A Note on Relativity

December 12, 2012
José Francisco García Juliá
jfgj1@hotmail.es
A note in favor of the correctness of the relativity, special and general.
Key words: relativity (special and general).

The special relativity gives us the equations: $E=m c^{2}, E_{0}=m_{0} c^{2}, E=E_{0}+T, m=\gamma m_{0}$ and $\gamma=\left(1-v^{2} / c^{2}\right)^{-1 / 2}$, where E, E_{0} and T are the total, rest and kinetic energies of the particle, m and m_{0} its moving and rest masses, c the speed of the light in the vacuum and v the speed of the particle. For $v^{2} \ll c^{2}, E=m_{0} c^{2}+(1 / 2) m_{0} v^{2}$, which is the correct value for the Newton mechanics, where the kinetic energy is $T=(1 / 2) m_{0} v^{2}$. All these equations are obtained without using relativity, but with $\gamma=(1-v / c)^{-1}$, which is not the correct value [1]. In addition, for two inertial systems: $f^{\prime} / f=((1-v / c) /(1+v / c))^{1 / 2}$ (from the relativistic Doppler effect), where f^{\prime} and f are the frequencies of the light in the moving and rest frames, respectively, v being the moving speed of the primed frame. But also, $E^{\prime} / E=((1-v / c) /(1+v / c))^{I / 2}$ (from the Lorentz transformation for the energy), then $E^{\prime} / E=f^{\prime} / f, E^{\prime}=h f^{\prime}$ and $E=h f$, which is the Planck-Einstein equation, h being the Planck constant [2]. All this is in favor of the correctness of the special relativity.

From the general relativity: $R_{i k}-(1 / 2) g_{i k} R=\left(8 \pi G / c^{4}\right) T_{i k},(i, k=0,1,2,3)$, where $R_{i k}$ is the Ricci tensor, $g_{i k}$ the metric tensor, R the scalar curvature, G the universal gravitational constant of Newton and $T_{i k}$ the energy-momentum tensor. This equation is like the Poisson equation: $\nabla^{2} \varphi=4 \pi G \rho$, where $\nabla=(\partial / \partial x, \partial / \partial y, \partial / \partial z), x, y$ and z being the rectangular coordinates, φ the gravitational potential and ρ the mass density. In the vacuum: $R_{i k}-(1 / 2) g_{i k} R=0$ (Laplace equation: $\nabla^{2} \varphi=0$), and $R_{i}^{k}-(1 / 2) \delta_{i}^{k} R=0, R_{i}^{i}$ $(1 / 2) \delta_{i}^{i} R=0, R-(1 / 2) 4 R=0$ and $R=0$ (where: $R_{i}^{i}=R, \delta_{i}^{k}=1$ if $k=i$ and $\delta_{i}^{k}=0$ if $k \neq$ i, and $\delta_{i}^{i}=4$); then, $R_{i k}=0$. This equation was solved by Schwarzschild yielding a square space-time interval value of: $d s^{2}=\left(1-r_{g} / r\right) c^{2} d t^{2}-r^{2}\left(\sin ^{2} \theta d \phi+d \theta^{2}\right)-d r^{2} /(1-$ r_{g} / r), where $r_{g}=2 G M / c^{2}$ is the gravitational (or Schwarzschild) radius, M being the rest mass of the particle that produces the gravitational field, t the time, and r, θ and ϕ the spherical coordinates. Note that $r>r_{g}$, since $r=r_{g}$ and $r=0$ would yield $d s^{2}=-\infty$ and r $<r_{g}$ would produce a change of sign in the time and in the space. Note also that, we may put $r=2 G M / v^{2}, v$ being like a gravitational escape speed $\left(E=T+V=(1 / 2) m_{0} v^{2}-\right.$ $G M m_{0} / r, V$ being the potential energy, and from $E=0$, the escape velocity would be: v $\left.=(2 G M / r)^{1 / 2}\right)$, and as $r_{g}=2 G M / c^{2}$, it would correspond to a gravitational escape speed of c. As $r>r_{g}, v<c$, and there is not black holes. In addition, substituting these values in the interval, we would have that: $d s^{2}=\left(1-v^{2} / c^{2}\right) c^{2} d t^{2}-r^{2}\left(\sin ^{2} \theta d \phi+d \theta^{2}\right)-d r^{2} /(1-$ $\left.v^{2} / c^{2}\right)$, and for given values of θ and $\phi(\theta=$ constant, $\phi=$ constant, $d \theta=0$ and $d \phi=0)$, it would be: $d s^{2}=\left(1-v^{2} / c^{2}\right) c^{2} d t^{2}-d r^{2} /\left(1-v^{2} / c^{2}\right)=c^{2} d t^{2}-d r^{\prime 2}=d s^{2}$, which is a generalization of the special relativity for a radial motion in a gravitational field. Note also that for $|\varphi| \ll c^{2}$, which implies that $v^{2} \ll c^{2}$, it is recovered the Newton gravitation formula [3]: $F=-G M m_{0} / r^{2}$, where F is the gravitational attraction force
between the masses M and m_{0} separated a distance r (see the appendix). All this is in favor of the correctness of the general relativity.

