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Summary

A common problem in multi-environment trials arises when some
genotype-by-environment combinations are missing. The aim of this
paper is to propose a new deterministic imputation algorithm using a
modification of the Gabriel cross-validation method. The method involves
the singular value decomposition (SVD) of a matrix and was tested
using three alternative component choices of the SVD in simulations
based on two complete sets of real data, with values deleted randomly at
different rates. The quality of the imputations was evaluated using the
correlations and the mean square deviations between these estimates and
the true observed values. The proposed methodology does not make any
distributional or structural assumptions and does not have any restrictions
regarding the pattern or mechanism of the missing data.

Key words: imputation, missing data, cross-validation, genotype-by-
environment interaction, SVD.

1. Introduction

Statistically planned experiments involving two factors, where each fac-
tor can have a different number of levels, arise in various studies across
different areas of knowledge. Generally the result is a two-way table, where
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each cell has a measurement of the variable of interest, but some prob-
lems in the data collection or in the design can cause difficulties in further
analysis. For example, the data analyst may encounter difficulties caused
by outliers, missing repetitions (if the costs were considered) and missing
data due to weather issues, dead animals, damaged plants, incorrect data
measurement or transcription, and many other situations that arise when
working with real data.
In the case of missing data, the loss of information produces unbalan-

ced designs that lose their symmetry and, for instance, hypothesis tests
of interest such as those for the difference between the treatments may
need special theoretical development. Sometimes, if the number of miss-
ing values is large, some parametric functions are not estimable and the
wrong calculation of the degrees of freedom for the sums of squares may
cause inappropriate inferences and poor conclusions about the experiment.
A possible solution could be to repeat the experiment under similar con-
ditions and in this way to obtain new values for the missing observations.
However, this solution, although ideal, might not be viable in terms of avail-
able time and money. Dodge (1985) and Little and Rubin (2002) present
two of the most common approaches used to solve this problem. Dodge
(1985) presents theoretical considerations for an analysis based only on the
observed data, while Little and Rubin (2002) describe a large number of
imputation methods in order to fill the empty cells.
It is common for bifactorial experiments to have only one observation

per cell and additionally to have missing data. An example of this situation
is in multi-environment experiments, where the cultivars are studied in
different locations or environments and each cell presents the mean of each
factor level combination. These types of trial are very often applied for
the genetic improvement of plants and are known as genotype-environment
experiments (G× E).
Often, multi-environment experiments are unbalanced and several geno-

types are not tested in some locations. For recommendations concerning
environments, it may be of interest to obtain estimates of the performance
of combinations that were not tested. Such estimates can be obtained from
the information present in the genotypes by environment combinations that
were actually observed. It is well known that one of the best options for the
analysis of the (G× E) interaction is the class of additive main effect and
multiplicative interaction models (AMMI) (Gauch, 1988, 1992), because
this class explores the information in the data better than the traditional
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ANOVA (Duarte and Vencovsky, 1999), but these models have some prob-
lems in parameter estimation if there are missing values (Denis and Baril,
1992). For instance, in the classic estimation of the AMMI models it is nec-
essary to find the singular value decomposition (SVD) (Good, 1969) of the
non-additive residual matrix, but this SVD cannot be calculated if some
matrix entries are missing.
Several suggestions have been made in the literature to solve these prob-

lems. One of the first was made by Freeman (1975), who suggested imput-
ing the missing data in an iterative way by minimizing the residual sum of
squares and doing the G × E interaction analysis on the completed table,
reducing the degrees of freedom by the number of missing values. Subse-
quently, Gauch and Zobel (1990) developed an imputation method using the
EM algorithm and the AMMI model, and some variants of this procedure
using multivariate statistics (cluster analysis) were described in Godfrey et
al. (2002). Mandel (1993) proposed making the imputation in incomplete
two way tables using linear functions of the rows (or columns). Other meth-
ods recommended by van Eeuwijk and Kroonenberg (1998) as having good
results in the case of missing data for (G×E) experiments were developed
by Denis (1991), Caliński et al. (1992) and Denis and Baril (1992). They
found that using imputations through alternating least squares with bi-
linear interaction models or AMMI estimates based on robust sub-models
can give results as good as those found with the EM algorithm. Addi-
tionally, Caliński et al. (1999) introduced an algorithm that combines the
SVD with the EM algorithm, showing it to be very useful for experiments
in which the alternating least squares have some problems. One example
was the convergence failures found by Piepho (1995), who concluded that
the best alternative to imputing missing data using fixed effects is the
additive model without interaction. Recently, Bergamo et al. (2008) pro-
posed a distribution-free multiple imputation method that was assessed by
Arciniegas (2008), who compared it with other algorithms in a simulation
study with real data.
Given the historical information about data imputation in experiments,

