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Abstract (4 pages - Table of Contents on page 5) 

1 - Start with a regular Tetrahedron in flat 3-dim space  

  Tetrahedron Josephson Junction Quantum Computer Qubit 

2 - Add 4 + 12 Tetrahedra sharing faces to get 17 Tetrahedra 

  The 4 fit face-to-face exactly in 3-dim, 
but

the 12 do not fit exactly in 3-dim, 
However, all 17 do fit exactly in curved 3-dim space which is naturally embedded 
in 4-dim space described by Quaternions.

3 - Add 4 half-Icosahedra (10 Tetrahedra each) to form a 40-Tetrahedron Outer 
Shell around the 17 Tetrahedra and so form a 57-Tetrahedron TertraJJ Nucleus 

Like the 12 of 17, the Outer 40 do not exactly fit together in flat 3-dim space.  

If you could force all 57 Tetrahedra to fit together exactly, you would be 
curving 3-dim space by a Dark Energy Conformal Transformation. 
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4 - The TetraJJ Nucleus can be combined with a Triangle of a Pearce D-Network

to form a 300-tetrahedron configuration TetraJJPearce

5 - Doubling the 300-cell TetraJJPearce produces a {3,3,5} 600-cell polytope 

of 600 Tetrahedra and 120 vertices in 4-dim

6 - Adding a second {3,3,5} 600-cell displaced by a Golden Ratio screw twist 
used 4 TetraJJ Nuclei to produce a 240 Polytope with 240 vertices in 4-dim
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7 - Extend 4-dim space to 4+4 = 8-dim space by considering the Golden Ratio 
algebraic part of 4-dim space as 4 independent dimensions, thus transforming the 
4-dim 240 Polytope into the 240-vertex 8-dim Gosset Polytope 

that represents the Root Vectors of the E8 Lie Algebra and the first shell of an 8-
dim E8 Lattice

8 - The 240 Root Vectors of 248-dimensional E8 have structure inherited from the 
256-dimensional real Clifford Algebra Cl(8)  

which structure allows construction of a E8 Physics Lagrangian from which  
realistic values of particle masses, force strengths, etc., can be calculated. 
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9 - Similar Tetrahedral Structures provide an understanding of 
Palladium Cold Fusion 

in terms of the Fuller Jitterbug Transformation 
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Dark Energy and Josephson Junctions

In astro-ph/0512327 Christian Beck says: "... if dark energy is produced by vacuum 
fluctuations then 

there is a chance to probe some ... dark energy ... properties by 
simple laboratory tests based on Josephson junctions. 

These electronic devices can be used to perform 'vacuum fluctuation spectroscopy', 
by directly measuring a noise spectrum induced by vacuum fluctuations. One 
would expect to see a cutoff near 1.7 THz in the measured power spectrum, 
provided the new physics underlying dark energy couples to electric charge. The 
effect exploited by the Josephson junction is a subtile nonlinear mixing effect and 
has nothing to do with the Casimir effect or other effects based on van der Waals 
forces. A Josephson experiment of the suggested type will now be built, and we 
should know the result within the next 3 years. ...".

The Josephson experiment mentioned by Christian Beck is by P A Warburton of 
University College London, who says in EPSRC Grant Reference: EP/D029783/1: 
"... dark energy may be measured in the laboratory using resistively-shunted 
Josephson junctions (RS-JJ's). Vacuum fluctuations in the resistive shunt at low 
temperatures can be measured by non-linear mixing within the Josephson junction. 
If vacuum fluctuations are responsible for dark energy, the finite value of the dark 
energy density in the universe (as measured by astronomical observations) sets an 
upper frequency limit on the spectrum of the quantum fluctuations in this resistive 
shunt. Beck and Mackey calculated an upper bound on this cut-off frequency of 
1.69 THz. ...
We therefore propose to perform measurements of the quantum noise in RS-JJ's 
fabricated using superconductors with sufficiently large gap energies that the full 
noise spectrum up to and beyond 1.69 THz can be measured. ... At higher 
frequencies tunnelling of quasiparticles dominates over all other electronic 
processes....
Nitride junctions have cut-off frequencies of around 2.5 THz, which should give 
sufficiently low quasiparticle current noise around 1.69 THz at accessible 
measurement temperatures. 
Cuprate superconductors have an energy gap an order of magnitude higher than the 
nitrides, but here there is finite quasiparticle tunnelling at voltages less than the gap 
voltage, due to the d-wave pairing symmetry. ...”. 
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HOW TO DESIGN A 10^12 HZ JOSEPHSON JUNCTION ?

A PhysicsWeb article by Belle Dume at http://physicsweb.org/article/news/8/6/17
describes the Beck and Mackey paper, saying "... In 1982, Roger Koch and 
colleagues, then at the University of California at Berkeley and the Lawrence 
Berkeley Laboratory, performed an experiment in which they measured the 
frequency spectrum of current fluctuations in Josephson junctions.
Their system was cooled to millikelvin temperatures so that thermal vibrations 
were reduced to a minimum, leaving only zero-point quantum fluctuations. ...".
So, 
our junction must be cooled to a few millikelvin, which was done back in 1982,
which means that the next question is how to find a junction sensitive to terahertz 
fluctuations.

Here are a couple of relevant references:

According to a paper by at http://www.iop.org/EJ/abstract/0953-2048/15/12/309
Terahertz frequency metrology based on high-Tc Josephson junctions
by J Chen1, H Horiguchi, H B Wang, K Nakajima, T Yamashita and P H Wu
published 22 November 2002: "...  Using YBa2Cu3O7/MgO bicrystal Josephson 
junctions operating between 6-77 K, we have studied their responses to 
monochromatic electromagnetic radiation from 50 GHz to 4.25 THz.
We have obtained direct detections for radiation at 70 K from 50 GHz to 760 GHz
and at 40 K from 300 GHz to 3.1 THz. ...".

Some details of how to make such things were outlined at
http://fy.chalmers.se/~tarasov/e1109m_draft.htm
by E. Stepantsov, M. Tarasov, A.Kalabukhov, T. Lindstrooem, Z. Ivanov, 
T. Claeson dated August 2001:  "... Submicron YBCO bicrystal Josephson 
junctions and devices for high frequency applications were designed, fabricated
and experimentally studied. The key elements of these devices are bicrystal 
sapphire substrates. ... A technological process based on deep ultraviolet 
photolithography using a hard carbon mask was developed for the fabrication of 
0.4-0.6 mm wide Josephson junctions. ... These junctions were used as Josephson 
detectors and spectrometers at frequencies up to 1.5 THz ...".
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Some data that may be relevant are:

1 - the critical density in our universe now is about 5 GeV/m^3

2 - it is made up of Dark Energy : Dark Matter : Ordinary Matter 
in a ratio DE : DM : OM = 73 : 23 : 4

3 - the density of the various types of stuff in our universe now is
DE = about 4 GeV / m^3
DM = about 1 GeV / m^3
OM = about 0.2 GeV / m^3

4 - the density of vacuum fluctuations already observed in Josephson Junctions is 
about 0.062 GeV/m^3 which is for frequencies up to about 6 x 10^11 Hz

5 - the radiation density (for photons) varies with frequency as the 4th power of the 
frequency, i.e., as ( pi h / c^3 ) nu^4

6 - if Josephson Junction frequencies were to be experimentally realized up 
to 2 x 10^12 Hz, then, if the photon vacuum fluctuation energy density formula 
were to continue to hold, the vacuum energy density would be seen to 
be 0.062 x (20/6)^4 = about 7 GeV/m^3 which exceeds the total critical density 
of our universe now

7 - to avoid such a divergence being physically realized, neutrinos should appear in 
the vacuum at frequencies high enough that E = h nu exceeds their mass 
of about 8 x 10^(-3) eV, or at frequencies over about 1.7 x 10^12 Hz

8 - if Josephson Junctions could be developed to see vacuum fluctuation 
frequencies up to 10^12 Hz, and if the photon equation were to hold there, 
then the observed vacuum fluctuation density would be about 0.5 GeV/m^3
 which is well over the 0.2 GeV / m^3 Ordinary Matter energy density which 
means that DE and/or DM COMPONENTS WOULD BE SEEN IN VACUUM 
FLUCTUATIONS IN JOSEPHSON JUNCTIONS THAT GO UP TO 10^12 HZ 
FREQUENCY

9 -  10^28 cm = present radius of our universe = 10^26 m 
The radius of our universe at the time our solar system formed 5 by ago 
may have been about half its present radius,.
Uranus orbit = 19 AU = 19 x 380,000 km = 19 x 3.8 x 10^8 m = 7 x 10^9 m
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Uranus orbit volume = 4/3 x pi x 7^3 x 10^27 m^3 = 1.4 x 10^30 m^3
Earth Reserves Duration for 10^10 people using energy at USA level for 
the period roughly around 2006 AD (Terawatt-years - years of reserves):

Gas 550 TWy -1 year
Oil (not including Thomas Gold deep oil) 850 TWy-1 year
Methane (not including Thomas Gold deep methane) 1,500 TWy - 2 year
Coal 7,000 TWy - 7 year
Uranium (using 1/1000 of total in ocean) 1.9 X 10^9 TWy - 2,000,000 years  
Deuterium (using 1/1000 of total in ocean) 1.9 x 10^9 TWy - 2,000,000 years
Lithium (as source of tritium) 1.9 x 10^9 TWy - 2,000,000 years
Thorium (using 1/1000 of total in ocean) 7.9 x 10^9 TWy - 8,000,000 years 

1 GeV = 10^(-10) J joule, 1 eV = 10^(-19) J joule, 
A megaton of TNT is 4.184 x 10^15 joules
Q the quad (short for quadrillion) is defined as 10^15 BTUs, 
which is about 1.055 x 10^18 joules,

If 10^10 people consumed enough energy to maintain a USA-type standard of 
living by using energy at the same rate as the USA around 2006 AD, 
that would be about 100 Q (quadrillion BTU, or 10^15 BTU), 
or about 300 x 10^11 kw-hours (kilowatt-hours), for each year, 
for about 3 x 10^8 (300 million) people, or about 10^5 kw-hours/year per person 

for a total energy consumption for all 10^10 people per year 
of about 10^5 x 10^10 = 10^16 kw-hours/year = 3 x 10^4 Q/year.

Using about 10,000 hours in a year as an approximation to about 8,766 hours in a 
year: 1 Q = 3 x 10^11 kw-hours = 3 x 10^14 watt-hours = 300 x 10^12 watt-hours 
= 300 Terawatt-hours = 300 x 10^(-4) Terawatt-years = ( 1/30 ) Terawatt-years 
so that the total energy consumption for all 10^10 people per year 
would be about 3 x 10^4 Q/year = 10^3 Terawatt-years/year.

Page 9



To control Dark Energy, in addition to just observing it, 
Tetrahedral Josephson Junctions may be useful. 

A very useful reference is the 2003 dissertation of Christopher Bell at St. John’s 
College Cambridge entitled “Nanoscale Josephson devices”, on the web at 
http://www.dspace.cam.ac.uk/bitstream/1810/34607/1/chris_bell_thesis.pdf

Feigelman, Ioffe, Geshkenbein, Dayal, and Blatter in cond-mat/0407663 say: 
“... Superconducting tetrahedral quantum bits ... 

... The novel tetrahedral qubit design we propose below operates in the phase-
dominated regime and exhibits two remarkable physical properties: 
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first, its non-Abelian symmetry group (the tetrahedral group Td) leads to the 
natural appearance of degenerate states and appropriate tuning of parameters 
provides us with a doubly degenerate groundstate. Our tetrahedral qubit then 
emulates a spin-1/2 system in a vanishing magnetic field, the ideal starting point 
for the construction of a qubit. 
Manipulation of the tetrahedral qubit through external bias signals translates into 
application of magnetic fields on the spin;
the application of the bias to different elements of the tetrahedral qubit corresponds 
to rotated operations in spin space. 
Furthermore, geometric quantum computation via Berry phases ... might be 
implemented through adiabatic change of external variables. 
Going one step further, one may hope to make use of this type of systems in the 
future physical realization of non-Abelian anyons, thereby aiming at a new 
generation of topological devices ... which keep their protection even during
operation ... 

The second property we wish to exploit is geometric frustration: 
In our tetrahedral qubit ... it appears in an extreme way by rendering the classical
minimal states continuously degenerate along a line in parameter space. Semi-
classical states then appear only through a fluctuation-induced potential, 
reminiscent of the Casimir effect ... and the concept of inducing
‘order from disorder’ ...
The quantum-tunneling between these semi-classical states defines the operational
energy scale of the qubit, which turns out to be unusually large due to the weakness 
of the fluctuation-induced potential. Hence the geometric frustration present in our
tetrahedral qubit provides a natural boost for the quantum fluctuations without the 
stringent requirements on the smallness of the junction capacitances, thus avoiding
the disadvantages of both the charge- and the phase- device:
The larger junctions reduce the demands on the fabrication process and the 
susceptibility to charge noise and mesoscopic effects, while the large operational 
energy scale due to the soft fluctuation-induced potential reduces the effects of flux 
noise. Both types of electromagnetic noise, charge- and flux noise, appear only in
second order ...

in order to benefit from a protected degenerate ground state doublet, the qubit 
design requires a certain minimal complexity; it seems to us that the tetrahedron 
exhibits the minimal symmetry requirements necessary for this type of protection
and thus the minimal complexity necessary for its implementation. ...”.
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Given the basic tetrahedral structure of each individual Josephson Junction Qubit 
Node: 

What should a Dark Energy Tetrahedral Josephson Junction 
Array look like ? 

First, consider that fabrication should be in flat 3-dimensional space, which 
has a natural fundamental 3-dimensional Diamond Lattice (packing) structure.

Starting with a central node, here is how to build up the first three shells of a 3-
dimensional Diamond Lattice using a node-and-stick modelling system: 

The center vertex is black and the 4 shell-1 vertices are gray. 
The 4 shell-1 vertices form a tetrahedron (yellow lines)

and can be considered to be at radius sqrt(0.75) from the central vertex.
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The 12 shell-2 vertices (red, green, blue) form a (yellow) cuboctahedron 

 

at radius sqrt(2) from the central vertex, 
so that there within the first 2 shells of the Diamond Lattice 
there are 1 + 4 + 12 = 1 + 16 = 17 vertices. 
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The 12 shell-3 vertices (black) form a (yellow) truncated tetrahedron 

are at radius sqrt(2.75) from the central vertex, 
so that there within the first 3 shells of the Diamond Lattice 
there are 1 + 4 + 12 + 12 = 1 + 28 = 29 vertices. 

Jean-Francois Sadoc and Remy Mosseri 
in their book “Geometric Frustration” (Cambridge 2006) said:  “... 

the diamond crystalline structure can be obtained 
by starting from an f.c.c. structure 

and adding a second replica of the f.c.c. structure, 
translated by (1/4,1/4,1/4,1/4) with respect to the first one. ...”. 
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Construction of TetraJJ Nucleus in 3-dim space

Eric A. Lord, Alan L. Mackay, and S. Ranganathan in their book “New Geometries 
for New Materials” (Cambridge 2006) said: 
“... The gamma-Brass cluster ... starts from a single tetrahedron 

[ all tetrahedra should be seen as 

TetraJJ Quantum Computer Qubits ] 

Place four spheres in contact. 
Then place a sphere over each face of the tetrahedral cluster. 
The centres and bonds then form a stella quadrangula 

built from five regular tetrahedra ...[ a total of 1+4 = 5 tetrahedra ]... 

Six more spheres [ vertices ] placed over the edges of the original tetrahedron form 
an octagonal shell. In terms of the network of centres and bonds we now have 
added 12 [ = 2x6 ] more tetrahedra ... 
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There are now five tetrahedra around each edge of the original tetrahedron. ... 

...[ we now have 1+4+12 = 17 tetrahedra ]... 

[ The 12 newly added tetrahedra ]... are not quite regular ...[ i.e., 
nonzero Fuller unzipping angles appear as described by Thomas Banchoff 
in his book “Beyond the Third Dimension” (Scientific American Library 1990) 
where he said: 
“... in three-space .... we can fit five tetrahedra around an edge ...

[ image from Conway and Torquato PNAS 103 (2006) 10612-10617 

] 
... with a ... small amount of room to spare, 
which allows folding into 4-space ...[ where the fit can be made exact ]...”. ] 
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Note that all the subsequently added tetrahedra of layers and structures further out 
from the center are also “not quite regular”, or, in other words, leave gaps among 
tetrahedra that are related to the Fuller unzipping angle. 
The irregularity, or Fuller unzipping angle, can be visualized as the amount of 
curvature in a collection of TetraJJ by which it deviates from the flatness 
of 3-dim space described by the 3-dim Diamond Lattice. 

The irregularity goes away in curved 3-dim space, 
which, if it is to be realized in a flat space, must be realized in 4-dim space
by adding a 4th dimension to 3-dim space. 
However, for now, we will continue with construction of the TetraJJ Nucleus and 
its Array in 3-dim space, 
and leave additional dimensions to later sections of this paper. ]

... 12 more spheres [ vertices in addition to the 1+4+12 = 17 ] complete the rings of 
five tetrahedra around the edges of the four secondary tetrahedra ...[ They add 2x12 
= 24 more tetrahedra for a total of 1+4+12+24 = 41 tetrahedra ]... 

... Without increasing the number of vertices [ which is now 26 ], 
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inserting 16 more tetrahedra reveals the structure to be 
four interpenetrating icosahedra sharing a common tetrahedral building block ...

...[ and gives a total of 41 + 16 = 57 tetrahedra ]... and 26 vertices ... the model of 
the 26-atom gamma-brass cluster as four interpenetrating icosahedral clusters 
...
This cluster can be further augmented by placing [ 4x3 = 12 ] extra spheres ... we 
then have 38 spheres ...”. 

Note that each of the 4 interpenetrating icosahedra has: 

10 tetrahedra to itself (each belongs to only 1)
6 tetrahedral shared with one other (each belongs to 2)
3 tetrahedra shared with two others (each belongs to 3) 
1 tetrahedron shared with all three others (belongs to 4)

so 

the total number of tetrahedra in a TetraJJ Nucleus 
is 4x10 + 4x6/2 + 4x3/3 + 4x1/4 = 40+12+4+1 = 57. 
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Symmetry of the TetraJJ Nucleus

The exterior of a 57-tetrahedron TetraJJ Nucleus 

consists of 4 half-Icosahedra in a configuration that resembles

 

a truncated tetrahedron whose reflection view through each of its 4 large faces 
shows an image that appears to be a half-icosahedron that looks like the inner half 
of the Interpenetrating Icosahedron for which the Exterior half-Icosahedron that is 
opposite the large face is the exterior half.   
The TetraJJ Nucleus central tetrahedron is marked by three (red, green, blue) dots. 
For each of the 4 large faces (and opposite truncations) of the TetraJJ Nucleus 
there are 6 ways (2 of each color) to start at the central tetrahedron and go out to 
the surface through face-sharing 3-chains of 3 tetrahedera. 
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Each of those 3-chains of tetrahedra can be fit together with another 3-chain going 
out in the opposite direction, so the 4x6 = 24 3-chains become 24/2 = 12 5-chains, 
called Tetrahelices because they are helical chains of tetrahedra, that extend 
through the TetraJJ Nucleus. 

