this scenario:

• - time-dependence of masses and couplings;

• - correct prediction of the present-time value of the cosmological constant;

• - explanation of cosmological observations without dark matter;

• - compatibility with cosmological constraints like nucleosynthesis and Oklo bound.

3It indeed seems that effects of this kind are being detected at LHC.
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For each of these phenomena the explanation relies in the particular evolution of mass scales
and couplings, as functions of the age of the universe. As discussed in Ref. [4], this scenario
seems to give also a correct prediction of the magnitude of CP violation not only in the case
of K-meson system, but also for the much more problematic D-meson system.

1.1 Outline of the work

The paper, in large part an update of [5], is organized as follows. We start in section 2
by investigating the string phase space through orbifold constructions. The highest entropy
in the string phase space is attained with the highest amount of twists and shifts. The
maximum is not sharply picked around one single construction, but is spread around a small
bunch of configurations which differ by the action of some shifts. Their stapling gives rise
to the mass differentiation of the spectrum. We re-derive the result of [1] about the number
of dimensions of space-time, here identified with the number of coordinates which remain
untwisted, and therefore free to expand. We review also the discussion of [1] about the
number of dimensions in which the non-perturbative string theory lives, in the light of non-
perturbative string-string dualities between orbifold constructions (section 2.1). Knowing
the whole number of dimensions will turn out useful in order to compute the neutron mass
in section 4.3.6. We discuss then the origin of masses, the spectrum of the theory, and the
breaking of the symmetry within and between families of particles. Finally we comment the
issues related to the magnetic monopoles, in particular the topological ones, which in this
scenario are expected to not exist.

In section 3 we consider the geometry of the universe and the type of expansion it
undergoes. We pass then in section 4 to the detailed derivation of the couplings, the masses
of the elementary particles and of the massive bosons, as functions of the age of the universe.
We derive then the scaling of the mean mass scale of the universe, a quantity that can be non-
perturbatively computed in an exact way: it corresponds in fact to the only eigenvalue of the
Hamiltonian at any finite space-time volume. This scale can be seen to basically correspond
to the mass of stable matter: if the matter present in the universe were constituted by
particles all of the same kind, these would have a mass precisely corresponding to this scale.
This scale can be shown to roughly correspond to the neutron mass. With the scaling of the
average mass of the universe at hand we can discuss the issue of the apparent acceleration
of the universe, and show that in this scenario of non-accelerated expansion the observed
acceleration of red-shifts can be explained as due to the variation with time of the atomic
energy levels, and consequently of emitted light. In particular, we comment this point of view
in comparison to the usual approach to the acceleration of the expansion of the universe.

In section 5 we come to the explicit evaluation of masses and couplings at present time.
In particular, in section 5.4 we compute the fine structure constant (indeed its present-day,
value because in our case it is not a constant), obtaining a value which falls within an error
of ∼ 5× 10−6 away from its most updated experimental value. In sections 5.5–5.7 we briefly
discuss also baryon and meson masses. Their values too agree, within the approximations
introduced in the computing procedure, with what experimentally observed. In section 5.8
we discuss the mass of the gauge bosons of the weak interactions, and how the terms of this
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sector of the Standard Model are effectively reproduced.

The investigation of the mass sector of the theory is completed in section 6, where we
consider the mixing angles of weak decays (the Cabibbo-Kobayashi-Maskawa matrix). Since
in our scenario neutrinos are massive, mixing of generations and off-diagonal decays are
expected to occur also among leptons. Differently from the previous versions of this work,
CP violation is now discussed in a separated paper entirely devoted to this phenomenon,
Ref. [4].

In section 7 we go a step beyond the spectrum of free elementary particles, to investigate
the interacting theory; in particular, we discuss how in the full, non-perturbative theory
there are interactions and resonances that can not be predicted in the ordinary perturbative
approach. According to our point of view, also the resonace around 125 GeV recently
detected at LHC, commoly interpreted as a Higgs boson signal, is of this kind.

We consider then the “Cosmic Microwave Background” radiation, and discuss how in
this framework the existence of a ∼ 2, 8 0 Kelvin radiation comes out as a prediction. We
also discuss, in subsection 7.3, the case of dark matter. In our scenario, this is expected to
not exist. We comment several cases which are usually considered to provide evidence for its
existence, and propose how, within our framework, in each of them the effects attributed to
dark matter receive an alternative explanation. In section 7.4 we discuss then the constraints
on the evolution of masses and couplings coming from the observation of ancient regions of
the universe, or, as is the case of the Oklo bound, from the history of our planet. We find
out that the predicted behavior is compatible with all the constraints. Not only, but in the
case of the so-called “time dependence of α”, it turns out to correctly predict the magnitude
of the observed effect (section 7.4.1).
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2 The non-perturbative solution

The integral 1.2 contains in principle all the information about our universe. As discussed
in [2], the main contribution to the appearance of the universe is given by the configurations
of minimal symmetry, because they have at any time the highest entropy in the phase space
at fixed volume. In order to investigate the physical content of the theory we will use a “per-
turbative” approach. In ordinary quantum field theory one separates the time evolution into
a free propagation and an interaction part. The physical configurations are inspected via the
conceptual separation of a base of free states, eigenstates of the free Hamiltonian, which are
exact solutions of the free theory. As long as the coupling of the interaction is small, the full
solution can be considered a small perturbation of the free propagation, and the perturbative
approach makes sense. In our case, we have a truly non-perturbative string system, in which
even the space-time is mixed up, and in general will not be factorisable into an extended
one, “the” space-time as we experience it, and an internal space. Moreover, we can access
the whole theory only through “slices”, the perturbative (string) constructions, to be treated
as the patches, the “projections”, which allow to shed light into the “patchwork”, the whole
theory. We will get information about the true vacuum through heavy use of string-string
duality, and, consistently with the fact that we are investigating a flat limit of the geometry,
we will follow the process of symmetry reduction through the spectrum of possible string
constructions in the class of orbifolds. Orbifolds are particular string constructions in which
the target space is flat everywhere except from some special points, at which the curvature
is concentrated. Having full knowledge of the spectrum of the perturbative states at any
energy level, we are able to write the partition function, the “one loop partition function”,
which in principle encodes all the information about the construction; with this it is possible
to explicitly perform one-loop computations of scattering amplitudes and threshold correc-
tions, and therefore compare string duals through pure string computations. Z2 orbifolds are
the best suited for our investigation, because they preserve the basic structure of the target
space as a product of circles (it becomes a generic product of circles and orbifolded circles,
S1/Z2) and mod-out the space by the group with the smallest volume among all the orbifold
operations. A product of Z2 twist/shifts allows therefore to achieve a configuration whith a
smaller surviving symmetry group than those obtained through any other product of orbifold
operations. Entropy will therefore be the maximal we can obtain with orbifold operations.
The most entropic orbifold vacuum will be the one with the highest amount of freely and
non-freely acting Z2 shifts and twists. Unfortunately, this configuration can be constructed
explicitly only in a perturbative regime. This corresponds to the decompactification of some
coordinate which serves as coupling of the theory. As a consequence, we will never see explic-
itly all the properties of the whole theory: these can only be indirectly inferred through the
comparison of dual constructions. In particular, the amount of supersymmetry will appear
in a different way, depending on whether the decompactified coordinate does also tune the
supersymmetry breaking, or not.
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2.1 Investigating orbifolds through string-string duality

Investigating the non-perturbative properties of a string vacuum by comparing dual con-
structions is neither an easy task, nor a straightforward one. In general, at a generic point
in the moduli space the full set of dual constructions, enabling to “cover” the full content,
is not known. Some progress on its knowledge has been done in the case of supersymmetric
vacua with extended supersymmetry, where it is in general possible to identify a subset of
the spectrum made “stable” by the properties of supersymmetry. The case of orbifolds turns
out to be particularly suited for the investigation of non-perturbative string-string duali-
ties. In this case it is possible to make a non-trivial comparison of the renormalization of
terms that receive contributions only from the so called BPS states, and this not just on
the ground of the properties of supersymmetry, but through the computation of true string
contributions. Fortunately, Z2 orbifolds, the case of our interest, are the easiest and therefore
more investigated constructions 4. Indeed, through the analysis of these constructions, it
is possible to get an insight into the properties which are typical of string theory in itself:
most of the investigations performed at other points in the moduli space must in fact rely
on geometrical properties of smooth surfaces, and their singularities. Although for some re-
spects rather powerful, these techniques don’t allow to capture the presence of states related
to non-geometrical singularities, or even fail in general for the simple reason that, owing to
T-duality, the full string space simply cannot be reduced to a geometrical one5.

Our starting point is a maximally supersymmetric string vacuum with flat background
given by a product of circles. The constraints of two-dimensional conformal field theory
impose that Z2 orbifold twists must act on groups of four coordinates at once. In any string
construction, there is room for a maximum of 3 such operations, one of which is however
redundant, in that it leads, once combined with the other ones, to the re-introduction in the
twisted sectors of the states projected out. Therefore, we can say that only a maximum of
two independent Z2 twists act effectively. However, the amount of supersymmetry surviving
to these projections, as well as the amount of initial supersymmetry, is different, depending
on whether we start with heterotic, type I, or type II strings. This means that in any
construction not all the projections acting on the theory are visible. Indeed, one of them
is always non-perturbative. The reason is that, by definition, a perturbative construction
is an expansion around the zero value of a parameter, the coupling of the theory, which
is itself a coordinate in the whole theory. An orbifold operation acting on this coordinate
is forcedly non-perturbative 6. In the following we will often make use of the language of
string compactifications to four dimensions, especially for what matters our reference to the
moduli of the string orbifolds. This will turn out to be justified “a posteriori”: we will see
that indeed the final configuration is the one of a string space with all but four coordinates
twisted and therefore “frozen”. Only four coordinates remain un-twisted and free to expand,
while all the others remain stuck at the string/Planck scale. Massless degrees of freedom

4See for instance Refs. [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35].

5For examples, see for instance Ref. [17].
6A first investigation of a non-perturbative orbifold, which produces the heterotic string, has been carried

out in [36, 37].
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move along these and expand the horizon of space-time at the speed of light. Although not
infinitely extended, this “large” space is what in our scenario corresponds to the ordinary
space-time. The language of orbifold constructions in four dimensions is therefore just an
approximation, that works particularly well at large times. Only at a second stage, we
will also discuss how and where this picture must be corrected in order to account also for
compactness of the space-time coordinates. Although somehow an abuse of language, this
approximation allows us to take and use with little changes many things already available in
the literature. In particular, for several preliminary results and a rediscussion of the previous
literature, the reader is referred to Ref. [17].

Let’s see what are in practice the steps of decreasing symmetry we encounter when
approaching the most singular configuration. Although at the end it will be irrelevant the
order in which we apply freely and non-freely acting orbifold operations, it is convenient to
organize the analysis by considering first non-freely acting operations, i.e. pure twists with
orbifold fixed points. Starting from the M-theory configuration with 32 supercharges, we
come, through orbifold projections, to 16 supercharges and a gauge group of rank 16. Further
orbifolding leads then to 8 supercharges (N4 = 2) and introduces for the first time non-trivial
matter states (hypermultiplets). As we have seen in [17] through an analysis of all the three
dual string realizations of this vacuum (type II, type I and heterotic), this orbifold possesses
three gauge sectors with maximal gauge group of rank 16 in each. The matter states of
interest for us are hypermultiplets in bi-fundamental representations: these are in fact those
which at the end will describe leptons and quarks (all the others are eventually projected
out). As discussed in [17], in the simplest formulation the theory has 256 such degrees of
freedom. The less symmetric configuration is however the one in which, owing to the action
of further Z2 shifts, the rank is reduced to 4 in each of the three sectors. These operations,
acting as rank-reducing projections, have been extensively discussed in [38, 13, 14, 17]. The
presence of massless matter is in this case still such that the gauge beta functions vanish. In
this case, the number of bi-charged matter states is also reduced to 4× 4 = 16. These states
are indeed the twisted states associated to the fixed points of the projection that reduces
the amount of supersymmetry from 16 to 8 supercharges.

Let’s consider the situation as seen from the type II side. We indicate the string coor-
dinates as {x0, . . . , x9}, and consider {x0, x9} the two longitudinal degrees freedom of the
light-cone gauge. The transverse coordinates are {x1, . . . , x8}. Here all the projections ap-
pear as left-right symmetric. The identification of the degrees of freedom, via string-string
duality, on the type I and heterotic side depends much on the role we decide to assign to
the coordinates, as we will see in a moment. By convention, we choose the first Z2 to twist
{x5, x6, x7, x8}:

Z
(1)
2 : (x5, x6, x7, x8) → (−x5,−x6,−x7,−x8) , (2.1)

and the second Z2 to twist {x3, x4, x5, x6}:

Z
(2)
2 : (x3, x4, x5, x6) → (−x3,−x4,−x5,−x6) . (2.2)

These two projections induce a third one: Z
(1,2)
2 ≡ Z

(1)
2 × Z

(2)
2 , that twists {x3, x4, x7, x8}:

Z
(1,2)
2 : (x3, x4, x7, x8) → (−x3,−x4,−x7,−x8) . (2.3)
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Altogether, they reduce supersymmetry fromN4 = 8 toN4 = 2, generating 3 twisted sectors.
Depending on whether we consider the type IIA or IIB construction, the twisted sectors give
rise either to matter states (hyper-multiplets) or to gauge bosons (vector-multiplets). As
we discussed in Ref. [17], a comparison with the heterotic and type I duals shows that the
underlying theory must be considered as the union of the two realizations: owing to the lack
of a representation of vertex operators at once perturbative for all of them, for technical
reasons no one of the constructions is able to explicitly show the full content of this vacuum.
The matter (and gauge) content in these sectors is then reduced by six Z2 shifts acting, two by
two, by pairing each of the three twists of above with a shift along one of the two coordinates
of the set {x1, . . . , x8} which are not twisted. Each shift reduces the number of fixed points of
a Z2 twist by one-half; two shifts reduce therefore the matter states of a twisted sector from
16 to 4. Altogether we have then, besides the N4 = 2 gravity supermultiplet, three twisted
sectors giving rise each one to 4 matter multiplets (and a rank 4 gauge group). On the type I
side, these three sectors appear as two perturbative D-brane sectors, D9 and D5, while the
third is non-perturbative. On the heterotic side, two sectors are non-perturbative. As it
can be seen by investigating duality with the type I and heterotic string, the matter states
from the twisted sectors are actually bi-charged (see Refs. [39, 40], and [17]), something that
cannot be explicitly observed, the charges being entirely non-perturbative from the type II
point of view. The moduli T (1), T (2), T (3) of the type II realization, associated respectively to
the volume form of each one of the three tori {x3, x4}, {x5, x6}, {x7, x8}, are indeed “coupling
moduli”, and correspond to the moduli “S”, “T”, “U” of the theory. On the heterotic side,
S is the field whose imaginary part parametrizes the string coupling: ImS = e−2φ. It is
therefore the coupling of the sector that contains the gravity fields. T and U are perturbative
moduli, and correspond to the couplings of the two non-perturbative sectors. On the type I
side, on the other hand, two of them are non-perturbative, coupling moduli, respectively of
the D9 and D5 branes, while only one of them is a perturbative modulus, corresponding
to the coupling of a non-perturbative sector [39, 41, 42, 28]. Owing to the artifacts of the
linearization of the string space provided by the orbifold construction, gravity appears to be
on a different footing on each of these three dual constructions.

2.1.1 The maximal twist

The configuration just discussed constitutes the last stage of orbifold twists at which we can
“easily” follow the pattern of projections on all the three types of string construction. It
represents also the maximal degree of Z2 twisting corresponding to a supersymmetric config-
uration. As we will see, a further projection necessarily breaks supersymmetry. The vacuum
appears supersymmetric only in certain dual phases, such as the perturbative heterotic rep-
resentation. Non-perturbatively, supersymmetry is on the other hand broken. This means
that, when further twisted, the theory is basically no more de-compactifiable: perturbative,
i.e. decompactification, phases, represent only approximations in which part of the theory
content and properties are lost, or hidden. This is what usually happens when one for in-
stance pushes to infinity the size of a coordinate acted on by a Z2 twist. The situation is
the one of a “non-compact orbifold”.
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The further Z2 twist we are going to consider is also the last that can be applied to
this vacuum, which in this way attains its maximal degree of Z2 twisting. This operation,
and the configuration it leads to, appears rather differently, depending on the type of string
approach. Let’s see it first from the heterotic point of view. So far we are at the N4 = 2
level. The next step appears as a further reduction to four supercharges (corresponding to

N4 = 1 supersymmetry). Of the previous projections, Z
(1)
2 and Z

(2)
2 , only one was realized

explicitly on the heterotic string, as a twist of four coordinates, say {x5, x6, x7, x8}. The

further projection, Z
(3)
2 , acts on another four coordinates, for instance {x3, x4, x7, x8}. In

this way we generate a configuration in which the previous situation is replicated three times.
When considered alone, the new projection would in fact behave like the previous one, and
produce two non-perturbative sectors, with coupling parametrized by the moduli of a two-
torus, in this case {x5, x6}: T (5−6), U (5−6). The product Z

(1)
2 ×Z

(3)
2 leaves instead untwisted

the torus {x7, x8} and generates two non-perturbative sectors with couplings parametrized
by the moduli T (7−8), U (7−8). Altogether, apart from the projection of states implied by the
reduction of supersymmetry, the structure of the N = 2 vacuum gets triplicated.

The symmetry of the action of the additional projection with respect to the previous
ones suggests that the basic structure of the configuration, namely its repartition into
three sectors, S, T , U , is preserved when passing to the less supersymmetric configura-
tion. This phenomenon can be observed in the type II dual, that we discuss in detail in
Appendix B. From the heterotic point of view, the states of these sectors come replicated
({T} → {T (3−4), T (5−6), T (7−8)}, {U} → {U (3−4), U (5−6), U (7−8)}). On the type II side we
observe a triplication also of the “S” sector. However, as we discussed in Ref. [17], we are
faced here to an artifact of the orbifold constructions, that by definition are built over a
linearization of the string space into planes separated by the orbifold projections. The mat-
ter states are indeed charged under three sectors, Si, T j, Uk, but we can at most observe a
double charge, as it appears on the type I dual side; from an analysis based on string-string
duality, we learn that the states are in fact multi-charged for mutually non-perturbative
sectors When one of the Si, T j, Uk sectors is at the weak coupling, the other two are at the
strong coupling, and it doesn’t make sense to ask what is this sort of “splitting” of the non-
perturbative charge of the states: we simply observe that they have a perturbative index and
one running on a strongly coupled part of the theory. On the type I dual realization of this
vacuum, besides a D9 branes sector we have now three D5 branes sectors and a replication of
the non-perturbative sector into three sectors, whose couplings are parametrized by U (3−4),
U (5−6), U (7−8).

A result of the combined action of these projections is that all the fields Si, T j and Uk

are now twisted. This means that their vacuum expectation value is not anymore running,
but fixed at a scale to be identified with the string-string duality-invariant Planck scale.
Nevertheless, for convenience here we continue with the generic notation S, T , U used so
far, because it allows to better follow the functional structure of the configuration we are in-
vestigating. Twisting of the “coupling” moduli indeed suggests the non-decompactifiability
of this vacuum. This, as discussed, would imply the breaking of supersymmetry. However,
this property is not so directly evident: each dual construction is in fact by definition per-
turbatively constructed around a decompactification limit. The point is to see, with the
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help of string-string duality, whether this is a real decompactification, or just a singular,
non-compact orbifold limit. An important argument in favour of this second situation is
that, after the Z

(3)
2 projection is applied, the so-called “N = 2 gauge beta-functions” are

unavoidably non-vanishing. According to the analysis of Ref. [17], this means that there
are hidden sectors at the strong coupling 7. As a consequence, supersymmetry is actually
non-perturbatively broken by gaugino condensation. Inspection of the type II string dual
shows explicitly the instability of the N4 = 1 supersymmetric vacuum.

In order to construct the type II dual, it is not possible to proceed as with the heterotic
and type I string, namely by keeping un-twisted some coordinates. On the type II side
the “N4 = 1” vacuum looks rather differently: the new projection twists all the transverse
coordinates, leaving no room for a “space-time”. This however does not mean that a space-
time does not exist: all non-twisted coordinates, therefore the space-time indices, are non-
perturbative. Their volume is precisely related to the size of the coupling around which the
perturbative vacuum is expanded. After Z

(1)
2 and Z

(2)
2 , the only possibility for applying a

perturbative Z2 twist is in fact to act on {x1, x2, } and on two of the {x3, . . . , x8} coordinates,
already considered by the previous twists. These can be either the pair {x3, x4} or {x5, x6},
or {x7, x8}. Which pair, is absolutely equivalent. We can chose Z

(3)
2 such that:

Z
(3)
2 : (x1, x2, x3, x4) → (−x1,−x2,−x3,−x4) . (2.4)

The other choices are anyway generated as Z
(3)
2 ×Z(2)

2 and Z
(3)
2 ×Z(2)

2 ×Z(1)
2 . Assigning a twist

to some coordinates is not enough in order to define an orbifold operation: the specification
must be completed by an appropriate choice of “torsion coefficients”. The analysis of this
orbifold turns out to be easier at the fermionic point, where the world-sheet bosons of the
conformal theory are realized through pairs of free fermions [43]. We leave to the appendix B
a detailed discussion of the construction of this vacuum. There we see how the duality map
with N = 2 → N → 1 heterotic theory imposes a choice of “GSO coefficients” that leads
to the complete breaking of supersymmetry. Since the breaking is tuned by moduli which
at the highest level of symmetry breaking (i.e. at the highest entropy configurations) are
twisted, supersymmetry is broken at a scale which is eventually identified with the Planck
scale 8.

The reason why the breaking of space-time supersymmetry can be observed in a dual
in which space-time is entirely non-perturbative relies on the unambiguous identification of
the supersymmetry generators. More precisely, what on the type II side it is possible to see
is the projection of the supersymmetry currents on the type II perturbative space. Target
space supersymmetry is in fact realized in string theory through a set of currents whose
representation is built out of the world-sheet degrees of freedom. For instance, in the case

7We refer the reader to the cited work for a detailed discussion of this issue.
8Among the historical reasons for the search of low-energy supersymmetry are the related smallness of the

cosmological constant and the stabilization in the renormalization of mass scales produced by supersymmetry.
In our framework, the value of the cosmological constant will be justified in a completely different way
(section 3). Also the issue of stabilization of scales in this framework must be considered in a different way:
masses are no more produced by a field-theory mechanism, and field theory is not the environment in which
to investigate their running.
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of free fermions in four dimensions, we have:

G(z) = ∂zX
µψµ +

∑

i

xiyizi , (2.5)

and
G(z̄) = ∂z̄X

µψ̄µ +
∑

i

x̄iȳiz̄i , (2.6)

where the index i runs over the internal dimensions. At the N4 = 2 level it is possible
to construct both the representations of the type II dual, namely the one in which space-
time is perturbative, and the one in which space-time is non-perturbative., Tracing the
representation of the supersymmetry currents in both these pictures allows us to identify
them also when the Z

(3)
2 twist is applied. Although, strictly speaking, there is no simple

one-to-one linear mapping between coordinates of dual constructions, the fact that the dual
representations of the currents share a projection onto a subset of coordinates common to
both, enables us to follow the fate of space-time supersymmetry anyway.

The analysis of the type II dual confirms that the matter states of this vacuum are indeed
three replicas of the chiral fermions of the theory before the supersymmetry-breaking, Z

(3)
2

projection. In the type II construction their space-time spinor index runs non-perturbatively;
they appear therefore as scalars. In total, we have three sets of bi-charged states in a 16×16.
In the minimal, semi-freely acting configuration, they get reduced to three sets of 4×4 by the
further Z2 shifts, acting on the twisted planes. As it was the case of the N4 = 2 theory, on the
type II side their charges are non-perturbative, and they misleadingly appear as (16, 16, 16),
reduced to (4, 4, 4). The impression is that we have three families of three-charged states.
However, this is only an artifact of the orbifold construction. From the heterotic point of
view, namely, the vacuum in which gauge charges are visible, two sectors of each family
are non-perturbative and, as previously mentioned, the structure of their contribution to
threshold corrections is an indirect signal that they are at the strong coupling (see Ref. [17]).
The situation is the following: either 1) we explicitly see all the gauge sectors, on the type II
side, but we don’t see the gauge charges, or 2), in the constructions in which we can explicitly
construct currents and see gauge charges (the heterotic realization), we see the gauge sector,
and the currents, corresponding to just one index born by the matter states, whereas the
other ones are non-perturbative and strongly coupled.