and specifically in two factor G×E experiments, the objective of the present
paper is to propose and assess the performance of a deterministic imputa-
tion algorithm without distributional and structural assumptions, using a
modification of the cross-validation method presented by Gabriel (2002).
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2. Material and methods

2.1. Data imputation using a cross-validation method

The cross-validation method proposed by Gabriel (2002) used a mixture
of regression and lower-rank approximation to find the optimum number of
principal components in any data set that can be arranged in matrix form.
Because of this characteristic, Dias and Krzanowski (2006) employed the
method to determine the best AMMI model in (G× E) experiments. The
methodology is next presented.
Consider the n× p matrix X with elements xij (i = 1, . . . , n; j = 1, . . . , p),
use the following partition

X =

[
x11 xT1�
x�1 X11

]
(1)

and approximate the submatrix X11 by its rank m approximation using the
singular value decomposition (SVD)

X11 =
m∑
k=1

u(k)dkv
T
(k) = UDV

T (2)

where U = [u1, . . . , um], V = [v1, . . . , vm], D = diag(d1, . . . , dm) and m ¬
min{n−1, p−1}. Then, using the regressionUD−1VTx�1 (or VD−1UTx�1)
of the first row (or the first column) omitting the first column (or row) the
predictor of x11 is defined by

x̂
(m)
11 = x

T
1�VD

−1UTx�1 (3)

and the cross-validation residual by e11 = x11 − x̂(m)11 . The cross-validation
fitted values x̂(m)ij and the residuals eij = xij − x̂

(m)
ij are obtained similarly

for all other elements xij (i = 1, . . . , n; j = 1, . . . , p); (i, j) 6= (1, 1), but of
course each element requires a different partition of the original matrix X.
Through elementary operations in the rows and columns of X, the element
(i, j) of interest can be taken to occupy the position x11 in (1). Note also
that D−1 in (3) may be replaced by the Moore-Penrose generalized inverse
(Dias and Krzanowski, 2003). For each possible choice of m (the number
of components), the measure of discrepancy between actual and predicted
value is defined by the following expression, known as the Prediction Sum
of Squares

PRESS(m) =
1
np

n∑
i=1

p∑
j=1

(
xij − x̂(m)ij

)2
(4)
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This method can be applied directly when there is only one missing value.
For the case of several missing values in X, a modification is made following
the studies of Krzanowski (1988), Bello (1993) and Bergamo et al. (2008).
Initially all values are imputed by their respective column means, giving a
completed matrix X. This matrix is then standardized, mean-centering the
columns with mj and dividing the result by sj (where mj and sj represent
the mean and the standard deviation of the j-th column). Using the stan-
dardized matrix, the imputation for each cell corresponding to an original
missing value is made using (3). Finally, the X matrix must be returned to
its original scale, xij = mj + sj x̂

(m)
ij . This process is then iterated until the

imputations achieve convergence (i.e. stability in the successive imputed
values). Note that this process is appropriate if n > p, and if this is not the
case then the matrix should first be transposed.
The imputation process depends on equation (2) and specifically on the

value chosen for m. Krzanowski (1988) and Bergamo et al. (2008) took
m = min{n− 1, p− 1} with the objective of using the maximum amount of
available information in the matrix, but Arciniegas (2008) and Arciniegas-
Alarcón and Dias (2009) showed through a simulation study based on real
data from a G×E experiment, that the imputation efficiency using this m
choice can be matched by other algorithms that do not use the SVD, for
instance, an additive model without interaction. So, in the present paper we
will also study other options form, following the recommendation suggested
by Caliński et al. (1999) that the residual dispersion of the interaction
measured by the eigenvalues is close to 75%. Applying this suggestion to
(2), we will consider the following three choices of m:

1. GabrielMax: m = min{n− 1, p− 1}.

2. GabrielCrit1: m such that,
( ∑m

k=1 dk∑min{n−1,p−1}
k=1 dk

)
≈ 0.75

3. GabrielEigen: m such that,
( ∑m

k=1 d
2
k∑min{n−1,p−1}

k=1 d2
k

)
≈ 0.75

The imputation method proposed from the cross-validation theory is a de-
terministic imputation method, and has as an advantage over other stochas-
tic imputation methods (parametric multiple imputation) that the imputed
values are uniquely determined and when applied anywhere to the same
data will always yield the same results. This is not necessarily true for the
stochastic imputation methods (Bello, 1993).



