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Abstract 

Simple mathematical demonstration solves one of the problems of lunar motion, the regression of 

lunar nodes, observed more than 2000 years ago. Although their motions draw similar traces (such as 

retrograde motion in Ptolemy’s and Copernicus’s models of the universe) we show that celestial 

bodies do not rotate around their common centre of mass, but, by unified law, one around the other. 

Due to the rigidity of principle, regardless of the calculation of rounded up values, the range of 

discrepancy between predicted and observed  cycle of regression is in level of magnitude of only 

3.4x10
-5

 (due to lunar trajectory perturbation, its perceived values also on a small-scale vary 

cyclically). Besides the constant π and Terrestrial measure of time, the only variables used in the 

solution of this dual orbiting system problem are radiuses and surface accelerations of observed 

bodies. 

2.2.1 A brief description of the regression of lunar nodes 

The ancient Greeks observed that the positions of ascending and descending nodes at which the 

Moon passes through the fixed plane of the Earth's orbit around the Sun, the ecliptic, decrease, i.e. 

orbit the Earth in the opposite direction to the Moon, in such a rate that the cycle of that regression 

amounts almost exactly 18.6 Earth’s years. In other words, if the Moon, during the spring or autumn 

equinox, when viewed from stationary point on Earth, ascends at a certain position on the east 

horizon, describes the curve of his path and descends at another particular point on the west horizon, 

it would take 18.6 years for this trajectory to be repeated. In past centuries, developing lunar theory, 

many famous mathematicians and astronomers have dealt with described problem (Newton, Clairaut, 

D'Alembert, Euler, Laplace, Damoiseau, Plana, Poisson, Hansen, De Pontécoulant, J. Herschel, Airy, 

Delaunay, G.W. Hill, E.W. Brown) indicating its inherent difficulty and the theoretical and practical 

importance. 

2.2.2 Points of acceleration equilibrium 

It is valid that the body at a distance n from the celestial body centre at which it falls, every second 

accelerates at rate of corresponding acceleration an. Neglecting the resistance of the media through 

which it moves, it also applies that after n
2
/r

2
 seconds its velocity equals to the amount of acceleration 

measured on the surface of observed celestial body, i.e. distance r from its centre (where the concept 

of the centre, i.e. the point where n = 0, equivalents to an unreachable idea of zero). From this simple 

principle we derive the universal equality for acceleration an at any distance n from the centre of the 

observed body (2.2.2.1); 
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𝑎𝑛 =
𝑎𝑟2

𝑛2
 2.2.2.1  

Presented equality is independent of the direction in relation to the radius, in other words, applies to 

cases where n is less, equal or greater than r (n ≤ r ≤ n), from which it follows that gravity towards 

celestial body centre tends to infinity. 

From the specified relation (2.2.2.1) follow the equations for orbital and escape velocities vno and vnesc 

at any orbital distance n from the centre of the celestial body (2.2.2.2, 3); 

 

𝑣𝑛𝑜 =  𝑛𝑎𝑛  2.2.2.2  

𝑣𝑛𝑒𝑠𝑐 =  2𝑛𝑎𝑛  2.2.2.3  

which is equal to (2.2.2.4, 5), wherein the relation (2.2.2.4) is equivalent to excerpt from the formula for 

the period of the pendulum of maximal ideal trajectory 2lπ, where in place l, hence the length of the 

pendulum, we write n. In other words, the mean speed of an imaginary ideal pendulum which length 

equals to the radius of observed body at maximal ideal trajectory, equals to the orbital velocity of that 

body. 

 

𝑣𝑛𝑜 = 𝑟 
𝑎

𝑛
 2.2.2.4  

𝑣𝑛𝑒𝑠𝑐 = 𝑟 2
𝑎

𝑛
 2.2.2.5  

Including the light speed c in place of escape velocity vnesc in equality above (2.2.2.5), the value of 

radius n equals to the Schwarzshild’s radius rs derived from Newton's equation for escape velocity in 

which the escape velocity is equalized to the speed of light. Demonstrated equivalence (2.2.2.5, 6) 

indicates the universal validity of the above equalities (2.2.2.1 - 5); 

 

𝑛 =
2𝑎𝑟2

𝑐2
=
2𝐺𝑀

𝑐2
= 𝑟𝑠  2.2.2.6  

From the displayed equivalence follows that the GM product, the so-called standard gravitational 

parameter μ (which is Newton’s arbitrary construct of third Kepler’s law i.e. GM = 4π
2
k, where k = r

3
/p

2
, 

where r is any orbital radius of the observed body, and p its corresponding orbital period), equal to the 

product of surface acceleration a and its corresponding radius r squared (2.2.2.7); 