The type II realization appears to be a different “linearization”, or linear representation,
of the string space, in which the non-perturbative curvature has been “flattened” through an
embedding in a higher number of (flat) coordinates, which goes together with a redundancy
of states due to an artificial replication of some degrees of freedom. On the type II string,
twisted states can only be represented as uncharged, free states. Their charges are in any
case non-perturbative, and we cannot observe a “non-abelian gauge confinement”. These
gauge sectors appear as partially perturbative on the type I side. However, the type I
vacuum, like the heterotic one, corresponds to an unstable phase of the theory: it appears
as supersymmetric although it is not. Moreover, inspection of the gauge beta-functions
reveals that they are positive. Therefore, although appearing as free states, the states on
the D-branes run to the strong coupling and the apparent gauge symmetries are broken by
confinement.
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Let’s summarize the situation. The initial theory underwent three twists and now is
essentially the following orbifold:

Z
(1)
2 × Z

(2)
2 × Z

(3)
2 . (2.7)

In terms of supercharges, the supersymmetry breaking pattern is:

32
Z

(1)
2−→ 16

Z
(2)
2−→ 8

Z
(3)
2−→ 0 (4 only perturbatively) . (2.8)

The “twisted sector” of the first projection gives rise to a non-trivial, rank 16 gauge group;
the twisted sector of the second leads to the “creation” of one matter family, while after the
third projection we have a replication by 3 of this family. The rank of each sector is then
reduced by Z2 shifts of the type discussed in Ref. [13, 10, 14], two per each complex plane.
As a result, each 16 is reduced to 4. On the type II side one can explicitly see, besides the
shifts, both the total breaking of supersymmetry and the doubling of sectors under which the
matter states are charged. The product of these operations leads precisely to the spreading
into sectors that at the end of the day separate into weakly and strongly coupled, allowing
us to interpret the matter states as quarks 9. On the type I side, the states appear in
an unstable phase, as free supersymmetric states of a confining gauge theory, while on the
heterotic side they appear on the twisted sectors, and their gauge charges are partly non-
perturbative, partly perturbative. The perturbative part is realized on the currents. Like the
type I realization, also the heterotic vacuum appears to be an unstable phase, before flowing
to confinement; both are indeed non-perturbatively singular, non-compact orbifolds. This
reflects on the fact that, as also discussed in Ref. [17], both on the heterotic and type I side,
perturbative and non-perturbative gauge sectors have opposite sign of the beta-function.
This signals that, as the visible phase is confining, the hidden one is non-confining. The
matter states of the theory consist therefore of a replica into three families of a bi-charged
complex state transforming as 4w × 4s, where the 4w belongs to a weakly coupled sector,
while the 4s to a strongly coupled sector of the theory. Indeed, the fact that 1) with the last
twist supersymmetry is broken, 2) the internal string space is curved, and 3) the coupling
does not correspond anymore to a modulus but is twisted, frozen at a value of order one in
(duality-invariant) Planck units, means that the theory in itself is at the strong coupling,
and that a perturbative realization is only possible as a projection onto some subsectors.
After further symmetry breaking the 4w will give rise to the weak interactions, while the 4s

to the strong ones.

The {Z(1)
2 , Z

(2)
2 , Z

(1)
2 × Z

(2)
2 } structure can not only be realized through so-called non-

freely acting projections (i.e. pure twists) but also by letting one or two of these projections
to act freely. Let us indicate the structure of the “pure-twist” orbifold as (t, t, t). It is easy
to see that, by an appropriate choice of shifts to be associated to the twists, it is also possible
to realize the structures (s, t, t), (s, s, t) and (s, s, s), where s and t respectively indicate the
nature of the projection (s = all states shifted; t = pure twist) on the first, second and third
complex orbifold plane. Indeed, all these constructions belong to the string phase space,
and contribute to the overall appearance of the string realization of the scenario described

9As we will discuss, the leptons show up as singlets inside quark multiplets.
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by 1.1. The difference between these configurations is that in the (t, t, t) realization we have
a replication of the matter states into three families, in the (s, t, t) realization we have just
two families, in the (s, s, t) one family, whereas in the (s, s, s) there is no matter at all (for a
general discussion and classification of these cases, see Ref. [17]). The existence of all these
realizations of the Z2×Z2×Z2 orbifold plays a key role for the mass differentiation between
matter families.

2.1.2 Origin of four dimensional space-time

The product (2.7) represents the maximal number of independent twists the theory can
accommodate: a further twist would in fact superpose to the previous ones, and restore in
some twisted sector the projected states. Therefore, further projections are allowed, but
no further twists of coordinates. These twists allow us to distinguish between “space-time”
and “internal” coordinates. While the first ones (the non-twisted) are free to expand, the
twisted ones are “frozen”. The reason is that the graviton, and as we will see the photon,
propagate along the non-twisted coordinates, and therefore expand the universe by stretching
its horizon, allowing us to perceive these coordinates as our “space-time”. We get therefore
“a posteriori” the justification of our choice to analyze sectors and moduli from the point of
view of a compactification to four dimensions.

2.1.3 In how many dimensions does non-perturbative String Theory live?

Besides the above mentioned twists/shifts, the only way to further minimize symmetry is to
apply further shifts along the non-twisted coordinates. How many are they? From the type
II point of view, there are no further, un-twisted coordinates. But we know that they are
there, “hidden” as longitudinal coordinates eaten in the light-cone gauge and in the coupling
of the theory. Some of these coordinates appear on the heterotic/type I side as two transverse
coordinates. If we count the total number of twisted coordinates by collecting the information
coming from intersecting dual constructions, and the coordinates which are “hidden” in a
certain construction and are explicitly realized in a dual construction, we get the impression
that the underlying theory possesses 12 coordinates. For instance, on the heterotic side we
have a four-dimensional space-time plus six internal, twisted coordinates, and a coupling.
On the type II side we see eight twisted coordinates. We would therefore conclude that the
two additional twisted coordinates correspond to the coupling of the heterotic dual. On the
other hand, no supersymmetric 12-dimensional vacuum seems to exist, at least not in a flat
space: the maximal dimension with these properties is 11. This seems therefore to be the
number of dimensions in which non-perturbative string theory is natively defined. Let’s have
a better look at the properties of supersymmetry. As is known, the supersymmetry algebra
closes on the momentum operator. When applied to the vacuum, we have:

{

Q, Q̄
}

≈ 2M . (2.9)
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From a dimensional point of view, a mass can be viewed as the inverse of a length, so that
we can also write:

<
{

Q, Q̄
}

>∼= 1

R
. (2.10)

The supersymmetry algebra suggests that the mass on the right hand side of 2.9, in all
respects an order parameter for the supersymmetry breaking, could be interpreted as the
inverse of the length of a coordinate of the theory. This coordinate refers to an extra internal
dimension, or, perhaps more appropriately, to a curvature, i.e. a function collecting the con-
tribution of several coordinates, perturbative as well as non-perturbative. We can therefore
view the supersymmetric phase as the limit R → ∞ of a theory with generically broken
supersymmetry. This decompactification is only possible if the coordinate R is not twisted.
Precisely the fact that, in the breaking of N4 = 2 supersymmetry to N4 = 1, the dilaton and
the other “coupling” fields get twisted, is a signal that a non-vanishing curvature of the string
space has been generated. As we discussed in section 2.1.1, this means that, even in the case
of infinite volume, we are in a situation of non-compact orbifold. In the orbifold language,
this is implemented by the fact that, whenever the coupling field is “explicitated” by going
to a dual construction, the corresponding perturbative geometric field appears as a volume
of a two-dimensional space. This phenomenon can be observed for reduced supersymmetry
(for maximal supersymmetry, there is just the type II string construction). Consider for
instance the eleventh coordinate of M-theory, that should correspond to the dilaton of the
heterotic string. In the type II orbifold constructions (K3 orbifold compactifications), the
heterotic coupling corresponds to a two-torus volume. Considering that this two-dimensional
space corresponds, from the heterotic point of view, to “extra-coordinates”, one would say
that, in order to realize all these degrees of freedom, the full underlying theory should be (at
least) twelve-dimensional. However, this is only an artifact of the linearization implied by
the orbifold construction, and it means that the simple compactification on a circle is not
enough, we need an additional coordinate in order to parametrize a curved space in terms
of flat coordinates. From the type II dual we learn that supersymmetry is not restored by
a simple decompactification: the string space is twisted 10. Flatness of the string space is
broken by a “twist” of coordinates that fixes them to the Planck scale. As a consequence,
the supersymmetric partners of the low-energy states are boosted above the Planck scale.
In a situation of supersymmetry restoration, they should come down to the same mass as
the visible world, and space should become “flat”. However, this is only possible when the
twist is “unfrozen” and we can take a decompactification limit, such as for instance the
M-theory limit. Otherwise, at the decompactification limit the space becomes only locally
flat (non-compact orbifold). Let’s collect the informations so far obtained:

10In some type II/heterotic duality identifications, the heterotic coupling is said to correspond to un-twisted
coordinates of the type II string. This however does not change the terms of the problem: in the artifacts
of the flattening implied by the orbifold constructions, part of the curvature may be “displaced”, referred
to some or some other coordinates. This “rigid” distribution of the twists, basically dictated by the need
of recovering a description in terms of supergravity fields referring to the same space-time dimensionality
for both the dual constructions, may induce to misleadingly conclusions. The intrinsic twisted nature of the
space has to be considered by looking at the string space in its whole (for more details and discussion, see
for instance Ref. [17]).
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1. As soon as the string space is sufficiently twisted, supersymmetry is broken.

2. Equations 2.9 and 2.10 suggest in this case a non-vanishing curvature of space.

3. In the class of orbifolds, the phenomenon of curving the string space can only be
partially and indirectly seen, through the comparison of dual constructions.

4. These constructions are built on a (perturbatively) flat, supersymmetric background:
they provide therefore “linearizations” of the string space.

5. The maximal dimension of a supersymmetric theory on a flat background is 11.

All this suggests that, when supersymmetry is broken, we are in the presence of an eleven-
dimensional curved background. Any, forcedly perturbative, explicit orbifold realization re-
quires for its construction a linearization of the background. Since a 11-dimensional curved
space can be embedded in a 12-dimensional flat space, we have the impression of an under-
lying 12-dimensional theory. However, this is only an artifact; in fact, we never see all these
12 flat coordinates at once: we infer their existence only by putting together all the pieces
we can explicitly see. But this turns out to be misleading: the linearization is an artifact.

The 12 dimensional background is only fictitious, we need it only in order to describe the
theory in terms of flat coordinates. At the perturbative string level, of these coordinates we
see only a maximum of 10.

As a matter of fact, we are however in the presence of a maximum of seven “twisted”
coordinates, i.e. coordinates along which the degrees of freedom don’t propagate, and four
un-twisted ones, along which the degrees of freedom can propagate. By comparison of
dual string vacua, we can see that there is room to accommodate two more “perturbative”
Z2 shifts: through the heterotic and/or type I realization in the light-cone gauge we can
explicitly see two more transverse coordinates which are non-twisted, along which we can
accommodate two further independent shifts, plus two longitudinal ones, along which no
shift can act.

2.1.4 Shifting the space-time

Let’s count the number of degrees of freedom of the matter states. We have three families,
that for the moment are absolutely identical: each one contains 4 (massless) chiral fermions
with an “internal” multiplicity 4. The number of matter degrees of freedom is therefore the
right one in order to build up three families of massive doublets of quarks (with multiplicity
3 out of the 4 of the internal symmetry) and leptons (with multiplicity 1 out of the 4 of the
internal symmetry). The differentiated spectrum of massive quarks and leptons originates
out of this bunch of equivalent massless degrees of freedom as a consequence of being the
universe the superposition of several configurations obtained by further shifting the string
space along the non-twisted, transverse space coordinates. Shifts applied to the “internal”
coordinates reduce the number of states through mass lifts that, owing to the fact that the
coordinates are also twisted, remain for ever fixed (in this specific case, at the Planck scale).
Also the shifts acting on the space-time coordinates reduce further the symmetry group.
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However, the matter states “projected out” by these shifts are not thrown out from the
spectrum of the low energy theory: they acquire a mass difference inversely related to the
scale of space-time.

Let us consider the possible actions of the two further shifts. The resulting physical
configuration will be given by the superposition of all of them, with a “weight” that we
will determine in detail in sections 4 and 5. First of all, we notice that with one shift we
can make all the three matter sectors, namely what remains of the twisted Z

(1)
2 , Z

(2)
2 and

Z
(1)
2 ×Z(2)

2 , freely acting (for instance by pairing Z
(1)
2 to a shift on the first space coordinate,

Z
(2)
2 with a shift on the second one, so that Z

(1)
2 × Z

(2)
2 is associated with a shift along both

of them). This can be indirectly observed in the type II realization of the orbifold, where
one can explicitly observe the Cartan subgroup of the gauge group. From its rank, one sees
how many matter states, which transform in the fundamental representation of the group,
do survive. This is particularly easy to observe in the N(4) = 2 orbifold constructions of
the orbifold. An explicit realization of the further step, N = 0, is given in Appendix B,
where the supersymmetry breaking is made explicit by trading the space coordinates for
the non-perturbative plane of the coupling. The full breaking of supersymmetry and the
reduction of states through shifts along the space coordinates cannot therefore be explicitly
observed in the same dual construction. In order to follow the process of reduction/shifting
of states, one can imagine to apply first the shifts along the space coordinates, and then
reduce supersymmetry to N = 0. The result of this operation is that we make all the
matter states massive. This also means that each fourth-plet of massless chiral fermions is
turned into a doublet of massive states. There are no gauge bosons of the weakly coupled
sector at all: all of them have been shifted (remember however that each one of these sectors
remains charged under an internal 4, which is at the strong coupling). On the type II
string realization gauge charges are always invisible, but from the way matter states and
corresponding gauge bosons are realized on the heterotic constructions we learn that they
originate from dual sectors: if the matter states are lifted by a shift on the momenta of the
lattice of the untwisted coordinates, the corresponding gauge bosons are lifted in a T-dual
way. A sub-Planckian mass for the matter states is associated to an over-Planckian mass
of the corresponding lifted gauge bosons. In this case, the lattice under consideration is the
one of the momenta (and windings) of the transverse space coordinates, that we consider
compactified.

After this shift operation, there is room for a second, independent shift, of the “rank
reducing” type like those considered in the section 2.1.1. In this way, half of the states of
a twisted sector, i.e. precisely one massive fermion, already lifted to a non-vanishing mass
by the first shift, gets further lifted. Depending on whether we associate this second shift
to one or two Z2 twist operations, we can either i) further lift half the states of one twisted
sector, lift done half the states of a second twisted sector, leave unchanged the states of a
second one while in the third one the shifts superpose and rearrange leaving the spectrum
unchanged, or ii) leave unchanged the states of two twisted sectors and lift down half of the
states of the third sector. Owing to the presence of sectors in which all four chiral fermions
are shifted in the same way, there are configurations in which survive also the gauge bosons
of a SU(2) symmetry which rotates chiral fermions. Another way to apply the two shifts is
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to avoid a full freely-acting operation in the first shift, letting each one of the two shifts to
act independently as “rank reducing” by lifting just half of the states. Also in this case, the
product of the two operations acts differently on the three orbifold twisted sectors, because on
the product of the two independent orbifold twists the shifts superpose and neutralize their
effect against each other. Interesting is however that the first shift produces configurations
in which of the four massless chiral fermions of a twisted sector one obtains one massive
(non-chiral) state and two chiral massless transforming under an SU(2) symmetry. The
second shift operation breaks then also this symmetry. On the other hand, the two massless
chiral fermions appearing in some configuration can also be arranged in order to be seen as
the left and right moving part of just one state, that eventually, owing to the superposition
with the other configurations, is going to acquire a mass. In this way, we have configurations
in which there is one U(1) boson which couples non-chirally.

All in all, when all these configurations are superposed, we have only doublets of massive
states, which transform under a “softly broken” chiral SU(2) symmetry. By this we mean
that each of the massless fourth-plets of the former twisted sectors are reduced to pairs of
massive fermions, which do not really possess an SU(2) symmetry, because they are slightly
differentiated in mass. Nevertheless, a chiral part, that by convention we may choose to
be the left-moving part, of each massive state, in some configurations transforms under an
SU(2) symmetry, which is broken by the superposition of configurations leading to a mass
differentiation of the states, while there is a certain amount of non-chiral coupling to U(1).
This is the mechanism of soft breaking of the SU(2) weak symmetry in our scenario.

2.1.5 The photon and the SU(3) of QCD

The Z
(1)
2 ×Z(2)

2 ×Z(3)
2 orbifold is symmetric under the exchange of each projection with each

other. As a consequence, the superposition of configurations which breaks the symmetry in
the weak sectors analogously breaks also the strong sector: also the internal 4 of each bi-
charged fourth-plet gets broken, this time however forcedly into singlets, 11⊕12, with a slight
mass differentiation between the states trasforming under the 11 and those transforming
under 12. Since the gauge sector is at the strong coupling, the interpretation we must give
to this breaking is that the initial 4, corresponding to U(4), has been broken into 1 ⊕ 3,
i.e. the gauge group to U(1) × (U(1)× SU(3)), the 11 being a trivial singlet of SU(3)
corresponding to a state charged only under U(1), the 12 being instead a singlet of SU(3)
made out of three charged states. In practice, each fourth-plet of states charged under a
chiral SU(2) breaks into a singlet and a triplet of SU(3). Furthermore, all these states are
charged under U(1), that, having already taken out a phase from the gauge group of the
weak sector, we attribute to the strong sector. Each fourth-plet gives therefore rise to what
we may identify as one lepton and three quarks. Coming from the breaking of an SU(4)
symmetry, the U(1) factor is traceless. This means that it acts by transforming with opposite
phase states charged under SU(3) and uncharged ones:

U(1)ϕ = eiβ ϕ ,

(2.11)

U(1)ϕa = e−iβ/3 ϕa , a ∈ 3 of SU(3) .
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Here ϕ indicates a full chiral fourth-plet of the weak sector. These states, as we have just
seen, arrange into massive doublets of a broken weakly coupled SU(2), that we identify with
the symmetry group of the weak interactions. The condition on the trace of U(1) holds for
SU(2) doublets, but tells nothing about the charge assignments among the states of each
SU(2) pair. This indication comes from a further condition, namely the fact that the strength
of the U(1) interaction is in this context by definition related to the weight this interaction
has in the phase space of all the configurations. Since quarks occur three times more than
leptons (remember that each fourth-plet, or equivalently each SU(2) doublet pair, bears an
internal multiplicity 4 = 1leptons + 3quarks), we obtain the following condition on the charge
Q:

∑

quarks

|Q(U(1))| = 3
∑

leptons

|Q(U(1))| . (2.12)

Besides this, we have also the condition 2.11 on the trace that in terms of the charge can be
written as:

∑

leptons

Q(U(1)) = −
∑

quarks

Q(U(1)) . (2.13)

The fact that these conditions hold separately for each of the three matter families implies
that in each family there must be one state with Q(U(1)) = 0. This must necessarily be
identified with the lightest particle of each family. If we call the leptons of the fourth-plet
in the usual way neutrino and electron, and the quarks down and up quak, and set by
convention Qe = −1, from 2.11, 2.12 and 2.13 we derive the charge assignments Qν = 0,
Qu = 2/3, Qd = −1/3. The U(1) gauge group has all the characteristics of U(1)γ , the group
of electromagnetism. The corresponding vector field is the photon, and the neutrino, being
the less interacting particle, must be identified with the lightest of the fourth-plet.

The spectrum does not contain the degrees of freedom of a possible Higgs boson. On
the other hand, here there is no need of such a field, because masses are generated with a
pure stringy mechanism, and are basically related to the compactness of the whole space.
As remarked in [44], the Higgs boson of ordinary field theory can in some way be thought as
the parametrization of a boundary term through a field propagating in the bulk of space 11

(in section 7.1 we will comment about the 125 GeV resonance detected at LHC ([45]), and
usually seen as a signal of the Higgs boson).

11It is legitimate to ask what is the mass scale of the gauge bosons of the “missing” SU(2), the would-be
SU(2)R of the original weak fourth-plet, 4 = 2SU(2)L + 2SU(2)R . Namely, asking whether there is a scale at
which we should expect to observe an enhancement of symmetry. The answer is: there is no such a scale.
The reason is that the scale of these bosons is simply T-dual, with respect to the Planck scale, to that of
the masses of particles. Let’s consider this shift as seen from the heterotic side. On the heterotic vacuum,
matter states originate from the twisted sector, while the gauge bosons (the visible gauge group, the one
involved in this operation) originate from the currents, in the untwisted sector of the theory. Similarly, on
the type I side, gauge bosons and the charged states we are considering originate from D-branes sectors
derived respectively from the untwisted, and the twisted orbifold sectors of the starting type II theory 12.
It is therefore clear that a shift on the string lattice lifts the masses of gauge bosons and those of matter
states in a T-dual way. Since the scale of particle masses is below the Planck scale, the mass of these bosons
is above the Planck scale; at such a scale, we are not anymore allowed to speak of “gauge bosons” or, in
general, fields, in the way we normally intend them.

21



2.2 The order of the symmetry breaking

What we have analyzed are the various configurations of the maximal Z2 orbifold one may
construct, namely a product of Z

(1)
2 × Z

(2)
2 ×Z

(3)
2 twists, which may act as pure twists or as

partially or totally freely-acting. The difference between the various configurations depend
on the different ways the shifts can be taken. The result is a set of configurations with
almost the same weight in the phase space, because obtained with the same amount of
projections. As a consequence, their superposition produces a spectrum in which the states
are distinguished by mass differences of the order of the inverse of the length of space, or
equivalently the age of the universe. Being obtained in a logarithmic representation (see
Ref. [2]), once pulled back to the physical representation the masses are expected to be of
the type:

mi ≈ 1

T pi
, (2.14)

for a series of exponents 0 < pi < 1. String configurations with a lower amount of projections,
such as for instance those with a spectrum of full massless fourth-plets, or with a lower
number of matter families, etc..., do not contribute to what we call the spectrum of the
theory, i.e. the number and type of fundamental particles and fields, but to what we identified
as the bunch of “quantum corrections”. The reason is that one Z2 projection less means a
factor 1/2 in the weight of a string configuration in the logarithmic space, i.e. a square-root
factor of the weight of the configuration in the true phase space of 1.1. As discussed in [1],
the configurations of highest entropy have a weight that goes like eN

2 ∼ eT
2
. A square root

factor means a suppression of order e−N ∼ e−T .

2.2.1 Breaking the symmetry between the three matter families

In the (t, t, t) realization of the orbifold all the three matter families acquire an identical
mass. The same is true also for the (s, t, t) and (s, s, t) realization, with the only difference
that the number of matter families is two and one respectively: in all these realizations the
shift along the space coordinates produces the same mass spectrum, replicated along the
families. However, in the string phase space the configuration with one matter family is
realized three times more frequently than the one with three families, and the configuration
with two families two times more frequently. If we call first family the one which is present
in all the three realizations, second family the one which is present in two of them, and thrid
family the one which is present in all the three, this means that the third family weights
three times more, and the second family two times more, than the first one. Namely, on the
string realization, that we recall is a logarithmic realization of the physical configuration,
the volumes occupied in the phase space stay in ratio 1:2:3. Since the symmetry group
corresponding to the rotation of families is only a part of the whole symmetry group of the
configurations, this does not imply that, once pulled back to the physical (= exponential)

representation masses stay in relation m(3) = m
3/2
(2) = m3

(1), but that if the ratio m(2)/m(1)

is a certain (possibly time-dependent) factor X2/1, then the ratio m(3)/m1 is given by X2
2/1,

i.e., the masses of the third and second family have the same logarithmic distance than the
masses of the second and first one. Notice that shifts along the space coordinates break
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the Lorentz symmetry. Therefore, the superposition of differently shifted configurations, in
particular of those of highest entropy, not only implies the breaking of parities, but also the
breaking of the symmetry of space under rotations. This occurs at the same time as masses
are produced: the amount of breaking of space rotations produced is of the same order of
the particle masses.

2.3 The fate of the magnetic monopoles

Under the conditions of the scenario we are discussing, namely of a universe “enclosed”
within a finite, compact space, also the issue of the existence of magnetic monopoles changes
dramatically. Magnetic monopoles can be of two kinds: the “classical” ones, namely those
associated to a non-vanishing “bulk” magnetic charge that parallels the electric charge in
a symmetric version of the Maxwell’s equations, and the topological ones. In our scenario
there are neither classical nor topological monopoles. The existence of classical monopoles
would be possible only in the absence of an electro-magnetic vector potential, what we have
called the “photon” Aµ; their existence has therefore been ruled out as soon as we have
discussed the existence and the masslessness of this field. The first idea about the existence
of magnetic monopoles in the classical sense (i.e. non-topological) originated by a request of
symmetry: were not for the absence of magnetic charges, the Maxwell equations would be
completely symmetric in the electric and magnetic field. However, the symmetry of these
equations, preserved in empty space, is precisely spoiled by the presence of matter states
that are also electrically charged. In our scenario, the description of the universe is “on-
shell” and the presence of matter comes out as “built-in”: it cannot be disentangled from
the existence of space itself. In this scenario there are no topological monopoles either.
As all vector fields are twisted (i.e. massive at the Planck scale or above it) with the
only exception of the photon Aµ, propagating in the four-dimensional space time, and as
this space-time dimensionality is electro-magnetically self-dual, the only possible topological
monopoles would be those of the four-dimensional space coupled to the same photon field
Aµ, namely, configurations à la t’Hooft and Polyakov or similar 13. However, any such
topological configuration is characterised by its being living in an infinitely-extended space:
only in this way it is in fact possible to make compatible the existence of a p-form working
as a “potential” A(p), defined as an analytic function in every point of the space, with the
presence of a non-trivial magnetic flux. As is well known, the magnetic flux through a
surface can be computed as a loop integral of the vector potential. In the case of a surface
enclosing a finite volume, the total flux is the sum of the loop integral circulated in both
the opposite directions, so that it always trivially vanishes. However, things are different if
the field has a non-trivial behaviour at infinity. At infinity we need just the circulation in
one sense, because there is no “outside” from which field lines can “re-enter” in the space:
if there is a non-vanishing circulation, there is a non-vanishing magnetic flux, and therefore
also a non-vanishing magnetic charge. This however also means that, provided it exists,
such a magnetic monopole is a highly non-localised object, with a magnetic field/vector
potential such that the magnetic flux vanishes through any compact finite closed surface

13for a review and references, see for instance [46, 47].
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14. As a consequence, also the magnetic charge density vanishes point-wise at any place in
the “bulk”. Therefore, in our setup, where space is compact, these monopoles cannot exist.
Moreover, in our case we don’t have a Higgs mechanism either, and, since the surface at
infinity does not belong to any configuration of space-time, there is no smooth limit with a
true restoration of the conditions at infinity allowing the existence of non-trivial topologies
and homotopy groups. Light states with topological magnetic charges do not exist at all,
not even approximately as the time becomes very large 15.

14Notice that the situation around the zero-dimensional point is equivalent to the one around the surface
at infinity: if on one side the Dirac string can be considered as somehow the “dual” picture of the surface at
infinity of the t’Hooft and Polyakov construction, in our scenario both infinity and the dimensionless point
are excluded. Differential geometry and gauge theory are here only approximations.