Lord and Ranganathan in Eur. Phys. J. D 15 (2001) 335-343 said: 
“... A Coxeter helix is a polygonal helix 
such that every set of four consecutive vertices form a regular tetrahedron ...
This produces a twisted rod of tetrahedra, the Boerdijk-Coxeter helix ... 

 

The B-C helix is generated from a single regular tetrahedron by repeated 
application of a screw transformation.  ...”. 
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R. W. Gray on his web site at rwgrayprojects.com describes the configuration
"... There are 12 possible Tetrahelix passing through a single Tetrahedron:
6 Clockwise and 6 Counter clockwise ... For ... the way 12 Tetrahelix pass through 
a single Tetrahedron [ corresponding to the Truncated Tetrahedron large-scale 
structure of the TetraJJ Nucleus ]... draw ... red ... triangles ...[ in the modification 
below of the images by R. W. Gray they are the 4 truncations of the Truncated 
Tetrahedron large-scale structure of the TetraJJ Nucleus ]... The lines which ... will 
be a symmetry axis for a Tetrahelix ... will be shown in green ...

There are 12 green lines, so there are 12 Tetrahelix passing through ...[ the TetraJJ 
Nucleus Truncated ]... Tetrahedron. Six of these will have a Clockwise screw sense
and 6 will have a Counter Clockwise screw sense. ... a Tetrahelix's symmetry axis 
will intersect 5 other Tetrahelix axis of symmetry and 2 of the intersection points 
are outside the Tetrahedron. ...[ the intersection points for one of the Tetrahelix 
lines are shown above as black dots ]... Note that the green lines come in crossing 
pairs. ...".
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The 12 Tetrahelices, in 6 pairs, form the geometrical configuration of the Schlafli 
Double-6. With a lot of 3-dim lines projected down to 2-dim images, it may be 
hard to see which crossings are real in 3-dim and which are just look that way in 2-
dim, so here is an image modified from wiki commons that shows the crossings as 
red dots and shows a cube to help perspective. 

Crossings may be clearer in this stereo image

in which 6 of the Tetrahelix lines have been colored red to indicate their helicity 
being opposite to that of the 6 remaining as green.
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Robert Ferreol and Alain Esculier on their mathcurve.com web site say: "... Il 
existe une unique surface cubique ... contenant les 12 droites du double-six ...

... Les 27 droites de cette surface sont ... les 12 ... plus les 15 droites ... (en jaune)

...   ...”.
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The 12 lines of the Double-6 are 12 of the 27 lines on a general cubic surface with 
the other 27 - 12 = 15 being closely related as can be seen above and also in this 
stereo image

in which the 12 Double-6 lines are red and green and the other 15 are blue. Since 
each of the 12+15 = 27 lines have 5 points of crossing, the configuration has 27x5 
= 135 points. In case it might help in visualization, here

is a stereo image of the 27 line 45 point configuration that is dual to the 27 line 135 
point configuration shown above. 

The symmetry group of the 27 line configuration, and so of the Tetra JJ Nucleus,  
is of order 72x6! = 51,840 and is the Weyl Group of the Lie Agebra E6. 
(see Coxeter, Math. Z. 200 (1988) 3-45). 
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Extension of a TetraJJ Nucleus to an Array in 3-dim space

To extend a 57-tetrahedron 26-vertex TetraJJ Nucleus, 
first construct some auxiliary structures, 
the first of which is an 81-tetrahedron 38-vertex Pearce Cluster: 

Begin with a 57-tetrahedron 26-vertex TetraJJ Nucleus 

Then add 40 more tetrahedra and 12 more vertices to get 

97 tetrahedra with 38 vertices. 

Then remove the 4x4 = 16 tetrahedra of the type of those colored green 
(note that this does not remove any vertices) 
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to get the 81-tetrahedron 38-vertex Pearce Cluster 

which has the configuration of four icosahedra in face contact with a central 
tetrahedron and with each other. 

Then note that 4 Pearce Clusters can be put in face contact with each other to form 
the basis of what Lord and Ranganathan in Eur. Phys. J. D 15 (2001) 335-343 
describe as “... a D [ Diamond ] network open packing in which a regular 
tetrahedron is centered at each node ...

... and is linked to neighboring nodes by oblate icosahedra. ...”. 

Then, consider a Pearce Triangle formed by 3 Pearce Clusters 
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Each triangular face is made up of 3 Pearce 81G clusters in face contact,
for a total of 3x81 = 243 tetrahedra.

Consider a triangular face. You can insert one 57G into its center hole. 

the Pearce Triangle face has 3x81 = 243 tetrahedra and 3x38 - 3x3 = 105 vertices.
Since the 57G TetraJJ Nucleus has 57 tetrahedra and 26 vertices,
and since fitting it into the center of the Pearce Triangle effectively cancels 9
vertices in forming the combined 57G + Triangle configuration,
the 57G + Triangle has 243 + 57 = 300 tetrahedra and 105 + 26 - 9 = 122 vertices.



Now consider 4 copies of 57G + Triangular Face



and put them together by superposition of Pearce 81G to make 

a 3-dim diamond network basic unit ( DNBU ) containing 
4x57 + 4x3x81 = 228  + 972 = 1200 tetrahedra 

The 3-dim diamond network is made up of tetrahedral-shaped DNBU 
that are connected to each other by sharing corner icosahedra. 

Each DNBU of the 3-dim diamond network contains
4 real 57G each of which represents a fermion particle or antiparticle 
and
4 virtual quantum superpositions, each of 3 virtual 81G 
so that 
the 3-dim diamond network is a superposition of 3 virtual diamond networks, 
corresponding to the 3 Imaginary Quaternions {i,j,k} 

which is analogous to the Cl(16)-E8 physics 8-dim lattice that is a superposition of 8 E8 lattices including 
the 7 independent Integral Domains corresponding to the 7 Imaginary Octonions {i,j,k,E,I,J,K}.

The 4x57 + 4x3x81 = 1200 tetrahedra and the icosahedra formed by them 
are not exactly regular in flat 3-dim space but
they can be made regular by going into 4-dim (equivalent to curving 3-dim)
where they form two 600-cells 
and the 3-dim diamond packing becomes a 4-dim hyperdiamond lattice. 
Using Golden Ratio to get 600-cells of two sizes and forming a 4+4 = 8-dim space 
produces E8 lattices with 240-vertex polytopes 
whose vertices are the 120+120 vertices of the two 600-cells.

 



Two {3,3,5} 600-cell sets of 20 vertices form a 240 Polytope in 4 dimensions 
and if 4-dimensional space is extended to 8-dimensional space by considering 
Golden Ratio Irrational Algebraic Coordinates to be independent, 
the 240 vertices of the 240 Polytope form the Root Vectors of the E8 Lie Algebra. 
Jean-Francois Sadoc and Remy Mosseri in their book 
“Geometric Frustration” (Cambridge 2006) said: 
“... The polytope 240 ...[ is ]... not a regular polytope in the Coxeter sense ... but ... 
an ordered structure on a hypersphere ... S3 ...
the diamond crystalline structure can be obtained by starting from an f.c.c. 
structure and adding a second replica of the f.c.c. structure, translated by 
(1/4,1/4,1/4,1/4) with respect to the first one. 
Similarly, 
polytope 240 is generated by adding two replicas of the {3,3,5}, displaced along a 
screw axis of S3. ... 
Each vertex of the first {3,3,5} replica is surrounded by four vertices from the 
second replica. ... The local configuration is perfectly tetrahedral ... 
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which shows orthogonal mapping of subsets of increasing size of the polytope. 
... polytope 240 is locally denser than the diamond structure. This is exactly the 
corollary of what was said ... for the {3,3,5} compared to the f.c.c. dense 
structure ...
The direct symmetry group of ... polytope 240 ... is ... G240 = Y’ x O’ / Z2 
where ... Y’ ... is the binary icosahedral group ...[ and ]... 
O’ ... is the binary ... octahedral group ... 
Note ... The direct symmetry group of the {3,3,5} polytope is a sub-group of SO(4) 
which reads G’ = Y’ x Y’ / Z2 ... Since the order of Y’  is 120, the quotient by  Z2 
implies that the order of G’ is 7200. ... The total symmetry group G also includes 
indirect orthogonal transformations, analagous to reflections ... This adds 7200 new 
elements and gives the full group G of order 14400. ... 
O’ is not a subgroup of Y’ ... polytope 240, while sharing some of the {3,3,5} 
symmetries, also has new symmetries, in particular a 40-fold screw axis ... 
Another way to describe the 240 ... is to ... follow a building rule similar to that 
which leads to the diamond structure starting from the f.c.c. structure: 
a new vertex is placed at the centre of some tetrahedral cells of the compact 
structure. In the f.c.c. case, one tetrahedron over two is centered, while in the 
present case, one tetrahedron over five will be centered, which has the 
consequence of breaking the five-fold symmetry of the polytope {3,3,5}, 
only a tenfold screw axis being preserved. 
One gets a regular structure with 240 vertices, called polytope 240, which is chiral; 
it cannot be superimposed on its mirror image. 
The polytope 240 with opposite chirality has ... O’ x Y’ / Z2 as its symmetry 
group.  ...”. 

If 4-dimensional space is extended to 8-dimensional space by considering 
Golden Ratio Irrational Algebraic Coordinates to be independent, 
the 240 vertices of the 240 Polytope form 

the 240 Root Vectors of the E8 Lie Algebra. 
As to chirality, note that the Lie Algebra structure 

248-dim E8 = 120-dim adjoint of D8 + 128-dim half-spinor of D8 
does not include the other mirror image half-spinor of D8. 
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My guess is that if you want to build in our flat 3-dimensional space 
a TetraJJ Array for exploring Dark Energy

it should be made of 600 Tetrahedral Josephson Junctions in the configuration 
described above for the {3,3,5} 600-cell (note that in the image that I assembled 
perspective is not accurately portrayed): 

Note that since the 600 tetrahedra will not fit together exactly in flat 3-dim space 
they will not share vertices as efficiently as the {3,3,5} 600-cell the number of 
vertices will be much larger than 120. 
Dark Energy phenomena might be seen between the two 300-cell sheets 
each of which has a TetraJJ Nucleus core. 
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Note also that since it takes two 600-cells to make a 240 Polytope 
it may be that a larger (1200 cells, 4 TetraJJ cores) array 

would give better results with respect to experimenting with Dark Energy. 
 
Another approach would be to use a Jitterbug Transformation 
between a 600-celll and and icosahedral 120-cell, both of which have 720 edges 
that could be constructed from BSCCO Josephson Junction crystals - see viXra 1405.0030
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Matthew Bennett and Kurt Wiesenfeld  in their paper entitled
“Averaged Equations for Distributed Josephson Junction Arrays” 
at http://www.physics.gatech.edu/mbennett/dist2003.pdf
say:
"... The Kirchhoff limit is valid provided the size of the system is small compared 
to the wavelength of the electromagnetic radiation.
As it happens, the twin technological goals of generating higher
operating frequencies ... and larger output powers (and thus more junctions)
both work against this limit. ...
To take an example,
an array operating at 300 GHz - not a particularly high frequency for Josephson 
junctions - corresponds to a wavelength of 0.4 millimeters when the index of 
refraction is 2.5;
for a typical spacing of 10 micrometers, this is about the same size as an array of 
about 40 junctions - not a particularly large number for Josephson arrays ...
at higher frequencies the current in the wire is not necessarily spatially uniform,
so the wire becomes a significant dynamical entity which couples the junctions 
along its length. ... we model the wire as a lossless transmission line ...
...
The resonant case is especially revealing, and leads to significant physical insight 
into achieving attracting synchronized dynamics.
The tighter the clusters, the more likely it is that phase locked solutions appear. ...
There are also hints that distributed arrays exhibit fundamentally different 
phenomena than their lumped counterparts.
In one case, experiments on distributed Josephson arrays reported evidence of 
super-radiance ...".               

Roman V. Buniy and Thomas W. Kephart in their paper 
“Higher order Josephson effects” 

arXiv 0808.1892 said: "... Gaussian linking of superconducting loops containing 
Josephson junctions with enclosed magnetic fields give rise to interference shifts in 
the phase that modulates the current carried through the loop, proportional to the 
magnitude of the enclosed flux. We generalize these results to higher order 
linking of a superconducting loop with several magnetic solenoids, and show 
there may be interference shifts proportional to the product of two or more 
fluxes. ... 
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The simplest example is a Borromean ring arrangement ...

... where the semiclassical path corresponds to one ring, which has higher order 
linking with two flux tubes carrying fluxes PHI_1 and PHI_2, which make up the 
other two rings. We found the phase shift in this system is ...[ proportional to the 
product PHI_1 PHI_2 ]... Higher order cases were explored in ...[ hep-th/0611335 
and hep-th/0611336 ]... and shown to be related to commutator algebras of 
homotopy generators of the configuration space R3 \ { T1 u T2 } , where T1 and 
T2 are the tubes containing the fluxes. ... The same general logic can be applied to 
systems of superconductors, Josephson junctions, and magnetic fluxes where the 
Josephson effect can arise ...". 

The Buniy and Kephart paper may be particularly relevant with respect to 
the Hopf fibration geometry of the {3,3,5} 600-cell 

discussed in the next section, due to 

the high level of linking of the Hopf circles in the {3,3,5} 600-cell. 
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Hopf Fibration, Clifford Algebras, AQFT, EPR Entanglement 

Lord and Ranganathan in Eur. Phys. J. D 15 (2001) 335-343 and J. Non-Crys. 
Solids 334&335 (2004) 121-125 said: 
“... The polytope {3,3,5} [ 600-cell ] has 120 vertices, 720 edges, 1200 equilateral 
triangle faces and 600 regular tetrahedral cells. 
Five cells surround each edge and twenty surround each vertex - forming a regular 
icosahedron. 
Circuits of 30 face-sharing tetrahedra occur in {3,3,5}. They are metrically 
identical to the ...[ Coxeter helix ]... in three dimensional Euclidean space. ...

... every set of four ...[ neighboring ]... vertices is the set of vertices of a regular 
tetrahedron with ...[ for a {3,3,5} with radius 1 ]... edge length 1 / T  ... where 
T is the golden number, T = (1+sqrt(5))/2  and  S = -T^(-1) = (1-sqrt(5))/2 ...

The 120 vertices of {3,3,5} lie in tens on 12 great circles, 
which are twelve circles of a Hopf  fibration. 

... the vertices can be assigned in tens to twelve fibres ... in 24 different ways ... 
corresponding to 12 left and 12 right fibrations ... The twelve fibres are represented 
as the twelve vertices of an icosahedron ... base space of the fibre bundle ... and the 
icosahedron edges represent the nearest neighbor relationsip ...
The special transformations of the form x -> px; and x -> xq 
... p and q ...[being]... quaternions p and q ... are called, respectively, 

left and right Clifford translations. ... 
For any given point x in S3, 
a transformation x -> px generates a great circle in S3 ... 
we can generate a great circle through every point x of S3. 
This set of circles constitute a left Hopf fibration. ...
Similarly, 
right Hopf fibrations are defined in terms of the transformations x -> xq.
... no two of the circles can intersect ... every pair of circles is linked! 
The circles are the fibres of the fibration. ... 
To obtain realistic models of E3 structures from the elegant geometry of {3,3,5} 
the polytope has to be mapped in some way, 
by unfolding it or by a projection method ... 
To obtain a realistic model ... from the corresponding structure in {3,3,5} 
a mapping is required 
that maps great circles of a Hopf fibration of S3 to helices in E3. ...
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The central helix obtained by ... projection of {3,3,5} ... is an almost exact Coxeter 
helix: the number of edges per turn is 30/11 = 2.727, instead of 2.731 ...”. 
H. S. M. Coxeter in his book “Regular Complex Polytopes” (Cambridge 2nd ed 
1991) said: “... In 1931 Heinz Hopf ... described a representation of the 3-sphere ... 
whose points ... satisfy ... the 2-sphere ... Each point ...[of the 2-sphere]... 
represents ... a great circle ... two such great circles are disjoint, and the whole set 
of ... such circles is a Hopf fibration of the 3-sphere ... A finite version of the 
Hopf fibration can be seen in the distribution of the 120 vertices of [the 600-
cell] {3,3,5} [with 120 vertices, 720 edges, 1200 faces (triangular), and 600 cells 
(tetrahedra)] ... into 12 decagons ...

[ or the 3{5}3 complex polygon counterpart of the {3,3,5} ...

... into twelve ‘parallel’ decagons ...”. 
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To visualize the 12 circles of a Hopf fibration of {3,3,5} note that they can be 
distributed as follows: 
1 on a vertical axis (actually a line or circle trough infinity) - 10 vertices 
5 on a large intermediate torus  - 5x10 = 50 vertices
5 on a small intermediate torus  - 5x10 = 50 vertices
1 on a circle in a plane perpendicular to the vertical axis - 10 vertices

A nice graphic illustration of this is on the web site of F. G. Marcelis at 
members.home.nl/fg.marcelis/ 

I have added rough drawings of:   
one of the circles on the large intermediate torus (in red) 
(the other 4 would be equally spaced around the torus) 
and 
one of the circles on the small intermediate torus (in green) 
(the other 4 would be equally spaced around the torus). 

The 120 {3,3,5} vertices would be equally distributed, 10 per circle, 
around each of the 12 circles, 
so that you might regard each of the circles as a decagon. 
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The Hopf fibration of {3,3,5} is of the 3-sphere S3 in which {3,3,5} lives: 

S1 -> S3 -> S2 = CP1 = SU(2) / U(1) = Projective Space of Complex Numbers 
Here the base space is S2 of which the relevant discrete subset is the icosahedron 
with 12 vertices, one for each of the 12 decagons of the discrete {3,3,5} fibration. 