 

𝜇 = 𝑎𝑟2 2.2.2.7  

At the Earth - Moon line, we calculate common points in which the accelerations of both celestial 

bodies are equal. According to equality (2.2.2.1) the condition (2.2.2.8) must be satisfied; 

 



r e g r e s s i o n  o f  l u n a r  n o d e s  w w w . p r i n c i p i a u n i v e r s i . c o m  

 

3 
 

𝑎𝐸𝑟𝐸
2

𝑛𝐸
2 =

𝑎𝑀𝑟𝑀
2

𝑛𝑀
2  2.2.2.8  

where aE, rE, aM and rM are the surface accelerations and radiuses of the Earth and the Moon while the 

values nE and nM are the requested distances from their centres. As there are two such points at 

described line, the values nE are expressed by relations (2.2.2.9, 10); 

 

𝑛𝐸 = 𝑟𝑜 − 𝑛𝑀 2.2.2.9  

𝑛𝐸 = 𝑟𝑜 + 𝑛𝑀 2.2.2.10  

where the first relation calculate internal and the second external point on the line that connects their 

centres, and whose distance is the radius ro of their common observed orbit. Depending on this, the 

equality (2.2.2.8) is written (2.2.2.11, 12); 

 

𝑎𝐸𝑟𝐸
2

(𝑟𝑜 − 𝑛𝑀)
2
=
𝑎𝑀𝑟𝑀

2

𝑛𝑀
2  2.2.2.11  

𝑎𝐸𝑟𝐸
2

(𝑟𝑜 + 𝑛𝑀)
2
=
𝑎𝑀𝑟𝑀

2

𝑛𝑀
2  2.2.2.12  

 

which equals to (2.2.2.13, 14); 

 

𝑟𝐸 𝑎𝐸
𝑟𝑜 − 𝑛𝑀

=
𝑟𝑀 𝑎𝑀
𝑛𝑀

 2.2.2.13  

𝑟𝐸 𝑎𝐸
𝑟𝑜 + 𝑛𝑀

=
𝑟𝑀 𝑎𝑀
𝑛𝑀

 2.2.2.14  

 

Therefore, to calculate the distance of required points in relation to the Earth, we derive equalities 

(2.2.2.15, 16); 

 

𝑛𝐸𝑖 = 𝑟𝑜
𝑟𝐸 𝑎𝐸

𝑟𝐸 𝑎𝐸 + 𝑟𝑀 𝑎𝑀
 2.2.2.15  

𝑛𝐸𝑜 = 𝑟𝑜
𝑟𝐸 𝑎𝐸

𝑟𝐸 𝑎𝐸 − 𝑟𝑀 𝑎𝑀
 2.2.2.16  

and for their distances with respect to the Moon (2.2.2.17, 18); 

 

𝑛𝑀𝑖 = 𝑟𝑜
𝑟𝑀 𝑎𝑀

𝑟𝐸 𝑎𝐸 + 𝑟𝑀 𝑎𝑀
 2.2.2.17  

𝑛𝑀𝑜 = 𝑟𝑜
𝑟𝑀 𝑎𝑀

𝑟𝐸 𝑎𝐸 − 𝑟𝑀 𝑎𝑀
 2.2.2.18  
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wherein the nEi, nEo, nMi and nMo are distances of inner and outer points of the observed orbit and 

where the sum of their internal values equals to distance of observed bodies centres, i.e. their 

common orbit  ro (2.2.2.19). 

 

𝑟𝑜 = 𝑛𝐸𝑖 + 𝑛𝑀𝑖  2.2.2.19  

As the roots of accelerations are inversely proportional to their orbital radii, for calculating the value of 

acceleration an of the described points, the condition (2.2.2.20, 21) must be met; 

 

𝑛𝐸
𝑟𝐸
=

 𝑎𝐸

 𝑎𝐸𝑛
 2.2.2.20  

𝑛𝑀
𝑟𝑀

=
 𝑎𝑀

 𝑎𝑀𝑛
 2.2.2.21  

where it is worth (2.2.2.22); 

 

𝑎𝐸𝑛 = 𝑎𝑀𝑛 = 𝑎𝑛  2.2.2.22  

 

As according to the equality (2.2.2.19), the sum of distances from Earth nEi and Moon nMi equals to the 

radius of their mutual orbit ro, it applies (2.2.2.23); 

 

𝑟𝑜 =
𝑟𝐸 𝑎𝐸 + 𝑟𝑀 𝑎𝑀

 𝑎𝑛
 2.2.2.23  

 

Therefore, the acceleration values an are expressed by relations (2.2.2.24, 25); 

 

𝑎𝑛𝑖 =  
𝑟𝐸 𝑎𝐸 + 𝑟𝑀 𝑎𝑀

𝑟𝑜
 

2

 2.2.2.24  

𝑎𝑛𝑜 =  
𝑟𝐸 𝑎𝐸 − 𝑟𝑀 𝑎𝑀

𝑟𝑜
 

2

 2.2.2.25  

where ani and ano are required acceleration values of the internal and external point on a line of their 

common orbit ro. 