15The situation is similar to the case of the volume of the group of translations and its identification with
the regularized volume of space in the usual normalization of operators and amplitudes, completely absent
in our scenario, something that leads to a different interpretation of string amplitudes as global quantities
instead of densities, cfr. Ref [44].
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3 The geometry of the universe

As discussed in [2], the absence in our theoretical framework of symmetry under space-
time translations implies a different normalization of string amplitudes, which must be now
normalized in such a way that densities scale like the inverse of the Jacobian of the trans-
formation between string world-sheet and target space coordinates. An amplitude which
in the light-cone gauge is of order one, like the vacuum energy in the non-supersymmetric
orbifolds considered in the previous section, in which supersymmetry is broken at the unit
scale (identified with the Planck scale), gives therefore an energy density which scales as:

ρ(E) ∼ 1

T 2
. (3.1)

In order to get the value of a global quantity, like the entropy, we must instead multiply the
string amplitude by the Jacobian factor, obtaining the scaling:

S ∝ T 2 . (3.2)

The total energy at a certain time T of the history of the universe, given by the integral of
the energy density over the space volume of the universe at time T , scales then as:

E(T ) ∼
∫

T

d3
1

T 2
≈ T . (3.3)

In the string representation we recover therefore the values we computed in the ground
description of this scenario.

3.1 The solution of the FRW equations

The density 3.1 collects both the pure geometric, i.e. cosmological, and the matter/radiation
contribution to the energy density. These terms are separately of the same order. The reason
is that the set of most entropic string vacua inherits what remains of the symmetry under
exchange of three sectors of the theory at the N4 = 2 level, the S − T − U symmetry of
the orbifold construction, which can be seen to exchange the roles of gravity, matter and
radiation by exchanging the sectors giving rise to the corresponding fields. In the further
steps of symmetry breaking this symmetry is broken by terms of order O(1/T p) in the string
partition function. The energy densities get therefore distinguished by higher order terms:
ρ ∼ 1

T 2 −→ 1
T 2 (1 +O(1/T p)).

Let us now investigate the geometry of the expansion of the universe. As the universe
evolves, the energy density and the curvature of space-time decrease toward a flat limit,
and the dominant configuration tends to a “classical” description. At large T it is therefore
reasonable to suppose that this configuration admits a description in terms of Robertson-
Walker metric, i.e. a classical metric of the type:

ds2 = dt2 − R2(t)

[

dr2

1− kr2
+ r2( dθ2 + sin2 θ dφ2)

]

, (3.4)
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where for us t ≡ T , and r ≤ 1. The metric should correspond to a closed universe,
k = 1. Under the assumption of perfect fluid for the energy-momentum tensor, the Einstein’s
equations lead to:

(

Ṙ

R

)2

= − k

R2
+

{

8πGN ρ

3
+

Λ

3

}

, (3.5)

where we have collected within brackets the contribution of the stress-energy tensor and of
the cosmological term. Inserting the “Ansatz” R = T we obtain:

(

Ṙ

R

)2

= − (k = 1)

R2
+

{∼ 2

R2

}

∼ 1

R2
, (3.6)

that we can write as:
(

Ṙ

R

)2

=
κ2

R2
, (3.7)

for some coefficient κ. The equation is solved by R = κ t, consistently with our Ansatz.
This confirms that the dominant configuration corresponds to a spherical Robertson-Walker
metric, describing a universe bounded by a horizon expanding at a fixed ratio to the speed
of light.

The comparison of our results with astronomical data contains however a possible weak
point. Experimental data are given as a result of a process of interpretation of certain
measurements, for instance through a series of interpolations of parameters. All this is
consistently done within a well defined theoretical framework. Usually, one takes a “conser-
vative” attitude and lets the interpolations run in a class of models. However, this is always
done within a finite class of models. In principle, we are not allowed to compare theoretical
predictions with numbers obtained through the elaboration of measurements in a different
theoretical framework: in general, this doesn’t make any sense. However, in the present
case this comparison is not meaningless, and this not on the base of theoretical grounds:
the reason is that, for what concerns the time dependence of cosmic parameters and energy
densities, the solution we are proposing does not behave, at present time, much differently
from the “classical” cosmological models usually considered in the theoretical extrapolations
from the experimental measurements. The rate of variation of energy density is in fact:
ρ̇ ∼ ∂(1/R2)/∂T = 1/T 3 = 1/R3. The values of the three kinds of densities can therefore
be approximated by a constant within a wide range of time. For instance, as long as the
accuracy of measurements does not go beyond the order of magnitude, these densities can be
assumed to be constant within a range of several billions of years. For the purpose of testing
the statements and conclusions of the present analysis, the use of the known experimental
data about the cosmological constant, derived within the framework of a Robertson-Walker
universe with constant densities, is therefore justified.

A universe evolving according to eq. 3.6 is not accelerated: Ṙ = 1 and R̈ = 0. Owing
to the existence of an effective Robertson-Walker description, the red-shift can be computed
as usual. We have:

1 + z =
ν1
ν2

=
R2

R1

=
T2

T1

, (3.8)
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where ν1 is the frequency of the emitted light, ν2 the frequency which is observed, and R1,
R2 are respectively the scale factor for the emitter and the observer. R = T is precisely
the statement that the expansion is not accelerated. Expression 3.8 however accounts for
just the “bare” red-shift, namely the part due to the expansion of the universe: it does
not account for the corrections coming from the time dependence of masses, that we will
discuss in section 4.3.7. Usually, this effect is not taken into account, because in the standard
scenarios masses are assumed to be constant. In our scenario they depend instead on the age
of the universe. A change in the values of masses reflects in a change of the atomic energy
levels, and therefore in a change of the emitted frequencies. We will see that, once the
observed frequencies in expression 3.8 are corrected to include also the change in the scale of
energies, the scaling of the emitted to observed frequency ratio is not anymore proportional
to the ratio of the corresponding ages of the universe. Since the conclusions about the
rate of expansion are precisely derived by comparing red-shift data of objects located at a
certain space-time distance from each other, this explains why the expansion appears to be
accelerated.
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Figure 1: The more and stronger are the interactions of the particle p, the higher its entropy.

4 Masses and couplings

4.1 The mass of a particle

We consider now the masses of the elementary particles. In our approach, a particle is
a certain localized amount of energy that rests or moves in space (indeed, the difference
between a massive particle and a massless one relies precisely in the fact that the massive
particle can stay at rest, whereas the massless one can not). When this scenario is translated
into the string representation, masses arise as ground momenta associated to the states
of the string spectrum. Since through 1.2 the string scenario is a representation of the
combinatorial one, even in the string space a mass is related to the weight of a certain state
in the phase space. In the ordinary perturbative approach to field theory (no matter whether
it is string-inspired, string-derived, or not) masses, after they have been introduced via some
mechanism (Higgs mechanism), are attributes which in general receive corrections at various
perturbative orders. The corrections appear as the sum of a series of insertions in the free
propagator:

����
����
����
����

����
����
����
����

m0

+...++
m

=

(4.1)

Mass and volume in the phase space are related by the fact that the more are the decay
channels of a particle, the larger is its entropy, and also the correction to the mass, because
higher is the number of virtual lines (Feynman diagrams) contributing to the mass renormal-
ization (all this is illustrated in figure 1 of page 28). Heavier particles possess a huger decay
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phase space: quarks are heavier than leptons, and among leptons neutrinos are the lightest
particles. Inside each family of particles, the heavier (for instance the top as compared to the
bottom of an SU(2) doublet) has the larger absolute value of the electroweak charge. In each
family, the lightest particle is the one which has less interactions, or less charge (and therefore
a lower interaction probability). For instance, |Qν | < |Qe|, |Qb = −1/3| < |Qt = +2/3|,
and quarks, that feel also the SU(3) interactions, are heavier than leptons 16. Along this
line, we can view the lightest particle as the end-point of a chain of projections that reduce
the symmetries of the internal space. Heavier particles are therefore those which “occupy”
a larger space; they correspond to a larger internal symmetry than lighter particles. Lighter
particles correspond to sub-volumes, sub-spaces of those of the heavier particles: the phase
space of lighter particles is contained in the phase space of heavier ones. To figure out this
point, think for instance at the case of a heavy particle that decays into lighter ones: the
physics of these latter is “contained”, in the sense that it is produced, derived, by the physics
of the heavier one. In terms of combinatorials of distribution of energies, this simply means
that the ways of distributing an amount of energy E along space contain the ways we can
distribute an amount E ′ < E.

4.2 The couplings

In this scenario, also couplings are related to weights in the phase space; ratios of masses
and couplings are related. The ratios of masses correspond to ratios of symmetries, i.e. to
cosets. When we pass from a particle to another, lighter one, we reduce the symmetry of
the subset of the configuration of the universe (i.e. the subgroup of the whole symmetry
group representing the configuration of the universe) which represents the particle under
consideration. We say we break a certain group to a subgroup. The inverse of the volume of
the coset is what we call “coupling”. Indeed, in the case we start from a particle and follow a
decay process leading to some products (particles and fields with a certain energy), the ratio
of the volume of the initial particle to the volume of its decay products gives the coupling of
the interaction. Interactions are therefore in a natural way related to groups and symmetries.
We will see that this point of view includes both the symmetries which, in the representation
in terms of fields living on the continuum, correspond to ordinary gauge symmetries, and
the symmetries that in such a representation are going to be “hardly broken”, i.e. appear as
rigid symmetries. This second type does not give rise to interactions propagating through
gauge bosons, but describes for instance the leading contribution to “transitions” such as the
passage from a family of quarks or leptons to another one. In this interpretation, they are
viewed as an appropriate type of rotations in the phase space. In both cases, these processes,
and their relative couplings, follow the rules of composite probabilities typical of the weights
in the phase space. A composite transition/decay process: A → B → C, corresponds to a
rotation with an element of the group G(AC), given by a product G(AC) = G(AB) ×G(BC).
This transition corresponds therefore to: 1) first a rotation with an element of the group
G(AB) and then: 2) a rotation with an element ofG(BC). Therefore, we expect the probability

16The first quark family makes an apparent exception: the down quark is heavier, although less charged,
than the up quark. This issue will be discussed in detail in section 5.2.

29



of the decay A→ C to be the product of the decay probability of A→ B and of B → C:

P (A→ C) = P (A→ B)× P (B → C) . (4.2)

The effective coupling determines the probability amplitude:

P (A→ B) ∼ α(AB) , (4.3)

where, as usual, α(AB) ≡ g2(AB)/4π. The effective coupling for the transition from A to C is
given by the product of the effective couplings of the single steps:

α(AC) ∝ α(AB) × α(BC) . (4.4)

The square coupling of the group G = G1 ⊗G2 ⊗ . . .⊗Gn is therefore:

αG = αG1
× αG2

× · · · × αGn
. (4.5)

In the usual renormalization group approach one works in the algebra G of the group G. If
G = G1 ⊗ G2 ⊗ . . . ⊗ Gn, the algebra decomposes as G = G1 ⊕ G2 ⊕ . . . ⊕ Gn, and the
inverse of the effective coupling seems to renormalize additively. For instance, the one-loop
beta-function of SU(N) with gauge bosons in the adjoint and (massless) matter states in the
fundamental representation is one half of the beta-function of SU(2N) with an analogous
content of matter and gauge states. From the point of view of our approach, what seems to
behave additively is just the logarithmic derivative of the inverse of the coupling.

4.3 Entropy and mass

We will now see in detail how the ratios of masses are in relation to the ratios of the volumes
of these groups, in turn related to the ratios of the strengths of the corresponding couplings.
According to our previous discussion, the strength α(G) is by definition proportional to the
volume of the group, ||G|| (not to be confused with the volume of the Lie algebra ||g||), and
we can write:

α(Gi)

α(Gj)
=

||Gi||
||Gj||

. (4.6)

On the other hand, also masses are related to volumes of symmetries, so that we can write
a similar expression:

mk

mℓ
=

||Gk||
||Gℓ||

. (4.7)

By comparison of these two expressions we obtain:

mk

mℓ
=

α(Gk)

α(Gℓ)
, (4.8)

This expression can also be written as:

mi

mj

= α(Gij) = ||Gij|| , (4.9)
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where Gij is a coset. In the logarithmic picture the couplings read:

1

αi

∣

∣

∣

∣

log

=
1

α0
+ βi lnµ . (4.10)

Ratios become differences, and we can write:

αi
αj

→ 1

αi

∣

∣

∣

∣

log

− 1

αj

∣

∣

∣

∣

log

= (βi − βj) lnµ , (4.11)

where βi, βj are the volumes of the symmetry groups Gi, Gj in the logarithmic represen-
tation. In a context of group of renormalization, we would call them the beta-function
coefficients of the symmetry groups. Since all masses and couplings unify at the Planck
scale, in expression 4.11 we have considered the additive bare value α0 to be the same for
all of them. This holds if we identify µ with T , the age of the universe. Pulled back to the
exponential picture the ratios of masses become then:

mi

mj

= α(Gij) = T βi−βj . (4.12)

In order to obtain the masses, we must therefore obtain the “beta-functions” βi, βj . Accord-
ing to our discussion, we cannot compute them using the rules of ordinary field theory: here
we are interested in the full, non-perturbative beta functions. We can proceed as follows:
we can determine the ratios of these beta-functions if we know the ratios of the phase-space
volumes. For instance, if a projection reduces by one half the phase space, the beta-function
will be one half of the initial one. On the other hand, the phase space volumes can be
determined if we know the spectrum of interactions of the various particles (i.e., the pattern
of figure 1), but the important point is that, in this framework, this in principle is equivalent
to knowing the chain of projections, ≡ symmetry reductions, giving origin to the sector a
certain massive state belongs to.

Once obtained the ratios of beta-functions, in order to get all their values we must fix
one of them. To this purpose, we must consider that the mass of the state with maximal,
unbroken symmetry does not change with time, it is a constant. Maximal symmetry, and
therefore also supersymmetry, implies in fact that masses either vanish (as also the cosmo-
logical constant does), or they do not renormalize out of the initial value at the Planck scale:
among the preserved symmetries, there is in fact also time reversal, so that masses do not
run. In this case, we have:

mmax. symm. =
1

2
T βmax−

1
2 = Constant , (4.13)

where we have considered to build the mass of the states over the minimal momentum in this
space, the square-root scale, and we have set the normalization of the mass as a function
of the inverse of a proper time to be 1/2, as according to the Heisenberg’s Uncertainty
Principle. The condition 4.13 implies βmax = 1

2
. The normalization coefficient 1/2 implies

that at Planck time (T = 1) any mass is 1/2, which corresponds to the mass of a black hole,
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given by the relation: 2M = R with the identification R = T = 1. This means that the
normalization consistent with the Uncertainty Principle is consistent with the only possible
mass value at Planck time: when the universe is of Planck size, there can only be a “particle”
large as much as the universe itself, and the mass must be the one of a black hole extended
as much as the universe. From 4.12 we see that the overall normalization is the same for all
the states. Being established through a consistency argument running back to the Planck
size/time, it must be the normalization of SU(3)-, SU(2)w.i.- and U(1)e.m.-singlets. We
conclude therefore that all these masses are expressed as:

m =
1

2
T β− 1

2 , β ∈ {0, 1
2
} . (4.14)

What we expect to be able to normalize in this way is not the single electron’s and neutrino
mass, but the SU(2)w.i.-neutral combination (e, νe). Furthermore, what we should be able
to normalize is not the pure electron’s mass but that of the electrically neutral “compound”
(e, ē). In the first case, we can say that m(e,νe) ∼ me + mνe ∼ me. In the second case,
however, similarly to what happens with SU(3) and the quarks, we expect m(e,ē) ∼ 2me. Of
course, analogous considerations apply to all families, and to quarks as well, because they
are all charged also under SU(2)w.i. and U(1)e.m.. If the mass of the lighter member of a
SU(2) doublet can in general be neglected, being much lighter than the upper one (this is
true at least for leptons), the factor 2 due to the fact that we are calculating the mass of a
particle-antiparticle pair must absolutely be taken into account.

4.3.1 Elementary masses

Our approach to the computation of masses starts with a first degree of approximation,
consisting of a “rough” determination of the volume of the phase space of each elementary
particle, as seen “at the Planck scale”. This allows us to map to a logarithmic picture, where
all couplings are perturbative, because they are of order one in the original picture. Further
corrections of the weak coupling scale are to be expected at the present age of the universe.
This leads us out of the domain of a logarithmic picture; the problem can in principle be
treated as an ordinary perturbative correction, whose complete evaluation must take into
account the details of every decay channel. In any case, these corrections should be of second
order, with a relative magnitude proportional to the inverse ratio of the phase volume of
the particle under consideration and the one of its decay products. Namely, we expect
m = m0 + δm, where δm

m
∼ O [mfinal/minitial(≡ m)] We will consider these corrections in

sections 5.3–5.6.

As discussed in section 2.2.1, the phase space is divided by the particle’s families into
three parts, with volumes staying in ratios given by 3:2:1. Namely, in passing from one family
to the other one, the phase space volume V undergoes a contraction V → V 2

3 → V 1
3 . In order

to derive the single mass steps resulting from the superposition of configurations, we start
from the lightest particle, which must necessarily belong to the lightest family, namely the
one with the smallest volume in the phase space. A short inspection of the combinatorial
of the various shift actions tells us that, owing to the superposition of configurations, its
mass does not simply correspond to the square root of the length of space. This is the
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ground momentum in the space of fermions, but it would be the mass of the lightest particle
only if this particle were charged under an unbroken SU(2) symmetry: in this construction
this would in fact mean that no further shift superposes to the fundamental one neither
lifting the left, nor the right moving part of the particle. Indeed, the mass of this particle
turns out to be just one “step” above the ground configuration. We may consider it an
“elementary SU(2) step”. The mass of the lightest particle is separated from the ground
momentum by a factor corresponding to the volume (the strength, or coupling) of the SU(2)
symmetry, αSU(2). The lightest particle of the second family is another such a step above
the first one, and the lightest particle of the third family is a further SU(2) step above.
The reason is that the volumes of these families are by construction differentiated by the
presence in their configuration of one more Z2 shift with respect to each other, while keeping
fixed all other orbifold actions. The distance between up and down of an SU(2)w.i. lepton
pair, such as for instance electron and corresponding neutrino, is on the other hand larger
than the distance between these particles and their “replicas” of the other families, because
SU(2)w.i. pairs are related by a symmetry broken by a shift along the space coordinates,
whereas the distance between analogous particles belonging to different families is given by
the superposition with different weight of configurations with the same structure of space
shift, simply obtained through a different action of the same amount of orbifold projections.
The steps of the mass hierarchy increase therefore first through families, and then inside each
family. Since the lighest particle of each family must be identified with the less interacting
one, these considerations lead to the following neutrino mass relations:

mνe = α−1
SU(2) ×

1

2
T −1/2 , (4.15)

where T −1/2/2 is the square-root energy scale corresponding to the basic shift, the scale
which, in the language of 4.13, corresponds to β = 0. The masses of νµ and ντ are the
obtained through the ratios:

mντ

mνµ

∼ mνµ

mνe

∼ x ,
mντ

mνe

∼ x2 , x = α−1
SU(2) . (4.16)

The next step is a further elementary SU2) factor switch from the heaviest neutrino to the
lightest charged lepton, the electron. Similar steps separate then the charged leptons of the
three families, leading to a family-to-family sequence analogous to those between neutrinos:

me

mντ

∼ α−1
SU(2) ; (4.17)

mµ

mντ

∼ α−2
SU(2) ; (4.18)

mτ

mντ

∼ α−3
SU(2) . (4.19)

The mass relations of quarks in principle obey the same rule. However, quarks occur in
strongly paired triplets. The relation of combinatorial factors determining the weight of
their occurrence in the staple of string configurations is therefore not simply 1 : 2 : 3 as in
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the case of single states, but, in the logarithmic representation, 3 × (1 : 2 : 3), or, in the
exponential, physical space, 3 : 32 : 33. With respect to the leptons, their weights must
on the other hand be normalized by the fact of being these triplets at the strong coupling,
and therefore behaving, from the point of view of the absolute weight in the phase space, as
singlets (remember the breaking of the 4 into 11 ⊕ 12, see section 2.1.5): in the logarithmic
representation we have therefore a normalization factor 1/3, corresponding to a 3

√
in the

physical space. This means that the “volume” of a quark triplet as compared to the one of
the lepton family, V(qup, qdown, ℓ), in the heaviest family appears to the first power, whereas
those of the other two families appear rescaled as:

V(c, s, µ) ∼ [V(t, b, τ)] 23 ; V(u, d, e) ∼ [V(t, b, τ)] 13 , (4.20)

In order to derive the mass ratios it is therefore convenient to start with the heaviest family.
For similar reasons we expect that, differently from what happens for the leptons, in the
case of quarks the αSU(2) factor between the top and bottom quark separates not the masses
of the single quarks, but SU(3) triplets, i.e. singlets of the confining symmetry. We expect
therefore a factor 1/3 correcting the mass ratio between the top and bottom quark. The
top-to-bottom mass ratio should therefore be:

mt

mb

∼ 1

3
α−1
SU(2) . (4.21)

The mass separation between quarks and leptons is the consequence of the breaking of the
4 of each family into 3⊕1. This separates the phase space in two parts of unequal volumes.
In first approximation, this separation corresponds to disentangling “one half” as compared
to the usual SU(2) steps, and therefore we expect the “up” of the 1 part to lie a

√
αSU(2)

factor below the “down” of the 3 part. We expect the separation factor between bottom
quark and τ lepton to be:

mb

mτ
≈ 1

3

1
√
αSU(2)

. (4.22)

Again a 1/3 factor is needed in order to account for the passage from SU(3) singlets to free
quarks. Altogether, the top-tau mass ratio is:

mt

mτ

=
mt

mb

× mb

mτ

∼ 1

3
α−1
SU(2) × 1

3

1
√
αSU(2)

. (4.23)

According to 4.20, the analogous separation for the first family should read:

mu

me
∼ 1

9

(

9
mt

mτ

)
1
3

, (4.24)

where we have first removed the 1
3
× 1

3
factor from the mt/mτ ratio, and then reintroduced

it after having taken the third root. This was required by the fact that these normalization
factors, accounting for the passage from free quarks to SU(3) singlets, don’t enter in the
contraction of phase sub-spaces. Putting all the informations together, we conclude that

34



the phase-space sub-volume of the charged particles of the first family, V(u, d, e), should be
given by:

V(u, d, e) = 9
mu

mντ

∼ α
−1/3
SU(2)

(√
αSU(2)

)−1/3 × α−1
SU(2) . (4.25)

The second power of this volume gives finally V(c, s, µ). To summarize, the mass ratios are:

mµ

mντ

∼ α−2
SU(2) ; (4.26)

ms

mντ

∼ 1

3

(√
αSU(2)

)−2/3
α−2
SU(2) ; (4.27)

mc

mντ

∼ 1

9
α
−2/3
SU(2)

(√
αSU(2)

)−2/3
α−2
SU(2) ; (4.28)

mτ

mντ

∼ α−3
SU(2) ; (4.29)

mb

mντ

∼ 1

3

(√
αSU(2)

)−1
α−3
SU(2) ; (4.30)

mt

mντ

∼ 1

9
α−1
SU(2)

(√
αSU(2)

)−1
α−3
SU(2) . (4.31)

These relations are completed by:

mντ ∼ 1

2
T − 1

2

(string) ×
[

α−1
SU(2)

]3

. (4.32)

mνµ ∼ 1

2
T − 1

2

(string) ×
[

α−1
SU(2)

]2

. (4.33)

mνe ∼ 1

2
T − 1

2

(string) × α−1
SU(2) . (4.34)

Owing to the particular choice of normalization of the vacuum, which is done for an electri-
cally neutral state, we expect that these mass formulae give us twice the mass of any state,
i.e. the mass of the particle-antiparticle pair. The values we obtain in this way are just the
“bare” values of the mass ratios, the first step in the approximation, which must be improved
by time-dependent corrections, in order to account for finer details of the phase spaces. In
the next sections we will pass to the explicit evaluation of all the mass values. We will there
discuss also the corrections to the bare expressions, required by an improved description of
the details of the string configuration. This is particularly necessary in order to discuss the
masses of the second family, strongly affected by the “stable” mass scale of the universe, the
mean scale discussed in section 4.3.6, and the quarks of the first family. As we will see in
section 5.2, what happens in this case is that consistency of the vacuum implies an exchange
in the role of the up and down quark, so that the up quark is effectively the lighter one of
the SU(2) doublet.
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4.3.2 The SU(2) coupling

In order to compute masses, what remains to know is the beta-function of the broken SU(2)
group which constitutes the basic ingredient of mass ratios. In order to determine the SU(2)
beta-function, we will derive the volume occupied by the broken SU(2) by counting the
volume reductions produced by the various projections we have applied in order to reach the
configuration of minimal symmetry. The counting must go back till the N4 = 2 point, the
point at which, in our construction, the gauge beta-function vanishes. The interval of values
quoted in the r.h.s. of 4.14 is therefore covered by seven Z2 projections: the further twist
breaking supersymmetry to N = 0, the four independent rank-reducing shifts to produce the
4 out of the 16 in each family (the third family corresponds to a sector given by the product
of projections, therefore it is not the result of independent operations), and the two shifts
along the transverse space-time coordinates. Each one of these projections corresponds to
(the breaking of) an SU(2) factor. At the highest breaking, we have a double-shifted space

with typical ground momentum T − 1
4 (alternatively, we can as in Ref. [48] consider the typical

ground momentum T − 1
2 in a configuration at the SU(2) extended symmetry point). The

“beta-function coefficient” (or better “exponent”) of SU(2) is then 1
7
of the full exponent,

fixed by considering that for N4 = 2 the beta function must vanish (no renormalization at
all) and it is obtained by taking the product of SU(2) factors from the scale of the maximal
shifting. The sum of the beta-function coefficients of these factors must therefore be equal
to the span of the exponents of the scales from the scale of maximal shifting to zero, namely
the interval [0 − 1/4] (if we consider as starting point the lowest mass scale, we must take
into account that this is an SU(2) extended symmetry point). In any case, according to
expression 4.14, the beta-function exponent of SU(2) is:

βSU(2) =
1

7
× 1

2
× 1

2
=

1

28
. (4.35)

The coupling of SU(2) is therefore:

αSU(2) = T − 1
28 . (4.36)