There are only two further Hopf fibrations: 

One is S3 -> S7 -> S4 = QP = Sp(2)) / Spin(4) = Projective Space of Quaternions 
Sadoc and Mosseri in their book “Geometric Frustration” (Cambridge 2006) said:
“... We now consider quasiperiodic structures derived from the eight-dimensional 
lattice E8 ... The network is foliated into successive shells surrounding a vertex. 
These shells belong to S7 spheres ... the Hopf fibration of S7, with S3 fibres, ... 
split[s] the E8 sites into symmetrically disposed sets of 24 sites in the S3 fibres ... 
we then get a shell-by-shell analysis of the four-dimensional structure, which 
recalls ... the ... algorithm used to generate the Fibonacci chain ... 
Consider a (hyper)cubic cell in R8 ... E8 presents an analogy with the f.c.c. lattice 
and ... the diamond structure. This cubic cell contains 256 sites. 
...
To each of the ten sets of 24 points ... corresponds ... a ... Hopf ... fibre S3 ...
The ten ... form a cross polytope in R5 ... 
On each fibre, the 24 point form a [ 24-cell ] polytope {3,4,3} ... 
each fibre ... generates a four-dimensional sublattice {3,3,4,3} of the E8 lattice.
There are ten equivalent sublattices through the origin, 
associated with the ten points on the base S4 [ in R5]...
The mapping of the [ 240-vertex 8-dim ] Gossett polytope onto ... four-dimensional 
space ... produces two sets of five {3,4,3}, each on a different spherical shell S3 ... 
surrounding the origin ... each set of five {3,4,3} forms a {3,3,5} polytope, and one 
finally gets two concentric {3,3,5} 
...
[ Another ] orientation... of the E8 lattice (with respect to the Hopf fibrations) ...[ is 
based on ]... rotation ... wtih a 2x2 quaternionic matrix ... which acts on pairs of 
quaternions (points of R8) ... for each E8 shell, the points of the base are gathered 
into horizontal small spheres S3 ... to generate ...[ a ]... four-dimensional 
quasicrystal ... Two characteristic features of the four-dimensional quasicrystal ... 
First, all shells which contain the same sub-set of points, modulo a scale change, 
have their radius in one-to-one correspondence with point coordinates on a 
Fibonacci chain. 
Then, 
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if one takes into account all the shells ... the sequence formed by their square 
radius also forms a Fibonacci chain. ...”. 

Eric A. Lord, Alan L. Mackay, and S. Ranganathan in their book 
“New Geometries for New Materials” (Cambridge 2006) said: 
“... in ... the Fibonacci spiral or golden spiral arrangement of points in a plane ... 
the first n points lie within a circle of radius n, for any n, ... 

the uniformity of ... distribution ... of the arrangement of points in the Fibonacci 
spiral ... corresponds to a very efficient packing of identical subunits ... 
compared to the patterns produced by other angles ... 
If ...[ the angle ]... is rational ... M/N, 
then the (n+N)th point will like on the same radius as the nth point ... 
the distribution ...[ for ]... pi ... 

correspond[s]... to the ... rational approximation 22/7 ...”. 
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The last Hopf fibration is 
S7 -> S15 -> S8 = OP1 = Spin(9)/Spin(8) = Projective Space of Octonions. 

Each basis element of S7 corresponds to one of the 7 independent E8 lattices, 
each of which has substructure related to S3 -> S7 -> S4 and to Fibonacci. 

S15 lives in R16, whose transformation group is Spin(16) of the D8 Lie Algebra 
from which E8 is constructed by  

248-dim E8 = 120-dim adjoint of D8 + 128-dim half-spinor of D8

D8 comes from the bivector algebra of the Cl(16) Clifford Algebra, 
and 
due to the 8-periodicity of real Clifford Algebras whereby 
Cl(8N) = Cl(8) x ...( N times tensor product )... x Cl(8) 

Cl(16) = Cl(8) x Cl(8)

Clifford Algebras have dimension 2^N (dimension of N-dim HyperCubes) 
and the total dimensionality of their subalgebras (or subcubes) is 3^N. 

N                 2^N                                        3^N 
0                      1 
1                    2   3 
2                  4 =2x2  9 = 3x3 
3                8           27 
4             16 = 4x4         81 = 9x9 
5           32                   243 
6         64 = 8x8                 729 = 27x27 
7      128                           2187 
8    256 = 16x16                       6561 = 81x81 

Plato in his Timaeus used 2^N up to 2^8 and 3^N up to 3^5 to get musical intervals 
such as 256/243. 

Page 41



AQFT:  
 
Since the E8 classical Lagrangian is Local,
 it is necessary to patch together Local Lagrangian Regions
 to form a Global Structure describing 
a Global E8 Algebraic Quantum Field Theory (AQFT).  

Mathematically, 
this is done by using Clifford Algebras 
(others now using Clifford algebras in related ways include Carlos Castro and David Finkelstein) 
to embed E8 into Cl(16) 
and using a copy of Cl(16) to represent each Local Lagrangian Region. 
A Global Structure is then formed 
by taking the tensor products of the copies of Cl(16). 
Due to Real Clifford Algebra 8-periodicity, Cl(16) = Cl(8)xCl(8) 
and any Real Clifford Algebra, no matter how large, 
can be embedded in a tensor product of factors of Cl(8), 
and therefore of Cl(8)xCl(8) = Cl(16). 
Just as the completion of the union of all tensor products 
of 2x2 complex Clifford algebra matrices 
produces the usual Hyperfinite II1 von Neumann factor 
that describes  
creation and annihilation operators on the fermionic Fock space over C^(2n) 
(see John Baez’s Week 175), 
we can take the completion of the union 
of all tensor products of Cl(16) = Cl(8)xCl(8) 
to produce a generalized Hyperfinite II1 von Neumann factor 
that gives a natural Algebraic Quantum Field Theory structure to E8 Physics. 
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EPR Entanglement:  
 
For an E8 Physics model to be realistic, 
it must be consistent with EPR entanglement relations. 

Joy Christian in arXiv 0904.4259 
“Disproofs of Bell, GHZ, and Hardy Type Theorems 
and the Illusion of Entanglement” 
said: 

“... a [geometrically] correct local-realistic framework ... 
provides exact, deterministic, and local underpinnings for 
at least the Bell, GHZ-3, GHZ-4, and Hardy states. 
... 
The alleged non-localities of these states ... 
result from misidentified [geometries] of the EPR elements of reality. 
...  
The correlations are ... the classical correlations 
among the points of a 3 or 7-sphere 
... 
S3 and S7 ... are ... parallelizable 
...   
The correlations ... can be seen most transparently 
in the elegant language of Clifford algebra ...”. 

Since E8 Physics is based on the parallelizable Lie group E8 
and related Clifford algebras,  
E8 Physics is probably consistent with EPR entanglement 
even on the level of its classical Lagrangian structure.  
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Tetrahelix model of  Fundamental Fermions

To use the TetraJJ Nucleus and its Tetrahelix structure to construct a realistic 
physics model of Fundamental Fermions, consider this Schlafli Double-6 diagram 
of the 12 Tetrahelices inside the 57 group:

Crossings may be clearer in this stereo image

in which 6 of the Tetrahelix lines have been colored red to indicate their helicity 
being opposite to that of the 6 remaining as green.
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There are three independent groups of 4 Tetrahelices, and I will color them Red, 
Green, and Blue, and call them by those colors:

 

The 57-group Tetrahelices identify the fundamental fermions of physics
(that is, electrons, positrons, neutrinos, and quarks) and which fermion any given 
Large Tetrahedron represents is determined by which of the Tetrahelix subsystems 
is activated.
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For example, consider the fermion particles which are:
Electron, Red Up Quark, Green Up Quark, Blue Up Quark,
Neutrino, Red Down Quark, Green Down Quark, Blue Down Quark

If none of the color groups of Tetrahelix are active, then the fermion is color 
neutral and almost massless, and is Neutrino with electric charge 0.

If only the Red Tetrahelix group is active,

the the fermion is a Red Down Quark with electric charge -1/3

If only the Green Tetrahelix group is active,

the the fermion is a Green Down Quark with electric charge -1/3

If only the Blue Tetrahelix group is active,

the the fermion is a Blue Down Quark with electric charge -1/3
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If both the Green and Blue Tetrahelix groups are active,

 
the the fermion is a Red Up Quark with electric charge +2/3
The sign changes because of the even number of active Tetrahelix groups,
and the Red color is because it is the complement of Green and Blue.

If both the Blue and Red Tetrahelix groups are active,

  
the the fermion is a Green Up Quark with electric charge +2/3
The sign changes because of the even number of active Tetrahelix groups,
and the Green color is because it is the complement of Blue and Red.

If both the Red and Green Tetrahelix groups are active,

 
the the fermion is a Blue Up Quark with electric charge +2/3
The sign changes because of the even number of active Tetrahelix groups,
and the Blue color is because it is the complement of Red and Green.
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If all three color Tetrahelix groups are active,

  

then the fermion is also color neutral but has mass, and is Electron
with electric charge -1/3 + -1/3 + -/13 = -1

The above classifies all the types of fermions, but
it remains to distinguish between particles and antiparticles.

In order to do that, recall that of the 12 Tetrahelix, there are 6 Clockwise and 6 
Counter Clockwise, and each of the 3 color sets of 4 have 2 Clockwise and 2 
Counter Clockwise, so let the Clockwise represent fermion particles and color 
them Purple

and
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let the Counter Clockwise represent fermion antiparticles and color them Gold

Then, by requiring that any single Large Tetrahedron only activate either the Purple 
or the Gold sets of Tetrahelix, the Tetrahelix activation structure will determine is 
nature as a fundamental (first-generation) fermion in a way that is completely 
consistent with all known physics experimental results, 
except
that I did not give a way to tell a Neutrino from and AntiNeutrino because they 
would not have any active Tetrahelix of either helicity. The Neutrino / antiNeutrino 
helicity might be determined by looking at some residual overall helicity structure 
of the Large Tetrahedron not part of the Tetrahelix structure.

The second and third generation fermions can be built up from pairs or triples of 
Large Tetrahedra in a natural way.
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Geometry of the Four Fundamental Forces

Gauge Bosons can be represented as AntiSymmetric Pairs of Fermion Nearest-
Neighbors. The link between the Fermions of the Pair establishes a connection 
between Gauge Bosons and SpaceTime that enables Gauge Bosons to See, and to 
interact with, SpaceTime. The CP2 (complex projective 2-space) is a compact 
Internal Symmetry Space that carries information about the fermion particles that 
live in the spacetime and the forces that act in the spacetime, among the particles. 
CP2 is a 4-dim symmetric space that is built from 8-dim color force gauge group 
SU(3) by dividing out of it a 4-dim electroweak force U(2) 
so that  CP2 = SU(3) / U(2) which has 8-4 = 4-dim.
Effectively, the CP2 globally has color SU(3) symmetry and locally (by a U(2) at 
each point of the SU(3)) electroweak U(2),  which is often written as U(2) = SU(2) 
x U(1)  where SU(2) is for the weak force and U(1) is for electromagnetism.

SU(3) gluons: 

The 57-tetrahedron TetraJJ Tetrahelix description of the fermion particles can be 
arranged as:
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which is the root vector diagram of the SU(3) Lie group. Since the root vector 
diagram contains all the information about SU(3), this shows that the 57-tetrahedron 
TetraJJ contains the SU(3) structure of CP2 which is CP2 = SU(3) / U(2).

Since gluons can carry {+r,-r;+g,-g;+b,-b} charge, a gluon can emit three pairs: 
{+r,-r};{+g,-g};{+b,-b}.

As a gluon can emit three pairs, it can enlarge its path of transitive action in CP2 
Internal Symmetry Space to 4 dimensions, which is consistent with SU(3) global 
transitive action on 4-real-dimensional CP2 = SU(3) / U(2). Therefore, gluon 
boundary conditions are the same all around the boundary. 

The global nature of the color force SU(3) action on CP2 is related to the nature of 
a gluon as a link with both spacetime and color internal symmetry space 
characteristics, which requires gluon confinement within protons, pions, and other 
particles containing them.
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U(2) = U(1)xSU(2) and U(1) Photons and SU(2) Weak Bosons: 

The U(2) structure of CP2 = SU(3) / U(2) is also contained in the 57-tetrahedron
TetraJJ because it has also the structure of:

which is the root vector diagram of U(2). The two empty boxes correspond to the 
chargeless neutral gauge bosons (Weak Z and Photon) similar to the way that the 
empty box in the SU(3) diagram corresponds to the chargeless neutral Neutrino.

U(1) Photons: 

Since all photons have no charge, a photon can only move along its path of 
transitive action in Internal Symmetry Space.

As a photon cannot emit another photon, it cannot enlarge its path of transitive 
action in Internal Symmetry Space beyond the 1 dimension of the path of transitive 
action in Internal Symmetry Space. Therefore, photon boundary conditions form a 
4-torus, or four 1-spheres:
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Since CP2 = SU(3) / U(2) = SU(3) / SU(2)xU(1) 
U(1) has a natural action on a part of CP2 Internal Symmetry Space. 

Three more copies of S1 are necessary to get a 4-dimensional manifold 
S1xS1xS1xS1= T4. 
 

SU(2) Weak Bosons: 

Since weak bosons can carry {+1,-1} charge, a weak boson can emit a {+1,-1} 
pair.

As a weak boson can emit a pair, it can enlarge its path of transitive action in 
Internal Symmetry Space to 2 dimensions. Therefore, weak boson boundary 
conditions form two 2-spheres:

Since CPn = Cn u CP(n-1) (where u = union, by putting a CP(n-1) at infinity),
CP2 = C2 u C1 u C0 = C2 u CP1 = C2 u S2.
Therefore, CP2 Internal Symmetry Space contains a 2-sphere S2 on which SU(2) 
can act globally, since SU(2) / U(1) = S2.
A second copy of S2 is necessary to get a 4-dimensional manifold S2xS2.

The mass factor for the weak force has a visualization (arising from e-mail 
discussion with Dick Andersen). Gauge bosons are visualized as going from a 
source through a medium to a target. The weak force mass factor is related to the 
Higgs mechanism. The Higgs scalar field absorbs some of the weak bosons as they 
go through the medium, thus weakening the weak force and producing the weaker 
effective weak force that is observed by experiments. 
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Gravity and gravitons: 

Since gravitons can carry {+1,-1;+r,-r;+g,-g;+b,-b} charge, a graviton can emit four 
pairs: {+1,-1};{+r,-r};{+g,-g};{+b,-b}.

As a graviton can emit at four pairs, its  path of transitive action is 4 dimensional. 
Therefore, graviton boundary conditions are the same all around the boundary. 
Spin(5), a compact Lie group corresponding to the Spin(2,3) subgroup of 
Conformal Spin(2,4), acts globally on a compact space of constant curvature, a 4-
sphere = S4 = Spin(5) / Spin(4), the Euclidean version of 4-dimensional physical 
Spacetime ( the non-compact Minkowski version on which Spin(2,3) acts being 
RP1xS3 ).

Unlike the other 3 forces that act transitively on the coassociative Internal 
Symmetry Space, gravity comes from the U(4) subgroup of Spin(8) and therefore 
acts transitively on the associative physical spacetime.

By the emission of four pairs, a graviton can describe the structure of a 4-
dimensional spacetime.

A 4-pair graviton emission is effectively creation of a virtual 1-vertex spacetime 
Planck mass black hole.

The (1/MPlanck^2) mass factor for gravity has a visualization (arising from e-mail 
discussion with Dick Andersen). Gauge bosons are visualized as going from a 
source through a medium to a target. The graviton by itself is long-range and 
massless, but virtual Planck-mass black holes in spacetime absorb some of the 
gravitons as they go through the spacetime medium, thus weakening the 
gravitational force and producing the weaker effective gravitational force that is 
observed by experiments.

There are two forms of gravity:
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1 - gravity directly related to the distribution of matter (call it Einstein gravity) 
which comes from the Conformal Group and a generalized MacDowell-Mansouri 
process.

2 - a gravity-like thing related to the Bohm quantum potential (call it Bohm-world-
line gravity which comes from interactions among world-lines of particles instead 
of just particles themselves. Each world-line contains the past and future histories 
of each particle, so Bohm-world-line gravity involves choosing among possible 
futures, etc. Since each world-line looks like a string in 4-dim spacetime, Bohm-
world-line gravity can be described in terms of Bosonic String Theory. The result 
is something that acts like gravity but lives in the world of possibilities of the 
Many-Worlds, and is just what Penrose and Hameroff need to describe the 
superposition-separation gravity that they use in their models of quantum 
consciousness.  Penrose-Hameroff superposition-separation is described at
http://www.quantumconsciousness.org/penrose-hameroff/consciousevents.html

A way that the Bohm potential is seen to convert kinetic energy of moving mass in 
our "matter" universe into potential energy (Bohm potential) in the quantum Many-
Worlds is described in a paper that I put on what is now the Cornell arXiv before I 
got blacklisted, at http://arxiv.org/abs/quant-ph/9806023
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3-dim Diamond Lattice space 

E8 Physics spacetime at high energies has E8 lattice structure 
which decomposes at lower energies to 
M4 x CP2 (4+4)-dim Kaluza-Klein with 4-dim Minkowski spacetime 
which in turn contains 3-dim physical space. 

3-dim space has 3-dim Diamond packing/lattice structure
which is the same basic vacuum space structure as the Diamond network open 
packing of Pearce Clusters 

with the Geometrical Symmetry of the TetraJJ Nucleus. 

Gravity comes from Conformal Group symmetries of the M4.