6 S. Arciniegas-Alarcón, M. Garćıa-Peña, C.T.S. Dias, W.J. Krzanowski

2.2. The data

A simulation study based on real data was used to assess the imputa-
tion method and the different possible choices for m. The data used were
obtained from the Upland cotton variety trials (Ensaio Estadual de Algo-
doeiro Herbáceo) in the agricultural year 2000/01, of the cotton improve-
ment program for the Cerrado conditions. The experiments were conducted
in 27 locations in the Brazilian states of Mato Grosso, Mato Grosso do Sul,
Goiás, Minas Gerais, Rondônia, Maranhão e Piaúı. A randomized complete
block design was used with 15 cultivars and 4 repetitions. The experimental
plot was constituted by four rows of 5m in length with spacing of 0.80m be-
tween rows and a density of seven plants per meter. The useful area of the
plot was composed of two central rows (Farias, 2005). The studied variable
was yield seed cotton (kg/ha) and for this work the mean yield for each
genotype in each of the locations comprised the data values (because only
the mean was available), but in general terms the procedure works for any
data set that can be arranged in matrix form.

3. Simulation study

The data set contained 405 observations. Values from this data set were
then deleted randomly at three different percentages, namely 10%, 20% and
40% missing. The process was repeated 1000 times for each percentage of
missing values, giving a total of 3000 different data sets with missing val-
ues chosen at random. In the first case (10%) 41 values were deleted, in
the second (20%) 81 values and in the third (40%) 162 values. For each
one of the 3000 data sets with simulated missing data, the GabrielMax,
GabrielCrit1 and GabrielEigen imputation algorithms were applied to pre-
dict the missing values through a computational program implemented in
SAS/IML (SAS INSTITUTE, 2004).
The Pearson correlation coefficient and the mean square deviation (MSD)

between the estimates of the missing values and the true values of the
experiment were calculated as quality measures of the imputations. Here
MSD =

∑
i,j(TVij − EVij)2/NM where TV denotes true value, EV de-

notes estimated value and NM is the total number of missing values. The
imputation method is a good one if the correlation is large and the MSD
is small. The MSD was calculated for each method in each simulated data
set, and the resulting MSD values were standardized in order to visualize
any differences more readily. If one method is consistently better than the
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others then its individual MSD values will be clustered at the bottom on
the standardized scale, and this pattern shows up readily in box plots.

3.1. Simulation study results

Figure 1 shows the box plot of the 1000 standardized MSD values for
each imputation method and each percentage. It can be seen that the stan-
dardized MSD distribution for GabrielMax always has a left asymmetric
distribution, concentrating the majority of the values above 1.0 (on the
scale), which indicates that this method achieved the greatest differences
between the imputations and the real data of the trial. For 10% and 20%
deletion, GabrielCrit1 and GabrielEigen have approximately symmetric dis-
tributions, with most of the values concentrated around −0.5 (in the stan-
dardized scale), which means that with these criteria the differences be-
tween the real data and the corresponding imputed data were minimized.
For 40% deletion GabrielCrit1 and GabrielEigen have a right and a left
asymmetric distribution respectively, with a concentration of the values in
the negative part of the scale, indicating that for that percentage of missing
values the methods minimize the differences between the real and imputed
data. All three imputation methods have outliers, because there are many
values lying away from the principal data set, but the smallest variability
is obtained with the GabrielMax algorithm. It can be concluded that the
greatest median MSD is achieved with the GabrielMax prediction, and the
lowest with GabrielEigen. The best methods of imputation are those that
minimize the MSD and maximize the correlation between imputed and real
values. In order to know which method minimizes the standardized MSD,
it is useful to observe the variance or the interquartile distance of the MSD.
However, it should be considered that these criteria will only be efficient
if, in addition to small variance or interquartile distances, the means and
medians are small as well.
Table 1 shows the main statistics of the standardized MSD for each