Using the value of the age of the universe given in appendix A, we obtain that, at the
present day, α−1

SU(2) ∼ 147. If more precisely we use the age of the universe suggested by the

agreement with neutron’s mass, eq. 4.52 (i.e. ∼ 5.038816199× 1060M−1
P , see Appendix A),

we obtain:
α−1
SU(2) ∼ 147.2 (147.211014) . (4.37)

Being obtained through a counting of projections in the Z2 orbifold approximation, 4.36
probably constitutes only an approximation of the real value of the beta function. However,
we expect the relative correction to β−1 = 28 to be small, of the order of the relative
magnitude of an inverse root of the age of the universe, as compared to this integer value:

β−1 ≈ 28 + O
(

α−1T −1/pβ
)

, (4.38)

which should reflect in a similar correction also for the coupling α (α−1 → α−1(1+O(1/T 1/pβ)).
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4.3.3 The U(1)γ coupling

In order to obtain the coupling of U(1)γ , the electromagnetic group, we don’t need to de-
termine the absolute fraction of a group factor within the full symmetry group: we can
determine the ratio of the U(1)γ and SU(2) phase spaces, or equivalently the ratio of the
two exponents, by counting the charged matter states, and subtracting the number of gauge
bosons. We can justify this if we consider that the latter contribute somehow “in opposite
way” to the matter-to-matter scattering amplitudes. Consider a diagram corresponding to
a matter-to-matter transition:
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~

(4.39)

For what concerns the initial and final matter states, we have that the larger the mass
ratio between initial and final state, the larger is the decay amplitude. The boson mass
appears instead at the denominator in the expression of the effective coupling, and sup-
presses the process. A better way to see this is to consider that in the logarithmic picture
the most entropic vacuum appears as effectively supersymmetric, with N4 = 2 extended
supersymmetry 17. As seen from the logarithmic picture, the beta-function exponent is
a N4 = 2 beta function coefficient. In this case b = T (R) − C(G). An equal num-
ber of matter states and gauge bosons, transforming in the same representation, corre-
sponds to an effective N4 = 4 restoration, a situation of non-renormalization, with van-
ishing beta-function exponent. The phase space coefficient of U(1)γ is proportional to:

17The logarithmic picture is obtained through an artificial decompactification of the coupling of the theory.
In some dual representation of this phase the theory may therefore appear supersymmetric. We already
discussed that N4 = 1 is a fake, unstable configuration consisting of the projection onto just the perturbative
part of the spectrum of a theory which, non-perturbatively, is non-supersymmetric. In the case we are
interested in a correct understanding of the beta-functions, mapping to a N4 = 2 logarithmic representation
is more appropriate than to a “fake” N4 = 1. This is what we have done in section 4.3.3, in order to
understand the role played by matter states and gauge bosons in the evaluation of the U(1)γ beta-function
as compared to the SU(2) beta-function. In this representation, there is no “parity restoration” in the sense
of the SU(2)(R) bosons coming to zero mass. The fact that N4 = 2 supersymmetry doesn’t have a chiral
matter spectrum (hypermultiplets include the conjugate states of fermions) simply means that we must
expect a doubling of the matter states, due to the fact that both the left and right moving part of a matter
state get paired to a conjugate. On the other hand, this is not a problem, because this picture is just a useful
representation, in which we can understand certain properties, that must however be appropriately pulled
back to the physical picture. In the computation of the beta-function coefficients we don’t need to consider
this doubling of degrees of freedom, because this is also related to an effective disappearance of one of the
projections.
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3(families) × 2(SU(2)doublets) × (1+ 3)(leptons + quarks) × 2(left + right chirality) [ =
48] − 1(gauge boson) = 47. Notice that, in the counting, we have considered that all
the matter states are charged under U(1)γ . Three states, the three neutrinos, are however
uncharged. However, the electromagnetic charge is simply “shifted” from the central value
(1
2
,−1

2
), but the traceless condition is preserved. As a result, the charge is only “rearranged”

among the states: some states result more charged, some less. In total, the strength of the
renormalization is the same as with a traceless U(1) with a charge equally distributed among
all the states. This is true in first approximation, when all masses are considered vanishing.

The beta-function coefficient of SU(2) is proportional to 48 (the same effective number
of states as for U(1)γ) minus 3 (the number of gauge bosons), i.e. 45, where the coefficient
of proportionality is the same as for U(1)γ . The ratio of the two coefficients is therefore:

βU(1)

βSU(2)

=
47

45
. (4.40)

Using 4.36 and 4.40, and the scale µ = T ∼ 5.038816199× 1060M−1
P , the present age of the

universe 4.52, adjusted on the neutron mass, we get:

α−1
γ ∼ 183.777867 . (4.41)

This has to be considered as a “bare” value of the coupling, not an effective coupling in the
field theory sense. We will discuss in sections 4.4 and 5.4 how this value should be “run back”
to obtain the effective coupling to be compared with the value experimentally measured at
a certain scale.

4.3.4 The SU(2)w.i. coupling

Determing the coupling of the SU(2) of the weak interactions is even more problematic than
determining αγ . The point is that for us this symmetry is not spontaneously broken in the
classical sense, and we cannot compute the beta-function coefficient in an effective theory
with unbroken gauge symmetry. In the usual field theory approach, the SU(2) acting on
just one of the two helicities transforms only half of the matter degrees of freedom, and
therefore, if we neglect the contribution of the gauge bosons, its beta-function coefficient
turns out to be one half of that of a “full” gauge group, namely, with a vectorial coupling
to the matter currents. This is however true as long as the matter states are massless (on
the other hand, once they acquire a mass, the gauge symmetry is broken). Massive states
consist of both left and right degrees of freedom. From the point of view of the volume
occupied in the phase space, although interacting with just their left-handed part, massive
matter degrees of freedom count as much as left + right chiral states. The volume occupied
by SU(2)w.i. is therefore intermediate between the situation of pure chiral gauge symmetry
acting on massless states, therefore on half the space of the degrees of freedom, and a full
vectorial interaction. Since couplings are defined as volumes obtained from averages over
a superposition of configurations, we can consider that our coupling lies “in between” the
two situations. Since matter states acquire a mass through a shift that reduces by half the
logarithmic volume of the space (resulting therefore in a square-root scaling law), we can
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expect that the logarithmic volume occupied by SU(2)w.i. is the mean value between the one
of the vectorial interaction (acting therefore on the same number of degrees of freedom as
the massive matter states), and the one of the pure chiral interaction, viewed as acting on
massless states:

βSU(2)w.i.
≈ 1

2

(

1 +
1

2

)

× 1

28
. (4.42)

The present-day value of the inverse of the SU(2)w.i. coupling should therefore be:

α−1
w ≈ T −(βSU(2)w.i.)

0 ∼ 42.26 , (4.43)

where we have used the estimate of the age of the universe 4.52. The value 4.43 is roughly a
factor 4.4 smaller than the inverse electromagnetic coupling, given in 4.41. Also this number
has to be considered a “bare” value, to be corrected in the way we will discuss in section 4.4.

4.3.5 The strong coupling

In our framework, the SU(3) colour symmetry is always broken, and in principle there is
no phase in which the strong and electromagnetic interactions can both at the same time
be treated as gauge field interactions. In particular, there is no (under-Planckian) phase in
which the strongly coupled sector comes down to a “weak” coupling, which merges with the
other couplings of the theory to build up a unified model with a unique coupling, taking up
the running up to the Planck scale. For us, the strongly coupled sector is strongly coupled
at any sub-Planckian, i.e. field theory, scale. The coupling αs will always be larger than one:

αs ∼ T −βs , βs < 0 . (4.44)

Indeed, the representation in terms of an SU(3) gauge symmetry is something that belongs
more to an effective field theory realization than to the non-perturbative scenario we are
considering. Namely, in our case we just know that, as soon as the space is sufficiently
curved (i.e. symmetry sufficiently reduced), we have the splitting into a weakly and a
strongly coupled sector, mutually non-perturbative with respect to each other.

In order to derive the exponent βs, we must proceed as in section 4.3.2, by computing
the amount of symmetry reduction, this time however in the “S-dual” representation. When
seen from the point of view of the full space, this duality is indeed a T-duality . This is
basically the reason why the coupling increases as the temperature of the universe decreases
(or equivalently its volume increases). We expect therefore that, when seen from the point
of view of a dual picture, the coupling arises in a vacuum which underwent the same amount
of symmetry reduction as in the dual SU(2) case of section 4.3.2. However, the space-time
coordinates feel a “contraction” which is T-dual to the one experienced in the picture of
the electro-weak interactions. Therefore, when referred to the time scale of the electroweak
picture, the beta-function exponent, the coefficient βs, should be 1/4 of its analogous given
in 4.35. Of course, as seen from the electroweak picture, the sign is also the opposite (an
inversion in the exponential picture reflects in a change of sign of the logarithm). We expect
therefore:

βs = − 1

4
× 1

28
. (4.45)

39



In other words, the strong coupling in itself should run as:

αs ∼ (Tdual)
1
28 , (4.46)

but the time scale Tdual is related to T by an inversion times a rescaling. As the value 4.36
can be seen as the “on-shell” value at the matter scale 1/

√
T , logarithmically rescaled by

a factor 1/2 with respect to the un-projected time scale T , the scale Tdual feels an inverse
logarithmic rescaling, (1/2)−1. In total, as compared to the square-root scale, it has a
logarithmic rescaling by a factor 4. In order to refer the value of the strong coupling to the
square-root scale of the electroweak picture, we must therefore take its fourth root. The
present-day “bare” value of the strong coupling is therefore 18:

αs|today ∼
[

(T0)
1
4

] 1
28

= T −βs
0 ∼ 3.48 . (4.47)

As in the case of αγ and αw, in order to be compared with the coupling currently inserted
in scattering amplitudes also this one has to be “run back” in the way we will discuss in
section 4.4 .

4.3.6 The neutron mass

We want now to discuss the physical meaning of the mean mass scale introduced in Ref. [2]:

〈m〉 = 1

2
T − 3

10 . (4.48)

According to its definition as a sum over all the states, 〈m〉 =∑i〈i|m|i〉, the contribution to
the mean value should be provided by the asymptotic stable mass eigenstate(s) of the theory.
These are not necessarily elementary mass/interaction eigenstates: in general they will be
compounds. Usually, one thinks at the singlets of the strong interactions, because the theory
is constructed as a perturbative vacuum around the zero value of the electromagnetic and
weak couplings. Here however the situation is different: a finite, non-perturbative functional
mass expression, valid at any value of the space-time volume, corresponds to a regime in
which not only the strong interactions are non-perturbative, but also the electroweak inter-
actions cannot be considered weak: the perturbative description of electro-weak interactions
is an approximation, whose degree of accuracy increases with the age of the universe 19. The
true free mass eigenstates are neutral to both the strong and electroweak interactions. The
mean value 4.48 corresponds therefore to the average value of the mass of stable matter in
the universe. Since the time dependence of gauge couplings is much milder than that of
masses:

α ∼ 1

T 1/p
, m ∼ 1

T 1/q
, p≫ q , (4.49)

already outside of a close neighborhood of the Planck scale we rapidly fall into a regime
in which the gravitational interaction is weak, while all other interactions are still strong.

18Also in this case we don’t need a high precision in the estimate of the age of the universe.
19The behaviour of these couplings will be discussed in sections 4.3.2 and 4.3.3.
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This is the regime of interest for our problem (at precisely the Planck scale the configuration
becomes trivial). In this phase, the only state neutral under strong, electromagnetic and
weak interactions is a compound made out of a neutron-antineutron pair at rest, and their
decay products, i.e. the proton-electron-neutrino/antiproton-positron-antineutrino system.
At the “strong” limit of the weak coupling, family mixings can be neglected because one can
assume that all heavier particles have rapidly decayed to the ground family. As it happens for
stable matter, the decay probability of the neutron is compensated by an equal probability of
the inverse process of neutrino capture, and the system is stable under weak interactions. It
is invariant under charge reversal, and stable under electromagnetic interactions as well. This
is the only singlet under all the above interactions, and therefore the only mass eigenstate at
finite volume. At the present age of the universe, the volume of space-time is anyway large
enough to assure weakness of the electro-weak interactions. This compound is therefore
not necessarily a “bound state”, as it has presumably been at earlier times. We expect
expression 4.48 to account for the mass of the “composite bound state”, i.e. roughly twice
as much as the mass of the neutron-antineutron pair. Therefore:

mn =
1

4
< m >=

1

8
T − 3

10 . (4.50)

By inserting in 4.50 the current value for the age of the universe, as obtained by extrapolating
data of experimental observations within the theoretical framework of Big Bang cosmology,
we obtain a value quite close to the neutron mass. Namely, from 4.50 and a central value of
the age of the universe ∼ 12.75 × 109 yrs, (∼ 5 × 1060M−1

P , see Appendix A) we obtain:

mn ≈ 937MeV , (4.51)

quite in good agreement with the value experimentally measured, 939.56563 ± 0.00028 MeV
[49]. A more correct analysis would require a new derivation of the value of the age of
the universe completely within our framework. On the other hand, within our theoretical
scheme one can reverse the argument, and take the mass of the neutron as the most precise
measurement of the age of the universe. In this case, we obtain as its actual value:

T0 = 12.62028271 × 109 yr . (4.52)

The fact that our mass formula gives as average mass the mass of the neutron is nicely in
agreement with what we would expect from a universe behaving as a black hole. According to
the common astrophysical models, a black hole is in fact the step just following the “neutron
star” phase of a star at the end of its life. Our considerations of above suggest that the
universe can be roughly thought as a kind of neutron star at the point of transition to a
black hole.

4.3.7 The apparent acceleration of the universe

We are now in the position to come back to the issue of the apparent acceleration of the
universe. We have seen that the average mass of the stable matter scales with time as:

m ∼ T −3/10 . (4.53)
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If we take this mass as the reference for the atomic mass scale, we derive that the above
behaviour induces an apparent shift in the frequencies of the light emitted at different dis-
tances from the observer, i.e. at different ages of the universe, due to the different scale of
the atomic energy levels:

ν̃1
ν̃2

=

(T2

T1

)
3
10

. (4.54)

Once “subtracted” from the bare red-shift 3.8, this gives an apparent, effective red-shift zapp.:

1 + zapp. =

(

ν1
ν2

)

observed

=

(T2

T1

)
7
10

, (4.55)

as if the universe were expanding with rate R̃ ∼ T 7/10, normally expected for a matter
dominated era.

At the base of what is considered an experimental evidence of the accelerated expansion
of the universe is the observed acceleration in the time variation of the red-shift effect. Here,
this effect receives a different explanation, in terms of accelerated variation of ratios of mass
scales, and therefore of observed emitted frequencies. Indeed, one may question whether a
pure expansion of the metric is observable. In the classical approach, the expansion occurs
at the level of the overall scale factor of the space part of the Robertson-Walker metric:

ds2 = dt2 − R2(t)
[

d~x2
]

. (4.56)

From a physical point of view, the scale factor R(t) precisely defines the speed of light,
obtained from the condition ds2 = 0, therefore dx/dt = 1/R. The classical argument is that
the Robertson-Walker metric is the metric of the cosmological evolution, not the metric of
local physics. This saves things from a formal point of view, but is not satisfactory from a
physical point of view: saying that there is an expansion of the overall scale of the metric
is equivalent to saying that there is an expansion of the scale in which space lengths are
measured in terms of time length. In other words, saying that there is such an expansion
means that there is an expansion (more precisely a contraction) of the speed of light. Suppose
we want to compare wavelengths between present time and a time at which the scale was 1/2
of the present one. From a physical point of view, what we observe is radiation produced
by atomic transitions, and we compare wavelength keeping fixed the period of the light
wave. Since in the past time lengths are contracted by 1/2 with respect to today, during
each period of the wave light travels twice as much as today. Therefore, the same atomic
transition generates a photon with twice the wavelength as today. However, if the space
scale is contracted, also energies are different. Energies scale in fact as inverse of lengths
(consider for instance the electric potential, V = e2/R). In our specific example, this means
that energies were doubled, and, according to E = hν, also frequencies were doubled, or
equivalently periods were halved. The same atomic transition produced therefore photons
with twice the frequency, or half the period, as compared to today. This fact, combined
with the fact that the speed was doubled, implies that, for the same physical phenomenon,
the effective wavelength was the same as today. Any such an overall scale of the metric is
therefore physically unobservable.
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4.4 The effective couplings: part 1

The couplings αγ, αw.i. and αs derived in section 4.3.2 and 4.3.3 and 4.3.5 run with time,
and therefore with an energy scale: they are the couplings at a specific age of the universe.
The values we obtained do not however correspond to the actual value of the physical cou-
pling. In order to obtain the latter, we must run them up to the appropriate scale, using a
finite-volume regularization. Our renormalization prescription is that we keep on imposing
that the neutron’s mass is the one given as in 4.50: we treat the neutron’s mass as an al-
ready renormalized value, and consider the relation 4.50 as an “on shell prescription” which
we use in order to fix the regularization.

4.4.1 The electromagnetic and weak couplings

To start with, in this section we consider the correction to the weak “gauge” couplings.
In the representation in which elementary particles are defined, namely in the logarithmic
picture, the effective gauge couplings are corrected according to:

α−1
i ≈ α−1

i |0 + bi lnµ/µ0 , (4.57)

where bi are appropriate beta-function coefficients, and µ is the scale of the process of
interest (this can be the electron mass in the case of the fine structure constant). Since
the couplings scale as powers of the age/size of the universe, and therefore meet at 1 at
the Planck scale, in first approximation we can assume that, in the effective representation
of the physical configuration, couplings run logarithmically with an effective beta-function
such that, starting from their “bare” value at the actual T −1/2 scale, they meet at zero at
the Planck scale:

α−1
i ≈ α−1

i |0 + b
(eff.)
i lnµ/µ0 , (4.58)

with b
(eff.)
i such that:

b
(eff.)
i lnµ0 = α−1

i |0 , (4.59)

where:

µ0 ∼ 1

2
T − 1

2 , (4.60)

T being the age of the universe as fixed by the neutron’s formula 4.50. The choice of the
square root scale 4.60 as the starting scale is dictated by the fact that this is the fundamental
scale of matter states, and their interactions. Matter consists of spinors and their compounds,
and a spinor feels a square-root space, in that twice a spinor rotation corresponds to a true
vectorial space rotation. As we will discuss in section 5.3, the exact normalization of the end
scale for elementary states is 1/2 of 4.60.

Let’s consider the electromagnetic coupling. The value of αγ given in section 4.3.3 must
be considered as a bare value at the scale µ0. The fine structure constant, which for us is
not really a constant, but just the present-day value of this coupling, will correspond to the
value of αγ run from 4.41 at the scale 4.60 to a scale µγ, the scale of the electron at rest.
This is also the original scale at which historically the electric charge has been referred to.
Although modern experiments are in general not performed at the electron’s scale, through

43



renormalization techniques their measurements are anyway always reduced to the electron’s
scale. From the point of view of our theoretical framework, this is the scale at which the
“charged world” starts. Below this scale, there are the un-charged particles, and, from a
classical point of view, the electric charge effectively ceases to exist. Once recalculated on
the electron’s mass scale, 4.41 gets corrected to:

α−1
γ : α−1

γ |µ0 = 183.78 → α(0) −1
γ |me

≈ 132.85 , (4.61)

where we used the value 5.36 for the electron’s mass. The result 4.61 is definitely closer to
the experimental value, nevertheless still quite not right, being out for an amount higher
than the error in our approximations. The reason is that the value 4.61 has been calculated
by assuming a perfect logarithmic running, without taking into account an important modi-
fication of the volume of the phase space of the charged matter particles around the electron
and up quark mass scale, something we will do in section 5.2. We postpone therefore a
detailed evaluation of the fine structure constant to section 5.4.

For what matters the weak coupling, the contact with experiment is made through the
Fermi coupling constant GF , basically the weak coupling divided by the W -boson mass
squared. Any discussion about this must therefore be postponed after we have obtained this
mass. However, the W mass too, in order to be calculated, requires a first order estimation
of the weak coupling. Indeed, proceeding as in 4.61, we can see that also this coupling
undergoes relative corrections of the right magnitude. We will come back to this coupling
in section 5.9.

4.4.2 The strong coupling

In the case of the strong coupling, things are, for obvious reasons, more involved, being more
model-dependent also the theoretical framework in which its effective experimental value is
obtained. A possible “contact with the experiment” is the value αs at the scale of some
typical quark process, for instance the Z-boson mass in a e+e− → 4J event: αs(MZ) = 0.119
[49]. As it is usually given, gs runs logarithmically with the scale. It seems therefore
impossible to think that the “on shell” value 4.47 can be effectively corrected to a current
value lower than 1 at around 100 GeV. However, not necessarily αs must admit an effective
representation in terms of a logarithmic running at the same time, i.e. in the same picture
as the electromagnetic and weak couplings. Namely, although strongly and weakly coupled
sectors are usually described in an effective action that accounts for all of them at the
same time, attributing a logarithmic running to all of them in a unified picture, there are
good reasons to believe that, especially for low energies, in the case of the effective αs the
logarithmic behaviour is only a first approximation. Indeed, electro-weak and strong coupling
are mutually non-perturbative with respect to each other, and, although we don’t know what
the correct resummed running of αs should be, and we can only make some speculation,
we may expect that its logarithmic behaviour is only the first order approximation of a
running that, in the representations in which the electro-weak couplings are linearized, is
exponential. If we suppose that the amount of change computed in a certain scale interval
should be viewed as the first step of an exponential correction, namely, if we suppose that
it increases/decreases by a factor ∼ 15 for each ∆µ ≈ 1012∼13MP, then it is not impossible
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that, in passing from the scale µ0 ∼ 10−30MP to ∼ 10−17MP (∼ 100 GeV) the value of the
strong coupling passes from 4.47 to ∼ 0.2. It appears therefore that an effective value of αs
lower than 1, as it is usually obtained, is not a signal of weakness of the interaction, but the
result of working in a fictitious representation.
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5 Present-time values of masses and couplings

Now that we have at hand the value of the SU(2) coupling, we can proceed to an explicit
evaluation of the masses of the elementary particles, as they can be computed using the mass
formulae given in section 4.3.1. These can be considered the “bare” values. In section 5.3 we
will discuss the corrections, and how, in some cases, it is even more appropriate to consider
these values themselves as “corrections” of a “bare” mass scale, the stable mass scale 4.48.

5.1 Neutrino masses

We start with the less interacting, and therefore lightest, particles. According to the con-
siderations of sections 4.1 and 4.3.1, the lightest mass level must correspond to the lightest
electrically neutral particle, the electron’s neutrino. Using the value of the present-day age
of the universe derived from the neutron’s mass, expression 4.52, we obtain the following
value for the “square root scale”:

1

T 1/2
≈ 4.454877246× 10−31MP . (5.1)

Following 4.16 and 4.14, the first neutrino mass should be a α−1
SU(2) factor above 1/2 this

scale. Furthermore, as discussed in section 4.3.1 after the expression 4.34, being related
to the mass of an electrically neutral electron-positron pair through a chain of symmetry
reduction factors, this procedure gives twice the mass of the neutrino, or, better, the νν̄
mass. Using the value 4.37, we obtain therefore:

2mνe ≈ 3.279 × 10−29MP ∼ 4.0037× 10−10GeV = 0.40 eV . (5.2)

After multiplication by a further α−1
SU(2) factor, we obtain the second neutrino mass:

2mνµ ≈ 5.89× 10−8GeV = 58.9 eV . (5.3)

Finally, multiplication by a further α−1
SU(2) factor leads us to the tau neutrino:

2mντ ≈ 8.677KeV . (5.4)

These values agree with the experimental indications of possible neutrino oscillation effects
at the electronvolt scale.

5.2 The charged particles of the first family

An α−1
SU(2) factor above the mass of the tau-neutrino there is the electron’s mass:

me ∼ α−1
SU(2) × mντ ∼ 0.639MeV . (5.5)

As discussed in section 4.3.1, this should be the mass of an electron-neutrino compound.
However, as we have seen, neutrino masses are negligible in comparison to lepton masses,
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and with a good approximation the mass of such a compound coincides with the lepton’s
mass.