E8 Physics ( like the physics model of Matti Pitkanen) is based on 
8-dimensional Kaluza-Klein models with spacetime = M4 x CP2 where:

M4 is 4-dimensional Minkowski physical spacetime

CP2 is 4-dimensional complex projective plane internal symmetry space.
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The 3-dim space of compactified M4 is a 3-sphere with Hopf fibration related to 
Penrose twistors

The 3-dimensional space of the 3-sphere and the Diamond Lattice packing is a 
subspace of a 4-dimensional SpaceTime HyperDiamond Lattice with Feynman 
Checkerboard Physics, and also of a 8-dimensional SpaceTime E8 Lattices. 
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4-dim Feynman Checkerboard SpaceTime:

The HyperDiamond Feynman Checkerboard in 1+3 dimensions reproduces the 
correct Dirac equation. Urs Schreiber has done the work necessary for the proof, 
after reading the work of George Raetz presented on his web site. A very nice 
feature of the George Raetz web site is its illustrations, which include an image of 
a vertex of a 1+1 dimensional Feynman Checkerboard

and an image of a projection into three dimensions of a vertex of a 1+3 
dimensional Feynman Checkerboard

and 
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an image of flow contributions to a vertex in a HyperDiamond Random Walk from 
the four nearest neighbors in its past

Urs Schreiber wrote on the subject: Re: Physically understanding the Dirac 
equation and 4D in the newsgroup sci.physics.research on 2002-04-03 19:44:31 
PST (including an appended forwarded copy of an earlier post) and again on 
2002-04-10 19:03:09 PST as found on the web page http://www-stud.uni-essen.de/
~sb0264/spinors-Dirac-checkerboard.html and the following are excerpts from 
those posts:

"... I know ... http://www.innerx.net/personal/tsmith/FynCkb.html ... and the 
corresponding lanl paper ...[ http://xxx.lanl.gov/abs/quant-ph/9503015 ]... and I 
know that Tony Smith does give a generalization of Feynman's summing 
prescription from 1+1 to 1+3 dimensions.
But I have to say that I fail to see that this generalization reproduces the Dirac 
propagator in 1+3 dimensions, and that I did not find any proof that it does. 
Actually, I seem to have convinced myself  that it does not, but I may of course be 
quite wrong. I therefore take this opportunity to state my understanding of these 
matters.
First, I very briefly summarize (my understanding of) Tony Smith's construction:
The starting point is the observation that the left |-> and right |+> going states of 
the 1+1 dim checkerboard model can be labeled by complex numbers
 |-> --->  (1 + i)
 |+> ---> (1 - i)
(up to a factor) so that multiplication by the negative imaginary unit swaps 
components:

Page 59

http://home.pcisys.net/~bestwork.1/QRW/the_flow_quaternions.htm
http://home.pcisys.net/~bestwork.1/QRW/the_flow_quaternions.htm
http://www-stud.uni-essen.de/~sb0264/spinors-Dirac-checkerboard.html
http://www-stud.uni-essen.de/~sb0264/spinors-Dirac-checkerboard.html
http://www-stud.uni-essen.de/~sb0264/spinors-Dirac-checkerboard.html
http://www-stud.uni-essen.de/~sb0264/spinors-Dirac-checkerboard.html
http://www.innerx.net/personal/tsmith/FynCkb.html
http://www.innerx.net/personal/tsmith/FynCkb.html
http://xxx.lanl.gov/abs/quant-ph/9503015
http://xxx.lanl.gov/abs/quant-ph/9503015


 (-i) (1 + i)/2 = (1 - i)/2
 (-i) (1 - i)/2 = (1 + i)/2 .
Since the path-sum of the 1+1 dim model reads
phi = sum over all possible paths of (-i eps m)^(number of bends of path) = sum 
over all possible paths of product over all steps of one path of -i eps m (if change 
of direction after this step generated by i) 1 (otherwise)
this makes it look very natural to identify the imaginary unit appearing in the sum 
over paths with the "generator" of kinks in the path. To generalize this to higher 
dimensions, more square roots of -1 are added, which gives the quaternion algebra 
in 1+3 dimensions. The two states |+> and |-> from above, which were identified 
with complex numbers, are now generalized to four states identified with the 
following quaternions (which can be identified with vectors in M^4 indicating the 
direction in which a given path is heading at one instant of time):
 (1 + i + j + k)
 (1 + i - j - k)
 (1 - i + j - k)
 (1 - i - j + k) ,
which again constitute a (minimal) left ideal of the algebra (meaning that applying 
i,j, or k from the left on any linear combination of these four states gives another 
linear combination of these four states). Hence, now i,j,k are considered as 
"generators" of kinks in three spatial dimensions and the above summing 
prescription naturally generalizes to
phi = sum over all possible paths of   product over all steps of one path of
    -i eps m (if change of direction after this step generated by i)
    -j eps m (if change of direction after this step generated by j)
    -k eps m (if change of direction after this step generated by k)
    1 (otherwise)
The physical amplitude is taken to be
 A * e^(i alpha)
where A is the norm of phi and alpha the angle it makes with the x0 axis.
As I said, this is merely my paraphrase of Tony Smith's proposal as I understand it.
I fully appreciate that the above construction is a nice (very "natural") 
generalization of the summing prescription of the 1+1 dim checkerboard model. 
But if it is to describe real fermions propagating in physical spacetime, this 
generalized path-sum has to reproduce the propagator obtained from the Dirac 
equation in 1+3 dimensions, which we know to correctly describe these fermions. 
Does it do that?
...
Hence I have taken a look at the material [that] ... George Raetz ... present[s] ... 
titled "The HyperDiamond Random Walk", found at http://www.pcisys.net/
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~bestwork.1/QRW/the_flow_quaternions.htm , which is mostly new to me.... I am 
posting this in order to make a suggestion for a more radical modification ...
[The]... equation ...  DQ = (iE)Q ... is not covariant. That is because of that 
quaternion E sitting on the left of the spinor Q in the rhs of [the] equation ... . The 
Dirac operator D is covariant, but the unit quaternion E on the rhs refers to a 
specific frame. Under a Lorentz transformation L one finds
L DQ = iE LQ = L E' Q <=> DQ = E'Q
now with E' = L~ E L instead of E. 
This problem disappears when the unit quaternion E is brought to the *right* of the 
spinor Q. 
What we would want is an equation of the form DQ = Q(iE) .
In fact, demanding that the spinor Q be an element of the minimal left ideal 
generated by the primitive projector P = (1+y0)(1+E)/4 ,
so that  Q = Q' P ,
one sees that DQ = Q(iE) almost looks like the the *Dirac-Lanczos equation*.
 (See hep-ph/0112317, equation (5) or ... equation (9.36) [of]... W. Baylis, Clifford 
(Geometric) Algebras, Birkhaeuser (1996) ... ). 
To be equivalent to the Dirac-Lanczos equation, and hence to be correct, we need 
to require that D = y0 @0 + y1 @1 + y2 @2 + y3 @3
instead of  ... = @0 + e1 @1 + e2 @2 + e3 @3 .
All this amounts to sorting out in which particluar representation we are actually 
working here.
In an attempt to address these issues, I now redo the steps presented on http://
www.pcisys.net/~bestwork.1/QRW/the_flow_quaternions.htm with some suitable 
modifications to arrive at the correct Dirac-Lanczos equation (this is supposed to 
be a suggestion subjected to discussion):
So consider a lattice in Minkoswki space generated by a unit cell spanned by the 
four (Clifford) vectors
 r = (y0 + y1 + y2 + y3)/2
 g = (y0 + y1 - y2 - y3)/2
 b = (y0 - y1 + y2 - y3)/2
 y = (y0 - y1 - y2 + y3)/2 .
(yi are the generators of the Dirac algebra {yi,yj} = diag(+1,-1,-1,-1)_ij.) 
This is Tony Smith's "hyper diamond". 
(Note that I use Clifford vectors instead of quaternions.) 
Now consider a "Clifford algebra-weighted" random walk along the edges of this 
lattice, 
which is described by four Clifford valued "amplitudes":  Kr, Kg, Kb, Ky
and 

Page 61

http://www.pcisys.net/~bestwork.1/QRW/the_flow_quaternions.htm
http://www.pcisys.net/~bestwork.1/QRW/the_flow_quaternions.htm
http://xxx.lanl.gov/abs/hep-ph/0112317
http://xxx.lanl.gov/abs/hep-ph/0112317
http://www.pcisys.net/~bestwork.1/QRW/the_flow_quaternions.htm
http://www.pcisys.net/~bestwork.1/QRW/the_flow_quaternions.htm
http://www.pcisys.net/~bestwork.1/QRW/the_flow_quaternions.htm
http://www.pcisys.net/~bestwork.1/QRW/the_flow_quaternions.htm


such that 
@r Kr = k (Kg y2 y3 + Kb y3 y1 + Ky y1 y2)
 @b Kb = k (Ky y2 y3 + Kr y3 y1 + Kg y1 y2)
 @g Kg = k (Kr y2 y3 + Ky y3 y1 + Kb y1 y2)
 @y Ky = k (Kb y2 y3 + Kg y3 y1 + Kr y1 y2) .

(This is geometrically motivated. The generators on the rhs are those that rotate the 
unit vectors corresponding to the amplitudes into each other. "k" is some constant.) 
Note that I multiply the amplitudes from the *right* by the generators of rotation, 
instead of multiplying them from the left.

Next, assume that this coupled system of differential equations is solved by a 
spinor Q
 Q = Q' (1+y0)(1+iE)/4
 E = (y2 y3 + y3 y1 + y1 y2)/sqrt(3)
with
 Kr = r Q
 Kg = g Q
 Kb = b Q
 Ky = y Q .

This ansatz for solving the above system by means of a single spinor Q is, as I 
understand it, the central idea. 
But note that I have here modified it on the technical side: 
Q is explicitly an algebraic Clifford spinor in a definite minial left ideal, 
E squares to -1, not to +1, 
and the Ki are obtained from Q by premultiplying with the Clifford basis vectors 
defined above.

Substituting this ansatz into the above coupled system of differential equations one 
can form one covariant expression by summing up all four equations:

 (r @r + g @g + b @b + y @y) Q =  k sqrt(3) Q E

The left hand side is immediate. 
To see that the right hand side comes out as indicated simply note 
that  r + g + b + y = y0 and that  Q y0 = Q by construction.

The above equation is the Dirac-Lanczos-Hestenes-Guersey equation, 
the algebraic version of the equation describing the free relativistic electron. 
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The left hand side is the flat Dirac operator 
 r @r + g @g + b @b + y @y = ym @m 
and 
the right hand side, with k = mc / (hbar sqrt(3)) , 
is equal to the mass term  i mc / hbar Q.

As usual, there are a multitude of ways to rewrite this. 
If one wants to emphasize biquaternions then 
premultiplying everything with y0 and 
splitting off the projector P on the right of Q to express everything in terms of the, 
then also biquaternionic, Q' (compare the definitions given above) 
gives Lanczos' version (also used by Baylis and others).

I think this presentation improves a little on that given on George Raetz's web site: 

The factor E on the right hand side of the equation is no longer a nuisance but a 
necessity. 
Everything is manifestly covariant (if one recalls that algebraic spinors are 
manifestly covariant when nothing non-covariand stands on their *left* side). 
The role of the quaternionic structure is clarified, 
the construction itself does not depend on it. 
Also, it is obvious how to generalize to arbitrary dimensions. 
In fact, one may easily check that for 1+1 dimensions the above scheme 
reproduces the Feynman model.
While I enjoy this, there is still some scepticism in order 
as long as a central questions remains to be clarified: 
How much of the Ansatz  K(r,g,b,y) = (r,g,b,y) Q is whishful thinking?

For sure, 
every Q that solves the system of coupled differential equations that describe the 
amplitude of the random walk on the hyper diamond lattice 
also solves the Dirac equation.
But what about the other way round?
Does every Q that solves the Dirac equation also describe such a random walk. ...".
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My proposal to answer the question raised by Urs Schreiber

Does every solution of the Dirac equation also describe a HyperDiamond Feynman 
Checkerboard random walk?

uses symmetry.

The hyperdiamond random walk transformations include the transformations of the 
Conformal Group:

• rotations and boosts (to the accuracy of lattice spacing);
• translations (to the accuracy of lattice spacing);
• scale dilatations (to the accuracy of lattice spacing): and
• special conformal transformations (to the accuracy of lattice spacing).

Therefore, to the accuracy of lattice spacing, 
the hyperdiamond random walks give you all the conformal group Dirac solutions, 
and since the full symmetry group of the Dirac equation is the conformal group, 
the answer to the question is "Yes".
Thanks to the work of Urs Schreiber:
The HyperDiamond Feynman Checkerboard in 1+3 dimensions does reproduce the 
correct Dirac equation.

Here are some references to the conformal symmetry of the Dirac equation:
R. S. Krausshar and John Ryan in their paper Some Conformally Flat Spin 
Manifolds, Dirac Operators and Automorphic Forms at math.AP/022086 say:

"... In this paper we study Clifford and harmonic analysis on some conformal flat 
spin manifolds. ... manifolds treated here include RPn and S1 x S(n-1). 
Special kinds of Clifford-analytic automorphic forms associated to the different 
choices of are used to construct Cauchy kernels, Cauchy Integral formulas, Green's 
kernels and formulas together with Hardy spaces and Plemelj projection operators 
for Lp spaces of hypersurfaces lying in these manifolds. ... 
Solutions to the Dirac equation are called Clifford holomorphic functions or 
monogenic functions. 
Such functions are covariant under ... conformal or .... Mobius transformations 
acting over Rn u {oo}. ...".
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Barut and Raczka, in their book Theory of Group Representations and Applications 
(World 1986), say, in section 21.3.E, at pages 616-617:

"... E. The Dynamical Group Interpretation of Wave Equations.
... Example 1. Let G = O(4,2). 
Take U to be the 4-dimensional non-unitary representation in which the generators 
of G are given in terms of the 16 elements of the algebra of Dirac matrices as in 
exercise 13.6.4.1. 
Because (1/2)L_56 = gamma_0 has eigenvalues n = +/-1, 
taking the simplest mass relation mn = K, we can write
(m gamma_0 - K) PSI(dotp) = 0, where K is a fixed constant.
Transforming this equation with the Lorentz transformation of parameter E
PSI(p) = exp(i E N) PSI(p)
N = (1/2) gamma_0 gamma
gives
(gamma^u p_u - K) PSI(p) = 0
which is the Dirac equation ...".
 

P. A. M. Dirac, in his paper Wave Equations in Conformal Space, Ann. Math. 37 
(1936) 429-442, reprinted in The Collected Works of P. A. M. Dirac: Volume 1: 
1924-1948, by P. A. M. Dirac (author), Richard Henry Dalitz (editor), Cambridge 
University Press (1995), at pages 823-836, said:

"... by passing to a four-dimensional conformal space ... 
a ... greater symmetry of ... equations of physics ... is shown up, 
and their invariance under a wider group is demonstrated. ...
 The spin wave equation ... seems to be the only 
simple conformally invariant wave equation involving the spin matrices. ... 
This equation is equivalent to the usual wave equation for the electron, 
except ...[that it is multiplied by]... the factor (1 + alpha_5) , 
which introduces a degeneracy. ...".
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8-dim E8 SpaceTime:

In my E8 physics model, for each point of 8-dimensional spacetime physics in the 
neighborhood of that point is described by E8, which is easily seen to be embedded  
in the real Clifford algebra Cl(16) which is the tensor product Cl(8) x Cl(8) of two 
copies of the real Clifford algebra Cl(8). 

By the periodicity of real Clifford algebras, 
the tensor product Cl(16) x ...(N times)... x Cl(16) = Cl(16N) 
so that any real Clifford algebra Cl(M) can, no matter how large is M, 
be embedded in a larger Cl(16N) for some N 
and therefore can be represented as 
a tensor product Cl(16) x ...(N times)... x Cl(16) 
and 
since E8 is contained in each Cl(16) 
can be represented as 
a tensor product of N copies of E8. 

A full Algebraic Quantum Field Theory (AQFT) can be constructed by considering 
E8 as representing a classical Lagrangian constructed naturally using parts of E8 to 
represent spacetime, gauge bosons, and fundamental fermion particles and 
antiparticles. 
A full non-local AQFT results from the completion of the union of all such tensor 
products of E8 and its Lagrangian, 
a generalized version of a von Neumann hyperfinite II1 factor.

The 57-group contains the same physics information as E8. Here is how:  
fundamental fermion particles - 8 from Tetrahelix structure (see page 23) 
fundamental fermion antiparticles - 8 of opposite helicity from particles  
Standard Model gauge bosons - from 28 antisymmetric article-antiparticle pairs 
                                                    of fermions
spacetime - from extending 3-dimensional Diamond space lattice/packing 
                    to 4-dimensional HyperDiamond Feynman Checkerboard lattice 
                    then 
                    adding 4 more HyperDiamond dimensions (corresponding 
                                            to internal symmetry space) 
                    to get E8 lattice 8-dimensional spacetime of my E8 physics model
gravity - from 28 generators of rotations/reflections of 8-dimensional spacetime. 
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Note that with 8-dimensional spacetime each of the 8+8 fundamental fermions 
has 8 covariant components. 
Note also that 8-dimensional spacetime by itself has Octonion structure, and 
each of the 4-dimensional subspaces (Minkowski spacetime plus 
Batakis internal symmetry space) has Quaternion structure and 
the Real-Imaginary distinction between the two 4-dimensional has Complex 
structure 
so all of those together are characterised by 8x4x2 = 64 dimensions 
which is the CxQxO (complex x quaternion x octonion) space used by Dixon. 
Therefore, 
the physical content of each 57-group has 
8x8 = 64 fermion particle dimensions 
8x8 = 64 fermion antiparticle dimensions 
28 Standard Model gauge group dimensions 
64 dimenions to characterize spacetime structures
28 gravity dimensions 
for a total of 64+64 + 28+64+28 = 128 + 120 = 248, the same as E8. 
Therefore,
the 57-group physics model has the same information content as E8 physics 
and 

The fundamental physics Algebraic Quantum Field Theory can be constructed, 
equivalently, 
from tensor products of Cl(16) 
from tensor products of E8 in Cl(16) 
from tensor products of 57-groups (each having same information as each E8). 

Let + denote either Cl(16) or E8 or a 57-group, as they give the same physics. 

Begin by considering the  Clifford tensor product as a linear chain of +'s.
Consider each + in the linear chain as a node in a linear pregeometry.
Let the linear pregeometry, like a long line of yarn, "fold" or "weave" it into a 
higher-dimensional "array" or "tapestry" of Cl's.
Prior to the folding/weaving, each C+node in the linear pregeometry would have 2 
nearest neighbors in the chain

... +--+--+--+--+--+--+ ...

that corresponds to the 1-dim lattice of Natural Numbers.
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After the folding/weaving, each + pregeometry node in the tapestry could have 
more nearest neighbors. For an oversimpified visualization, consider each + 
pregeometry node as having 4 "arms" or "hooks" corresponding to { -x, +x, -t, +t } 
to get the linear chain

... +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-- ...

which might be folded/woven roughly as follows:

... +--+--+--+--+--+--+--+--+
                            |
                            +--+--+--+--+--+--+--+--+--+-- ...
   
   
   
... +--+--+--+--+--+--+--+--+--+
                               |
... +--+--+--+--+--+--+--+--+  +
                            |  |
                            +--+
   
   
                      +--+--+--+
                      |        |
                      +  +--+  +
                      |  |  |  |
                      +  +  +--+
                      |  |
                     +  +--+--+--+--+--+--+--+--+--+--+-- ...
                      |
                      +--+--+--+--+--+--+--+--+--+--+--+-- ...
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After formation of natural nearest-neighbor-connections among the folded/woven 
pregeometry nodes, then you might get:

... +--+--+--+--+--+--+--+--+
                           |
                            +--+--+--+--+--+--+--+--+--+-- ...
   
   
   
   
... +--+--+--+--+--+--+--+--+--+
    |  |  |  |  |  |  |  |  |  |
... +--+--+--+--+--+--+--+--+--+
                            |  |
                            +--+
   
                      
                      +--+--+--+
                      |  |  |  |
                      +--+--+--+
                      |  |  |  |
                      +--+--+--+
                      |  |  |  |
                      +--+--+--+--+--+--+--+--+--+--+--+-- ...
                      |  |  |  |  |  |  |  |  |  |  |  |
                      +--+--+--+--+--+--+--+--+--+--+--+-- ...
   
If you continue that pattern of folding/weaving indefinitely in a natural way, you 
might end up with a 2-dim square lattice that could be taken to be a Feynman 
Checkerboard in 1+1 = dimensions. 

It is interesting that the 2-dimensional weave structure looks a lot like a Ulam 
spiral. According to an Abarim web page: "... Stanislaw Ulam was attending some 
boring meeting, and to divert himself somewhat he began to scribble on a piece of 
paper. ... He put down the number 1 as the bright shining center of a universe of 
numbers that Big Banged outwardly in a spiral ... Much to his amazement the 
prime numbers appeared to gravitate towards diagonal lines emanating from the 
central 1. ... 
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Most of them sat on or in the vicinity of a diagonal, but some obviously didn't. ...".