Appendix

Newton's gravitational attraction force from Einstein's general relativity:

$$
\begin{gathered}
R_{i k}-\frac{1}{2} g_{i k} R=\frac{8 \pi G}{c^{4}} T_{i k},(i, k=0,1,2,3) \\
R_{i}^{k}-\frac{1}{2} \delta_{i}^{k} R=\frac{8 \pi G}{c^{4}} T_{i}^{k} \\
R_{i}^{i}-\frac{1}{2} \delta_{i}^{i} R=\frac{8 \pi G}{c^{4}} T_{i}^{i},\left(R_{i}^{i}=R, \delta_{i}^{i}=4, T_{i}^{i}=T\right) \\
R=-\frac{8 \pi G}{c^{4}} T \\
R_{i k}=\frac{8 \pi G}{c^{4}}\left(T_{i k}-\frac{1}{2} g_{i k} T\right) \\
|\varphi| \ll c^{2}, v^{2} \ll c^{2} \\
L=-M c^{2}+\frac{1}{2} M v^{2}-M \varphi
\end{gathered}
$$

L being the Lagrangian.

$$
\begin{gathered}
L=-M c\left(c-\frac{v^{2}}{2 c}+\frac{\varphi}{c}\right) \\
S=\int L d t=-M c \int\left(c-\frac{v^{2}}{2 c}+\frac{\varphi}{c}\right) d t
\end{gathered}
$$

S being the action.

$$
\begin{gathered}
S=-M c \int d s \\
d s=\left(c-\frac{v^{2}}{2 c}+\frac{\varphi}{c}\right) d t \\
d s=c\left(1-\frac{v^{2}}{2 c^{2}}+\frac{\varphi}{c^{2}}\right) d t \\
d s^{2}=c^{2}\left(1-\frac{v^{2}}{2 c^{2}}+\frac{\varphi}{c^{2}}\right)^{2} d t^{2} \\
\xi \ll 1,(1 \pm \xi)^{n} \approx 1 \pm n \xi
\end{gathered}
$$

$$
\begin{gathered}
\left(1-\frac{v^{2}}{2 c^{2}}+\frac{\varphi}{c^{2}}\right)^{2}=(1+\xi)^{2} \approx 1+2 \xi=1+2\left(-\frac{v^{2}}{2 c^{2}}+\frac{\varphi}{c^{2}}\right)=1-\frac{v^{2}}{c^{2}}+\frac{2 \varphi}{c^{2}}=1+\frac{2 \varphi}{c^{2}}-\frac{v^{2}}{c^{2}} \\
c^{2}\left(1-\frac{v^{2}}{2 c^{2}}+\frac{\varphi}{c^{2}}\right)^{2}=c^{2}\left(1+\frac{2 \varphi}{c^{2}}-\frac{v^{2}}{c^{2}}\right)=c^{2}\left(1+\frac{2 \varphi}{c^{2}}\right)-v^{2} \\
v d t=d r \\
c^{2}\left(1-\frac{v^{2}}{2 c^{2}}+\frac{\varphi}{c^{2}}\right)^{2} d t^{2}=c^{2}\left(1+\frac{2 \varphi}{c^{2}}\right) d t^{2}-v^{2} d t^{2}=c^{2}\left(1+\frac{2 \varphi}{c^{2}}\right) d t^{2}-d r^{2} \\
d s^{2}=c^{2}\left(1+\frac{2 \varphi}{c^{2}}\right) d t^{2}-d r^{2} \\
d s^{2}=g_{00} c^{2} d t^{2}-d r^{2} \\
g_{00}=1+\frac{2 \varphi}{c^{2}} \\
T^{i k}=\rho c \frac{d x^{i}}{d s} \frac{d x^{k}}{d t}=\rho c u^{i} u^{k} \frac{d s}{d t}, u^{i}=\frac{d x^{i}}{d s}, c=\frac{d x^{0}}{d t}, v^{\alpha}=\frac{d x^{\alpha}}{d t}, \gamma=\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2} \\
g_{\alpha \alpha}=-1, g_{\alpha \beta}=0(\alpha \neq \beta), g_{0 \alpha}=g_{\alpha 0}=0,(\alpha, \beta=1,2,3) \\
d_{s}=c d t \gamma^{-1}, T_{0}^{0}=\gamma c^{2} \approx \mu c^{2}, T_{\alpha}^{\alpha}=\gamma v^{\alpha} v_{\alpha}=\gamma v^{2} \approx \mu v^{2} \\
T=T_{i}^{i}=T_{0}^{0}+T_{\alpha}^{\alpha}=\rho c^{2}+\rho v^{2} \approx \rho c^{2} \\
R_{i}^{k}=\frac{8 \pi G}{c^{4}}\left(T_{i}^{k}-\frac{1}{2} \delta_{i}^{k} T\right) \\
R_{0}^{0}=\frac{8 \pi G}{c^{4}}\left(T_{0}^{0}-\frac{1}{2} \delta_{0}^{0} T\right)=\frac{8 \pi G}{c^{4}}\left(T_{0}^{0}-\frac{1}{2} T\right)=\frac{8 \pi G}{c^{4}}\left(\rho c^{2}-\frac{1}{2} \rho c^{2}\right)=\frac{4 \pi G \rho}{c^{2}} \\
R_{00}=R_{0}^{0}=\frac{4 \pi G \rho}{c^{2}} \\
R_{00}=\frac{\partial \Gamma_{00}^{\alpha}}{\partial x^{\alpha}}
\end{gathered}
$$