Continuing along the lines of section 4.3.1, from 4.25 we should be able to derive then
the down and up quark masses, obtaining md ∼ 0.48MeV and mu ∼ 0.87MeV. However,
this is not correct, and is contradicted by the experimental observations. The explanation
has to do with the way the symmetry breaking is realized in our framework. At low energy,
the SU(2)w.i. symmetry appears as a broken gauge symmetry, with the breaking tuned by
a parameter of the order of a negative power of the age of the universe. As we will see in
section 5.8, the SU(2)w.i. gauge boson masses scale in such a way that T → ∞ is a limit of
approximate restoration of the SU(2)w.i. symmetry. Moreover, remember that the weak force
in itself is stronger than the electromagnetic force: αw > αγ (it is called weak because for
low transferred momenta, p/MW ≪ 1, effective scattering/decay amplitudes are suppressed
by the boson mass: αeff

w ≈ αw/MW ). Therefore the “hierarchy” of matter is prioritarily
determined by the SU(2)w.i. charge, more than by the electric charge. As a consequence,
the matter spectrum can be thought as made of two subspaces, the “up” and the “down”
subspace, and the trace of the electric charge can be viewed as:

< Qe.m. >=
∑

ℓ,q

< up|Qe.m.|up > +
∑

ℓ,q

< down|Qe.m.|down > , (5.6)

where
∑

ℓ,q indicates the sum over leptons and quarks. The condition of approximate restora-
tion of the SU(2)w.i. symmetry, and the dominance of the weak force with respect to the
electromagnetic one, require that the two terms of the r.h.s. of 5.6 give an equal contribu-
tion to the total mean value of the electric charge. Otherwise, this would explicitly break
the SU(2)w.i. invariance. This imposes that the trace of the electric charge has to vanish
separately on the “up” and “down” multiplets. In practice, both of them must vanish. For
the validity of this argument it is essential that the weak force ends up by dominating the
more and more over the electric one, and that the symmetry is restored at infinitely extended
space-time; therefore, the full space must be essentially thought as separated in two SU(2)w.i.
eigenspaces. Compatibility of the theory at any finite time with the situation at the limit
tells us that:

tr (ν, d) = 0 . (5.7)

Since the ν charge vanishes, we have that:

tr (d) = 0 . (5.8)

This is only possible if, for one family, the roles of the up and down quarks, for what
matters the electric charge, are exchanged, so that we have tr (d) = 3 ×

(

2
3
− 1

3
− 1

3

)

= 0.
Correspondingly, the trace of the “ups” is also vanishing:

tr (e, µ, τ, u) = −1 − 1 − 1 + 3×
(

−1

3
+

2

3
+

2

3

)

= 0 . (5.9)

Therefore, in one of the three quark families the role of up and down is interchanged: the
quark with electric charge +2/3 is indeed the “down”, while the one with charge -1/3 is
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the “up”. In the ordinary field theory approach, this argument does not apply because the
symmetry remains broken also at infinitely extended space-time 20. Simple entropy consid-
erations allow us to identify in which family the flip occurs. Let’s consider the SU(3)colour-
singlet made out of the three quarks, one per each family, with higher electric charge, and the
one made in a similar way out of the three quarks with the lower electric charge. Clearly, the
first one is the most interacting singlet we can form by picking one quark from each family,
and conversely the other one is the less interacting one we can form. The first must therefore
also be the most massive out of all the possible SU(3)-singlets formed by one quark per each
family, while the second one must be the lightest. The only possibility we have to achieve
this condition is when the flip between charge +2/3 and -1/3 quarks occurs in the lightest
family, i.e., for the quarks we usually call the up quark and the down quark. Therefore,
approximately the value of the mass of the up quark is the one we computed for the lightest
“down” quark states, and conversely the mass of the down quark is the one we assigned to
the lightest “up”. However, now the lightest quark has a higher electric charge. Namely,
from charge |Q| = 1

3
we pass to |Q| = 2

3
. This transformation is not a rotation of the group

SU(2)w.i., but a pure electromagnetic charge shift. Therefore, here it does not matter that
the former down had negative charge, so that the charge difference is ∆Q = 2

3
−
(

−1
3

)

= 1:
as far as time evolution is considered, for what matters the occupation in the phase space,
or equivalently the mass, a charge conjugation is a symmetry of the theory. Therefore, what
counts is the pure increase in the absolute value of the charge, which implies an increas-
ing of the strength of the interaction of a particle, therefore the probability of interaction,
and as a consequence also its volume of occupation in the phase space, that is, the mass.
Indeed, doubling the charge means logarithmically doubling, i.e. squaring, the interaction
probability, P ∝ α ∝ g2. Since in the present case we increase |Q| by 1

3
of the unit electric

charge, we expect that, in passing from the electron to the lightest quark, besides the factor
4.24, we approximately gain an extra (αγ)

−1/3 factor 21. The upper quark of the SU(2)
pair passes on the other hand from |Q| = 2

3
to |Q| = 1

3
, but it does not acquire mass shifts

(in the sense either of expansion or of contraction of its volume in the phase space) other
than what already inherited by the expansion in the phase space of the lower partner quark.
The two are in fact separated by an SU(2) rotation, and the absolute value of their mass
difference remains the same: the electric charge modification |Q| : 2

3
→ 1

3
has to be seen as

the result of an SU(2)w.i. rotation from the lower member of the pair, therefore a |∆Q| = 1
rotation, not as a charge shift by |Q| = 1

3
. If, in order to better compare with experimental

data, instead of using the inverse of 4.41 we consider the current value of the fine structure
constant at the MeV scale we will obtain in section 5.4, putting everything together we get:

md ≈ 4.39 MeV , (5.10)

mu ≈ 2.50MeV , (5.11)

so that:
δmu/d = mu −md ≈ 1.89MeV . (5.12)

20Notice that the usual charge assignment breaks the SU(2) symmetry explicitly.
21No further 1/3 normalization factors are needed, because in this operation we are leaving unchanged the

SU(3) indices.
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5.2.1 The charged particles of the second and third family

The masses of the charged particles of the second family are obtained from 4.26, 4.27 and 4.28.
At present time, they are:

mµ ≈ 94MeV ; (5.13)

ms ≈ 167MeV ; (5.14)

mc ≈ 1.539GeV . (5.15)

The masses of the charged particles of the third family are obtained from 4.29, 4.30 and 4.31:

mτ ≈ 13.85GeV ; (5.16)

mb ≈ 56GeV ; (5.17)

mt ≈ 2749GeV . (5.18)

One can see that, up to the second family, the mass values, although all more or less slightly
differing from those experimentally measured, are anyway of the correct order of magnitude.
The values obtained for the third family, instead, seem to be hopelessly wrong. In the
next sections we will discuss how these “bare” values get corrected by a refinement in our
approximation.

5.3 Corrections to masses

Free elementary particles correspond to a conceptual classification of the real world, that
makes sense only in the case of weakly coupled states. In our scenario, for the leptons
this condition is better and better satisfied as the universe expands. Quarks are instead
strongly coupled, and for us their coupling will become stronger and stronger as time goes
by. In order to disentangle the properties of the elementary states as “free states”, we have
mapped to a logarithmic representation of the string vacuum. In this picture, owing to the
linearization of the string space, it was easier to consider the ratios of the volumes occupied in
the phase space by the various particles, and their interactions. However, as we pointed out,
this mapping works only at times close to the Planck scale, where the “logarithmic world”
becomes weakly coupled. At a generic finite time, the entire spectrum of particles is strongly
coupled also in the logarithmic picture: not only the “colour” interactions are strong, but
even the electro-weak symmetry can hardly be expanded around a vanishing value of the
coupling. As we discussed in section 4.3.6, in such a world, the only true “asymptotic”
state is neutral to all the interactions. We have identified this as a bound state made of
neutron, proton, electron and its neutrino and their antiparticles. The corresponding mass
scales as T −3/10/2. Strictly speaking, at finite time this is the only true “bare” state of our
theory, and its mass can be used in order to set the scale of the universe. Correctly computing
masses is therefore not only a matter of running the couplings determining mass ratios to the
appropriate mass scale, through an iterative procedure starting from the bare values given
in sections 5.1–5.2.1, but also of appropriately choosing the scale around which masses are
perturbatively expanded. Masses below the T −3/10 scale should be treated as perturbations
of this scale. This is the case of the proton and the neutron, which are made of up and down
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quarks of the first family, but have a mass much closer to the GeV scale than to the one
of the quarks they are made of. By consistency, we should apply the same argument also
to the electron and the neutrinos. However, since the strength of their interaction decreases
with time and at present is already sufficiently small, we can safely speak of electrons and
neutrinos as free states. For masses above the T −3/10 scale, things are reversed: it is rather
T −3/10 which is a perturbation of the bare mass scale.

Our evaluation of masses proceeds therefore along a sequence of perturbative steps: at
first we roughly determine, as in sections 5.1–5.2.1, the energy scale “at rest” of the a
certain particle. Then we improve the computation by letting the mass to run from the
fundamental T −1/2 scale to the specific scale, obtaining thereby an improvement in the
perturbation process. Exactly knowing the running of masses entails a detailed knowledge
of the interaction and decay processes the particle is involved in: these in fact decide what
is the weight of a particle in the phase space. This investigation too can be viewed as part
of a sequence of perturbative steps. At the first step, the logarithmic running of masses can
be inferred from 4.9: by differentiation of this equation one obtains a renormalization group
equation in which the running of mass ratios results to be the opposite of the running of
couplings. In this case, the coupling concerned is αSU(2), that, according to 4.40, runs more
or less like the electromagnetic coupling αγ , just a bit slower. In section 4.4 we assumed that,
in first approximation, in the effective representation of the physical configuration, couplings
run logarithmically with an effective beta-function such that, starting from their “bare” value
at the actual T −1/2 scale, they meet at zero at the Planck scale. We can here assume that
this holds for the αSU(2) coupling too. Then, from 4.9 we derive that the relative variation
of a mass along a certain scale variation is opposite to the one of the SU(2) coupling:

∆m

m
= −∆αSU(2)

αSU(2)

. (5.19)

Notice that, while the inverse couplings decrease to zero, and therefore couplings increase
when going toward the Planck scale, masses instead decrease. This is correct, because what
we are giving here are relative corrections to mass ratios, not masses in themselves (it must
be kept in mind that this linearized representation makes only sense reasonably away from
the Planck scale). In first approximation the mass corrections are of order:

∆mi

mi
≈ lnµ0 − lnµi

lnµ0
, (5.20)

where µi are the mass scales given in sections 5.1–5.2.1, µ0 =
(

1
2

)2 T −1/2, µ and µi are
expressed in reduced Planck units, an appropriate Planck mass rescaling in the argument
of each logarithm being implicitly understood. Indeed, since masses are obtained from the
expressions of mass ratios, the higher mass of a pair is obtained as a function of an inverse
coupling times the lower mass, which sets the scale of the process. Effectively, expression 5.20
is therefore shifted to:

∆mi

mi

≈ lnµ0 − lnµi + lnµνe
lnµ0

. (5.21)

The first neutrino mass remains unvaried. For the other masses, we obtain:

mνµ : 2.945 eV → 2.739 eV ; (5.22)
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mντ : 4.3385KeV → 3.731KeV ; (5.23)

me : 0.639MeV → 0.505MeV ; (5.24)

mµ : 94MeV → 67.7MeV ; (5.25)

mτ : 13.85GeV → 8.99GeV ; (5.26)

mu : 2.50MeV → 1.93MeV ; (5.27)

md : 4.39MeV → 3.35MeV ; (5.28)

δmu/d : 1.89MeV → 1.42MeV ; (5.29)

mc : 1.539GeV → 1.048GeV ; (5.30)

ms : 167MeV → 118.9MeV ; (5.31)

mt : 2749GeV → 1582GeV ; (5.32)

mb : 56GeV → 35.3GeV . (5.33)

The only elementary particle mass we can here use for a precise comparison with experimental
data is the one of the electron: neutrino masses are not yet known, and the other masses
will undergo further corrections (see next sections).

The correction 5.24 must be considered as a first order correction: once determined at
“order zero” the bare mass, 0.639MeV, we have rescaled it according to 5.21, by recalculating
the effective coupling on the zero order electron’s scale. Now that we have the first order
electron’s mass scale, ∼ 0.505MeV, we can improve our approximation by recalculating the
effective coupling at this new scale, and using this newly obtained relative mass correction
in order to correct the scale of the 0.639MeV. We obtain in this case:

me|2nd ; 0.505 → 0.5069397 . . . MeV . (5.34)

This is still about 1% lower than the experimental value. Indeed, in order to get the physical
mass of the electron, we must add to the “bare” mass 5.24 also the masses of the lighter
states. The reason is the following. In the derivation of the mass ratios of section 4.3.1,
namely proceeding from 4.9, there is the implicit assumption that all particles lighter than
a certain one belong to a subspace of its phase space. Suppose we have just two particles,
particle A with mass mA, and particle B, with mass mB = α × mA, α < 1. When we say
that α is the ratio of the two volumes in the phase space, we also imply that particle A is
heavier than particle B in that the space of B has been obtained by a process of symmetry
reduction, by truncating the space of A. Particle A has more interaction/decay channels
than B, because the space of A contains the space of B. Let’s now consider the full phase
space of a sub-universe consisting of A and B. The full volume is:

V (A) + V (B) = V (A) + αV (A) . (5.35)

Now, in our specific case A is the electron, and B is basically the τ -neutrino (we neglect here
the other neutrinos, that give corrections of order O(α2)). When we measure the mass of
the physical electron, what we look at is the modification to the geometry of the space-time
produced by the existence of the electron. For what we just said, deriving the electron’s
mass from 4.9 implies considering that, when generating the electron, we generate also the
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τ -neutrino and the lighter particles. They also interact, and the modification to the whole
phase space produced by the existence of the electron is indeed the full V (A) + V (B) =
V (A) +α V (A). This implies that what we call the physical electron mass is the sum of the
bare electron mass 5.24 plus, in first approximation, the mass of the τ -neutrino. This agrees
with the observation we made in section 4.3, page 32, about the normalization of masses.
Summing to 5.34 the ντ mass 5.23, we obtain then:

m′
e|2nd ; 0.50694 → 0.51057 . . . MeV . (5.36)

Of course, we can correct to the second order also the ντ mass, and further refine our
evaluation. At this order the ντ mass gets increased, thereby increasing also the estimate of
the electron’s mass. A further recalculation of the coupling at the new scales leads on the
other hand to a subsequent lowering of all masses. The approximation of the electron’s mass
proceeds through a converging series of “zigzag” steps of decreasing size, below and above
the final value. One can easily see that in this way we better and better approximate the
experimental value of the electron’s mass (see [49]). However, we don’t want here to go into
a detailed fine evaluation of mass values, because ∼ 1%÷0, 1% is our best precision in many
steps of our analysis of masses.

In general, accounting for the shifting of phase space 5.35 amounts in a small (O(α−1))
correction to mass values, but for the quarks of the first and second family the relative change
is much higher (O(

3
√
α−1) and O(

√
α−1) respectively). Once this is taken into account, the

masses of the up and down quarks get further corrected to:

mu : 1.93MeV → 2.435MeV ; (5.37)

md : 3.35MeV → 5.785MeV ; (5.38)

δmu/d : 1.42MeV → 3.35MeV . (5.39)

5.4 The fine structure constant: part 2

Let’s now come back to a more precise determination of the fine structure constant. As
discussed in section 4.4, the fine structure constant is the value of αγ at the electron’s scale,
the scale that can be considered the reference for the operational definition of the electric
charge. According to our analysis of section 4.3.1, in the phase space of all the elementary
particles the phase space of the electrically neutral particles is a subspace of the space of the
charged ones, in the sense that all charged particles are heavier than the neutral ones. This
second subspace starts at the electron’s scale. As we discussed in section 5.2, page 48, after
the up-down flip in the quarks of the first family, the phase space gets further expanded
by a 3

√

α−1
γ factor. This shift modifies the effective strength of the projections applied

in order to get the mass hierarchy of section 4.3.1 in the sub-volume of the phase space
corresponding to the first charged family. As a consequence, it modifies also the effective
weight of the corresponding states, and the ratio of the effective U(1)γ and the SU(2) beta-
functions around this scale. The effect is that, as the states weight more, the effective
running of the coupling is faster, or, equivalently, the one of its inverse slower. Namely, as
the volumes of the matter phase space are expanded (or, logarithmically, shifted), the value
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of the electromagnetic coupling at the scale me effectively corresponds to the value of the
coupling without correction at a run-back scale, meff.

e . The amount of running-back in the
scale of the logarithmic effective coupling is equivalent to the amount of the forward shift
in the logarithmic representation of the volumes of particles in the phase space. If volumes
get multiplied by a factor, their logarithm gets shifted, and so gets shifted back the scale
at which the coupling in its logarithmic representation is effectively evaluated. From an
effective point of view, we can therefore derive the value of the fine structure constant by
evaluating the electromagnetic coupling proceeding as in 4.58, but at a scale a factor 3

√

α−1
γ

below the electron’s scale, rather than precisely at the electron’s scale as we did in 4.61 (see
also Appendix C). In order to get a first rough estimate, we can use 4.61) to calculate that
the effective scale µγ is lower than 0.511MeV by a factor ∼ 5.102549027 . . .. In this case we
obtain:

α(1) −1
γ |me

= 137.0700548 . (5.40)

In order to improve our evaluation, we need a better approximation of the shape and size
of the effective shift of the phase space of the first family. If we consider that the 3

√

α−1
γ

shift on the up quark translates also to the down quark, the heavier in this case, we should
conclude that the scale at which to evaluate 3

√

α−1
γ is around the down quark mass scale.

Using the value 5.28 for the point of evaluation, we obtain:

α(2) −1
γ |me

= 137.0366167 . (5.41)

In order to further improve the estimation, one should then proceed as we did for the
electron, by iterated steps of corrections of the down and electron scale, recalculating the
αSU(2) factors at the new scales to obtain improved estimations of md and of α

(0)
γ at the

down mass scale, and so on, obtaining a series of converging “zigzag” steps. The first
step corresponds to a slight increasing of the effective down mass, thereby lowering the

factor
3

√

α
(0) −1
γ , eventually resulting in a slight, higher order decrease of the value of the

inverse of the fine structure constant. The value 5.41 is around 0.0005% above the current
experimental one, α−1 ∼ 137.035999 . . . [50], and these considerations induce to expect that
the further steps of the approximation do improve the convergence toward the experimental
value. However, one should not forget the major point of uncertainty, namely that we
are here attempting to parametrize the effective modification of the size of the projections
applied to the phase space, and therefore the value of the fine structure constant, due to a
local dilatation of the phase space. A true fine evaluation of α−1

γ requires first of all a better
approximation of this effect. Last but not least, there is the question whether, and at which
extent, a convergence toward the official “experimental value” of this parameter should be
expected and desired. Beyond a certain degree of approximation, current evaluations heavily
rely on QED techniques, and are extrapolated within a theoretical scheme that only at the
first orders corresponds to the one discussed in this paper. A mismatch beyond this regime
of approximate correspondence does not necessarily implies and indicates that the values
here obtained are wrong: from a physical point of view what matters is that the effective
computation of physical amplitudes produces correct results. Finally, we repeat and stress
that in our framework the electric charge is time-dependent, and 5.41, possibly corrected
at any desired order, only represents the present-day value of this parameter. The rate of
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the time variation at present time can be easily derived from the very definition. From 4.36
and 4.40 we obtain:

1

α

dα

d t
=

1

28
× 47

45
× 1

T . (5.42)

In one year, the expected relative variation is therefore of order ≈ 3 × 10−12. This is
a rather small variation, however not so small when compared to the supposed precision
with which α is obtained. Indeed, the most recent measurements give for its inverse a
number with precisely 12 digits, a number whose variation could be observed by repeating the
measurement at a distance of some years. Since however a fine experimental determination
of α depends, through the theoretical framework within which it is derived, on time-varying
parameters such as lepton masses etc..., it would not be an easy task to disentangle all these
effects to get the “pure α time-variation”. This kind of effects can be better detected when
expanded on a cosmological scale, as we will discuss in section 7.4.1.

5.5 Heavy mass corrections: the stable particles

At large volume/large age of the universe, 1 ≪ T → ∞, electro-weak interactions are very
weak, while strong interactions become stronger and stronger. The universe tends toward
a configuration in which only the lightest particles of the decay chain are normally present,
the probability of producing higher mass, unstable ones becoming lower and lower. The
particles charged under the strong interaction tend to form bound states, “attracted” by
the mean mass scale “m3/10”, defined in eq. 4.48. In practice, this means that the universe
tends toward a world with matter made out of up and down quarks, electrons and neutrinos.
The masses of these objects as free particles are those computed in sections 5.1, 5.2, and
corrected in 5.22–5.33. Quarks however are not present as free particles, but form the
bounds we call proton and neutron, which are stable in the sense that the neutron’s decay
into proton+electron+neutrino is balanced by the inverse process of electron and neutrino
capture by the proton. As discussed, the stable mass scale m3/10 corresponds to the rest
energy of this system, namely the neutron + proton-electron-neutrino plus their antiparticles.
If we look at the masses of the quarks and leptons constituting this system, we see that the
neutron is made of an heavier quark set than the proton, and that the quark mass difference
between neutron and proton is higher than the sum of the electron and neutrino masses.
This means that the neutron decay into proton+electron+neutrino delivers some amount
of energy. As far as the m3/10 compound at equilibrium is concerned, this energy must be
included in the account. This allows us to deduce that “at equilibrium” m3/10/2 corresponds
to four times the mass of the neutron. Furthermore, neutron and proton differ for their
electromagnetic charge, i.e. for “weak” interaction properties as compared to the strong
coupling; it is therefore reasonable to expect that their mass difference is basically due to
the mass difference between the up and down quark. On the other hand, the m3/10 scale
is much higher than the down-up mass difference, and, as it corresponds to a stable scale,
it can be considered weakly coupled. This implies that the quark mass difference can be
treated as a small perturbation of the m3/10 scale. We can therefore write:

mp ≈ 1

4
m3/10 + O(δmu,d) . (5.43)
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Indeed, since the proton is a stable particle, the difference in the volume occupied in the
moduli space by neutron and proton is entirely due to the difference of the volumes occupied
by the quarks they are formed of. Differently from what discussed at pages 5.3 and 5.3, a
correction to the down quark mass does not require summing the mass of the lighter states,
as it was the case for instance of the electron, whose bare mass had to be corrected by
adding the ντ mass. The reason is that, in this case, once bound to form the heavy, strong-
coupling-singlet compound, the lighter particle, the quark up, does not interact anymore: it
does not have an independent phase space, as it was the case of the τ -neutrino. For what
concerns the physical mass of the proton and the neutron, namely, as long as, like for the
case of the electron, we look at the modification caused to the geometry of space-time by
the existence of the proton and the neutron, the phase space of the up quark does not add
to the phase space of the “bare” down quark. The quark mass difference entering in this
game is therefore the (corrected) bare quark mass difference 5.29. At the quark scale, this
is δmu/d = 1.42MeV. However, for what matters the mass difference between neutron and
proton, the scale at which the quark masses have to be run is the proton/neutron scale. At
this scale, once recalculated according to 5.21, the quark masses are:

mu|E=mn
= 1.7189MeV (5.44)

md|E=mn
= 3.0183MeV (5.45)

that imply:
md −mu|E=mn

= 1.299MeV ≈ mn − mp , (5.46)

in a quite good agreement, apart the usual O(1%) mismatch, with the experimental value of
the neutron-proton mass difference [49]. Notice that, in their logarithmic running, masses,
and mass differences, decrease when increasing the scale. This is the opposite of what
happens in the real, cosmological scaling. The point is that in the real scaling they all tend
to 1 in Planck units. As it happens for the couplings, also the logarithmic corrections to the
effective masses tend to the logarithm of 1, namely, to zero, at the Planck scale.

Expression 5.43 accounts with good approximation for the behaviour of the proton-to-
neutron mass relation far away (i.e. well below) the Planck scale. As we get close to this
scale, this approximation looses its validity.

5.6 Heavy mass corrections: the unstable particles

Let’s now consider the particles that exist only for a short time: the leptons µ, τ and
the mesons. At a sufficiently large age of the universe, these particles can be viewed as a
fluctuation out of a “vacuum” characterized by the mass scale m3/10, of which they are a
perturbation. Indeed, since a perturbative approach implies working in a logarithmic picture,
it is the lower mass what is going to be viewed as the “bare” value to be corrected. The
masses we consider are in fact below the Planck scale, and, being everything measured in
terms of this scale, higher masses are mapped into smaller ones:

m1 > m2 ⇒ | lnm1| < | lnm2| , (|m1| , |m2| < 1 ) . (5.47)
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This is the m3/10 mass itself in the case of particles with a bare mass higher than the m3/10

scale, as is the case of the particles of the third family (the quarks top, bottom and the τ).
Or it can be the mass of the particle, as is the case of the second family (charm, strange and
muon). In any case, the correction is of the form:

M2
0  M2 ≈ M2

0

(

1 + α
m2

M2
0

)

, (5.48)

where M0 and M are the bare and the corrected mass, and m is the perturbing mass, the
mass scale with which the state of massM is in contact through an interaction with strength
α = g2/4π. In the case of particles of the third family, M is the m3/10 scale, that from the
point of view of a logarithmic picture is the higher scale, and m the bare quark or lepton
mass. For the second family, things work the other way around: M is the bare mass of the
particle, andm corresponds to them3/10. When we say “the bare quark mass” we intend here
something different from the usual concept of bare quark mass. As they are usually given,
quark masses are in general directly derived from the mass of mesons they form, possibly
subtracted of the mass of the partner quark they are bound with, and corrected within the
framework of an SU(3)-colour symmetry based model of hadrons. Apart from the case of
the up and down quarks, the quark mass turns out to be, although not really coinciding and
sometimes considerably different 22, anyway of the same order of magnitude of the meson
mass. In our case, bare mass means instead the value given in 5.27–5.33. The coupling α
is in general the electromagnetic coupling, which provides the strongest interaction between
the two mass scales. Masses enter in expression 5.48 to the second power, because this mass
correction can be viewed as a propagator correction of an effective boson, as here illustrated:

q q
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3/10

where q and q̄ stand for a quark-antiquark pair, in the simplest case for instance in a π-
meson. Indeed, an expression similar to 5.48 could be considered also for the stable barions
considered in section 5.5. In that case, the strongest contact between the two scales, the up
and down quark scale and the m3/10 scale, is given by the strong coupling itself, of order one.
The correction ends therefore up into the m3/10 scale itself. For the π-mesons, or the other
mesons, K, C, B etc... (these last ones more or less “by definition” in direct relation to the
mass of their heaviest quark), although their constituents interact strongly, this interaction
involves the quarks within each meson. The strongest contact between the two scales is

22See for instance the case of the strange quark and the K mesons.
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however given by the electromagnetic interaction, and α is basically the electromagnetic
coupling.

In the case of neutrinos, their only contact with the m3/10 scale occurs through the weak
coupling. In itself, αw.i. is even a bit stronger than the electromagnetic coupling. However,
the effective strength of the interaction is of order:

αeff. ≈ αw.i. ×
m2
ν

M2
W

, (5.49)

where αeff. already takes into account typical energies of neutrino processes, and should
not be confused with GF , the Fermi coupling constant. The neutrino mass corrections are
therefore extremely suppressed.