According to a Pime Number Spiral web page: “... Consider a rectangular grid. 
We start with the central point and arrange the positive integers in a spiral fashion 
(anticlockwise) as at right. The prime numbers are then marked ... There is a 
tendency for the prime numbers to form diagonal lines. This can be seen more 
clearly in the image below,
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which shows a window onto a square array of 640 x 640 numbers, with the primes 
marked by white pixels. ...".

According to a M. Watkins web page: “... There is currently no explanation for the 
distinct diagonal lines which appear when the primes are marked out along a 
particular ‘square spiral’ path. ...”. 

Physically, if the 2-dim weave corresponds to 2-dim spacetime, the diagonal lines 
would correspond to light-cone correlations of points of spacetime. 

In dimensions greater than 2, the weaving should produce something like a 
Moore space-filling curve. According to a web page of V. B. Balayoghan: "... The 
Hilbert and Moore curves use square cells -- the level n curve has 4^n cells (and 
hence 4^n - 1 lines). The Moore curve has the same recursive structure as the 
Hilbert curve, but ends one cell away from where it started. The Hilbert curve 
starts and ends at opposite ends of a side of the unit square. ...".

According to a web page by William Gilbert: 
"... We exhibit a direct generalization of Hilbert's curve that fills a cube. The first 
three iterates of this curve are shown. ... In constructing one iterate from the 
previous one, note that the direction of the curve determines the orientation of the 
smaller cubes inside the larger one.
The initial stage of this three dimensional curve can be considered as coming from 
the 3-bit reflected Gray code which traverses the 3-digit binary strings in such a 
way that each string differs from its predecessor in a single position by the addition 
or subtraction of 1. The kth iterate could be considered a a generalized Gray code 
on the Cartesian product set {0,1,2,...,2^k-1}^3.

The n-bit reflected binary Gray code will describe a path on the edges of an n-
dimensional cube that can be used as the initial stage of a Hilbert curve that will 
fill an n-dimensional cube. ...

[If you look at a 2-dimensional slice of the n-dimensional Moore curve including 
the time axis and one spatial axis, you see something like a Ulam Spiral and also 
like a 2-dimensional Feynman checkerboard. ] ...
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The E8 lattice, or 8-dimensional HyperDiamond lattice,  is made up of one 
hypercubic checkerboard D8 lattice plus another D8 shifted by a glue vector

(1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2).

Conway and Sloane, in their book Sphere Packings, Lattices, and Groups (3rd 
edition, Springer, 1999), in chapter 4, section 7.3, pages 119-120) define 
a packing D+n = Dn u ( [1] + Dn ) [ where the glue vector [1] = (1/2, ... , 1/2) ] 
and say: 
"... D+n is a lattice packing if and only if n is even.
D+3 is the tetrahedral or diamond packing ... and
D+4 = Z4.
When n = 8 this construction is especially important, the lattice D+8 being known 
as E8 ...".

D+n is what David Finkelstein and I named a HyperDiamond lattice (although in 
odd dimensions it is technically only a packing and not a lattice).
Conway and Sloane also say in chapter 4, section 7.1, page 117) that the lattice Dn 
is defined only for n greater than or equal to 3.

An E8 HyperDiamond lattice is used to construct the HyperDiamond Feynman 
Checkerboard model with Planck length lattice spacing.
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An 8-dimensional E8 lattice has octonionic structure, but no nearest neighbor light-
cone links.

To build an E8 Lattice: Begin with an 8-dimensional spacetime R8 = O, where a 
basis for O is {1,i,j,k,e,ie,je,ke} . The vertices of the E8 lattice are of the form

(a01 + a1e + a2i + a3j + a4ie + a5ke + a6k + a7je)/2 ,

where the ai may be either all even integers, all odd integers, or four of each (even 
and odd), with residues mod 2 in the four-integer cases being (1;0,0,0,1,1,0,1) or 
(0;1,1,1,0,0,1,0) or the same with the last seven cyclically permuted.

E8 forms an integral domain of integral octonions.

An E8 lattice integral domain has 240 units:

±1, ±i, ±j, ±k, ±e, ±ie, ±je, ±ke, (±1±ie±je±ke)/2, (±e±i±j±k)/2, and the last two 
with cyclical permutations of {i,j,k,e,ie,je,ke} in the order (e, i, j, ie, ke, k, je).

The cyclical permutation (e, i, j, ie, ke, k, je) preserves the integral domain E8, but 
is not an automorphism of the octonions since it takes the associative triad {i,j,k} 
into the anti-associative triad {j,ie,je}.

The cyclical permutation (e, ie, je, i, k, ke, j) is an automorphism of the octonions 
but takes the E8 integral domain defined above into another of Bruck's cycle of 
seven integral domains. Denote the integral domain described above as 7E8, and 
the other six by iE8 , i = 1, ... , 6.
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The 240 units of the 7E8 lattice corresponding to the integral domain 7E8 represent 
the 240 lattice points in the shell at unit distance (also commonly normalized as 2) 
from the origin (points on the line with iE8, jE8 notation are common points with 
the iE8 and jE8 lattices):

 
	
       ±1,  ±i,  ±j,  ±k,  ±e,  ±ie,  ±je,  ±ke,
 
	
 (±1 ±ie ±je ±ke)/2	
              ( ±e  ±i   ±j  ±k)/2
 
	
 (±1 ±ke ±e  ±k)/2     5E8, 4E8   ( ±i  ±j  ±ie ±je)/2   
 
	
 (±1 ±k  ±i  ±je)/2	
              ( ±j ±ie  ±ke  ±e)/2	

 
	
 (±1 ±je ±j  ±e)/2     6E8,  2E8  (±ie  ±ke  ±k  ±i)/2     
 
	
 (±1 ±e  ±ie ±i)/2     3E8, 1E8   (±ke  ±k  ±je  ±j)/2     
 
	
 (±1 ±i  ±ke ±j)/2	
              ( ±k ±je  ±e  ±ie)/2
 
	
 (±1 ±j  ±k  ±ie)/2	
              (±je  ±e  ±i  ±ke)/2
 
 
The other six integral domains  iE8 are: 
 
 
 1E8:   ±1,  ±i,  ±j,  ±k,  ±e,  ±ie,  ±je,  ±ke,
 	
 (±1 ±je  ±i  ±j)/2	
                 ( ±k  ±e ±ie ±ke)/2
 	
 (±1  ±j ±ie ±ke)/2    5E8, 6E8	
      ( ±i  ±k  ±e ±je)/2
	
 (±1 ±ke  ±k  ±i)/2	
                 ( ±j  ±e ±ie ±je)/2
 	
 (±1  ±i  ±e ±ie)/2    7E8, 3E8	
      ( ±j  ±k ±je ±ke)/2
	
 (±1 ±ie ±je  ±k)/2    2E8, 4E8	
      ( ±i  ±j  ±e ±ke)/2
	
 (±1  ±k  ±j  ±e)/2	
                 ( ±i ±ie ±je ±ke)/2
 	
 (±1  ±e ±ke ±je)/2	
                 ( ±i  ±j  ±k ±ie)/2
  
 2E8:  ±1,  ±i,  ±j,  ±k,  ±e,  ±ie,  ±je,  ±ke,
	
 (±1  ±i  ±k  ±e)/2	
                 ( ±j ±ie ±je ±ke)/2
 	
 (±1  ±e ±je  ±j)/2    7E8, 6E8	
      ( ±i  ±k ±ie ±ke)/2
 	
 (±1  ±j ±ke  ±k)/2	
                 ( ±i  ±e ±ie ±je)/2
 	
 (±1  ±k ±ie ±je)/2    1E8, 4E8	
      ( ±i  ±j  ±e ±ie)/2
 	
 (±1 ±je  ±i ±ke)/2    3E8, 5E8	
      ( ±j  ±k  ±e ±ie)/2
 	
 (±1 ±ke  ±e ±ie)/2	
                 ( ±i  ±j  ±k ±je)/2
 	
 (±1 ±ie  ±j  ±i)/2	
                 ( ±k  ±e ±je ±ke)/2
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3E8:   ±1,  ±i,  ±j,  ±k,  ±e,  ±ie,  ±je,  ±ke,
	
 (±1  ±k ±ke ±ie)/2	
                 ( ±i  ±j  ±e ±je)/2
 	
 (±1 ±ie  ±i  ±e)/2     7E8, 1E8	
  ( ±j  ±k ±je ±ke)/2
 	
 (±1  ±e  ±j ±ke)/2	
                 ( ±i  ±k ±ie ±je)/2
 	
 (±1 ±ke ±je  ±i)/2     2E8, 5E8	
  ( ±j  ±k  ±e ±ie)/2
 	
 (±1  ±i  ±k  ±j)/2     4E8, 6E8     ( ±e ±ie ±je ±ke)/2
 	
 (±1  ±j ±ie ±je)/2	
                 ( ±i  ±k  ±e ±ke)/2
 	
 (±1 ±je  ±e  ±k)/2	
                 ( ±i  ±j ±ie ±ke)/2
 
 4E8:   ±1,  ±i,  ±j,  ±k,  ±e,  ±ie,  ±je,  ±ke,
 	
 (±1 ±ke  ±j ±je)/2	
                 ( ±i  ±k  ±e ±ie)/2
 	
 (±1 ±je  ±k ±ie)/2     1E8, 2E8	
  ( ±i  ±j  ±e ±ke)/2
	
 (±1 ±ie  ±e  ±j)/2	
                 ( ±i  ±k ±je ±ke)/2
 	
 (±1  ±j  ±i  ±k)/2     3E8, 6E8	
  ( ±e ±ie ±je ±ke)/2
 	
 (±1  ±k ±ke  ±e)/2     7E8, 5E8     ( ±i  ±j ±ie ±je)/2
 	
 (±1  ±e ±je  ±i)/2	
                 ( ±j  ±k ±ie ±ke)/2
 	
 (±1  ±i ±ie ±ke)/2	
                 ( ±j  ±k  ±e ±je)/2
 
 
 
 5E8:    ±1,  ±i,  ±j,  ±k,  ±e,  ±ie,  ±je,  ±ke,
	
 (±1  ±j  ±e  ±i)/2	
                 ( ±k ±ie ±je ±ke)/2
	
 (±1  ±i ±ke ±je)/2     2E8, 3E8	
  ( ±j  ±k  ±e ±ie)/2
	
 (±1 ±je ±ie  ±e)/2	
                 ( ±i  ±j  ±k ±ke)/2
	
 (±1  ±e  ±k ±ke)/2     7E8, 4E8	
  ( ±i  ±j ±ie ±je)/2
	
 (±1 ±ke  ±j ±ie)/2     1E8, 6E8	
  ( ±i  ±k  ±e ±je)/2
	
 (±1 ±ie  ±i  ±k)/2	
                 ( ±j  ±e ±je ±ke)/2
	
 (±1  ±k ±je  ±j)/2	
                 ( ±i  ±e ±ie ±ke)/2
  
 6E8:   ±1,  ±i,  ±j,  ±k,  ±e,  ±ie,  ±je,  ±ke,
	
 (±1  ±e ±ie  ±k)/2	
                 ( ±i  ±j ±je ±ke)/2
	
 (±1  ±k  ±j  ±i)/2     3E8, 4E8	
  ( ±e ±ie ±je ±ke)/2
	
 (±1  ±i ±je ±ie)/2	
                 ( ±j  ±k  ±e ±ke)/2
	
 (±1 ±ie ±ke  ±j)/2     5E8, 1E8	
  ( ±i  ±k  ±e ±je)/2
 	
 (±1  ±j  ±e ±je)/2     7E8, 2E8	
  ( ±i  ±k ±ie ±ke)/2
	
 (±1 ±je  ±k ±ke)/2	
                 ( ±i  ±j  ±e ±ie)/2
	
 (±1 ±ke  ±i  ±e)/2	
                 ( ±j  ±k ±ie ±je)/2
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 The vertices that appear in more than one lattice are:
 
±1,  ±i,  ±j,  ±k,  ±e,  ±ie,  ±je,  ±ke    in all of them;
 
( ±1  ±i  ±j  ±k)/2 and ( ±e ±ie ±je ±ke)/2 in 3E8, 4E8, 6E8;
 
( ±1  ±i  ±e ±ie)/2 and ( ±j  ±k ±je ±ke)/2 in 7E8, 1E8, 3E8;
 
( ±1  ±j  ±e ±je)/2 and ( ±i  ±k ±ie ±ke)/2 in 7E8, 2E8, 6E8;
 
( ±1  ±k  ±e ±ke)/2 and ( ±i  ±j ±ie ±je)/2 in 7E8, 4E8, 5E8;
 
( ±1  ±i± je ±ke)/2 and ( ±j  ±k  ±e ±ie)/2 in 2E8, 3E8, 5E8;
 
( ±1  ±j ±ie ±ke)/2 and ( ±i  ±k  ±e ±je)/2 in 1E8, 5E8, 6E8;
 
( ±1  ±k ±ie ±je)/2 and ( ±i  ±j  ±e ±ke)/2 in 1E8, 2E8, 4E8.
 
 

The unit vertices in the E8 lattices do not include any of the 256 E8 light cone 
vertices, of the form (±1±i±j±k±e±ie±je±ke)/2.

They appear in the next layer out from the origin, at radius sqrt 2, which layer 
contains in all 2160 vertices.

•  2160 = 112 + 256 + 1792 = 112 + (128+128) + 7(128+128)
• the 112 = root vectors of D8
• the (128+128) = 8-cube = two mirror image D8 half-spinors related by 

triality to the 112
• the 7(128+128) = 7 copies of 8-cube for 7 independent E8 lattices, each 8-

cube = two mirror image D8 half-spinors related by triality to the 112 and 
thus to the (128+128) and thus to each other.
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In the image below,

the 240 in the first layer look like the 112 look like 

the 256 look like  

in the second the 1792 look like  (7 copies of 128+128).
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The real 4_21 Witting polytope of the E8 lattice in R8 has
240 vertices;
6,720 edges;
60,480 triangular faces;
241,920 tetrahedra;
483,840 4-simplexes;
483,840 5-simplexes 4_00;
138,240 + 69,120 6-simplexes 4_10 and 4_01; and
17,280 7-simplexes 4_20 and 2,160 7-cross-polytopes 4_11.
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The E8 lattice in R8 has a counterpart in C4, the self-reciprocal honeycomb of 
Witting polytopes, a lattice of all points whose 4 coordinates are Eisenstein 
integers with the equivalent congruences
u1 + u2 + u3 = u2 - u3 + u4 = 0 (mod i sqrt(3)) and
u3 - u2 = u1 - u3 = u2 - u1 = u4 (mod i sqrt(3)).
 
The self-reciprocal Witting polytope in C4 has
240 vertices,
2,160 edges,
2,160 faces, and
240 cells.
It has 27 edges at each vertex.
Its symmetry group has order 155,520 = 3 x 51,840.
It is 6-symmetric, so its central quotient group has order 25,920.
It has 40 diameters orthogonal to which are 40 hyperplanes of symmetry,each of 
which contains 72 vertices.
It has a van Oss polygon in C2, its section by a plane joining an edge to the center, 
that is the 3{4}3 in C2, with 24 vertices and 24 edges.
 
The 24-cell 3{4}3 in R4 has
24 vertices,
96 edges,
96 faces, and
24 cells.
 

Page 80



The 4-complex-dim complex Witting polytope 3{3}3{3}3{3}3
with 240 vertices and 2160 edges and 2160 faces and 240 cells
looks like this (from Coxeter's book "Complex Regular Polytopes")
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The corresponding 8-real-dim real Witting polytope 4_21
looks like this (from Coxeter's book "Regular Polytopes")
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Note that both 4-complex and 8-real have 240 vertices
arranged in 8 circles each with 30 vertices,
and
a lot of lines (so many that it is hard to tell the difference
between the two images given their resolution).

However, an important difference is how many lines are at each vertex.
Coxeter says in "Complex Regular Polytopes":

"... In ... the Witting polytope ... Regular complex polytope ...
3{3}3{3}3{3}3 ... there are 27 edges at each vertex ...
the vertex figure is ... 3{3}3{3}3 ...[which has]... 
17 vertices, 72 edges, and 27 faces ...
...
In ... The real counterpart ... 4_21 ... 
Each of its 240 vertices belongs to 56 edges
(corresponding to the 56 vertices of its 7-dim... vertex figure 3_21) ...".

Note that the 27 correspond to the 27 lines on the cubic surface
and therefore include the Schlafli Double-6
and
the 56 correspond to the non-central 56 of the 57-group. As John Baez said in his 
review of the book “On Quaternions and Octonions” by John Conway and Derek 
Smith ( ): “... E8 is 248-dimensional ... E8 is the symmetry group of a 57-
dimensional manifold ... when we pack 8-dimensional balls in a [ E8 ] lattice ... 
each ball has 240 nearest neighbors, and when we take any one of these neighbors 
and count the number of others that touch it, we find that there are 56! ... 
the Freudenthal algebra ...[ is ]... 56-dimensional ... the smallest non-trivial 
representation of E7 ... the dimension of E7 is 133 ... 
there is a 5-grading of E8 ... 248 = 1 + 56 + 1345 + 56 + 1 ... 
there is ... a 3-grading of E7 ... 133 = 27 + 79 + 27 ... 
the Freudenthal algebra decomposes as ... 56 = 1 + 27 + 27 + 1 ...”. 

As shown by Thomas Larsson, there is a 7-grading of E8 
248 = 8 + 28 + 56 + 64 + 56 + 28 + 8 
with even part 28 + 64 + 28 = 120 = D8 adjoint 
and odd part 8 + 56 + 56 + 8 = 128 = D8 half-spinor. 

Further, 27 is the dimension of the smallest non-trivial representation of E6 
and 248 is the dimension of the smallest non-trivial representation of E8. 
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D4 is the Derivation Group of the 24-dimensional Chevalley Algebra Chev3(O) of 
3x3 matrices of the form:

0     S+    V 

S+*   0     S-

V*    S-*   0 

where S+, V, and S- are Octonions; and * denotes conjugation.
Note that the full 27-dimensional Jordan Algebra J3(O) has Automorphism Group F4.

The Lie Group E6 is the Automorphism Group of the 56-dimensional Freudenthal 
Algebra Fr3(O) of 2x2 Zorn-type vector-matrices

a    X

Y    b

where a and b are real numbers and X and Y are elements of the 27-dimensional 
Jordan algebra J3(O) of 3x3 Hermitian matrices

d     S+    V 

S+*   e     S-

V*    S-*   f 

where d, e, and f are real numbers; S+, V, and S- are Octonions; and * denotes 
conjugation.

Fr3(O) includes a complexification of J3(O), so that each Half-Spinor Fermion 
Representation Space has 8 Complex Dimensions and a corresponding Bounded 
Complex Domain with 8-real-dimensional Shilov Boundary S7 x RP1.
 