 

Described points are specific positions of the space-time equilibrium. The body left at the point ni will 

not fall either on Earth or the Moon. Relations between points nEi and nMi and nEo and nMo are equal to 

relation of Moon’s orbital velocity voME in Earth’s and Earth’s orbital velocity voEM in Moon’s orbit 

(2.2.2.26) where their velocities are calculated by the relation (2.2.2.4); 
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𝑛𝐸𝑖
𝑛𝑀𝑖

=
𝑛𝐸𝑜
𝑛𝑀𝑜

=
𝑣𝑜𝑀𝐸
𝑣𝑜𝐸𝑀

 2.2.2.26  

Also, square roots of these relations correspond to the difference of their orbital velocities at measured 

positions while the squares of the same relations are equivalent to ratio of distances between the 

points where orbital velocities of both bodies are equal, and whose positions are anticipated by the 

same principle described. Therefore, the relations for positions of these points are written (2.2.2.27 - 

30); 

 

𝑛𝐸𝑣𝑜𝑖 = 𝑟𝑜
𝑟𝐸
2𝑎𝐸

𝑟𝐸
2𝑎𝐸 + 𝑟𝑀

2𝑎𝑀
 2.2.2.27  

𝑛𝐸𝑣𝑜𝑜 = 𝑟𝑜
𝑟𝐸
2𝑎𝐸

𝑟𝐸
2𝑎𝐸 − 𝑟𝑀

2𝑎𝑀
 2.2.2.28  

𝑛𝑀𝑣𝑜𝑖 = 𝑟𝑜
𝑟𝑀
2𝑎𝑀

𝑟𝐸
2𝑎𝐸 + 𝑟𝑀

2𝑎𝑀
 2.2.2.29  

𝑛𝑀𝑣𝑜𝑜 = 𝑟𝑜
𝑟𝑀
2𝑎𝑀

𝑟𝐸
2𝑎𝐸 − 𝑟𝑀

2𝑎𝑀
 2.2.2.30  

Where nEvoi, nEvoo, nMvoi and nMvoo are the inner and outer points with respect to the Earth and the Moon 

at which the orbital speed of both bodies are equal and whose inner and outer values, voi and voo are 

expressed by relations (2.2.2.31, 32); 

 

𝑣𝑜𝑖 =
𝑟𝐸
2𝑎𝐸 + 𝑟𝑀

2𝑎𝑀
𝑟𝑜

 2.2.2.31  

𝑣𝑜𝑜 =
𝑟𝐸
2𝑎𝐸 + 𝑟𝑀

2𝑎𝑀
𝑟𝑜

 2.2.2.32  

Listed equalities are universal for all orbiting systems. 

2.2.3 Principle of regression of lunar nodes 

The ratio of relation (2.2.2.26) for the specific case of the Earth - Moon dual orbiting system is 9.023. 

In other words, the point of acceleration equilibrium at line Earth - Moon is 9.023 times closer to Moon 

than to Earth. That relation, according to expressions (2.2.2.15 - 18) is constant and independent of 

their distance ro. Consequently, to demonstrate regression of lunar nodes, trajectories of both bodies 

are treated as circles which radiuses equal to semi-major axis of the observed Moon’s orbit ellipse. 

 

So as gravity, orbital velocity is universal space-time property of all space-time entities. 

Implicitly, being in Moons orbit, the Earth revolves around the Moon by the same universal law 

(2.2.2.2, 4), by which the Moon revolves around the Earth. 

 

According to mentioned equivalence (2.2.2.26), their orbital velocities travelled on the same scopes 

differ by the same described ratio (9.023). Therefore, the Earth’s period around Moon, is 9.023 times 
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longer than the Moon’s around the Earth. 

 

The described model can be presented by two spheres in whose centres are Earth and Moon, and 

whose radii differ for the said ratio. These spheres are touching at the inner acceleration equilibrium 

point (2.2.2.15, 17) and according to aforementioned periods are rolling around each other (Figure 

2.2.3.a). 

 

 

 

Figure 2.2.3.a Geometrical presentation of regression of lunar nodes principle. Moon is converging to 

the next descending node of described cycle. Animated model is shown in movie clip regression of 

lunar nodes. 