percentage of missing values. It can be seen that the GabrielEigen method
minimizes the mean standardized MSD for all the percentages of miss-
ing values, while the method that maximizes the values in all the cases is
GabrielMax. GabrielMax also has the smallest variance for all the percent-
ages of missing values. GabrielEigen has the minimal medians, followed by
GabrielCrit1. The interquartile distance (Q3 − Q1) was used as an alter-
native dispersion measure to evaluate the algorithms, and it was concluded
that the method that minimizes the distance for all the percentages of
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Figure 1. Box plot of the standardized MSD distribution.

Table 1. Statistics of the standardized MSD.

Percentages of values deleted
randomly

Method Statistic 10% 20% 40%
Mean 1.1398 1.1376 1.0973

GabrielMax Variance 0.0131 0.0051 0.0148
Median 1.1534 1.1517 1.1381
Q3-Q1 0.0044 0.0113 0.0510
Mean -0.5368 -0.4806 -0.3302

GabrielCrit1 Variance 0.0183 0.0250 0.0623
Median -0.5551 -0.5108 -0.4001
Q3-Q1 0.0942 0.1316 0.2503
Mean -0.6030 -0.6570 -0.7671

GabrielEigen Variance 0.0179 0.0130 0.0215
Median -0.5990 -0.6414 -0.7380
Q3-Q1 0.0917 0.1206 0.1992

missing values is GabrielMax.
The Friedman non-parametric test was used to investigate differences

among the standardized MSD values for the three imputation methods in
each percentage of missing values. The values of the TFriedman statistic de-
fined in Sprent and Smeeton (2001), were: 3189.25 (p-value < 0.0001) for
10%, 5041.23 (p-value < 0.0001) for 20% and 16716.59 (p-value < 0.0001)
for 40%. Having confirmed that at least one imputation algorithm has a
centrality parameter different from the other two, multiple pairwise com-
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parisons among the imputation methods showed that there are significant
differences of the MSD among the all methods. Similarly, applying the
Levene test of variance homogeneity of the standardized MSD among the
algorithms for the three percentages of missing values yielded values of the
Levene statistic of 0.32 (p-value < 0.7245), 12.72 (p-value < 0.0001) and
54.18 (p-value < 0.0001) respectively, indicating rejection of the variance
homogeneity hypothesis of the methods for the 20% and 40% percentages
of missing values.

Table 2. General statistics of the standardized MSD.

Imputation methods
Statistic GabrielMax GabrielCrit1 GabrielEigen
Mean 1.1249 -0.4492 -0.6757
Variance 0.0114 0.0428 0.0221
Median 1.1510 -0.5046 -0.6470
Q3-Q1 0.0171 0.1664 0.1495

Finally, Table 2 shows the overall statistics obtained in the simulation
study, irrespective of the percentages of missing values. The method that
minimizes the interquartile distance is GabrielMax. GabrielEigen yields the
lowest values of the MSD median and mean, while the minimal variance is
achieved by GabrielMax. Overall the GabrielMax method gave the smallest
variances, but this is only good if the mean/median are small too, and this
was not the case here. So, according to the standardized MSD, the most
efficient imputation method is GabrielEigen. Figure 2 presents the corre-
lation coefficient distribution that was calculated in each simulated data
set to compare the imputations with the real experimental data. It shows
that the performance of the GabrielCrit1 and GabrielEigen algorithms is
similar when imputing 10% and 20% of the data, with an approximately
asymmetrical distribution and with correlations higher than 0.90. For 40%
imputation, the method that presents the highest correlations and the mini-
mal variability of the Pearson correlation coefficient in the simulation study
is GabrielEigen. In all the percentages the GabrielMax method shows the
greatest variability and the lowest values of the correlation coefficient. In
general, according to the Pearson correlation coefficient the best method is
GabrielEigen.