The correction 5.48 reduces the effective mass of the t or b quarks and the τ lepton by
around one order of magnitude, producing values close to those experimentally measured.
More precisely, the top mass gets corrected to:

mt →∼ 164GeV , (5.50)

where, besides the value 5.32, we have also used the value of the electromagnetic coupling
logarithmically corrected to the bare top scale (α−1

γ : 183.78 → 92.91) 23. As in the case of
the electron, this value too should be corrected at higher orders, by recalculating the “bare”
top mass, from the 1582GeV of the first order, to a second order value, to be used as starting
point for the correction, to be plugged in 5.48. Then, as we did for the electron, in order to
catch the full phase space of the physical top particle we must add the lighter masses, the
heaviest of which are the bottom, tau, and charm masses. Here too one can easily see that
these higher order corrections better and better approximate the experimental value of the
top mass. Let’s see the first steps of this correction. First of all, we recalculate the relative
mass correction, or equivalently the relative coupling correction, run at the new corrected
top mass, 1582GeV. We obtain:

m
(0)
t = 2749GeV → 2749− (2749× 0.42) = 1603.53GeV . (5.51)

To this, we must sum the non-negligible contributions of the bottom, τ and charm bare
masses, obtaining:

m′
t ≈ 1603.53 + 35.3 + 8.99 + 1.048 = 1648.87GeV . (5.52)

Of course, to be more precise we should re-correct at the second order also the bottom, τ
and charm masses, something we are not doing here. Re-plugging 5.52 in 5.48, we obtain:

m′′
t ≈ 171.07GeV , (5.53)

23In principle, this value could be affected by the shift in the effective beta function, centered to the
electron’s scale, we discussed in section 5.4. However, we don’t have a recipe in order to derive the full
non-linear effective running of the electromagnetic coupling. We suppose that the local modification has
its peak around the electron/up/down scale, and tends to vanish both toward the T −1/2 and the mt scale.
Therefore, we neglect it in this and in the following computations, already affected in themselves by possibly
larger uncertainties.
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quite more in agreement with the experimental value, which is around∼ 171.4± 1.7GeV [51].
We don’t go further in the refinement of 5.53, because, to start with, we should recalculate
also the bottom, τ and charm bare masses. Then, to be more precise, we should also take
into account the modifications to the effective coupling and bare mass logarithmic scales, as
due to the SU(3) normalization factors of the quark mass ratios, 1/3 and 1/9 for the bottom
and the top of each SU(2) doublet. All these corrections contribute for at most ∼ 1%,
therefore an uncertainty lower than the error in the experimental value of the top mass.
More importantly, we must warn here that the agreement we obtain between our estimate
and the experimental value has to be taken more as the indication of the plausibility of our
analysis, rather than a real fine test. We are trying to evaluate the ratios of the volumes
in the phase space of the particles in a rather complicated part of the spectrum, where the
regions of validity of dual perturbative approaches meet. For instance, it is not completely
clear whether the best approximation is obtained by summing to the top phase space the
lower masses before the correction through the m3/10 scale, or after it. Here and in the
following we choose the first option. In the case of the top quark, since the top scale is well
above all these scales, this does not make such a big difference. Things become however
more critical when looking at the corrections to the lower masses, such as the one of the
bottom quark, the τ or the charm quark.

For the bottom, the effective coupling we use is the inverse electromagnetic at the bottom
scale, α−1

γ |b ∼ 102.95. We obtain:

mb →∼ 3.61GeV . (5.54)

This scale too should then be corrected in a way similar to the top mass. Adding the tau
and charm masses, we obtain:

mb →∼ 4.57GeV . (5.55)

This value is slightly above the average experimental estimate. However, the latter is ba-
sically extrapolated from the B-meson width, and 5.55, although above the extrapolated
value, is actually still compatible with the mass of the B-meson. A serious comparison
would require a better understanding of the theoretical uncertainties underlying the entire
derivation, both on the side of our evaluation of volumes in the phase space, and on the side
of the experimental derivation: for consistency, the extrapolation from experimental data
should be done entirely within the light of our theoretical scheme.

For the τ lepton we use a value of the electromagnetic coupling run to the lepton’s scale,
α−1
γ |τ ∼ 106.55, and obtain:

mτ →∼ 1.28GeV . (5.56)

For the further corrections to this value, analogous arguments apply also here, with the
difference that, being the τ mass so close to the m3/10 scale, the final result is more sensitive
to these corrections than in the top and bottom case. For instance, at the second order the
corrected bare τ mass, instead of 5.26, is mτ |2nd ∼ 9.52GeV, that gives 1.32GeV. Adding
the charm mass, we get a further correction by some 5%, leading to:

m′
τ ∼ 1.39GeV . (5.57)
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As it is also the case of the quarks of this family, in particular the bottom quark, it doesn’t
make however sense to go on with refinements of scale evaluations, as it is already clear
that something more fundamental is here missing, in order to explain the gap between the
values we obtain and the so-called experimental one (∼ 1.78GeV [49]). As we said, a better
understanding of the corrections to the volumes of phase spaces around the m3/10 scale for
unstable particles is in order. In the case of the bottom quark, the experimental value too is
strongly affected by model-dependent considerations, and things are even more complicated.

When we pass to the second family, analogous considerations hold for the charm quark,
whose mass is extremely close tom3/10. In first approximation, by inserting the renormalized
value of the electromagnetic coupling at the bare charm mass scale, α−1

γ |c ∼ 113.5, we obtain
a slight decrease of the quark mass:

mc : 1.048 → 0.946GeV . (5.58)

However, as it is already evident from the τ mass evaluation of above, as the bare scale
approaches the m3/10 scale, our perturbation method starts showing its limitations. Indeed,
in the case of the charm quark, it would be also possible to invert the role of bare mass and
perturbing mass, using the charm bare mass 5.30 as the mass M in the expression 5.48, and,
for m, the neutron mass, obtaining:

m′
c : 1.048 → 1.051GeV . (5.59)

Including the strange-quark mass shift, we would obtain a light increase to:

m′
c ∼ 1.170GeV . (5.60)

Similar considerations as for the bottom and τ masses are in order here too, and we leave
any further analysis for the future.

For the strange quark and the µ-lepton, they are below the m3/10 scale, and, as we start
to get far away from it, the reliability of our estimate starts to improve again. For the strange
quark, we use α−1

γ |s ∼ 117.94, to obtain, if we don’t consider the µ-mass shift:

ms →∼ 147MeV , (5.61)

and, when including the muon mass shift:

ms →∼ 205.7MeV . (5.62)

A comparison with what is known as the experimental value of the strange quark mass
is affected by theoretical considerations. In itself, the strange quark mass is extrapolated
via SU(3)colour-related techniques from the width of the K-mesons. Surely, in the space
of the K-mesons there is also the µ- channel. However, when the “bare” s-quark mass is
disentangled from the total width, does this mean that also the µ- shift gets decoupled? In
this case, the value to be considered for a comparison should not be the second one, 5.62, but
the µ-unshifted one, 5.61. The difficulties rely here also on the fact that we are comparing
extrapolated values, not true “experimental” ones.
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Finally, for the muon we use α−1
γ |µ ∼ 119.42, that leads to:

mµ →∼ 109.4MeV , (5.63)

and, when including the electron mass shift:

mµ →∼ 109.8MeV . (5.64)

One may notice that our mass corrections become the less and less precise as we get closer
to the m3/10 mass scale. Indeed, our approximation of the correction works better when the
bare scale of the particle is far away from m3/10, so that we can either treat the particle’s
scale, or the m3/10 scale, as the perturbing or the perturbed scale. When they are close,
other “non-linear” effects become important, and with our approximation we systematically
obtain an overestimate for the particles with a mass below m3/10 (muon and s-quark), and
an underestimate for the particles that are above (charm, tau, (bottom ?)).

5.7 The π and K mesons

The π0 mesons are bound states of the up and down quarks, that, differently from the proton
and the neutron, “interact” with the m3/10 scale through the electroweak coupling felt by
their quarks, instead than directly through the strong force. As a consequence, the relation
of the meson to the quark mass is given as according to 5.48, where in this case α is the
electromagnetic coupling. We expect therefore:

m2
π ∼ O(m2

q) ×
{

αe.m.O(m2
3/10) + O(1)

}

≈ O(m2
q)×

{

αe.m. (2mn)
2 + O(1)

}

. (5.65)

This leads to a ∼ 100 MeV scale. As we already observed, in principle the s-quark mass,
corrected by the m3/10 scale as given in 5.62, is somehow already the effective mass “corre-
sponding” to the K meson. It is not our scope here to enter into the details of the relation
between the effective quark and meson mass, that, according to the common framework in
which experimental data are interpreted (and therefore masses are derived) are supposed to
be linked through SU(3)-colour-splitting relations. We want here only point out that, for
what matters the charged mesons π± and K±, they occupy a different phase space volume
than the corresponding neutral ones; since the difference is due to the U(1)γ transformation
properties, i.e. to the quark content, we expect the mass difference between charged and
neutral mesons to be of the order of the mass difference of the component quarks. However,
differently from the case of the neutron–proton mass difference, here we don’t have stable
particles. For proton and neutron the phase space is basically the same (in the sense that
they continuously transform the one into the other), so that their differences simply reflect
the differences in the properties of the bare particles they are formed of. For the π and
K mesons, charged and neutral ones have instead access to completely different decay and
interaction chains. Their phase spaces are therefore really different. As a consequence, al-
though of the order of the mass difference of their quarks, the mass difference of the mesons
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are further modified by the modifications of the volumes of their effective phase spaces They
should therefore be investigated as higher order corrections, after a recalculation of the phase
spaces obtained by correcting the bare ones according to the meson interactions.

5.8 Gauge boson masses

According to Ref. [2], the mass of the bosons of a broken SU(2) factor of a gauge symmetry is
related to the masses m1, m2 of the particles transformed by this symmetry factor through:

α =
m1m2

M2
W

. (5.66)

Specifying this relation to the case of the SU(2)w.i. symmetry, we should expect that the
scale of the W boson is set by the heaviest SU(2) doublet, because it is the scale above
which the symmetry is effectively “restored”. We have thereefore:

α
3mtmb

M2
W

≈ 1 , (5.67)

where α ≡ αSU(2)w.i.
. The factor 3 can be understood in this way: each SU(2)w.i. transforma-

tion rotates one quark colour; we need therefore three such rotations in order to pass from
the bottom to the top quark phase space. Notice that the relation 5.67 can be viewed as the
integral form of a renormalization group equation. Differentiated and mapped to a logarith-
mic (and therefore in general also supersymmetric) representation, it roughly corresponds
to the usual expressions of the beta-function:

α
mtmb

M2
W

≈ 1
∂, log
 b ≈ T (R)− C(G) , (5.68)

where b is the gauge beta-function coefficient and T (R), C(G) are the contributions of matter
and gauge, entering with opposite sign. Inserting the mass values obtained in section 5.2.1,
corrected as in section 5.3, namely 5.32 and 5.33, and the value of the weak coupling 4.43,
run at the bottom scale, α−1 ∼ 24, 1 24, we get:

MW± ∼ 83.4GeV . (5.69)

In order to obtain this mass, we used for the top and bottom mass the “bare” values of
page 50, not the values after the correction that brings them to their actual experimental

24In principle, also the weak coupling should undergo an effective beta-function modification similar to the
one of the electromagnetic coupling discussed in section 5.4. However, as discussed in section 5.4 and in the
footnote at page 57, this is expected to be a local modification, that tends to vanish toward the upper end
scale of the matter sector, the scale that at present time is around the TeV scale. At the W -boson scale, αw.i.

should have almost regained its “regular” value. However, we cannot exclude a slight modification toward
a lower effective value, which could explain why we get a boson mass slightly higher than the experimental
one. If we assume a “linear” decrease of the effect, from the MeV to the TeV scale, we should find that, if at
the MeV scale the weak coupling undergoes a shift proportional to the one of the effective electromagnetic
coupling: αw.i.|1MeV → αw.i.|1MeV× (132.8/137), at the 80 GeV scale it should have lost ∼ 2/3 of its effect,
leading to a ∼ 83.0GeV W -boson mass (see Appendix C).
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value. Indeed, the relation 5.67 involves in its “bare” formulation bare particles. As it was
for the quarks, also W are unstable and their mass is corrected by their interaction with
the m3/10 scale. However, for gauge bosons things go differently than for matter states, and
their corrected mass cannot simply be obtained by plugging in 5.67 the corrected values of
mt and mb. Gauge bosons behave T-dually with respect to particles; therefore, in their case,
we must use an expression like 5.48 in its T-dual form:

1

M2
W

→ 1

M2
W

(

1 + α× 1

M2
W

∫

d4p

(p+m3/10)2

)

, (5.70)

where m3/10 here basically stays for the neutron’s mass, and the integral is intended up to the
W -boson energy. SinceMW > m3/10, 1/MW < 1/m3/10, and, as in section 5.6, we correct the
lower (inverse) scale 1/MW with the higher (inverse) scale 1/m3/10. Moreover, the effective
W -boson contact interaction is not suppressed by W -boson transfer propagators, and the
strongest interaction they have with the m3/10 scale occurs through the weak coupling.
Therefore, here α = αw.i.. Owing to the different type of effective loop correction to the
boson interaction with matter, as compared to the one of matter with matter, the term that
multiplies the coupling is of order 1. We have therefore:

1

M2
W

→ 1

M2
W

(1 + αw.i.) , (5.71)

or, T-dualized back:
M2

W →≈ M2
W (1 − αw.i.) . (5.72)

Inserting the value of αw.i. at the W mass scale, α−1
w.i.|MW

∼ 23.46, we obtain:

MW± → ≈ 81.6GeV . (5.73)

All the above expressions, 5.70, 5.71 and 5.72, neglect terms of order O(α2) (according
to [50], the fit of the current experimental values of the W± mass is around 80.399± 0.023
GeV; its difference with respect to our estimate is therefore of the order of the corrections
we are neglecting).

The mass of the Z boson cannot be directly derived in a similar way, by simply substitut-
ing mt to mb in 5.67: when m1 = m2 the symmetry is not broken, and the boson is massless!
In first approximation, we expect the Z mass to be of the order of the mass of theW bosons.
What distinguishes the mass of the Z boson from the one of the chiral W± bosons is that
the Z boson acquires a “right moving” component: while the charged bosons interact only
with a left-handed chiral current, the neutral boson has now a certain amount of coupling
with a right-moving current. Since the Z mass is related to the volume it occupies in the
phase space, the disagreement between the W and the Z mass is tuned by the strength
of SU(2)w.i. as compared to U(1)Z . In order to derive the mass of the Z boson, consider
therefore once again the relation 5.67 this time with Z, W− and W+ replacing respectively
the top, bottom quarks and the W boson: in this case we view the process as a transition
between W− and Z, produced by an element of the “group” SU(2)w.i./U(1)Z (more precisely
not a group but a coset). The coupling g is now the “coupling” of SU(2)w.i./U(1)Z . More
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precisely, since, as we discussed in section 4.3.3, the relation between “width” in the phase
space and mass, in the case of gauge bosons, is the inverse with respect to the case of matter
states (higher probability = lower boson mass), the relation 5.67 has to be “T-dualized” in
the space of couplings; namely, “S-dualized”. The effective coupling which enters in this
relation is therefore the inverse of the “coupling” g∗ of SU(2)w.i./U(1)Z . This on the other
hand is precisely what we should expect. If we set:

αSU(2)w.i.
= α∗

SU(2)w.i./U(1)Z
× αU(1)Z , (5.74)

being the U(1)Z coupling smaller than the one of the unbroken group, we obtain that α∗ > 1,
and the relation 5.67 must be dualized in order to reduce to the ordinary weak coupling.
The mass of the W boson virtually mediating the process appears on the other hand in the
denominator, as in 5.67. Since we are considering a transition between bosons instead of
fermions, what we obtain is a relation for the square of masses (mass terms are of the type
m2φ2 instead of mψ2):

(

MZ

MW

)2

≈ α∗
SU(2)w.i./U(1)Z

, (5.75)

and, using the relation 5.74,

MZ ∼
√

αSU(2)w.i.

αU(1)Z

MW . (5.76)

In order to obtain αU(1)Z we can proceed as in section 4.3.3, this time by determining the
fraction with respect to the volume occupied by SU(2)w.i. at the place of SU(2). This means
that the coupling of U(1)Z should stay to the coupling of U(1)γ in the same ratio as the
coupling of SU(2)w.i. stays to the one of SU(2). Therefore, we expect:

αU(1)Z

αSU(2)w.i.

≈ αU(1)γ

αSU(2)

. (5.77)

At present time, 4.37 and 4.41 and the W -boson mass 5.73 tell us that the Z boson mass
should be approximately:

MZ ∼ 1.127MW ≈ 91.96GeV . (5.78)

If we proceed as in the footnote at page 61, by assuming a linear decrease of the local
correction to the effective beta-function, this time of the electromagnetic coupling discussed
in section 5.4, till its vanishing at the top scale of the charged matter phase space, 5.18, we
get that at the 80GeV scale the shift should have been reduced to around 1/4 of its size,
producing a relative modification of the electromagnetic coupling at this scale of a factor
∼ 1.00791, leading to a modification of the ratio 5.76 by a factor 1.00394553, i.e. a Z to W±

mass ratio:
MZ

MW
: 1.127 → 1.132 , (5.79)

a number that should be compared with the experimental ratio of these masses, ∼ 1.134 [50].
Owing to the theoretical uncertainties implicit in our derivation, it does not make sense to
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refine the calculation, although it seems that the linear approximation of the effective beta-
function is not quite far from the real behaviour.

Let us now consider the present-time values of the electromagnetic and the weak coupling,
αγ , αw.i. ≡ αW , given in 4.41 and 4.37 (25), and the total width of the Z boson, given by
5.76: αZ = αW × (MW/MZ)

2. Their numerical relation can approximately be written as:

√
αγ ≈ √

αw.i. sin θ ; (5.80)

√
αZ ≈ √

αw.i. cos θ , (5.81)

where cos2 θ ≈ M2
W/M

2
Z . The angle θ can therefore be identified with the Weinberg angle,

θ ∼ ϑw. Indeed, since the Z boson has a larger width than the W boson only because it
has a part of non-chiral interaction similar to the one of the photon, these relations say
that from an effective point of view we have reproduced the first order of the electroweak
gauge sector of the effective action of the Standard Model (except from the Higgs sector, of
course: we don’t have a Higgs field). The degrees of freedom we have obtained and their
interactions can therefore be parametrized in a similar way, namely with interaction terms
of the type g J±

µW
∓µ and g

cosϑw

(

J0
µ − sin2 ϑwJ

e.m.
µ

)

Zµ. The Zµ term precisely says that

the Z boson has total width αeff
Z ∼ 1

4π
g2

cos2 ϑw
(1− sin2 ϑw)

2 = αw cos2 ϑw. We stress however
that in our case the relation 5.80 holds only at the numerical level, it is not a true functional
relation. In our theoretical framework the gauge interactions are only an effective first order
parametrization of what results from 1.1, 1.2.

5.9 The Fermi coupling constant

We are now in a position to make contact with the experimental value of the weak cou-
pling. This is measured through the so-called Fermi coupling constant GF , a dimensional
([m−2]) parameter defined as the effective coupling of the weak interaction at low transferred
momentum 26:

GF√
2

=
g2

8M2
W

=
παw
2M2

W

. (5.82)

From section 5.8 we know that we can identify αw.i. with the usual weak coupling αw of
the literature. Inserting our results for the W -boson mass, 5.73, and the value of the weak
coupling at the W -boson scale, given at page 62, we obtain:

GF |MW
= 1.4221× 10−5GeV−2 . (5.83)

As it was for the case of the fine structure constant, once again we are faced with the
problem of understanding what is the meaning of a physical quantity, whose value is always
related to a certain experimental process at a certain scale. From an experimental point of

25In our theoretical framework, the ratio of these couplings remains the same at any scale.
26Low means here negligible when compared to the W -boson mass.
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view the Fermi coupling is obtained by inspecting the pion into muon decay. The effective
renormalization of GF to the pion–muon scale is obtained in our framework in the same way
as for the other couplings, namely treating GF as a generic coupling, whose behaviour is
represented through an effective linearization as in 4.58. The relative variation from the W
to the µ or π scale 27 is of order:

∆GF

GF
|MW→mπ

≈ 0.81 , (5.84)

and we get:
GF |π/µ ≈ 1.1519× 10−5GeV−2 , (5.85)

a value about 1% away from the effective experimental value [49]. The percent is on the
other hand the order of the precision we have in our estimate of the W -boson mass, and as
a consequence we cannot hope to get something better for the Fermi coupling.

27Within our degree of approximation, it does not make such a difference the choice of one scale or the
other, between muon and pion.
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6 Mixing flavours

As one can expect, in our approach also the mixing of quark flavours in weak decays must
be considered in the light of the volume occupied by the various decay channels in the
phase space of all possible configurations. The usual classification into families, and the
Lagrangian one derives for an effective action, are here justified only by their “statistical”
convenience. As a matter of fact, there are no transitions in principle forbidden, but only
rare as compared to other ones. The experimental observation that mass eigenstates are
not weak-interaction eigenstates is traditionally encoded in a matrix VCKM, the Cabibbo-
Kobayashi-Maskawa matrix, which encodes all the information about the “non-diagonal”
propagation of elementary particles. It is defined as the matrix which rotates the base of
“down” quarks of the SU(2) doublets, allowing to express the current eigenstates in terms
of mass eigenstates:

VCKM =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



 . (6.1)

VCKM accounts for the mixing among different generations, as well as for a CP violating
phase. Despite the elegance of the formal treatment, and the intriguing relation between
number of quarks and the existence of a phase, from the point of view of the Standard
Model the entries of the CKM matrix remain external inputs, chosen to fit experimental
data: there seems to be no deep reason why a mixing of quark generations should exist at
all, nor why there should be a phase responsible for CP violation. The ordinary theoretical
treatment simply provides a parametrization of the quark mixing, for which the number
of quark families results to be precisely the minimal one allowing the existence of a phase
giving rise to CP violation. In the following, we will estimate the entries of this matrix, as
they can be computed for an effective action derived within our theoretical framework. We
will only give the absolute values of the matrix entries, namely the parameters accounting
for the amplitude of the non-diagonal decay channels. In our framework, the violation of
CP is not the consequence of the existence of a non-reabsorbable phase in a complex CKM
matrix, but originates from the general breaking of any kind of symmetry and parity due to
the superposition 1.1, as a consequence of the implied non-invariance of the time evolution
under time-reversal, both at the cosmological and local physics levels. For a discussion, we
refer the reader to [4].

According to our previous discussion, the ratios between entries of the CKM matrix
should be of the same order of the mass ratios, normalized to the full decay amplitude.
Mass ratios correspond in fact to “couplings”: mf/mi ∼ αi→f , accounting for ratios of
subspaces of the phase space. If αab is the coupling for the flip from family a to family b, the
decay amplitude of a a → b flavour changing decay is expected to be proportional to α2

ab.
In order to make contact with the ordinary description of the mixing mechanism, we must
consider that, as it is defined, the CKM matrix is unitary, and collects the information about
flavour changing, subtracted of any dependence on masses: in expressions of amplitudes, this
dependence is carried by other terms. This allows to normalize the matrix in such a way
that, owing to the fact that off-diagonal elements are much smaller than diagonal ones, the
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diagonal elements are close to 1:

|Vud|, |Vcs|, |Vtb| ≈ 1 , (6.2)

and, with a good approximation,

|Vus| ≈ |Vcd| (6.3)

|Vub| ≈ |Vtd| (6.4)

|Vcb| ≈ |Vts| (6.5)

As for the computation of masses, a detailed evaluation of the CKM matrix entries would
require taking into account all processes contributing to the determination of the phase
space. Here we want just to make a test of reliability of our scheme; we are therefore only
interested in a first approximation. To this purpose, it is reasonable to work within the
framework of the simplifications 6.2–6.5. Owing to these simplifications, we can restrict our
discussion to the off-diagonal elements |Vts|, |Vtd| and |Vcd|. A direct, non-diagonal t → s
decay should have an amplitude of order ms/mt, normalized then through mb/mt in order
to reduce to the scheme 6.2. A rough prediction for Vts is therefore:

Vts ≈ ms

mb
∼ 0.147GeV

3.6GeV
∼ 0.04 , (6.6)

where we have used the values 5.61 and 5.54. Similarly, we obtain:

Vtd ≈ md

mb
∼ 0.001 , (6.7)

and
Vcd ≈ md

ms

∼ 0.027 . (6.8)

While 6.6 basically agrees with the commonly expected value of this entry (see Ref. [49]),
6.7 and 6.8 are away by a factor ∼ 4 in the first case, and ∼ 8 in the second. An adjustment
of the value is not a matter of “second order” corrections. Here the problem is that for these
mixings, experimental results are mostly obtained through branching ratios of meson (π,
K) decays. In these quark compounds, the strong non-perturbative resummation is highly
sensitive to the GeV scale. Indeed, an experimental value |Vcd| ∼ 0.22 seems to be much
influenced not by the mass ratio of the bare quarks, but of the K and π mesons:

Vcd ≈ mπ

mK

∼ O(0.22) . (6.9)

Although in a lighter way, the meson scale seems to modify also the ratio of the bottom
to down quark transition. As we already said, here it is not a matter of determining a
physical quantity: only decay amplitudes are physical, the CKM matrix doesn’t have a
physical meaning in itself. It is therefore crucial to see how do we refer to this effective
tool: how much “resummation” we want to attribute to a correction to be applied to “bare”
decay amplitudes computed from a “bare” CKM matrix, and how much of it we prefer to
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already include in the CKM matrix. As long as the final products we consider are just meson
amplitudes, the two approaches are equivalent.

By comparing eqs. 6.8 and 6.9, we are faced with something at the same time reasonable
and which nevertheless sounds somehow odd. On one hand, the fact that 6.9 gives a higher
ratio is not surprising: it is in fact quite natural to think that a heavier particle has a larger
decay probability than a lighter one. On the other hand, when applied to the |Vcd| transition,
this argument seems to lead to a contradiction: the basic degrees of freedom of a K- and
π-mesons are the quarks; nevertheless, the Kaon has a larger decay probability than the
quarks it is made of. Indeed, it is not in this way that the enhancement of the Vcd entry due
to the passage from quarks to mesons has to be interpreted. The free quark “does not exist”,
Pions and Kaons are the lightest strong-interaction singlets containing the d and s quark.
Once inserted in the computation of a decay amplitude, the values we are proposing for the
entries of the CKM matrix must be corrected by some overall “form factor”, of the order of
mK/ms for the initial state, and of mπ/md for the final state. In practice, this is equivalent
to the introduction of an “effective” CKM matrix entry, V eff

cd ∼ (mK/ms)/(mπ/md) × Vcd.
This rescaling eats the factor ∼ 8 of disagreement between our prediction and the usual
value of this entry, as reported in the literature.