$\Gamma_{00}{ }^{\alpha}$ being a Christoffel symbol.

$$
\begin{gathered}
\Gamma_{00}^{\alpha} \approx-\frac{1}{2} g^{\alpha \beta} \frac{\partial g_{00}}{\partial x^{\beta}}=-\frac{1}{2}(-1) \frac{\partial g_{00}}{\partial x^{\alpha}}=\frac{1}{2} \frac{\partial}{\partial x^{\alpha}}\left(1+\frac{2 \varphi}{c^{2}}\right) \\
\Gamma_{00}^{\alpha}=\frac{1}{c^{2}} \frac{\partial \varphi}{\partial x^{\alpha}} \\
R_{00}=\frac{1}{c^{2}} \frac{\partial^{2} \varphi}{\partial x^{\alpha 2}} \\
\frac{\partial^{2} \varphi}{\partial x^{\alpha 2}}=4 \pi G \rho
\end{gathered}
$$

$$
\begin{gathered}
\nabla^{2} \varphi=4 \pi G \rho \\
\varphi=-\frac{1}{4 \pi} \int \frac{4 \pi G \rho d V}{r}=-G \int \frac{\rho d V}{r}
\end{gathered}
$$

V being the volume, since $\nabla^{2}(1 / r)=-4 \pi \delta(r)$, where $\delta(r)$ is the Dirac delta function: $\delta(r)$ $=+\infty$ for $r=0$ and $\delta(r)=0$ for $r \neq 0$ and $\delta \delta(r) d V=1$; and $\nabla^{2} \varphi=-G \int \rho \nabla^{2}(1 / r) d V=$ $4 \pi G \int \rho \delta(r) d V=4 \pi G \rho / \delta(r) d V=4 \pi G \rho$. For a group of n particles

$$
\varphi=-G \sum_{n} \frac{M_{n}}{r_{n}}
$$

M_{n} being the masses of the particles and r_{n} the distances from them to the field points. And for a single particle

$$
\begin{aligned}
\varphi & =-G \frac{M}{r} \\
F & =-m_{0} \frac{\partial \varphi}{\partial r} \\
F & =-G \frac{M m_{0}}{r^{2}}
\end{aligned}
$$

F being the Newton gravitational attraction force between two particles of masses M and m_{0} separated a distance r.
[1] José Francisco García Juliá, A Note on the Mass-Energy Relation, January 10, 2012. http://vixra.org/pdf/1109.0057v2.pdf
[2] James H. Smith, Introducción a la Relatividad Especial, pp. 142-143, Reverté, Barcelona, 1969. Original edition, Introduction to Special Relativity, Benjamin, New York.
[3] L. D. Landau and E. M. Lifshitz, Teoría Clásica de los Campos, pp. 31, 116, 344, 384, 390, in Spanish, Reverté, Barcelona, 1973. Original edition by Nauka, Moscow, 1967.