3.2. Example

According to the simulation study results, the GabrielEigen imputation
method had the best performance, minimizing the mean and the median
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Figure 2. Box plot of the correlation distribution between real and imputed
data for 10%, 20% and 40% missing values.

of the standardized MSD and also obtaining the best correlations with the
real data. So, to check the consistency of the results, another real data set
was chosen from a trial with genotype-by-environment interaction, in order
once again to apply the proposed imputation methods.
The data correspond to trials conducted in seven environments in the

south and southeast regions of Brazil, for 20 Eucalyptus grandis progenies
from Australia. A randomized block design with 6 plants per plot and 10
replicates was used, the whole experiment taking up a space of dimension
3.0 m by 2.0 m. The original data and additional features of the trials can
be found in Lavoranti (2003, p.91) and Bergamo (2007, p.33).
The data matrix has size 20×7, and unlike the simulation study, only a

random withdrawal of 30% was considered and without repetitions, i.e. 42
missing values. The same situation was studied by Bergamo et al. (2008).
The results obtained using GabrielMax, GabrielCrit1 and GabrielEigen are
presented in Table 3.
The smallest MSD between the imputations and the original values was

obtained through GabrielEigen with a value of 0.6826, followed by Gabriel-
Max and GabrielCrit1 with 1.3123 and 1.4736 respectively. The correlation
coefficients were 0.96 for the GabrielEigen estimates, 0.91 for GabrielCrit1
and 0.92 for GabrielMax.
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Table 3. Estimates of missing values introduced into the data by random
deletion.

Imputation method Imputation method
Missing Original Gabriel Gabriel Gabriel Missing Original Gabriel Gabriel Gabriel
position value Max Crit1 Eigen position value Max Crit1 Eigen
(3,1) 16.52 17.39 17.03 16.63 (15,4) 17.91 19.18 18.18 18.11
(9,1) 16.87 15.12 15.67 16.62 (17,4) 18.91 18.20 16.60 19.24
(13,1) 17.62 16.12 16.30 16.14 (19,4) 15.68 16.85 16.67 15.47
(15,1) 15.94 16.47 17.31 16.70 (20,4) 16.46 16.10 14.50 16.13
(18,1) 16.90 15.33 15.60 16.70 (6,5) 11.91 13.32 13.04 12.73
(2,2) 24.00 24.32 23.72 23.65 (8,5) 13.66 14.10 14.05 13.69
(5,2) 21.56 21.96 21.43 21.62 (12,5) 12.62 13.04 12.97 13.09
(11,2) 22.98 22.43 22.46 22.83 (16,5) 12.80 13.55 12.82 13.11
(19,2) 20.12 23.01 22.68 21.19 (2,6) 17.77 19.31 19.49 19.49
(3,3) 15.94 16.84 17.16 17.00 (5,6) 18.06 17.22 17.22 17.39
(6,3) 16.61 17.58 17.47 16.85 (15,6) 19.71 17.88 18.45 18.63
(7,3) 17.02 15.60 15.21 15.29 (16,6) 19.44 18.88 18.88 18.86
(17,3) 16.17 17.52 16.94 17.86 (17,6) 20.24 18.74 18.90 19.36
(19,3) 14.66 15.59 16.36 15.41 (19,6) 16.10 16.45 16.92 16.80
(1,4) 20.61 20.63 20.74 20.09 (4,7) 13.03 13.31 12.56 13.08
(3,4) 18.91 17.86 17.68 17.97 (6,7) 13.17 14.28 14.37 13.39
(6,4) 19.08 18.44 19.26 17.74 (7,7) 11.14 12.55 13.11 12.34
(9,4) 18.96 16.73 17.39 17.92 (8,7) 14.37 14.71 13.67 14.25
(10,4) 18.94 17.65 18.69 18.94 (11,7) 13.13 14.37 13.88 13.56
(12,4) 18.19 17.81 16.74 18.43 (12,7) 13.52 13.41 12.78 13.71
(13,4) 18.78 17.36 16.43 16.89 (13,7) 13.24 13.33 12.69 13.02