Differently from the case of |Vcd|, |Vts| turns out to be in agreement with what reported
in the literature, because the latter is derived by unitarity from |Vcb|, measured through
B → D decays. Both these mesons have a mass of the same order as the b and c quark
respectively. To be more precise, in these cases the quark mass itself, as is given in the
literature, corresponds to the “corrected mass”, basically coinciding with the mass of the
meson of which it constitutes the heaviest component. The matrix entry is therefore “by
definition” almost the same as the “bare” one.

The case of the |Vtd| (and Vub) entries is even more involved, being much higher the
uncertainties in the experimental derivation of the transition elements. In our framework,
neutrinos are massive, and we expect that the CKM matrix has a leptonic counterpart. The
“leptonic CKM” entries should however be more suppressed, as a consequence of the fact
that all the three neutrinos are lighter than the lightest charged lepton, and their spaces
have a higher separation. According to the leptonic mass values derived in section 5.1, we
expect at present time approximately:

V leptons
CKM ≡





Veνe Veνµ Veντ
Vµνe Vµνµ Vµντ
Vτνe Vτνµ Vτντ





≈





∼ 1 ∼ 0.007 ∼ 0.00005
∼ 0.007 ∼ 1 ∼ 0.007
∼ 0.00005 ∼ 0.007 ∼ 1



 . (6.10)

Non-diagonal lepton decays are therefore more difficult to observe than those of quarks,
perhaps more difficult to detect than neutrino masses themselves.
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7 Interacting theory

What we have done till now is to consider the string theoretical representation of 1.1 in order
to derive the spectrum and the properties in the limit in which the elementary particles can
be isolated as asymptotic states. As discussed in [2], this representation can be constructed
in the ordinary terms of the various dual string constructions only once gravity is basically
“decoupled”, which means the geometry of the base of the fibered space is flattened. Of
course, in the string construction gravity is present through the graviton, but this is dealt
with as one of the various fields of the spectrum, in first order decoupled from the other
degrees of freedom. Flattening the space means factorizing the base, so that string theory
appears to have the same physical content at each point of the three-dimensional space.
The superposition 1.1, and its non-perturbative string counterpart 1.2, consist however of a
sum of configurations in which different things happen in different places. Said differently,
in the superposition the energy distribution is not homogeneous (the symmetry of space is
broken). Unfortunately, we have at present no tools to investigate the pure non-perturbative
regime of string theory, besides the simple comparison of dual constructions, which anyway
correspond to limit cases, with either vanishing or extremely strong coupling. The traditional
approach to string theory has developed a set of tools enabling to compute various scattering
amplitudes. Although important in themselves, these tools cannot be used in our theoretical
framework in order to compute terms of the interacting theory. In our context string theory
does not compute densities, and therefore terms of an effective action, but global quantities.
Moreover, the states one wants to identify as the asymptotic representation of free particles
or fields are superpositions of states of a staple of configurations, and it is therefore not clear
what kind of vertex operator they should correspond to. We can nevertheless derive some
phenomenological aspects in an approximate way. We will consider here some significant
cases in which the power of our approach can be seen explicitly.

7.1 The 125 GeV resonance at LHC

Let us start by considering the scattering of a particle/antiparticle pair (it can be an ℓℓ̄
scattering, such as those of the old LEP, or a proton-antiproton pair, such as those occurring
at LHC). We want to understand within our framework how it occurs that, when the rest-
frame center-of-mass energy of the pair attains a value corresponding to the mass of a new
particle (or field), the scattering amplitude gets enhanced. Namely, we want to understand
why do we have a resonance. In the phase space, the weight of a configuration with particle
1 at position ~x1 and particle 2 at position ~x2 is the product of the weights of the two single
configurations (like probabilities, weights are always < 1 because they are normalized to
the total partition function, and, since they are related to volumes of symmmetry groups
and group cosets, like probabilities they compose multiplicatively). Consider the moment
in which ~x1 ≃ ~x2, and Etot = E1 + E2 / m3, where m3 is the mass of a new particle of
the spectrum, and compare it with the moment ~x1 = ~x2, Etot = m3. While in the first
case we have a product of two systems, each one with its complete, independent symmetry
group, at the resonance point, from the point of view of 1.1, which only knows about energy
distributions, there is no distinction with respect to the configuration of a single particle at
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rest with mass m3. There is therefore a strong increase of the weight of the phenomenon in
the phase space of the configurations: now there are more possibilities to produce the very
same configuration.

The increase of volume in the phase space may occur also as the consequence of the total
disappearance of a symmetry, such as the U(1) electromagnetic symmetry. As we discussed
in section 4, mass ratios correspond to coupling strengths of symmetry groups: a particle is
heavier than a lighter one by a factor given by the ratio of the two corresponding symmetry
groups. In the scattering of a particle-antiparticle pair of charged particles, at an energy α−1

γ

times higher than the sum of the energies of the two particles the configuration is at all the
effects undistinguishable from the one of an energy packet with mass α−1

γ times higher, with
a symmetry group with volume αγ times smaller. That means, a particle which does not
possess the U(1) symmetry. This does not mean this particle must exist as an asymptotic
state: for the existence of a resonance it is sufficient that we created a configuration with
a lower internal symmetry group, virtually equivalent to a physical particle. Notice that,
no matter how close we are to the critical point, above or below this energy we have two
particles, with their full internal groups, and therefore a weight in the phase space which
is at most the square of the weight at the resonance (remember that weights are always
smaller than 1, so that the square of a weight is smaller than the weight itself). We may
call this a “bound state” of the U(1) interaction. As discussed in Ref. [2], such a bound
state can be expected also by considering the coulombian potential energy in a microscopic
world in which the minimal distance is the Planck length. For particles of unit charge (such
as electrons or protons), in Planck units the potential energy is simply −α (the minus sign
because we have a particle-antiparticle pair), so that, in the linearized representation of the
perturbative approach, the energy equation reads:

M = m − α , (7.1)

where m is the center-of-mass energy of the colliding pair, and M the resonance energy.
Once pulled back from the tangent space to the physical space through exponentiation this
leads to the here usual relation of mass ratios:

m

M
= α . (7.2)

In our approach we interpret as resonance of this kind the two resonances recently detected at
LHC around 125 GeV. Indeed, they are so close to almost appear as a unique resonance, that
one would like to interpret as a Higgs boson signal. In our theoretical framework there is no
Higgs boson as an asymptotic state: we see these two peaks as resonances of pp̄→ (pe−)p̄e+

and pp̄→ (pµ)p̄µ̄, where we indicate within brackets the virtual bound state. Once inserted
the effective value of the electric coupling run at the quark scale (α ∼ 1/133), we obtain a
resonance at the “bound” energies α−1m(pe) = 124.7GeV and α−1m(pµ) = 128GeV. The
interactions of these excited states are the same of the non-excited ones. This fact could
explain why, according to the current experimental data ([45], [52], [53]), in these resonances
the favoured decay channels seem to be the typical leptonic ones (→ 2γ), rather than the
ones one would expect from a true Higgs boson.
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7.2 The CMB radiation

The 125 GeV resonance can still be interpreted in terms of a virtual state made up of
asymptotically existing states. This approach allows however to understand also energy
thresholds which can hardly be interpreted in terms of usual particle and fields. An example
is the cosmic background radiation, which has the typical spectrum of a black body radiation,
with a temperature of about 2.8 0K [54, 55]. In the usual cosmological interpretation, this
radiation is interpreted as being the remnant of very early processes in the universe: it
would consist of photons cooled down during the expansion of the universe. At the origin
they should have possessed an energy corresponding to a microwave length, as expected
from energy exchange due to Compton scattering through the plasma at the origin of the
universe. The low temperature would then be the effect of the cooling down of the universe
due to its expansion.

In our theoretical framework it is not necessary to advocate the primordial history of
the universe in order to account for the existence of a low-temperature radiation. Being
a background radiation, it must not evidently come from clearly identified sources such as
electronic transitions in the elements composing stars etc. Indeed, the fact that the super-
position of configurations 1.2 leads to a spectrum that we can interpret in terms of the usual
elementary particles and fields does not mean that the physics of the universe is completely
accounted in terms of these degrees of freedom and their interactions. Like the masses of
the elementary particles, also the photon energies are the result of an averaging procedure
over all the configurations. As such, they do not necessarily correspond to energy levels
of ordinary elementary particles: what we call photon is associated to the U(1) symmetry,
which is present in a full bunch of string configurations, not only those of highest entropy.
The lowest energy level of an interaction of the photon with matter occurs at the level of
chiral fermion fields. If one wants, it is possible to see this in terms of asymptotic states of
a field-theoretical approximation as an indirect, higher loop interaction of the photon with
the lightest neutrino, via an intermediate neutral-current interaction. However, it is not
necessary, and perhaps not appropriate, to force an interpretation in terms of asymptotic
particles. Chiral fermions are “half” of massive fermions, and as such they have a weight
in the phase space which on the tangent space (the perturbative construction) is one-half of
massive fermions. According to the derivation of couplings in section 4, the beta-function
exponent corresponding to the amplitude of their interaction is therefore one-half, i.e. the
coupling the square-root, of the one of the full fermions. In a fermionic space-time, i.e. in a
“square-root” space in which the lowest momentum of a universe extended up to T is not
1/T but 1/

√
T , the lowest average energy of a photon pair interacting with the vacuum is

therefore:

〈E2γ〉 ∼ √
αγ

1√
T
. (7.3)

The scale at which αγ is fixed is determined by our way of detecting the radiation under
question, namely through photon-electron interactions in our detectors. Indeed, out of the
configuration of highest entropy, in which the spectrum of matter and interactions is precisely
the known one, the electromagnetic U(1) is not disentangled from other types of neutral
current interaction. From a phenomenological point of view, it is the interaction with the
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electron what identifies the electric coupling, and distinguishes it from other types of neutral-
current interaction, therefore singling out also what the photon is. The value of the electric
coupling to be inserted in this expression is therefore the one at the electron scale. Inserting
the value of αγ at the electron’s scale, derived through an effective running of the type 4.58
from the initial value 4.41 at the T −1/2 scale to the 0.5MeV scale, α−1

γ |me
∼ 132.3, the

value 4.52 for the present age of the universe, and converting energy into temperature through
the Boltzmann constant, we obtain:

Tγ ≡ k−1 < pγ > = k−1E0
γ ∼ 2.72 0K . (7.4)

The Gaussian tail of the resonance, leading to a black-body distribution of frequencies, is
in this context the consequence of the superposition 1.1, for which the entropy sum, once
restricted to the phenomenon under consideration, and thermodynamically interpreted as in
section 5.1 of Ref. [2], namely through S ∼ E/T , becomes a typical Gaussian distribution.

7.3 The fate of dark matter and the Chandra observations

A discrepancy between our framework and the common expectations is the absence in our
scenario of dark matter. According to our analysis, the universe consists only of the already
known and detected particles. Of course, there can be regions of the space in which a high
concentration of neutrinos, which for us are massive, increases the curvature without being
electromagnetically detected. But this is not going to change dramatically the scenario:
there is no hidden matter acting as an extra source able to increase the gravitational force
by around a factor ten over what is produced by visible matter, as it seems to be required in
order to explain a gravitational attraction among galaxies much higher than expected on the
base of the estimated mass of the visible stars. The problem arises in several contexts: Big-
Bang nucleosynthesis, rotational speed of galaxies, gravitational lensing. All these points
would require a detailed investigation, beyond the scope of this work. We will also not
attempt to rediscuss a huge literature, and limit ourselves here to mention some hypotheses.
The first remark is that the discrepancies between theoretical expectations and the observed
effects, which are found in so different issues as primordial universe, nucleosynthesis and
galaxy phenomenology, don’t need necessarily to be explained all in the same way.

Let’s consider the problems related to the motion of external stars in spiral galaxies,
where for the first time the issue of dark matter has been addressed, and the “anomalous”
gravitational lensing, with reference to the recently observed effect in the 1E0657-558 clus-
ter [56]. It is since 1933 (Fritz Zwicky) that, by looking at the amount of red-shift in the
light emitted by the stars in the wings of a spiral galaxy, it has been noticed how, differently
from what expected, the rotation speed does not decrease with the inverse of the square root
of the radius: it is a constant [57, 58]. Presence of invisible matter has been advocated, in
order to fill the gap between the mass of the observed matter and the amount necessary to
increase the gravitational force. Indeed, the expectation that the rotation speed of stars in
the external legs should decrease is based on the assumption that almost the entire mass of
the galaxy is concentrated in the bulge at the center of the spiral. Any star on the wings
would therefore feel the typical gravitational field due to a fixed, central mass.
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In the framework of our scenario, masses have been in the past higher than what they are
now. Moreover, owing to the fact that, as we discuss in [1], the universe “closes up”, in such
a way that the horizon we observe corresponds to a “point”, the space separation between
objects located at a certain cosmic distance from us appears to be larger than what actually
is. All this could mean that the mass of the center of a galaxy, as compared to the wings, has
been systematically overestimated. It would be interesting to see, by carrying out a detailed
re-examination of the astronomical observations, whether the behaviour of the center of a
galaxy still requires to advocate the presence of a heavy black hole, in order to explain a
gravitational force higher than what expected on the base of the estimated mass of the visible
stars. In any case, it is possible that, once the downscaling of length and upscaling of masses
has been appropriately taken into account, a better approximation of a spiral galaxy is the
one sketched in figure 2. In part A of the picture the galaxy is (very roughly) represented
with wide wings, with stars relatively “broadened” on the plane of the galaxy. Part B shows
the same figure, simply with much narrower arms. In picture A the broad lines have been
shadowed in a way to make evident that the higher star density of the bulge is largely due
to the “superposition” of the various arms. Nevertheless, as it is clear from picture B, the
problem remains basically “one-dimensional”: the wings are one-dimensional lines coming
out of the center of the galaxy. Under the hypothesis that all the stars have the same mass,
the linear density of a wing is constant, and, once integrated from the center up to a certain
radius R, the total mass MR of the portion of galaxy enclosed within a distance R from the
center is roughly proportional to R:

ρ =
dM

dr
∼ const. ⇒ MR ∼ const × R . (7.5)

In the expression of the gravitational potential, the linear R dependence of the mass cancels
against the R appearing in the denominator (the potential remains the one of a Coulomb
force). The gravitational potential energy is therefore a constant times the mass of the star
in the wing. Conservation of energy implies therefore that also the velocity of the star does
not depend on the radius R. We stress that this is only an approximation: it would be exact
if the arms were not those of a spiral but straight legs coming out radially from the center,
and under the assumption that all the stars of the bulge correspond to the superposition of
the arms.

In the case of the 1E0657-558 cluster, the Chandra observatory has detected a gravita-
tional lensing higher than what expected on the base of the amount of luminous matter.
Moreover, the highest effect corresponds to two dark regions close to the cluster, rather than
to places where the visible matter is more dense. In the framework of our scenario, a possible
explanation could be that what is observed is the effect of a “solitonic” gravitational wave,
produced as a consequence of the separation of one sub-cluster from the other one. This
could increase the gravitational force by an amount equivalent to the displaced cluster mass,
for a length/time comparable to the cluster size, therefore a time much higher than the few
hours during which the effect has been measured (∼ 140 hours). It remains that the lensing
is around 8-9 times higher than what expected on the base of the amount of visible mass.
However, the cluster under consideration is at about 4 billion light years away from us. This
is around 1/3 of the age of the universe. This time distance is large enough to make relevant
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Figure 2: Picture A is the rough sketch of a spiral galaxy, in which the arms are broad and
shadowed in a way to highlight the increasing mass density due to their superposition at
the center. Figure B represents the same object, with the arms narrowed down, in order to
highlight the one-dimensional nature of the physical problem, for what concerns the mass
density.
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the effects due to a change of the curvature of space-time along the evolution of the universe,
as well as the change of masses. Furthermore, as we discussed above, the apparent space
separation between objects located at a certain cosmic distance from us must be appropri-
ately downscaled, in order to account for the curving up of space-time into a sphere, with the
horizon “identified” with the origin. Putting all this together, we obtain that the effective
gravitational force experienced on the 1E0657-558 cluster is (or, better, it was) indeed 8-9
times higher than what it appears to us on the base of the expected mass of the objects in
the cluster, i.e. precisely the amount otherwise referred to dark matter.

7.4 Cosmological constraints

Cosmology addresses two kinds of problems for what concerns the “running back” of a the-
ory, or an “early time” model. Namely, 1) the possible non-constancy of what are commonly
called “constants”, and 2) the agreement with the expected origin/evolution of the early uni-
verse (baryogenesis, nucleosynthesis etc...). In our framework, these issues are put in a light
quite different from the usual perspective: there are in fact indeed no constants; therefore, a
variation of couplings, masses, cosmological parameters, and, as a consequence, energy spec-
tra, is naturally implemented. However, there is a peculiarity: all these parameters scale as
appropriate powers of the age of the universe. As a consequence, a “number” close to one
at present day has a very mild time dependence:

O(1) ≈ T ǫ ⇒ |ǫ| ≪ 1 , (7.6)

and therefore varies quite a little with time. Oklo and nucleosynthesis bounds, being given as
ratios of masses and couplings that cancel each other to an almost “adimensional” quantity,
are precisely of this kind. In our case they don’t provide therefore any dangerous constraint.

For what concerns the non-constancy of “constants”, there are not enough data enabling
to test our prediction about a time variation of the cosmological constant, whose measure-
ment is still too imprecise. A more stringent test of the variation of parameters comes from
the observations on the light emitted by ancient Quasars. In this case, the spectrum shows
an “anomalous” red-shifted spectrum. This shift should not be confused with the usual
red-shift, of which we have discussed in section 3.1. The effect we consider here persists once
the “universal” red-shift effect has been subtracted. As an explanation, it is often advocated
a possible time variation of the fine structure constant α.

7.4.1 The “time dependence of α”

The question of the possible time variation of the fine structure “constant” arises in the
framework of string theory derived effective models for cosmology and elementary particles.
Various investigations have considered the possibility of producing some evidence of this
variation, or at least a bound on its size. To this regard, astrophysics is certainly a favoured
field of research, in that it naturally provides us with data about earlier ages of the universe.
A possible signal for such a time variation could be an observed deviation in the absorp-
tion spectra of ancient Quasars [59, 60, 61, 62]. This effect consists is a deviation in the
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energies corresponding to some electron transitions, which remains after subtraction of the
background effect of the red-shift, and is obtained with interpolations and fitting of data.

What is observed is a decrease of the relativistic effects in the energies of the electrons
cloud, with respect to what expected on the base of present-day parameters (in particular,
the fine structure constant). Indeed, while the atomic spectra are universally proportional
to the atomic unit me2 ∝ mα2, the relativistic corrections depend on the coupling α. After
subtraction of the “universal” red-shift effects, their variation should then be directly related
to a variation of α. In our framework, the explanation comes from considering both the
scaling of α and the one of masses at the same time: going backwards in time α increases, as
also the proton and the electron mass do, but the ratio of α to the mass scales decreases. This
is the “variation of α after subtracting the universal red-shift” which is usually considered
in the discussions of the literature. Namely, if we measure the variation of α with respect
to the electron’s mass scale (whether the true electron mass or the “reduced” mass doesn’t
make a relevant difference 28), i.e. if we rescale quantities in the frame in which masses are
considered fixed, we indeed observe a decrease of the coupling α. Indeed, what is done in
the literature (see Refs. [60]) is not only to consider masses fixed, but to exclude from the
evaluation also the effect of the red-shift. With current experimental methods, based on the
interpolation of spectral data in order to find out the “background” and the variations out
of it, this subtraction is somewhat unavoidable.

In order to obtain what the prediction in our scenario is, and how it compares with the
literature, let’s first see how the decrease of the relativistic effects, when going backwards
in time, turns out to be a prediction of our framework. Consider the effective scaling of α
in terms of mα2 units, the “universal” scaling of emission/absorption atomic energies. We
have that:

ᾱ
def≡ α

mα2
≈ T 1

3
+ 1

28 . (7.7)

The “effective” coupling ᾱ scales as a positive power of the age of the universe: going back-
wards in time, it decreases. According to the literature, atomic energies have an approximate
scaling of the type 29:

En ≈ Kn (mα2) + Γn α
2 (mα2) , (7.8)

where Kn and Γn are constants and the second term, of order α2 with respect to the first
one, accounts for the relativistic corrections. Investigations on the possible variation of α use
interpolation methods in order to disentangle the second term from the first one. Since the
universal part is reabsorbed into the red-shift, the relative variation should give information
on just the variation of α. Expression 7.8 is of the form:

En ≈ E0
n (1 + a1 α

2) . (7.9)

It is derived by considering the first terms of a field theory expansion around the fine structure
constant (the electric coupling). Indeed, since we are interested in the correction subtracted

28In the hydrogen atom this is given by me =
memp

me+mp
. The possibility of referring to a change of this

quantity the effect measured in Ref. [60] can be found in Ref. [63, 64, 65].
29See for instance Ref. [60]
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of the universal part reabsorbable in the red shift, we can separate the O(α2) term in 7.8 as:

Kn = (Kn − Γn) + Γn . (7.10)

This allows to reduce the part of interest for us to:

Eeff
n ≈ E0

n (1 + α2) . (7.11)

As we already observed several times along this work, perturbative expressions involving
elementary particles are naturally defined and carried out in a logarithmic representation
of the physical vacuum. In particular, when writing expressions like 7.8 it is intended that
the coupling α scales logarithmically. An expression like 7.11 should be better viewed as
accounting for the first terms of a series that sums up to an expression scaling as a certain
power of the age of the universe:

αeff ≡ 1 + α2 ≈ 1 + α2 + O(α4)  ∼ T β , (7.12)

where α is then not the full coupling, intended in the non-perturbative sense of 4.12, but
its logarithm. According to 7.7, in the hypothesis of keeping masses fixed, this term should
then effectively scale as a positive power of the age of the universe: β > 0. The exponent β
can be fixed by comparing values at present time:

α|today ≈
√
5 × 10−5 . (7.13)

We obtain therefore:

1 + α2 ≈ O(1 + 5 × 10−5) ≈ T β ⇒ β ∼ O(10−6) , (7.14)

and a relative time variation:

α̇eff

αeff
≈ β T −1 ≈ O

(

10−16 yr−1
)

. (7.15)

This is the relative variation of the relativistic correction subtracted of the universal part
(reabsorbed in the red-shift), to be compared with the results of [59], as reported also in [60]:

〈α̇〉
α

= −2.2 ± 5.1 × 10−16 yr−1 . (7.16)

Since the deviation of the resummed function 7.11 from a pure exponential is of order
α4 ∼ 2 × 10−9, four orders of magnitude smaller than the dominant term, the inaccuracy
in our computation is much lower than the order of magnitude of the result.

7.4.2 The Oklo bound

Data from the natural fission reactor, active in Oklo around two billions years ago, are
today considered one of the most important sources of constraints on the time variation
of the fundamental constants. By comparing the cross section for the neutron capture by
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Samarium at present time with the one estimated at the time of the reactor’s activity,
one derives a bound on the possible variation of the fine structure constant, and on the
ratio GFm

2
p, in the corresponding time interval. The interpretation of the experimental

measurements and their translation into a bound on the variation of the capture energy
resonance is not so straightforward, and depends on several hypotheses. In any case, all
these steps are sufficiently under control. More uncertain is the translation of this bound on
the energy variation into a bound on the variation of the fine structure constant and other
parameters: this passage requires strong assumptions about what is going to contribute to
the atomic energies. This analysis was carried out in Ref. [66], basically on the hypothesis
that the main contribution to the resonance energy comes from the Coulomb potential of the
electric interaction among the various protons of which the nucleus of Samarium consists.
According to [66], after a certain amount of reasonable approximations, the energy bound
translates into a bound on the variation of the electromagnetic coupling. A simple look
at expression 4.36 shows that, in our scenario, the variation of this coupling over the time
interval under consideration violates the Oklo bound. This bound seems therefore to rule
out our theoretical framework. However, things are not so simple: the derivation of a bound
on a coupling out of a bound on energies works much differently in our framework, and we
cannot simply use for our purpose the results of [66]. Indeed, in our framework what varies
with time is not only the fine structure constant, but also the nuclear force, and the proton
and neutron mass as well. Of relevance for us is therefore not a bound on a coupling, derived
under the hypothesis of keeping everything else fixed, but the bound on the energy itself [66]:

−0.12 eV < ∆E < 0.09 eV . (7.17)

In order to give an estimate of the amount of the energy variation over time, as expected in
our framework, we don’t need to know the details of the evaluation of the resonance energy
starting from the fundamental parameters of the theory. To this purpose, it is enough to
consider that, whatever the expression of this energy is, it must be built out of i) masses,
ii) couplings (electro-weak and strong) and iii) the true fundamental constants (the speed
of light c, the Planck constant ~, and the Planck mass Mp). Working in units in which the
latter are set to 1 (reduced Planck units), all parameters of points i) and ii) scale as a certain
power of the age of the universe. As a consequence, the resonance energy itself mainly scales
as a power of the age of the universe:

E ∼ aT −b . (7.18)

(More generically, it could be a polynomial: E ∼ a1T −b1 + a2T −b2 + . . . + anT −bn . In this
case, to the purpose of checking the agreement with a bound, it is enough to look at the
dominant term). We can fix the exponent b by comparing the expression, evaluated using
the present-day age of the universe, with the value of the resonance, that we take from [66]:

E ∼ aT −b = 0.0973 eV × 1.2 × 10−28 = 1.2 × 10−29MP . (7.19)

In order to solve the equation, we would need to know the coefficient a, something we don’t.
However, as long as we are just interested in a rough estimate, it is reasonable to assume
that, since this coefficient mostly accounts for possible symmetry factors, it may affect the
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value of the result for about no more than one order of magnitude. Inserting the value
T ∼ 5 × 1060M−1

P for the age of the universe, we obtain:

b ∼ 1

2
, (7.20)

and finally:

|∆E| ∼ 1

10
E ∼ 0.01 eV . (7.21)

over a time of two billion years. This is compatible with the Oklo bound, eq. 7.17.

