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Abstract

Be sure to use proper tensor rank and orientation. The recent efforts by 
Professor Kip S. Thorne do not meet this need. The utility of a correct method is 
remarkably strong. Here's how!

Discussion

The tutorial on forms and exterior derivatives in Chapters 2 to 4 of 
GRAVITATION is most welcome to this project. It is a shame, though, that 
ongoing use of this framework was labeled as unimportant in that famous book.

The metric, at each particular point in a given spacetime, is a set of symmetric 
products, with one instance in that set for each possible covariant coordinate 
system. It is defined so that, when we multiply an instance of these products - it 
being taken as a matrix - by two genuine vectors, we get the scalar product for 
the two vectors. This scalar product is required to be invariant over the set, so 
long as the standard unit of length does not change. Despite choosing one 
coordinate system for calculation, the scalar product is coordinate-free. And the 
metric, taken as an abstract set, also becomes coordinate-free.

(Covariant, here, means that a 1-form is used to represent a coordinate. A 1-form 
is a surface or hypersurface with one preferred direction, such that passing 
though the surface in one direction signals a positive change of coordinate value, 
and the other direction negative.)

We can draw each one of the instances of symmetric products everywhere to 
gain the general result, but let’s just choose just one that is especially simple to 
draw. No utility is lost.

It is possible to choose a covariant coordinate system that is Cartesian 
orthogonal everywhere, and that has one coordinate in the direction of time at 
the location of our chosen observer. The off diagonal terms of the symmetric 
product are then zero everywhere, which makes this much easier to draw. At 
each location there is at least one orientation that makes this so; just choose one 
compatible with the next step.

Now make that set of coordinates homogeneous by joining up the edges of the 1-
forms between adjacent locations so that no edges are left on any of the four 1-



forms that make up the coordinate system. The sparseness or calibration of the 
1-forms must be adjusted everywhere to achieve this, but we leave the 1-forms 
as normally calibrated at the location of our observer. This requirement sets the 
exterior derivative of each of the four coordinates to be zero everywhere. The 
exterior derivative geometrically marks boundaries, but we have just now 
eliminated all such boundaries.
 
Now we can draw these four coordinates as four orthogonal 1-forms everywhere. 
(If there is a double value, just pick one.)

On the diagonal of the symmetric product, there is a multiplication of each one of 
the 1-forms with its complimentary 1-form at each location in spacetime. We 
must make this compliment with the same orientation as the original, and we 
also need to give this complimentary 1-form the magnitude that is needed to 
fulfill the mission of the metric. This second set of coordinate 1-forms generally 
has boundaries that can be marked off by the exterior derivative.

Now, we can just draw the two sets of coordinate 1-forms, each of the four pairs 
of drawings together with a symbol that denotes the product of the pairs, this for 
each of the four orthogonal directions.

This drawing has the property of general covariance - sparse or scaled versions 
of it still represent the same physics.

We now have a drawing. But lets make another kind of drawing that is more 
revealing. Using the same orientation at each location as our coordinate system 
(that is specialized for our chosen observer but with no loss of utility), simply 
draw red partitions wherever a perpendicular crossing of that partition in either 
direction would result in the gain of one unit of spacetime interval as compared 
to flat spacetime. Draw blue partitions for the loss of one unit. There can be as 
many as four red or blue partitions at a location, and they are all mutually 
Cartesian orthogonal.

These drawings also have the property of general covariance. The partitions, red 
and blue, represent the square root of the product of two 1-forms. So our 
drawings transform naturally like length to the minus one power.

But, even when interpreted geometrically, these partitions still contain artifacts 
from the coordinates used - covariant and homogeneous as they are. From the 
example of cylindrical coordinates in flat space, I can see that the geodesic 
curvature implied by the artifacts can probably be taken as relative to the 
curvature implied by simply following the direction implied by the coordinates.

(But the Einstein equation as it is usually, and improperly, written implies more 
radical artifacts, for instance those of the cosmological constant class.)

Flat spacetime would then have none of these partitions. But curved spacetime is 
now decorated with red or blue. It is now easy for us to construct curved 



geodesics - that curve inward at the boundary of red partitions, and outward at 
the boundary of blue (but taken as relative to the coordinates).

Observers in relative motion will see different editions of these partitions. But 
this is not a weakness of the representation. It is a consequence of relativity 
theory that the observers actually see different magnitudes and directions of 
dilations, contractions and curvatures, and this kind of graphical representation 
simply follows along.

Applications

We can see a cosine squared directionality of the effects of these partitions. 
Stationary gravitational fields do not curve space!

The two Bianchi identities that apply to these partitions supply the means to 
compute the metric by integrating from geometric initial conditions. It is then 
possible for us to draw the results of the computation. We need to use the 
exterior derivative for this.

We can easily see how to draw dilation horizons, and we can see how they are 
conserved by the applicable Bianchi identity. It's no difficulty if they trend in the 
timelike direction or spacelike.

It can now be clear for us that Kaluza-Klein fields have a two component source - 
two dilation horizons at a Cartesian right angle to each other.
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