The results of the example and the simulation study, confirm that Gabriel-
Eigen should be the recommended method. The GabrielCrit1 algorithm
gave inconsistent results because its standardized MSD was smaller than
GabrielMax in the simulation study, but in the example it had largest MSD.
Since missing data are also predicted in order to complete tables of in-

formation with the final goal of estimating model parameters, we fitted the
genotypic and environmental parameters (i.e., the principal effects) using
the analysis of variance ANOVA after the data imputation. The genotypic
and environmental parameters of the original data and completed data are
shown in Table 4 and Table 5. The genotype 1 and 19 have the most in-
fluence in the E. grandis heights, positive and negative respectively; while
the environments are highlighted on 2 and 5.
The MSDs among the genotypic parameters of the original data and the

completed data were as follows: 0.0722 imputing with GabrielMax, 0.0957
using GabrielCrit1 and 0.0256 with the imputation through GabrielEigen.
GabrielEigen again gives the best results.
Moreover, the mean square of deviations between the environmental

parameters of the original data and the completed data were 0.0343, 0.0390
and 0.0150 imputing the missing observations through GabrielMax, Gabriel-
Crit1 and GabrielEigen respectively. In conclusion the GabrielEigen method
gives the best results for both genotypic and environmental parameters.
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Table 4. Fitted genotypic parameters by ANOVA in completed data.

Genotypic parameters
Genotypic Original GabrielMax GabrielCrit1 GabrielEigen
1 1.5698 1.5638 1.6252 1.5048
2 0.8412 1.0978 1.0840 1.0466
3 0.0226 0.1159 0.1322 0.0651
4 -0.5988 -0.5686 -0.6284 -0.5818
5 -1.0902 -1.1624 -1.1915 -1.1681
6 -0.1488 0.2502 0.3698 -0.1482
7 -1.6445 -1.6554 -1.5842 -1.7105
8 1.0898 1.1927 1.0838 1.0865
9 0.0855 -0.4930 -0.2724 -0.0903
10 0.6341 0.4406 0.6354 0.6430
11 0.0269 0.1166 0.0970 0.0764
12 0.2241 0.2054 -0.0024 0.3628
13 -0.1474 -0.5596 -0.7130 -0.6506
14 0.8484 0.8390 0.8858 0.8579
15 0.1612 0.1468 0.2515 0.1540
16 0.4026 0.4213 0.3623 0.3740
17 0.7212 0.5888 0.3477 0.8938
18 0.0912 -0.1425 -0.0576 0.0716
19 -1.9588 -1.2066 -1.0531 -1.6191
20 -1.1302 -1.1907 -1.3722 -1.1681

Table 5. Fitted environmental parameters by ANOVA in completed data.

Environmental parameters
Environment Original GabrielMax GabrielCrit1 GabrielEigen

1 -0.3468 -0.5274 -0.4067 -0.3904
2 5.6582 5.8021 5.7769 5.6990
3 -0.1378 -0.0109 0.0368 -0.0276
4 1.1922 0.9024 0.7520 0.9265
5 -4.2698 -4.1279 -4.1378 -4.1785
6 1.5312 1.3796 1.4955 1.5013
7 -3.6273 -3.4179 -3.5167 -3.5302

4. Conclusions

According to the simulation study and the example based on two differ-
ent real data sets, the method that offers the best features is the Gabriel-
Eigen imputation algorithm. This method minimizes the MSD between the
imputations and the real data of the trial and the MSD between the orig-
inal data and the completed data for genotypic as well as environmental
fitted parameters. Similarly, GabrielEigen showed the highest correlations,
having an approximately symmetrical distribution and small dispersion.
The proposed method does not depend on any distributional or structural
assumptions and does not have any restrictions regarding the pattern or
mechanism of the missing data in trials with (G× E).
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Bergamo G.C. (2007): Imputação múltipla livre de distribuição utilizando a
decomposição por valor singular em matriz de interação. PhD thesis (in
Portuguese), Universidade de São Paulo (accessed in March 23, 2009).
http://www.lce.esalq.usp.br/tadeu/genevile bergamo tese.pdf

Bergamo G.C., Dias C.T.S., Krzanowski W.J. (2008): Distribution-free multiple
imputation in an interaction matrix through singular value decomposition.
Scientia Agricola 65 (4): 422–427.

Caliński T., Czajka S., Denis J.B., Kaczmarek Z. (1992): EM and ALS algorithms
applied to estimation of missing data in series of variety trials. Biuletyn Oceny
Odmian 24-25: 7–31.

Caliński T., Czajka S., Denis J.B., Kaczmarek Z. (1999): Further study on esti-
mating missing values in series of variety trials. Biuletyn Oceny Odmian 30:
7–38.
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