Restriction to the real J3(O) would have produced an Automorphism Group F4 and a real 16-
dimensional Spinor space corresponding to OP2 = F4 / B4.
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The Lie Group E7 is the Automorphism Group of the 112-dimensional Brown 
Algebra Br3(O). Unlike Fr3(O), Br3(O) is not a binary algebra, but is a ternary 
algebra, which leads you to think of 3-dimensional arrays as generalizations of 2-
dimensional matrices. When you go to a 3-dim 2x2x2 array for the 112-dim Brown 
"algebra-like thing" corresponding to E7, you get a picture like this: 

                          1 8 8
          1 ------------- * 1 8
        /  |              * * 1
       /   |            /   |  
      /    |           /    |  
     /     |          /     |  
1 8 8      |         /      |  
* 1 8 ------------ 1        |  
* * 1      |                |  
  |        |       |        |  
  |        |       |        |  
  |        |       |        |  
  |      1 8 8     |           
  |      * 1 8 ----|------- 1  
  |      * * 1     |       /   
  |    /           |      /    
  |   /            |     /     
  |  /             |    /      
    /            1 8 8         
  1 ------------ * 1 8         
                 * * 1         

When you go to a 4-dim 2x2x2x2 array for E8,  you get a 224-dim "thing" that 
looks like a tesseract but is too small to include the structure of the lowest-
dimensional representation of E8, which is 248-dimensional. To see the full 
structure of 248-dim E8 as a Tesseract Creature follow B. N. Allison and J. R. 
Faulkner (in A Cayley-Dickson Process for a Class of Structurable Algebras 
(Trans. AMS 283 (1984) 185-210) they say: "... we obtain a procedure for giving 
the space Bo of trace zero elements of any ... 28-dimensional degree 4 central 
simple Jordan algebra B ... the structure of a 27-dimensional exceptional Jordan 
algebra. ... ") and so use 8 copies of 28-dim J(4,Q) instead of 8 copies of 27-dim J
(3,O) and also use 8 copies of a 3-dim thing instead of 8 copies of 1, producing: 
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The colors indicate the physical interpretation of each vertex of the E8 Tessseract: 

  Gravity                     Fermion      Fermion
      +          SpaceTime
Standard Model               Particles   AntiParticles 
    gold           blue         red        green
  28 + 28     +   (28+28)  +  (28+28)  +  (28+28) 
                     8     +     8     +     8 

( D4 + D4     +      64 )  +  ( 64     +    64 )

             120           +          128   
        Cl(16) bivector D8 + Cl(16) D8 half-spinor  
                          E8

NOTE - NONE of the 8x3 things carry the rank of E8. ALL of the rank 8 of E8 
comes from D4 + D4, so the 8x3 does NOT represent 8 copies of SU(2) but 
rather the 8x3 represents 24-dim Chev(3,O) of which D4 is the Derivation Group. 

E8 is the ultimate Exceptional Lie Group, and therefore can be seen as a Unique 
Parallelizable Structure that can be used to describe realistic physics of 
Entanglement. Joy Christian in arXiv 0904.4259 "Disproofs of Bell, GHZ, and 
Hardy Type Theorems and the Illusion of Entanglement" says: 
"… a [geometrically] correct local-realistic framework … provides exact, 
deterministic, and local underpinnings for at least the Bell, GHZ-3, GHZ-4, 
and Hardy states. … The alleged non-localities of these states … result from 
misidentified [geometries] of the EPR elements of reality. … 
The correlations are … the classical correlations among the points of 
a 3 or 7-sphere … S3 and S7 … are … parallelizable …  
The correlations … can be seen most transparently in the elegant language of 
Clifford algebra …". 
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Quasicrystals and Tetrahedral Packing

Quasicrystals in 3-dimensional space are 3-dimensional slices of E8 lattices. 
E8 lattices have binary power-of-2 structures and also involve 3 by 12-structures
so that
it is natural that the N=4, N=8, N=12, and N=16 tetrahedral structures would give 
packings as dense (or maybe a little more) than the quasicrystal ones to which they 
are probably closely related through their common denominator, the E8 lattices.

The paper at http://arxiv.org/abs/1001.0586 said in part:
"... In 1972, Stanislaw Ulam conjectured that spheres would have the lowest 
maximum packing density of all convex bodies, including tetrahedra ...
That density is  ... 0.740480
...
The N = 10 packing consists of two pentagonal dipyramids,

perfect in the sense that four of each set of five tetrahedra are arranged face-to-
face ...[ giving density ]... 0.829 ... the fifth tetrahedron is oriented in such a way to 
distribute the (obligatory) gap ... evenly on its two sides.
...
using MC simulations of initially random systems containing up to nearly 22,000 
tetrahedra ... an equilibrium fluid of hard tetrahedra spontaneously transforms to a 
dodecagonal quasicrystal, which can be compressed to ... 0.8324 ...
By numerically constructing and then compressing four unit cells
of a periodic quasicrystal approximant with an 82-tetrahedron unit cell, they 
obtained a packing density as high as ... 0.8503
[ see below for more about quasicrystal packing ]...
the densest packing is not the most symmetric one ... 
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Monte Carlo simulations ... recover the same high packing density ... 0.85634 ... 
for

      

small systems containing 4, 8, 12, and 16 tetrahedra. ...".

The quasicrystal case is discussed in more detail in the paper at
http://spahn.engin.umich.edu/publications/documents/2009_glotzer_188.pdf
which said in part:
"... Tetrahedra do not tile Euclidean space.
However, if extra space is allowed between tetrahedra, or between groups of 
tetrahedra, dense ordered structures become possible. ...
By compressing a crystalline approximant of the quasicrystal,
the highest packing fraction we obtain is ... 0.8503
...
a pentagonal dipyramid is easily built from five tetrahedra
if one allows an internal gap of 7.36 degrees.
Two pentagonal dipyramids can share a single tetrahedron to form a nonamer.
Twelve interpenetrating pentagonal dipyramids define an icosahedron
with a gap of 1.54 steradians.
...
Pentagonal dipyramids and icosahedra are locally dense,
but exhibit non-crystallographic symmetries. ...
we introduce here a dense, one-dimensional packing given by a linear arrangement
of tetrahedra with touching faces known as a tetrahelix, or Bernal spiral.
...
we carry out Monte Carlo simulations ... we equilibrated an initially
disordered fluid of 13,824 tetrahedra ... and then we compressed
the ordered structure that forms ... this structure is a quasicrystal
...
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the quasicrystal consists of a periodic stack of corrugated layers w...
The view along the direction of the stacking vector ... reveals ...

Twelve-fold symmetric rings formed by interpenetrating tetrahelices
... throughout the structure
...
The vertices of the tiling are formed by logs comprised of
rings of twelve tetrahedra,

with neighbouring rings enclosing a pentagonal dipyramid
...
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[this shows]... structure ...

approximant to ... quasicrystal tetrahedra
...
interpenetrating tetrahelices are present throughout ...

Their chirality alternates between left (L) and right (R)
by 30 degree rotations
...
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[ here are ]... details of the highest density ... 0.8503 ...
packing of hard tetrahedra observed n this study

...
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[ here are ]... One-dimensional building blocks

of ... quasicrystal ...".
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TetraJJ Geometry: 
Nanometer to Planck Casimir-NearField-DarkEnergy

The scale of a TetraJJ Nucleus would determine how close, 
in 3-dim Space where the fit of component Tetrahedra is not exact, 
is the spacing between two nearby faces of component Tetrahedra:

If the spacing is small enough then the Casimir/NearField phenomena might be 
significant. To evaluate that, consider a TetraJJ Nucleus. 
From looking at images, it seems to me that, roughly, the ratios of scale are: 

edge of entire 57-group (if it were not truncated)           = 1
edge of each component tetrahedron                               =  0.16 
gap between two nearby faces of component tetrahedra =  0.016

To study a wide range of scales, 
consider that each component tetrahedron is itself made up 
of a TetraJJ Nucleus of tetrahedra that are smaller by a factor of about 6
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which would give you something with 57 x 57 tetrahedra
( my graphic is crude and incomplete, but I hope it shows the general idea)

Then you can continue the process, each time shrinking by a factor of about 6,
effectively making a fractal solid.

If the Casimir effect becomes important at gap distance nanometer scale, 
then 
it might become effective after fractal shrinking from 1 cm initial 57-group size 
by
(0.016 cm = 16 x 10^(-5) m) / (10^(-9) m)  = 160,000
Since 7 stages of 6-fold fractal shrinking reduce scale by about 270,000,
consider 6 stages of fractal shrinking. 

At that stage, each tetrahedral edge initially 0.16 cm would be
about 1600 x 10(-6) m / 270,000 = 3 x 10^(-9) m = 6 nanometers
and the gap distance would be about 0.6 nanometers. 
Since metals like gold, iron, etc, have atoms
with diameters about 1/3 of a nanometer,
each tetrahedral edge would have about 18 atoms 
and the gap distance would be about the size of 2 atoms. 
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The nanometer scale of atoms is the smallest scale on which manufacturing is 
practical, 
but 
it is a much larger scale than that of the fundmental length of a single link in the 
fundamental SpaceTime Lattice. 

Richard Feynman, in his book QED (Princeton 1985, 2006), said “... perhaps the 
idea that two points can be infinitely close together is worng ... If we make the 
minimum poossible distance between two points as small as 10^(-100) centimeters 
(the smallest distance involved in any experiment today is around10^(-16) 
centimeters) ... inconsistencies arise, such as the total probability of an event addus 
up to slightly more or less that 100%, or we get negative energies ... the effects of 
gravity ... become important at distances of 10^(-33) cm. ...”. Feynman’s suggested 
fundamental distance involving gravity is known as the Planck lenth, and it is as he 
said about  l0^(-35) meters or about 10^(-26) nanometers. 

To get from the nanometer scale to the Planck scale by fractal shrinking by a factor 
of 6 each time would take about 33 levels of shrinking. 
Since the Planck length is 33 levels below the nanomenter level
while
the nanometer level is only about 7 levels below the centimeter level, 
a lot of some sort of aggregation must go on between
the Planck level of fundamental physics
and the nanometer level of atoms. 

My guess is that the aggregation works like this for, to use a concrete example, 
electrons:

The fundamental electron is at the Planck scale represented by a TetraJJ Nucleus 
with all three color Tetrahelix groups activated

  

so it is just a very small Planck-size tetrahedron
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However, the little electron can move from place to place in the lattice of 
spacetime,
and as Feynman said in describing Quantum Theory, it can and does go every 
possible way to get from point A to point B,
so the little electron accumulates around itself a huge (from the Planck point of 
view) cloud of virtual-possible particle/antiparticle pairs each of which 
corresponds to a possible movement of the fudamental electron
and the cloud grows up until it gets to the size of the physical electrons that we see 
in atoms and in our experiments. 

Bert Schroer in hep-th/9908021 describes the formation of the cloud of an electron, 
saying "... the vacuum structure of [Quantum Field Theory] ... in... a modern 
[Local Quantum Physics] context suggest that any compactly localized operator 
applied to the vacuum generates clouds of pairs of particle/antiparticles ... 
it leads to the impossibility of having a local generation of pure one-particle 
vectors ...” in any realistic physics model with particle interactions. 

The structure of the “clouds of pairs of particle/antiparticles” around a fundamental   
Placnk-scale electron is that of a Kerr-Newman Black Hole, as described by
D. Lynden-Bell in astro-ph/0207064 where he says: "... An electromagnetic field ... 
turns out to be the G = 0 limit of the charged rotating Kerr-Newman metrics. These 
all have gyromagnetic ratio 2, the same as the Dirac electron. ... the quantum 
electrodynamic charge distribution surrounding the point electron ... giving this 
high gyromagnetic ratio have charges of both signs rotating at close to the velocity 
of light. ... internal charges are of opposite signs ... rotate together giving a 
magnetic dipole with relatively little net charge.  ... this is a characteristic of 
relativistically rotating conductors! ..." 
and by D. Ranganathan in gr-qc/0306090 where he says: "... A self consistent 
solution to Dirac equation in a Kerr Newman space-time with M^2 > a^2 + Q^2 is 
presented for the case when the Dirac particle is the source of the curvature and the 
electromagnetic field. The solution is localised, continuous everywhere and valid 
only for a special choice of ... the parameters (me, Q, a) appearing in the Dirac 
equation. ... Such a solution corresponds to a generalisation of the free particle 
Dirac equation in Minkowski space to include the effects of the curvature produced 
by the particle. The ordinary free particle solutions of the Dirac equation are 
completely delocalised; the curvature however, now causes the Dirac wave 
functions to be localised over a region comparable in dimension to the Compton 
wavelength of the particle. Note that the wave function still has an enormous 
spread in comparison to the dimensions of the event or Cauchy horizons of the 
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particle. ... in the region of the order of the Compton wavelength within which the 
wave function peaks, the field strengths are so large that virtual pair creation 
cannot be neglected. The antiparticle thus produced can recombine with the 
"original" particle at r = 0 leaving us to detect the particle now at r =/= 0. ...".

Clifford Pickover, in his book “Black Holes - A Traveller’s Guide” ) Wiley 1996),  
illustrates a black hole  

with ergosphere (white), 
Outer Event Horizon (red), 
Inner Event Horizon (green), 
and Ring Singularity (purple). 

Quantum Vacuum Phenomena not only describe the world below the nanometer 
scale of atoms down to the Planck Scale fundamental Fermion elementary particles 
by showing them to be Kerr-Newman Black Hole clouds, 
but also 
describe significant phenomena at and somewhat above the nanometer scale of 
atoms such as the Casimir Effect and Near Field Phenomena. 

As to the Casimir effect, Robert Forward, in his books “Future Magic” (Avon 
1988) and “Indistinguishable From Magic” (Baen 1995), says:
"... The Casimir force is a short range attraction between any two objects
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caused by ... electromagnetic fluctuations in the vacuum. ...  The equations are only 
valid down to a separation distance proportional to the minimum wavelength at 
which the plates are still a good conductor or the dielectric constant is not unity.
 ... The closest separation distance ...[that has been attained is 14 Angstroms]...
(about five atoms) with two crossed cylinders of mica. ... the measured force 
between the two mica cylinders was over ten tons per square meter!
... [To construct a vacuum fluctuation battery, make] ... a wide flat spiral of foil 
built along the lines of a Slinky toy. ... each turn of the spiral acts against the 
neighboring turns. The spiral configuration allows substantial compaction of the 
foil from large spacings to small spacings while maintaining uniform spacing. ...
[electric charge could] create an electrostatic repulsion between the plates ... The 
Casimir force [could] draw the ... leaves together, doing work against the repulsive 
electric field ...". The "Slinky toy" reference reminds me of the tetrahelix cylinders 
of a 57-group. 

As to Near Field Photon effects, Lukas Novotny and Bert Hecht, in their textbook
“Principles of Nano-Optics” Cambridge 2006), discuss things like Near-Field 
optical probes with tetrahedral tips and surface plasmons and forces in confined 
fields etc. They say in their introduction:
"... as we move to smaller and smaller scales, new physical effects become 
prominent ... in recent years ... new approaches ... overcome ... the diffraction limit 
(near-field microscopy) ... nanocomposite materials are ... generating increased 
nonlinearities and collective responses ... surface plasmon waveguides are being 
implemented for planar optical networks ...photonic bandgap materials ... suppress 
light propagation in specific frequency windows ...".

The possibility of fabricating nanostructures to interact with Dark Energy has been 
discussed by Christian Beck, who in hep-th/0207081 talks about 
"... deterministic chaotic models of vacuum fluctuations on a small (quantum 
gravity) scale ..." that seems to connect Mandlbrot fractal ideas with chaotic 
quantization. He has a more recent paper on that at http://xxx.lanl.gov/abs/
0801.4720 and he has a paper at http://xxx.lanl.gov/abs/0707.1797
in which he talks about rotating superconductors and Dark Energy which 
specifically mentions Cooper pair structures. He also discusses Dark Energy at 
astro-ph/0512327 and astro-ph/0406504. The Josephson Junction experiment 
mentioned by Christian Beck is by P A Warburton of University College London. 
who has papers at arxiv/0807.4502 and cond-mat/0303419. 
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Gold Atom Clusters

Recent experiments with Gold seem to indicate that its fundamental structure is 
related to the tetrahedron. 

According to a 20.05.2008 CSC web article about a Phys. Rev. A paper
http://link.aps.org/abstract/PRA/v77/e053202
by Johansson, Lechtken, Schooss, Kappes, and Furche:
"... transition from a planar [2-dim] to spherical [3-dim] structure

occurs when the number of gold atoms is 12 ...".

Note that in 3-dim the 12 atoms do not form either an icosahedron or a 
cuboctahedron, but rather form something that looks like part of a tetrahedron. 

A 2007 University of Technology Sydney paper by Ford, de Bras, and Cortie
entitled Stability of the tetrahedral motif for small gold clusters in the size range 16 
to 24 atoms said in part: "... The tetrahedral 20 atom gold cluster

is surprisingly stable, and is believed to be the ground state structure ...”. 
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Cold Fusion and Palladium Atom Clusters 

In Palladium cold fusion processes, Ken Shoulders and Steve Shoulders
consider micron (1,000 nanometer) size clusters of electrons and how
they interact with the Palladium, saying
"... The energy ... seems to emanate from cracks formed in the brittle, top layer of 
Pd. This layer is about 0.1 micrometers [100 nanometers] in thickness ...".
( see http://www.svn.net/krscfs/nev%20clusters%202.pdf ) 

According to a 3/23/2009 EE Times article by R. Colin Johnson: 
“... U.S. Navy researchers claimed to have experimentally confirmed cold 
fusion in a presentation at the American Chemical Society's annual meeting.
"We have compelling evidence that fusion reactions are occurring" at room 
temperature, said Pamela Mosier-Boss, a scientist with the Space and Naval 
Warfare Systems Center (San Diego). The results are "the first scientific report of 
highly energetic neutrons from low-energy nuclear reactions," she added. ...

... 
The theoretical underpinnings of cold fusion have yet to be adequately 
explained. The hypothesis is that when electrolysis is performed on deuteron, 
molecules are fused into helium, releasing a high-energy neutron. While excess 
heat has been detected by researchers, no group had yet been able to detect the 
missing neutrons. Now, the Naval researchers claim that the problem was 
instrumentation, which was not up to the task of detecting such small numbers of 
neutrons. To sense such small quantities, Mosier-Boss used a special plastic 
detector ... Using co-deposition with nickel and gold wire electrodes, which were 
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inserted into a mixture of palladium chloride and deutrium, the detector was able to 
capture and track the high-energy neutrons. ... Other presenters at the conference 
also presented evidence supporting cold fusion, including Antonella De Ninno, a 
scientist with New Technologies Energy and Environment (Rome), who reported 
both excess heat and helium gas. "We now have very convincing experimental 
evidence," De Ninno claimed. Tadahiko Mizuno of Japan's Hokkaido University 
also reported excess heat generation and gamma-ray emissions. 
All three research groups are currently exploring both experimental and 
theoretical studies in hopes of better understanding the cold fusion process 
well enough to commercialize it. ...”. 