Accordingly, as the lunar period at circle of semi-major axis radius lasts 27.44 Earth days, which is 

2.846 hours longer than sidereal (27.322 days), in the described model, the Earth’s 9.023 times longer 

period around the Moon amounts 247.588 days. 

Time position after which the cycle of their rotation ratio will be repeated is their first common multiple 

(27.322 x 247.588) and amounts 6793.851 days, which is almost exactly 18.6 years. The obtained 

amount entirely matches the observed regression of lunar nodes cycle. 

http://www.principiauniversi.com/blogs/11-2-dot-1-regression-of-lunar-nodes
http://www.principiauniversi.com/blogs/11-2-dot-1-regression-of-lunar-nodes
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Thus, the cycle of regression of lunar nodes PLn equals to the product of Moon’s rotation period 

around the Earth pM and the Earth’s around the Moon pE (2.2.3.1); 

 

𝑃𝐿𝑛 = 𝑝𝑀𝑝𝐸 2.2.3.1  

 

where periods pM and pE, are calculated as the relation of their trajectory and speed, i.e. the scope oro 

of the orbital radius ro by their correlated orbital velocities voME and voEM (2.2.3.2); 

 

𝑃𝐿𝑛 =
𝑜𝑟𝑜
2

𝑣𝑜𝑀𝐸𝑣𝑜𝐸𝑀
 2.2.3.2  

 

which is according to universal equations for the circumference of circle and orbital velocities (2.2.2.4) 

equal to (2.2.3.3); 

 

𝑃𝐿𝑛 =
4𝑟𝑜

2𝜋2

𝑟𝐸𝑟𝑀
 𝑎𝐸𝑎𝑀
𝑟𝑜

 
2.2.3.3  

As the first common multiplier we look for is for periods expressed in days, and previous equalities are 

expressed in seconds, the mutual factor of periods pM and pE in equalities (2.2.3.2, 3) is the number of 

seconds in Earth’s day dsE. 

Therefore, the equality (2.2.3.3) is divided by square of mentioned amount dsE so we get the formula 

for calculating the cycle of regression of lunar nodes PLn expressed in Earth’s days (2.2.3.4); 

 

𝑃𝐿𝑛 =
4𝑟𝑜

3𝜋2

𝑟𝐸𝑟𝑀 𝑎𝐸𝑎𝑀𝑑𝑠𝐸
2  2.2.3.4  

where ro is the radius of common orbit of Earth and Moon, rE, rM, aE and aM are their radii and surface 

accelerations, and dsE is the period of Earth’s day expressed in seconds. 

In presented equation evident is the aforementioned Kepler’s ratio (4π
2
r
3
/p

2
) misinterpreted by 

Newton’s arbitrary GM invention, according to which formulation rErM√aEaM can be written as geometric 

mean of standard gravitational parameter μ for Earth and Moon (√μE μM or G√MEMM) where variables 

M are therefore incorrectly calculated Newton’s masses. As mentioned before the nature of GM 

construction describes the relation (2.2.2.7) which is constant for all orbital radiuses ro and their 

corresponding accelerations ao of observed body. 

 

Prediction of cycle of lunar nodes regression and relations of the results obtained with those observed, 

are shown in Table 2.2.3.e; 
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Regression of Lunar nodes data

Earth's Siderial year (days) 365,256363004000000

day (seconds) 86.400,000000000000000

Earth - Moon semi mayor axis (m) 384.399.000,000000000000000

Earth's equatorial radius (m) 6.378.100,000000000000000

Earth's surface acceleration 9,806700000000000

Moon's equatorial radius (m) 1.738.140,000000000000000

Moon's surface acceleration 1,622000000000000

predicted

regression cycle (days) 6.793,851521784520000

regression cycle (years) 18,600227702837100

observed

regression cycle (days) 6.793,622249329200000

regression cycle (years) 18,599600000000000

level of tolerance 1,000033748190130  

Table 2.2.3.a Predicted cycle of regression of lunar nodes and its perceived value 

2.2.4 Conclusion 

By use of elementary mathematical logic, without calculations of "universal constants of nature" 

demonstrated is the nature of regression of lunar nodes. Precision and rigidity of the predicting method 

described, indicates the universal nature of orbiting systems where the orbiting bodies are rotating 

around each other, which is the correction of paradigm in which their rotation takes place around their 

common centre of mass. 

Also demonstrated, universal equalities for acceleration and orbital velocities (2.2.2.1 - 5) change the 

perspective of understanding the structure of celestial entities, and the nature of gravity, mass and 

speed of light. 