From the Oklo data one tries also to derive a bound on the adimensional quantity

β ≡ GFm
2
p(c/h̄

3) . (7.22)

In this case, our discussion is easier, because we know the scaling of all the quantities
involved 30. Once again, we have to deal with a quantity that scales as a power of the age
of the universe. At present time, we have:

β ∼ T −bβ = 1.03 × 10−5 . (7.23)

Inserting the actual value of the age of the universe, we obtain bβ ∼ 1
12
. Over a time interval

of around 1/5 of the age of the universe, this gives a relative variation:

∆β

β
∼ 0.017 , (7.24)

to be compared with the one quoted in Ref. [66]:

|βOklo − βnow|
β

< 0.02 . (7.25)

Both results 7.21 and 7.24, although still within the allowed range of values, seem to be
quite close to the threshold, beyond which the model is ruled out. One would therefore
think that a slight refinement on the measurement and derivation of these bounds could
in a near future decide whether it is still acceptable or definitely ruled out. Things are
not like that. Indeed, as we already stressed in several similar cases, the entire derivation
of bounds and constraints, involving at any level various assumptions about the history of
the universe and therefore of its fundamental parameters, should be rediscussed within the
new theoretical framework: it doesn’t make much sense to compare pieces of an argument,
extracted from an analysis carried out in a different theoretical framework, with different
phenomenological implications. To be explicit, in the case of the derivation of the Oklo
bounds, one should reconsider all the derivation of absorption thresholds and resonances.
We should therefore better take into account from the beginning the time variation of all

30We recall that GF /
√
2 = g2/8M2

W . Therefore, β = παm2
p/

√
2M2

W . For times much higher than 1 in
reduced Planck units, the proton mass can be assumed to scale approximately like the mean mass scale 4.48.
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masses, and in particular the neutron and proton masses, as well as couplings. Perhaps a
more meaningful quantity is then not anymore the pure resonance shift, but this quantity
rescaled by the neutron mass. In this case, the effective variation of interest for our test is
not 7.21, but:

∆(E/mn)

(E/mn)
≈ ∆T − 1

9

T − 1
9

∼ 0.02 , (7.26)

a variation one order of magnitude smaller than 7.21 (∆E/E ∼ 0, 1). Analogous con-
siderations apply also to the case of the second bound 7.24, basically equivalent to the
nucleosynthesis bound.

7.4.3 The nucleosynthesis bound

Bounds derived from nucleosynthesis models are even more questionable: they certainly
make sense within a certain cosmological model, but, precisely because of that, they cannot
be simply translated into a framework implying a rather different cosmological scenario.
Once again, the only anchor points on which we can rely are the few “pure” experimental
observations, to be interpreted in a consistent way in the light of a different theory. The point
of nucleosynthesis is that there is a very narrow “window” of favourable conditions under
which, out of the initial hot plasma, our universe, with the known matter content, has been
formed. Of interest for us is the very stringent condition about the temperature (and age of
the universe) at which the amount of neutrons in baryonic matter have been fixed. As soon as,
owing to a cooling down of the temperature, the weak interactions are no more at equilibrium,
the probability for a proton to transform into a neutron is suppressed with respect to the
probability of a neutron to decay into a proton. Owing to their short life time, comparable
with the age of the universe at which the equilibrium is broken, basically almost all neutrons
rapidly decay into protons, except for those that bound into 4He. Nucleosynthesis predicts
a fraction of 4Helium and Hydrogen baryon numbers (∼ 1/4) in the primordial universe,
which is in good agreement with experimental observations. The formula for the equilibrium
of neutron/proton transitions is given by:

n

p
= e−

∆m
kT ∼ 1 , (7.27)

where ∆m = mn −mp. In the standard scenario, this mass difference is a constant, and the
temperature runs as the inverse of the age of the universe. The equilibrium is broken at a
temperature of around 0.8 MeV, when (n/p) ≃ 1/7. In our framework too the temperature
runs as the inverse of the age of the universe, but the mass difference ∆m is not a constant:
all masses run with time. At large times (T ≫ 1 in Planck units), we are in a regime
in which we can use the arguments of section 5.3, in order to conclude that, being the u
and d quark masses much lighter than the neutron mass scale, we can consider ∆m as a
perturbation of m ≃ mn. In this regime, the neutron-proton mass difference is basically of
the order of the constituent quark mass difference, and we have reasons to expect that it
also runs accordingly. It would therefore seem that, in our case, going backwards in time,
the ratio (n/p) remains lower than in the standard case, and the equilibrium 7.27 is attained
at a temperature much higher. However, to the purpose of determining the processes of
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the nucleosynthesis, essential is not just the scaling of the equilibrium law of the neutron-
to-proton ratio, but also that of the mean life of the neutron. It is the combined effect
of these two quantities what determines the primordial baryon composition. In the usual
approach, the neutron mean life is assumed to be constant. Being related to the neutron
decay amplitude, i.e. to the volume occupied by the neutron in the phase space, in our
framework this quantity too is not constant. In order to see what in practice changes in our
scenario with respect to the standard one, instead of attempting to guess what the scaling
behaviour of the neutron mean life could be, we can proceed by considering, instead of the
pure running of the equilibrium equation, the reduced running at fixed neutron mean life.
Certainly the mean life is constant if the neutron mass is constant. The quantity of interest
for us is therefore the scaling of the mass difference, as measured in units of the neutron
mass itself. According to our considerations of above, we have:

∆mred(T ) ≡ ∆m

mn
∼ T p(u−d)

T pn
, (7.28)

where p(u−d) and pn are exponents corresponding to the up-down quark mass difference and
to the neutron mass respectively. This running is expected to hold not only at present time
but also at a temperature of ∼ 1 MeV, which is anyway much lower than the Planck scale.
We can therefore compare our prediction with the standard one by simply considering the
relative deviation of equation 7.27 from its standard value, as obtained by replacing the
constant mass difference ∆m with ∆mred(T ):

n

p
= e−

∆m
kT →

(

n

p

)

red

≡ e−
m̄n∆mred(T )

kT , (7.29)

where m̄n is the fixed, time-independent present-day value of the neutron mass. Therefore,
in the standard case (n/p)red coincides with (n/p). According to the mass values given in
section 4, we have:

∆mred(T ) ≈ T − 1
24 . (7.30)

Considering that the time variation between the point Tf of the breaking of equilibrium and
the present day is of the order of the age of the universe itself, ∆T ≡ T −Tf ∼ T , we obtain
approximately that the integral variation of x ≡ ∆mred(T ) over this time interval is:

∆x ∼ 1

24
x . (7.31)

The “reduced value” of (n/p), (n/p)red, is now modified to:
(

n

p

)

red.

:
1

7
→ ∼ 1

7

(

1 − ln 7

24

)

≈ 0.131 . (7.32)

This value leads to a ratio X4 of helium to Hydrogen of around:

X4 ∼ 0.232 , (7.33)

still in excellent agreement with what expect from today’s most precise determinations (for
a list of results and references, see Ref. [49]).
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Appendix

A Conversion units for the age of the universe

We give here some conversion factors from time units to Planck mass units.

1 year (yr) = 3.1536 × 107 s

In order to convert this value to eV units we divide by ~ = 6.582122 × 10−22 MeV s. We
obtain:

1 yr = 4.791160054 × 1028 MeV−1

Considering that the Planck mass MP = 1.2 × 1019 GeV, we have also the relation:

1 yr = 3.992633379 × 1050M−1
P .

The age of the universe T , estimated to be around 11.5 to 14 billion years, reads therefore:

T ≈
{

4.59152839
5.58968673

× 1060 M−1
P

If instead we take the neutron mass as the most precise way of deriving the age of the
universe, from expression 4.50 and the present-day measured neutron mass, we obtain:

T ≈ 5.038816199 × 1060 M−1
P ( = 12.6202827× 109 yr)

B The type II dual of the N4 = 1 orbifold

We discuss here the type II dual construction of the N4 = 1 orbifold vacuum of section 2.1.1.
On the heterotic side, this appears as a supersymmetric construction. We claimed that
N4 = 1 supersymmetry exists only perturbatively, but when the full, non-perturbative con-
struction is considered, one sees that this symmetry is broken. From the heterotic point
of view, the breaking is non-perturbative, being produced by a “twist” along the coupling-
coordinate around which the perturbative expansion is built. The only signal of the su-
persymmetry breaking is then indirectly provided by the way couplings of non-perturbative
matter and gauge sectors (parametrized by perturbative fields of the heterotic string) enter
in the expressions of threshold corrections of effective couplings. Namely, with the “wrong”
power, as if these couplings were “inverted”, from a < 1 to a > 1 value. Indeed, these
couplings are parametrized by moduli only at the N4 = 2 level (see Ref. [17]). When the
perturbative supersymmetry is reduced to N4 = 1, these fields are twisted. This however
only means that the expectation value is not anymore a running parameter, but is fixed.
We can nevertheless trace the fate of the couplings by investigating the so-called “N = 2”
sectors.
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In order to follow the operation of supersymmetry breaking from the the type II side,
let’s first consider the starting point, the N4 = 2 construction. In order to make easier the
investigation of the projections, it is convenient to express the degrees of freedom in terms
of free fermions (Ref. [43]). In the case of type II strings, these constructions have been
extensively analysed in Ref. [14]. Indeed, the cases we are referring to are embedded in a
infinitely extended space-time, a situation deeply different from the one considered in this
paper, where space-time is compact. However, as we have seen, in practice this reflects in a
different interpretation of the results (e.g. the fact that densities become global quantities),
whereas from a technical point of view the usual analysis carries over from a scenario to the
other one with minor, obvious changes (the substitution of a continuum of modes along the
space-time coordinates with a discrete lattice of momenta/energies). For simplicity, we use
therefore here the same notation for the string modes as in the cited works. The set of all
fermions is therefore:

F =

{

ψLµ , χ
L
I , y

L
I , ω

L
I

ψRµ , χ
R
I , y

R
I , ω

R
I

}

, (µ = 1, 2; I = 1, ..., 6), (2.1)

where ψL,Rµ indicate the left and right moving fermion degrees of freedom along the transverse

space-time coordinates, while χL,RI those along the internal coordinates. yL,RI ωL,RI correspond
instead to the internal fermionized bosons. The basic sets of boundary conditions are S and
S̄, which contain only eight left- or right-moving fermions, and distinguish the boundary
conditions of the left- and right- moving world-sheet superpartners:

S =
{

ψLµ , χ
L
1 , . . . , χ

L
6

}

, S̄ =
{

ψRµ , χ
R
1 , . . . , χ

R
6

}

. (2.2)

In order to obtain a Z2 × Z2 symmetric orbifold, we need then the two sets b1 and b2:

b1 =

{

ψLµ , χ
L
1,2, y

L
3,...,6

ψRµ , χ
R
1,2, y

R
3,...,6

}

, (2.3)

b2 =

{

ψLµ , χ
L
3,4, y

L
1,2, y

L
5,6

ψRµ , χ
R
3,4, y

R
1,2, y

R
5,6

}

. (2.4)

These sets assign Z2 boundary conditions and break the N4 = 8 supersymmetry to N4 =
2. The lowest entropy configuration is then obtained by further partial shifting of some
states of the twisted sectors. We will not consider these further operations: they commute
with the projection we want to consider in the following, namely the one that leads to the
breaking of supersymmetry; considering them complicates the construction without altering
the conclusions. As discussed in Ref. [14] and [17], depending on the relative phase of the
projections introduced by b1 and b2, we obtain two mirror configurations which, according
to [17], are two slices of the same model: in one we see only the vector multiplets, in the
other only the hypermultiplets, of the same U(16) model.

We want now to introduce another projection, dual to the Z
(2)
2 . In order to understand

what we have to expect from this further operation, we must take into account that 1) in
order to preserve the pattern of duality with the heterotic and type I string established at
the N4 = 2 level, i.e. the identification of the geometric moduli of the type II space with
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those of the heterotic space and the type I coupling moduli, also this third projection must
act symmetrically on left and right movers; 2) it must twist all these moduli. On the other
hand, we cannot pretend to see the extended space-time represented in a similar way in
both the heterotic/type I and the type II dual: a further symmetric, independent twist on
the type II space must necessarily act also on the coordinates with index “µ”. This means
that, in order to see the action of the heterotic ZN=2→1

2 projection, on the type II side we
must trade the space-time coordinates for internal ones. From the type II point of view the
heterotic space-time will therefore be entirely non-perturbative, and the type II construction
will look perturbatively compactified to two dimensions. Being two coordinates hidden in the
light-cone gauge, we see therefore no transverse non-compact coordinates. As we discussed
in section 2.1.3, representing the “11-th coordinate” of string theory in orbifolds entails its
linear realization through an embedding in a two-dimensional toroidal space. The space
gives therefore the fake impression of being “12-dimensional”. This is however an artifact of
the perturbative representation.

Compactifying the “µ” indices implies that we can now fermionize the bosons also along
these coordinates. The boson degrees of freedom ∂Xµ and ∂̄Xµ will be now represented
as yLµω

L
µ and yRµ ω

R
µ . (By the way, we remark that in the scenario discussed in this work,

all string coordinates are always compactified. Therefore, in principle fermionization of the
space-time degrees of freedom is always possible. On the other hand, when considering
explicit string constructions, perturbation is always possible only around a decompactified
coordinate, that works as the vanishing coupling around which to perturb. The very fact
of writing a perturbative representation of a string vacuum implies the assumption that a
certain limiting procedure toward a non-fermionizable point of some coordinates has been
taken.)

From this two-dimensional point of view, the N4 = 2 type II construction contains only
scalar fields: the space-time is non-perturbative, and therefore so are all indices (vector,
spinor and tensor) running along space-time coordinates. The type II construction is there-
fore blind to the distinction between gauge and matter, whose degrees of freedom have a
space-time vector or spinor index, and an internal, scalar index: only this last index is visi-
ble on the type II, and these states appear all as scalars. There is no trace of the graviton,
because it bears only space-time indices. Moreover, the fields T i and U i, i = 1, 2, 3, usually
appearing in one-loop expressions of threshold corrections, don’t correspond now to geomet-
ric moduli of two-tori. Indeed, for any twist what remains untwisted is a four-torus. In
practice, we have added a two-torus. However, as we discussed, this is an artifact of the
linearization of the space; there is indeed no twelve-dimensional theory, and the appear-
ance of the two-torus is due to an “over-dimensional” representation of a curved space with
just one more coordinate, the one that served as the coupling on which to expand in the
four-dimensional vacuum. The 12-th coordinate is instead a curvature. There is no sur-
prise that, in this representation, the former moduli T i and U i are now multiplied by what
was the coupling of the theory: its dependence was simply “frozen” by construction. For
what matters duality with the heterotic construction, nothing changes, because the value of
these fields was not fixed. We can recover a description in terms of moduli of two-tori by
introducing independent boundary conditions for the “complex planes” (1,2), (3,4), (5,6),
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(7,8) (see Ref. [14] for a detailed discussion of these sets). This allows to disentangle the
two-torus moduli, by factorizing the space in four two-tori. On the type II side we see then
that, besides the T i and U i, i = 1, 2, 3, we have now one more field, corresponding to what
was the (hidden) coupling of the four-dimensional construction. It misleadingly appears as a
pair of torus moduli, T 4, U4, respectively corresponding to the volume form and the complex
structure. Owing to the symmetry of the construction under exchange of the three tori with
the fourth one, a T 4 ↔ U4 reflection exchanges the two N = 4 mirror constructions (the
one with only vectors with the one with only hyper multiplets). It is worth to consider more
in detail this property. The “fourth torus” volume form is the product of two radii, that we
call R11 and R12 for obvious reasons. The moduli T 4 and U4 are related to these radii by:
ImT 4 = R11R12, ImU4 = R11/R12. As we said, one of the two radii is indeed not a real
further coordinate, but a curvature. When seen from the “four dimensional point of view”,
an inversion of this radius corresponds to an inversion of the full string coupling. Therefore,
the T 4 ↔ U4 mirror exchange that relates the two constructions is an “S-duality” of the
“normal representation” of the type II vacuum.

We already discussed in Ref. [17] how the heterotic construction, containing both vector
and hyper multiplets, corresponds to a slice, built around a corner of the moduli space, of
the “union” of both the type II mirror models. From this point of view it is therefore “self-
mirror”. Here we understand that this mirror symmetry is indeed a strong-weak coupling
duality of the type II string, an operation which is perturbative on the heterotic dual 31.
For the rest, it is important to observe that, although we cannot explicitly verify it on the
base of the carried space-time indices, all hidden, the identification of the degrees of freedom
allows anyway to see the S and S̄ as the generators of space-time supersymmetry. This time
they are to be intended as a representation of the “internal part” of the supersymmetry sets.

From the above considerations, we conclude that, on the type II side, the new projection,
corresponding to the step N4 = 2 → N4 = 1, must be represented by a set b3 given, up to
a permutation of the three complex planes corresponding to the indices I = 1, . . . , 6, by:

b3 =

{

χ3,...,6, y
L
µ , y

L
1,2

χR3,...,6, y
R
µ , y

R
1,2

}

. (2.5)

The condition 2) of above tells us however that, differently from the case of b1 and b2, the
“GSO phase” of this set must be 32:

δb3 = −1 , (2.6)

(we recall that δb1 = δb2 = 1 and δS = δS̄ = −1). This condition projects out all the states
of the type φL ⊗ φR, for whatever indices and φ ∈ {ψ, χ, y, ω}, i.e. all the states of the
untwisted sector. The moduli “T” and “U” are now “twisted”, and the only massless states
come from the twisted sectors. The projection coefficients of the fermionic construction are

31On the heterotic side, matter and gauge sectors are exchanged by an exchange of the twisted and the
untwisted sectors. This corresponds to an inversion of the world-sheet parameter τ : τ → −1/τ . This
parameter is integrated out, and it never appears explicitly in the effective theory. On the other hand, we
have seen that the world-sheet coordinates are roughly “identified” with the two longitudinal coordinates of
the light-cone gauge. Any trace of the moduli of this symmetry is therefore hidden by the gauge fixing.

32We refer the reader to [43] for an explanation of this coefficient and its role.
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given in the following table:

F S S̄ b1 b2 b3

F 1 −1 −1 1 1 1

S −1 1 1 −1 −1 −1

S̄ −1 1 1 −1 −1 −1

b1 1 1 1 1 1 1

b2 1 1 1 1 1 1

b3 1 1 1 1 1 1

(2.7)

together with the conditions: δS = δS̄ = δb3 = −1, δφ = δb1 = δb2 = 1. Observe that, with
this choice, b3, although a type II symmetric twist as b1 and b2, projects the states with the
same phase as a heterotic Z2 orbifold projection, as we precisely wanted. Notice also that,
differently from how it appears on the heterotic side, the projection introduced by b3 is not
exactly symmetrical to the one introduced by b2. For instance, it seems that it would project
out all the T and U fields even when acting alone, i.e. before the introduction of b2. This
impression is however misleading, in that it neglects that, as we have seen, from the point of
view of this two-dimensional compactification, these fields are no more moduli of a torus, but
have a more complicate expression as functions also of the former coupling coordinate, here
“embedded” in the further, fourth torus. And indeed, if we want to introduce the “planes”
as in Ref. [14, 17] in order to lower the rank of the twisted sectors, the sets which introduce
separate boundary conditions for the coordinates must be defined in order to include more
than one bosonic coordinate. Namely, they must contain also the “coupling plane”. In the
N4 = 2 model constructed with just {b3, b1} (or {b3, b2}) the moduli T i, U i are no more built
from the states:

δij xix̄j |0 > (2.8)

but as combinations of states of the type:

xix̄j |0 > i 6= j , {i, j} ∈ ({3, 4}, {5, 6}, {7, 8}) ∪ {11, 12} . (2.9)

The partition function of this orbifold is given by the integral over the modular parameter
τ , with modular-invariant measure ( Im τ)−2dτdτ̄ , of:

Zstring =

(

1

2

)3
∑

(H1,G1,H2,G2,H3,G3)

ZF
L ZF

R

∑

(γ,δ)

Z8,8

[

γ

δ

]

, (2.10)

where ZF
L,R contain the contribution of the world-sheet fields ψL,Rµ , χL,Ra (the sets S and S̄);

Z8,8 substitutes what in four dimensional constructions is Z6,6, the c = (6, 6) internal space.
Now this space spans all bosonic degrees of freedom and has c = (8, 8), corresponding to the
fields ωL,RI , yL,RI , I = 1, . . . , 8. Notice that we don’t have now the factor 1/( Im τ |η(τ)|4),
the contribution of the space-time transverse bosonic degrees of freedom, now accounted in
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Z8,8. We have:

ZF
L =

1

2

∑

(a,b)

eiπϕL(a,b, ~H, ~G)

η4
ϑ

[

a +H3

b+G3

]

ϑ

[

a +H2 −H3

b+G2 −G3

]

ϑ

[

a+H1

b+G1

]

ϑ

[

a−H1 −H2

b−G1 −G2

]

, (2.11)

ZF
R =

1

2

∑

(ā,b̄)

eiπϕR(ā,b̄, ~H, ~G)

η̄4
ϑ

[

ā +H3

b̄+G3

]

ϑ

[

ā+H1 −H3

b̄+G1 −G3

]

ϑ

[

ā+H2

b̄+G2

]

ϑ

[

ā−H1 −H2

b̄−G1 −G2

]

, (2.12)

with:

ϕL = a+ b+ ab , (2.13)

ϕR = ā+ b̄+ āb̄ . (2.14)

The contribution of the compact bosons is:

Z8,8

[

γ

δ

]

= eiπ(H3+G3+H3G3)

× 1

|η|4
∣

∣

∣

∣

ϑ

[

γ

δ

]

ϑ

[

γ +H3

δ +G3

]∣

∣

∣

∣

2

× 1

|η|4
∣

∣

∣

∣

ϑ

[

γ

δ

]

ϑ

[

γ +H2 +H3

δ +G2 +G3

]∣

∣

∣

∣

2

× 1

|η|4
∣

∣

∣

∣

ϑ

[

γ

δ

]

ϑ

[

γ +H1

δ +G1

]∣

∣

∣

∣

2

(2.15)

× 1

|η|4
∣

∣

∣

∣

ϑ

[

γ

δ

]

ϑ

[

γ +H1 +H2

δ +G1 +G2

]∣

∣

∣

∣

2

.

The pairs (a, b) and (ā, b̄) specify the boundary conditions, in the directions 1 and τ of the
world-sheet torus, of the sets S and S̄, while (γ, δ) refer to the set of all fermionized bosons;
(H1, G1), (H2, G2) and (H3, G3) refer to the sets b1, b2 and b3. Notice the presence of the
phase eiπ(H3+G3+H3G3), corresponding to the choice δb3 = −1.

In this model there are nine massless sectors, corresponding to the previous b1, b2, b1b2,
the new ones, b3, b3b1, Fb3b2, b3b1b2, SS̄b3b2, and the SS̄ sector. Only three sectors have
a perturbative dual on the heterotic side, and correspond to a tern generated by a pair of
intersecting projections. Here b3∩b1 6= ∅ and b2∩b1 6= ∅, while b3∩b2 = ∅, therefore the pair is
either {b3, b1} or {b2, b1}. On the sets generated by one of these pairs, the third independent
projection doesn’t impose any further constraint. The third projection is already “built-in”
by construction in the heterotic string, which starts with half the maximal supersymmetry
of the type II string. Therefore, apart from the supersymmetry reduction, from the heterotic
point of view the further projection triplicates the structure of the N4 = 2 model. However,
on the type II side, where we have access to all the sectors, we can see that some of the
sectors hidden for the heterotic string are not supersymmetric: owing to the δb3 GSO torsion,
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the SS̄ states are here supersymmetric to nothing, and the same is true for the states of the
Fb3b2 and SS̄b3b2 sectors: their superpartners are massive. This is a representation in terms
of free fermions of what more generally is a mass shift (see Ref. [14] for a discussion of the
translation of the fermionic language in terms of orbifold operations).

With different choices of the relative GSO projections of one sector to the other one,
the coefficients (b3|bj) in table 2.7, we obtain mirror configurations in which supersymmetry
is broken in a different way: a negative projection of b3 to b1 and b2 implies that all the
twisted sectors are projected out. Some of them, not as a consequence of a shift, but due
to incompatibility of the selected chiralities of the spinors of the twisted sectors. It seems
therefore that the model is empty unless the S and S̄ projections are removed from the
definition of the basis: only the pure Ramond-Ramond sector survives (the projections (b3|S)
and (b3|S̄) remain unchanged). These mirror models seem to exist only at a “delta-function”
point in the string moduli space.

C Local correction to effective beta-functions

The running of the electromagnetic and weak couplings in the representation in which they
are going to be compared with experimental data is logarithmic, with a slope determined by
an effective beta-function coefficient. However, as discussed in section 5.4, around the scale
∼ me, the volumes of the matter phase space are expanded (or, logarithmically, shifted),
in such a way that for instance the electromagnetic coupling at the scale me (i.e. the fine
structure constant) effectively corresponds to the value of the coupling without correction at
a run-back scale, meff.

e . The amount of running-back in the scale of the logarithmic effective
coupling is equivalent to the amount of the forward shift in the logarithmic representation of
the volumes of particles in the phase space. If volumes get multiplied by a factor, their loga-
rithm gets shifted, and so gets shifted back the scale at which the coupling in its logarithmic
representation is effectively evaluated. This deviation can be considered as a perturbation
of the logarithmic running, that we illustrate here. In the figure, µ0 stays for the starting
scale of the running: µ0 = (1/2) T −1/2, µ∼1/4 for the upper end scale of the matter sector,
the thick solid line shows the approximate expected behaviour of the inverse coupling α−1,
including the correction to the shape, while the thin solid line indicates the original loga-
rithmic behaviour. The dashed segments indicate the linear approximation of the curve we
considered in the footnote at page 61 in order to compute the effective weak coupling at the
W -boson scale:

PlanckMµ

α
−1

me0
µ

~ 1/4em
eff.

ln µ( )
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