For Palladium, which is the element for which Cold Fusion seems to occur when 
the Pd is saturated with Deuterium, small Pd clusters of atoms seem to prefer 
icosahedral structure, which may be something that allows a lot of Deuterium to 
get into the Pd lattice and to interact producing Cold Fusion. Fuller Tensegrity 

transformations from icosahedra to cuboctahedra ( and/ or Jitterbug 
transformations ) might play some role in 
pushing the Deuterium nuclei close enough for fusion reactions.

In their paper Molecular Dynamics Study of Palladium Clusters:
Size Dependent Analysis of Structural Stabilities and Energetics
of Pdn (n less than or equal to 40) via a Lennard-Jones Type Potential
in CROATICA CHEMICA ACTA, CCACAA 81 (2) 289-297 (2008)
Mustafa Boyukataa and Jadson C. Belchiorb said:

"... Possible stable structures and energetics of palladium clusters,
Pdn (n = 2–40), have been investigated by performing molecular-dynamics
simulations based on a Lennard-Jones type pair potential.  ...
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Main observed results are that
palladium clusters prefer three-dimensional structures
and
spherical clusters of medium size appear to have five-fold symmetry.
...
The well-known ground-state structure of 7-atom cluster ...[

(image from Physical Review B 72 (2005) 115421 by Rogan et al) ]...

Pd7 is ... a pentagonal bipyramid
...
A Five-fold ring is a common backbone leading to a nearly perfect icosahedral 
form of Pd13. ...[

(image from Physical Review B 72 (2005) 115421 by Rogan et al) ]...

In the particular case of Pd13, the icosahedral configuration, a well-known magic 
structure, is predicted. ...
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The double icosahedral structure ... is ... found for Pd19 ...[ 

(image from Pnanotechnology 19 (2008) 205701 by Rogan et al) ]...

another well-known magic size ... There are 5 hollow sites on the equatorial ring of 
the Pd19 structure. ...".

It is interesting to compare the Pd19 double icosahedral stack with the multiple 
icosahedral stack of the QuasiCrystal close-packing of tetrahedra
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described in the paper at
http://spahn.engin.umich.edu/publications/documents/2009_glotzer_188.pdf
which shows double-6 tetrahelix structure.

As to the Fuller Jitterbug phase transition possibility, there is a paper by F. Calvo 
and A. Carre Structural transitions and stabilization of palladium nanoparticles
upon hydrogenation Nanotechnology 17 (2006) 1292–1299 in which they said:
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"... we investigate the energetic, thermal and dynamical stability of hydrogenated 
palladium nanoclusters containing a few hundred atoms.
At zero temperature, icosahedral clusters favour tetrahedral absorption sites,
while cubic clusters preferentially absorb at octahedral sites.
...
Our first goal is to explore the relative stability of icosahedral and cubic structures 
containing an increasing amount of absorbed hydrogen, at zero temperature. For 
this the optimal geometries are located, and zero-point energy (ZPE) corrections 
are included.
...

[ NOTE THAT ZPE CORRECTIONS ARE TO TAKE INTO ACCOUNT SUCH
PHENOMENA AS THE CASIMIR EFFECT ETC AND ARE ACTUALLY 

NEEDED AND USED ]
...
The ... crossover between icosahedral to cubic structures, is found ...[ at about ]... 
270 atoms.
...
Due to the highly statistical character of our investigation, we had to restrict 
ourselves to specific cluster sizes, built upon the 147-atom Pd cluster.
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At this size, the favoured structure in the pure metal is the three-layer 
icosahedron. ... Several authors ... have emphasized the important influence of 
quantum delocalization on the stable structure of bulk hydrogenated palladium. 
ZPE effects have been proposed by Pitt and Gray to explain the observed 
tetrahedral occupancy of deuterium in palladium ...
In our case, and contrary to the study by Pundt et al on the much larger Pd2057 
cluster ... our analysis suggests that increasing the hydrogen content should favour 
cubic structures over icosahedra. ...
The large icosahedral Pd–H clusters observed by Pundt et al ... could ... be due to a 
structural transition induced by temperature, rather than hydrogen content only. ...".

Jean-Francois Sadoc and Remy Mosseri in their book “Geometric 
Frustration” (Cambridge 2006) said: “... The {3,3,5} polytope [ 600-cell ]contains 
altogether: 120 vertices, 720 edges, 1200 triangular faces, and 600 tetrahedral 
cells ... 
Consider a {3,4,3} polytope [ 24-cell ] which is a regular packing of octahedra on 
S3 [ the 3-sphere in R4 ]. ...
then generate a new polytope ... { 3/4, 3 } ... whose vertices are located at the 
midpoints of the ... [ 96 ] edges ...[ of the ]... {3,4,3}and is a packing of cubo-
octahedra and cubes ... 

... consider a distorted form of this new polytope which amounts to displacing 
consistently the [ 96 ] new vertices on the [ 96 ] edges of the {3,4,3}, away from 
the mid-edges, but in the ratio 1 / T [ where T = (1/2)( 1 + sqrt(5) )  ... 
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Compare this image from the book “New Geometries for New 
Materials” (Cambridge 2006) by Eric A. Lord, Alan L. Mackay, and S. 
Ranganathan: 

]... This changes the cubo-octahedra into icosahedra and distorts each cube into 
five regular tetrahedra ... 

  
... This new polytope, called the snub-{3,4,3}, contains 96 vertices, and is a 
packing of 120 tetrahedra and 24 icosahedra. Upon adding 24 new vertices in the 
centres of the icosahedra, a {3,3,5} polytope [ 600-cell ] is obtained. ...”. 

In the Pd147 images of icosahedron and cuboctahedron structures, think of a 
Fuller Jitterbug/Tensegrity transformation between them and how it might 

push Deuterium nuclei close enough for fusion, and how each fusion reaction 
might trigger further Jitterbug/Tensegrity transformation of the Pd lattice 

thus causing a chain reaction.
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Pd/Ni Clusters for D/H TSC Jitterbug Fusion
Frank Dodd (Tony) Smith Jr. - 2012

viXra 1209.0007

Clusters of Palladium atoms (also clusters of atoms of Nickel and similar elements) 
have two basic structures: 

Icosahedral and Cuboctahedral

1 - Icosahedon <-> Cuboctahedron Jitterbug Transformation

2 - Pd/Ni clusters with absorbed Deuterium or Hydrogen have two states: 
Icosahedral with Tetrahedral absorption sites

Cuboctahedral with Octahedral absorption sites 

3 - Tetrahedral Symmetric Condensation (TSC) in PdDx produces Fusion. 

4 - Icosahedra TSC Fusion Triggers Jitterbug to Cuboctahedra.

5 - Cuboctahedra Jitterbug back to Icosahedra and reload TSC sites.

6 - Repeat the Cycle: 



Akito Takahashi has developed a Tetrahedral Symmetric Condensate (TSC) model 
for fusion D+D+D+D -> 8Be and H+H+H+H -> 4 He in Pd and Ni atomic clusters. 
This paper describes the geometry of Pd/Ni atomic clusters and 
how it enables TSC fusion of D/H within the Pd/Ni clusters. 
The icosahedral state at the beginning of the TSC process is the stable ground state.
The basic TSC structure is a half-icosahedron with 10 approximate tetrahedra 
and approximate octahedron. The tetrahedra and octahedra are approximate 
because they do not fit together exactly within Pd/Ni atomic clusters because they 
must be slightly deformed from exactly regular tetrahedra and octahedra in order 
to fit together in our physical flat 3-dimensional space. 
Details of the deformation are being studied by Klee Irwin and his coworkers 
Fang Fang, Julio Kovacs, and Garrett Sadler. Discussion with them led to the ideas 
described in this paper. 

The vertices of the half-icosahedron and octahedron are positions of Pd/Ni atoms. 
As to the half-icosahedron tetrahedral cells (images adapted from Wikipedia):
The central cell marked TSC is the cell in which the TSC fusion reaction takes 
place at the end of the TSC process. The 3 cells marked D/H (large type) contain 3 
of the 4 D or 4 H nuclei for TSC fusion. The 3 cells marked e contain the electrons 
for those 3 D/H nuclei.  The 3 cells marked D/H (small type) contain 3 D or H 
nuclei that will be reloaded by the Jitterbug process into TSC fusion position. 

The octahedral cell marked D/H e (large type) is located in the atomic cluster 
directly above the TSC cell such that the TSC top face coincides with the bottom 
face of the octahedron. It contains the 4th of the 4 D/H nuclei for TSC fusion and 
its electron.The D/H (small type) outside the octahedral cell is for reloading. 



In TSC fusion the 4 D/H nuclei, Coulomb-shielded by their electron clouds, 
condense at the center of the TSC cell where their fusion produces 8 Be / 4 He. 

Immediately after TSC fusion

the TSC fusion cell and the D/H fuel cells and their associated e cells are empty
but the D/H (small type) reloading cells contain the D/H for Jitterbug reloading.  
The TSC fusion energy released drives the Pd/Ni cluster state by a Jitterbug 
transformation to an expanded cuboctahedral state.  



As Buckminster Fuller showed (Synergetics Macmillan 1975, 1982) a cuboctahedron is 
made up of 8 tetrahedral and 6 half-octahedral cells. 2 of the icosahedral tetrahedra 
correspond by Jitterbug to one of the cuboctahedral half-octahedra. 
The Jitterbug expansion having produced large empty octahedra-type cells, 
the D/H (small type) flow from their smaller tetrahedral cells into the larger empty 
octahedral-type cells

Since the icosahedral cluster state is the stable ground state, 
the reloaded cuboctahedral state goes by Jitterbug transformation 
to the reloaded icosahedral state



whereupon a new cycle of TSC fusion begins: 

(The images above, adapted from Wikipedia, are somewhat oversimplified such as by not 
indicating the reloaded electron cells and the next-order reloading D/H reloading cells.) 



What is the overall structure of the Pd/Ni clusters ? 

There are two basic structures that are Jitterbug Transforms of each other: 
Icosahedral and Cuboctahedral

From vimeo.com/27662398 by Yan Liang (L2XY2) August 2011: "... 
Icosahedral       vertices     Cuboctahedral

       1      

     12+1 = 13                                                 

       42+13 = 55      

     92+55 = 147      ...".
How many TSC fusion sites are in a Pd/Ni cluster ?

A TSC fusion site has (icosahedral phase) a half-icosahedron plus an octahedron. 

The 13-atom Pd/Ni cluster has a full icosahedron (two half-icosahedra) but does 
not have the necessary octahedron and so is not a TSC Fusion Cluster.  

The 55-atom Pd/Ni cluster has a full icosahedron (two half-icosahedra) and 
two octahedra to form 2 TSC fusion sites, so it is a TSC Fusion Cluster of order 2. 

The 147-atom Pd/Ni cluster has the 2 TSC fusion sites of the 55-atom TSC cluster 
plus 12 more half-icosahedra in its outer shells along with octahedra for each, 
so it is a TSC Fusion Cluster of order 14. 



How do the Icosahedral Clusters grow to 147 atoms ? 
Eric A. Lord, Alan L. Mackay, and S. Ranganathan say in 
"New Geometries for New Materials" (Cambridge 2006):
"... The Mackay icosahedron is obtained by packing tetrahedra and octahedra 
around an icosahedron [12 vertices]... 
if an octahedron is placed on every face of an icosahedron, the angular gap 
between neighboring octahedra can be closed by a very small deformation, to bring 
them into face contact [12 + 20 x (6-3)/2 = 42 vertices]...

... The concave regions of the resulting polyhedron can 
be filled by five-rings of tetrahedra [42 + 12 = 54 vertices]... 

   
... The 54-atom Mackay cluster ...[triangles: dark = octahedra; light = tetrahedra]...
The process can be continued ...[with octahedra on each of the 12x5 = 60 outer cell 
faces of 5-rings thus adding 60 x (2/2 + 1/3) = 80 vertices and creating 
12 TSC structures similar to half-icosahedra at the 12 vertices of the cluster. 
This also creates concave places for 30 pairs of tetrahedra adding no vertices 
plus 12 tetra-5-rings adding 12 vertices for a total of 54+80+12 = 146 vertices. 

The 146-atom cluster  has 12+2 = 14 TSC sites]...".



Lord et al use 12, 54, and 146 atoms for Mackay clusters 
while Liang uses 13, 55, and 147 atoms. 

The difference is whether or not the center vertex is counted, that is, 
not so much a real physical difference but a difference in math convention. 

What about more than 147 atoms ? 
As more layers are added, the deformations of tetrahedra and octahedra accumulate 
and eventually destabilize the structures necessary for the TSC fusion process. 
The next Mackay cluster beyond 147 atoms has 147+162 = 309 atoms, 
and it is my guess that 147 atoms is optimal for TSC fusion: 
55 atom clusters have only 2 TSC sites while 147 atom clusters have 2+12 = 14 

and 
309 (and larger) atom clusters may not be sufficiently stable. 

Therefore, in a 147-atom Pd/Ni cluster: 
each full set of TSC fusion events can consume 14x4 = 56 D/H nuclei. 

How many D/H atoms can live in a 147-atom Pd/Ni cluster ? 
F. Calvo and A. Carre say in Nanotechnology 17 (2006) 1292–1299 
"Structural transitions and stabilization of palladium nanoparticles upon hydrogenation":
"... Cuboctahedra ...[and]... icosahedra ... contain exactly the same number of 
atoms. ... In the case of ... the 147-atom Pd cluster ... the favoured structure in the 
pure metal is the three-layer icosahedron. 

 ...". 
Since the minimum full load for Icosa or Cubocta Pd/Ni 147-atom clusters 
is 164 D/H atoms, no more than 3 cycles of full TSC fusion 
(each consuming 56 D/H nuclei) can occur without replenishment of D/H from the 
surroundings of the clusters (such as immersion of the clusters in D/H gas). 



How does TSC Fusion work ? 

Akito Takahashi in Physics of Cold Fusion by TSC Theory by Akito Takahashi 
ICCF17 12-17 August 2012 and J. Condensed Matter Nucl. Sci. 33 (2009) 33-44 
and J. Condensed Matter Nucl. Sci. 1 (2007) 129-141 "... proposed ... deuteron 
fusion process by ... Tetrahedral Symmetric Condensate (TSC) ... 
Every particle in TSC can make central squeezing motion with same velocity, to 
keep charge neutrality of total TSC system ... this squeezing motion can be treated 
as Newtonian mechanics until when four deuterons get into the range (about 5 fm) 
of strong nuclear interaction. ... TSC starts Newtonian squeezing motion to 
decrease linearly its size from about 100 pm radius size to ... the minimum size 
state ... as shown in ... Semi-classical view of squeezing motion of TSC, 
<e> = ( e↓ + e↑ )/2 for QM view at four electron centers ...

[Note that the TSC process is spontaneous not requiring initial stimulus.]



... Classical squeezing motion ends when four deuterons get into the strong force 
range (5 fm) and/or when four electrons get to the Pauli's limit (about 5.6 fm for e-
e distance). Here for Pauli's limit, we used the classical electron radius of 2.8 fm ... 
Since the range of strong interaction is comparable to the classical electron 
diameter (5.6 fm) ... the intermediate nuclear state 8Be* will be formed just after 
the minimum size state ... 
Immediately at ... 8Be* formation ... 4d-cluster shrinks to much smaller size (about 
2.4 fm radius) of 8Be* nucleus, and four electrons should go outside due to the 
Pauli's repulsion for fermions. Shortly in about few fs or less (note; Lifetime of 
8Be at ground state is 0.67 fs), 8Be* will break up into two 4He particles, each of 
which carries 23.8 MeV kinetic energy ... 

when TSC is just formed ... averaged electron position (electron center of 
<e> = ( e↓ + e↑ )/2, Bosonized electron pair ... ) ... locates at vertexes of regular 
cube with tetrahedral combining orbits and outer dilute clouds ... 

... At ... cube ... vertexes ... three Bohr wave functions superpose and electron 
density is about nine times larger than that of outer dilute cloud. Therefore, the 
semi-classical treatment of central squeezing motion by Newtonian is 
approximately fulfilled for "coherent"central averaged momentums for eight 
particles. ...



As soon as 4D/TSC(t=0) state with D2 molecule size (Rdd = 74 pm) is formed ... 
the QM-Langevin equation gives numerical solution for time-dependent Rdd and 
mean relative kinetic energy of d-d pair of a face of 6 TSC (d-e-e-d-type) faces, as 
copied from reference and shown in Fig.10. ...

... The ‘adiabatic’ size of 4D/TSC reaches at a few tens fm size in 1.4 fs, so fast. 
With adiabatic 4D/TSC size around 20 fm, 4D-fusion takes place by ... 

D + D + D + D  -> 8Be* (Ex= = 47.6 MeV: J*) ...
Fusion yield per 4D/TSC generation is calculated by integrating time-dependent 
fusion rate by the Fermi’s first golden rule ... that was very close to 1.0, namely 
100%, during the very small time interval of ca. 2 x 10^(-20) s in the final stage of 
condensation. 
Mean relative kinetic energy of neighboring d-d pair of 4D/TSC-minimum is ca. 
14 keV, which is accidental resembling value to the hot fusion experimental 
devices as ITER (DT plasma). 
...
the quantitative study on the TSC formation probability in D(H)-loaded metal 
systems is yet to be done by solving many-body time-dependent problems under 
organization field of condensed matter. It is challenging work ...". 
The answer to that challenge may be

the Icosahedra <-> Cuboctahedra Jitterbug Transformation. 



What is the Jitterbug Transformation ? 

Icosaahedra and Cuboctahedra both have 12 vertices so that it is possible to 
transform them into each other. Buckminster Fuller called that transformation 

the Jitterbug  

   
(images from Synergetics by Buckminster Fuller (Macmillan 1975, 1982))

To make Cuboctahedra (unit edge length) from Icosahedra (unit edge length) 
choose 6 pairs of Icosahedra triangle faces (white in the above images) and 
lengthen the common edge of each pair by a factor of sqrt(2). That expansion 
flattens each of the triangle pairs to produce 6 square faces of the Cuboctahedron. 
The other Icosahedral 20 - 2x6 = 8 (shaded) triangle faces are rotated and become 
the other 14 - 6 = 8 triangle faces of the Cuboctahedron. 
, 
thus increasing the number of faces from 8+6 = 14 to 8+(6+6) = 20 
while keeping the number of vertices constant at 12. 

There are two ways to choose a diagonal of an Icosahedron triangle face pair in the 
construction, corresponding to the two possible orientations of an Icosahedron. 

Choice of diagonal for one Icosahedra triangle face pair forces (by requiring 
consistency) the choices for all other face pairs of all Icosahedra. 



The triangle faces of the Icosahedron/Cuboctahedron are rotated by a Golden Ratio  

  
(images adapted from Geometrical Frustration by Sadoc and Mosseri (Cambridge 2006))

angle defined by 
sliding Icosahedron vertices on the edges of a circumscribing Octahedron 
from points dividing edges into Golden Ratio segments 
to points dividing edges into two equal segments 
so that the Octahedron then circumscribes a Cuboctahedron. 
If the edge lengths of the Icosahedron/Cuboctahedron are kept the same 
then the Octahedron surrounding the Cuboctahedron will be an expansion 
of the Octahedron surrounding the Icosahedron. 

Just as in the choice of a Cuboctahedron square diagonal to be compressed, 
there are two ways in which the edge could be divided into Golden Ratio segments, 
corresponding to the two possible orientations of an Icosahedron.

Choice of Golden Ratio segments for one edge forces (by requiring consistency) 
the choices for all other edges.

The volume expansion of the Jitterbug Transformation 
from Icosahedron (unit edge) to Cuboctahedron (unit edge) is: 

Icosahedron volume = (5/12) ( 3 + sqrt(5) ) = 2.18169499
Cuboctahedron volume = (5/3) sqrt(2) = 2.3570226

Icosahedron/Cuboctahedron volume ratio =  0.9256147947

Cuboctahedron/Icosahedron volume ratio = 1.0803630254



20 exact tetrahedra volume = 20 x ( sqrt(2) / 12 ) = 2.357 = cuboctahedron volume
and 
20 exact tetrahedra do not make an exact icosahedron in flat 3-dim space 

 (image from Lord et al)
but have gaps totalling 1.54 steradians (1.54 / 4 pi = 1.54 / 12.57 = 12.25 %)  
so 
the 20-exact-tetrahedron stage of the Jitterbug is NOT an exact unit-edge icosahedron.  

8 of the 20 tetrahedra are Golden Ratio rotated like the red one shown above. 
12 of the 20 tetrahedra are transformed into half-half-octahedra. 

cuboctahedron = 8 tetrahedra + 6 half-octahedra =  
= 8 x ( sqrt(2) / 12 ) + 6 x 2 x ( sqrt(2) / 12 ) = 
= ((2/3) +1) x sqrt(2) = 5sqrt(2) / 3
Since the volume of an octahedon is that of 4 tetrahedra (image from matematicavisuales.com)

the volume of one exact (cyan-type) tetrahedron in the Jitterbug is the same 
as the volume of the half-half-octahedron into which it is transformed. 



Why do Jitterbug Transformations move D/H among the cluster cells ? 

The Jitterbug Transformation proceeds:
from the cuboctahedral state (top left)
to an intermediate state (top right) 
to an icosahedral state (center) 
to another intermediate state (bottom left) 
to a dual cuboctahedral state (bottom right)

(images from Synergetics by Buckminster Fuller (Macmillan 1975, 1982))

and then back up in reverse order to the original cuboctahedral state. 

Since the dual cuboctahedral state interchanges octahedra and cuboctahedra 
with respect to the original cuboctahedral state, 

the D/H fusion fuel nuclei are moved from cell to cell 
by the Jitterbug transformations

thus enabling 
reloading of fusion fuel into the TSC fusion cell sites. 



Pd/Ni and D/H Fusion from Jitterbug TSC: 
Mechanical Analogy 

(with Colt Series 80 Government 10 mm Delta Elite version of Browning's M1911 semi-auto) 

    
"... The M1911 ... use[s] ... the short recoil ... action ... Cycle ...
1. Ready to fire position. [Slide] is locked to barrel, both are fully forward.

[Icosahedral Pd with D atoms in TSC positions]
2. Upon firing, [slide] and barrel recoil backwards a short distance while locked together. Near 
the end of the barrel travel, the [slide] and barrel unlock.

[Firing = D-D Fusion]
3. The barrel stops, but the unlocked [slide] continues to move to the rear, ejecting the empty 
shell and compressing the recoil spring.

[Recoil Spring = Icosahedral Stability Phase induces transformation of Cuboctahedra]
4. The [slide] returns forward under spring force, loading a new round into the barrel.

[Loading New Round = Cuboctahedral D atoms moved to Icosahedral TSC positions]
5. [Slide] locks into barrel, and forces barrel to return to battery.

   

... The very first short-recoil-operated firearm was also the first machine gun, the Maxim gun. 

... Vladimirov also used the short recoil principle in the Soviet KPV-14.5 heavy machine gun. ..." 
(quote from Wikipedia entries on M1911 pistol and on Recoil operation)



n = number of shells
N = number of Pd atom vertices

d = diameter of icosahedral configuration in nm
C = number of cells in icosahedral phase

CT = number of tetrahedral cells in icosahedral phase 
CO = number of octahedral cells in icosahedral phase

n    N     d      C =  CT + CO

0     1   0.27    0 =   0 +  0

icosahedral cuboctahedral

1    13   0.70   20 =  20 +  0

icosahedral cuboctahedral

2    55   1.13  100 =  80 + 20 

icosa cubo

3   147   1.56  280 = 200 + 80 

icosa cubo

4   309   2.00     (icosa and cubo images not shown)



n    N  d(icosa)(nm)

5   561   2.44   12 stages of Jitterbug between 
icosa (top left) and cubo (bottom right):

 
At the 5-shell level the Jitterbug 

transformation is harder to do than at lower levels. 

Also, as the shell level and number of atoms increases 
and the configurations become larger

the icosahedral phase becomes less stable. 

6   923   2.88

7  1415   3.33

8  2057   3.77

9  2869   4.21

10 3871   4.65

11 5083   5.09

12 6525   5.53

( Images from: Polyhedral Clusters by Lord et al; 
Frank and Kasper in Acta Cryst. 11 (1958) 184-190; 
Mackay in Acta Cryst. 15 (1962) 1916-1918; 
vimeo.com/27662398 by Yan Liang (L2XY2) August 2011. 
Data for n, N, and d from Shtaya-Suleiman dissertation Gottingen 2003. )



147-atom Pd clusters have diameter about 1.56 nm 
according to 2003 Gottingen dissertation 
of Mohammed A . M. Shtaya-Sulieman at 
http://webdoc.sub.gwdg.de/diss/2004/shtaya-suleiman/

1.5 nm Pd clusters have been produced at Sandia National Laboratories 
and University of New Mexico Center for Micro-Engineered Materials 
according to a Journal of Catalysis article 
"Facile, surfactant-free synthesis of Pd nanoparticles for heterogeneous catalysts"
at 
http://www.flintbox.com/public/filedownload/2871/2011-038%20Science%20Direct
%20Article
by Patrick D. Burton, Timothy J. Boyle, and Abhaya K. Datye. 

I would like to see an experiment in which  
1.5 nm Pd nanoparticle clusters from Sandia / U. New Mexico 

are immersed in Deuterium to see whether or not TSC fusion takes place. 

http://webdoc.sub.gwdg.de/diss/2004/shtaya-suleiman/
http://webdoc.sub.gwdg.de/diss/2004/shtaya-suleiman/
http://www.flintbox.com/public/filedownload/2871/2011-038%20Science%20Direct%20Article
http://www.flintbox.com/public/filedownload/2871/2011-038%20Science%20Direct%20Article
http://www.flintbox.com/public/filedownload/2871/2011-038%20Science%20Direct%20Article
http://www.flintbox.com/public/filedownload/2871/2011-038%20Science%20Direct%20Article


Jitterbug Cold Fusion
Fang said in email 18 July 2011: 
“... the Phi angle = 60 degree – 2 x the Jitterbug angle, 
which equals to the angle between the two opposing outer faces 
of a 20G twist. I was staring at the 20G twist trying to find 
some clues and suddenly this thought hit me and I immediately 
verified it. The following is a review of those two angles ... 

 
...”. 
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Look at the 4 tetrahedra whose exterior faces are marked with 
red dots:

Their faces are parallel to the 4 of the 8 triangular faces of a 
cuboctahedron.

If you add the 4 antipodal faces,
you represent all 8 triangular faces of a cuboctahedron.

The 20 - 8 = 12 remaining tetrahedra fall into 2 sets:

One set of 6 represents 6 of the 20 faces of an icosahedron
that is a + jitterbug transformation of the cuboctahedron
and
the other set of 6 represents 6 of the 20 faces of an 
icosahedron
that is a - jitterbug transformation of the cuboctahedron.

Therefore,
the twisted icosahedron represents through the jitterbug 
transformation
both the cuboctahedron
and
the two orientation states of the icosahedron
(choices of how you take the Golden Ratio of octahedron edges).
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Start with the twisted icosahedron
It is a very open structure as it contains faces parallel to the
8 triangular faces of a cuboctahedron (the most open state of 
the jitterbug).

Consider it to represent a cluster of Palladium atoms
with a lot of Deuterium (magenta dots) in the spaces between the 
atoms.

Now close up the icosahedron by untwisting the 20 so that they
all fall into the close-as-you-can-get-in-flat-3dim icosahedron 
configuration
and
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by doing so
force the deuterium out as jets from each of the 12 pentagon-
cross-section holes.
(only one is shown in the image)

Now consider that the 57-group is the really fundamental 
structure
and that the icosahdron we have been playing with is
the icosahedron outlined in green in the 57-group image.

Of the 12 Deuterium jets being forced out of the green 
icosahedron in the 57-group
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3 (magenta arrows) of the 12 jets go 
to the INTERIOR of the 57-group

Each of those 3 jets go towards one of the outer 5-group on the 
outside opposite the green icosahedron. 
Shown below is one of the 3 jets as it meets a smaller jet from 
its corresponding outer 5-group (cyan pentagon).

The collision of the jets of Deuterium force some of the 
Deuterium nuclei
close enough to each other to fuse into Helium4 Alpha particles.
Thus: COLD FUSION FROM JITTERBUG TRANSFORMATION. 
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57-group Tetrahedra, Faces, Edges and Vertices
Frank Dodd (Tony) Smith, Jr. - 2011 (unless otherwise credited, diagrammatic images are from, 

or adapted from, works of Lord, Mackay and Ranganathan, or from Wolfram Math World, or 
from Mathematica models of Garrett Sadler)

The 26 vertices of the 57-group are shown here numbered from the inside out: 
1 - 4 (blue) are vertices of the central tetrahedron; 
5 - 8 (green) are exterior vertices of the 4 tetrahedra face-joining the center; 
9 - 14 (white) are an octahedron of 6 vertices on the outside of the 57-group; 
15 - 26 (red) are a cuboctahedron of the outermost 12 vertices on the outside of the 
57-group. 

This is an effort to look at structures of the 57-group (edges may not  be exactly accurate) 
in terms of vertices that might be shared if gaps were zero, 
and to compare that with the point of view of  looking at edges or faces or 
tetrahedra that might be shared (or, for tetrahedra, in full contact) if gaps were zero. 
 



If all the 57-group tetrahedra were separate, then there would be:
57 tetrahedra
228 faces = 57x4 = 228
342 edges = 57x6 = 342
228 vertices = 57x4 = 228

If all the tetrahedra were fit together without gaps,
by merging neighboring faces, edges, and vertices,
then there would be:

tetrahedra = 57 = 17 interior + 40 with one exterior face

faces 228 = (17x4 + 40x3) + 40 = 188 + 40 = 94x2 + 40
so that there are
94 merged from a full interior pair 2
40 not merged because exterior faces are not paired
for a total, after merger, of 134 faces of which
94 were merged pairs and 40 were not merged at all.
(The 94 merged pairs have 94x3 = 282 merged vertices,
 but this is NOT a full accounting of vertex mergers because
 the vertices of the 40 exterior faces have been omitted
 as are are mergers of vertices that are not on the same merged face.
A full accounting of all vertices in terms of dodecahedra / partial dodecahedra is 
given below.

edges 342  that after merger become 102 
as described in detail below. 

vertices 228 = 4x20 + 4x10 + 6x8 + 12x5 = 80 + 40 + 48 + 60
so that there are
4 merged from a full dodecahedral 20
4 merged from a partial dodecahedral 10
6 merged from a partial dodecahedral 8
12 merged from a partial dodecahedral 5
for
a total of 4 + 4 + 6 + 12 = 26 merged vertices.



Vertices: 

Seperately, the 57 tetrahedra of the 57-group have: 
57 tetrahedra
228 faces = 57x4 = 228
342 edges = 57x6 = 342
228 vertices = 57x4 = 228

Merged within the 57-group, there are 26 vertices. 

Each of the 26 vertices, if the gaps were non-zero, would split into a number of 
different vertices, one for each tetrahedron sharing that vertex. 

For example: 

each of the 4 blue vertices of the central tetrahedron would split into 20 vertices, 
one for each of 20 tetrahedra in an icosahedron; 

each of the 4 green vertices would split into 10 vertices; 

each of the 6 white vertices would split into 8 vertices; 

each of the red 4x3 = 12 outermost vertices would split into 5 vertices 

for 
a total of 4x20 + 4x10 + 6x8 + 12x5 = 228 vertices if all gaps were non-zero. 

(Note that if the central 4 vertices were not split (as it is possible in flat space for them to have no 
gap) then that would reduce their splitting from 20 vertices to 17 so that 
the split vertex total would then be 228 - 12 = 216. 
Note also that if all 26 vertices were in a large enough configuration that  all 26 were internal and 
so an interior part of an icosahedron, the split vertex total would then be 26x20 = 520.)



The 1 + 4 + 12 = 17 inside tetrahedra (17-group) look like
(in the illustrations here I am closing all the gaps to zero -
you can consider that to be done either by deforming some tetrahedra
or by curving the 3-dim space where they are)

with 17 tetrahedra and (with gaps closed to zero) 4+4+6 = 14 vertices.

Each of the 4 tetrahedra that share a face with the 1 central tetrahedron
is
now sharing its other 3 faces with 3 new tetrahedra
so that
its only exterior elements are its 3 edges that
are not shared with the 1 central tetrahedron.

There are 4x3 = 12 such exterior edges in the 17-group.
At each of them you can add 2 new tetrahedra sharing that edge,
so that
each of those 12 exterior edges becomes the center axis of a 5-group
and is under one of 12 new vertices.

That is effectively adding 12x2 = 24 outside tetrahedra
and 12 outside vertices to get



17+24 = 41 tetrahedra (the 41-group) with 14+12 = 26 vertices.

NOTE THAT AT THIS STAGE ALL THE 5-GROUPS THAT CONTAIN
ONE OF THE 4 TETRAHEDRA AROUND THE CENTRAL TETRAHEDRON
ARE COMPLETE
and
all 26 vertices of the 57-group are present
but
you have to add 16 more tetrahedra
to get the full 16+24 = 40 exterior tetrahedra of the 57-group.
You can do that WITHOUT adding any more vertices, getting

all 57 tetrahedra and 26 vertices.



The 4 blue vertices are the central tetrahedron.

The 4 green vertices are an outer tetrahedron formed by
the outer 4 vertices of the 4 tetrahedra that contact the central tetrahedron.

The 6 white vertices are an octahedron formed by
the outer 6 vertices of the 12 outer tetrahedra of the 1+4+12 = 17-group.

The 12 red vertices are a cuboctahedron formed by
the outer 4x3 = 12 vertices of the 12 outer tetrahedra of the 17+24 = 41-group
and also are the outermost vertices of the 4 icosahedra that intersect
to form the 57-group (3 vertices on each of the outer triangular face
of each of the 4 intesecting icosahedra).

Each of the 26 vertices of the 57-group, if the gaps were non-zero, would split into 
a number of different vertices, one for each tetrahedron sharing that vertex. 

Each of the 4 blue vertices of the central tetrahedron is entirely surrounded by 
other tetrahedra as part of the maximal subgroups of 20 that form icosahedra. 
Each of them would split 



into 20 vertices, one for each of 20 tetrahedra in an icosahedron. Fang Fang has 
noted that the 20 vertices resulting from the splitting can be seen as the 20 vertices 
of a dodecahedron with distortion from a regular dodecahedron being a measure of 
the size of gaps related to the vertex from which the 20 split.

Each of the 4 green vertices would split 

into 10 vertices; 

Each of the 6 white vertices would split 

into 8 vertices; 



Each of the red 4x3 = 12 outermost vertices, being outermost and only sharing with 
4 others of an outside 5-group subset of the 57-group, would split 

into 5 vertices 

for 
a total of 4x20 + 4x10 + 6x8 + 12x5 = 228 vertices if all gaps were non-zero. 

As to how to use dodecahedra-split vertices to do calculations for the 57-group:

1 - There are 26 dodecahera linked together in the 57-group,
so it is more complicated than just seeing how one dodecahedron works,
but looking at one dodecahedron is a start.

2 - Since the dodecahedron is the simplest fullerene, known as C20
because the dodecahedron fullerene is made up of 20 carbon atoms,
and since fullerenes have been studied theoretically and experimentally
a lot in the past couple of decades,
here are a few references to papers about C20 fullerene structure:

http://www.maa.org/mathland/mathtrek_9_18_00.html
general article

http://arxiv.org/abs/chem-ph/9409001
by Peter R. Taylor, Eric Bylaska, John H. Weare,
and Ryoichi Kawai
"... the smallest fullerene, the dodecahedron C20,
has the lowest energy ...[ of ]... 20-atom carbon species ...".

http://www.maa.org/mathland/mathtrek_9_18_00.html
http://www.maa.org/mathland/mathtrek_9_18_00.html
http://arxiv.org/abs/chem-ph/9409001
http://arxiv.org/abs/chem-ph/9409001


http://digitalcommons.unl.edu/cgi/viewcontent.cgi?
article=1019&context=chemzeng
about calculations of stability

http://www.people.vcu.edu/~qwang/_pdfs/02-PRB-Si20.pdf
about similar Silicon 20-atom structure

http://www.lsu.edu/departments/flin/papers/
C20_extend_model_J_Phys_Cond_Matt19_456206.pdf
about Hubbard model for C20

http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.4.5197&rep=rep1&type=pdf
about resistance distances

http://arxiv.org/pdf/0905.2951
about structural distortion

Also, a friend of mine (Julian Niles) did his Ph.D. thesis on fullerenes.
Here are three animated gifs from his thesis about distortions of C60,
which may be a bit more complicated than C20 but may be similar enough
for you to sort of visualize some aspects of distortions.
(you might have to look at the images in a web browser to see the animation)

603 C60

http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1019&context=chemzeng
http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1019&context=chemzeng
http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1019&context=chemzeng
http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1019&context=chemzeng
http://www.people.vcu.edu/~qwang/_pdfs/02-PRB-Si20.pdf
http://www.people.vcu.edu/~qwang/_pdfs/02-PRB-Si20.pdf
http://www.lsu.edu/departments/flin/papers/C20_extend_model_J_Phys_Cond_Matt19_456206.pdf
http://www.lsu.edu/departments/flin/papers/C20_extend_model_J_Phys_Cond_Matt19_456206.pdf
http://www.lsu.edu/departments/flin/papers/C20_extend_model_J_Phys_Cond_Matt19_456206.pdf
http://www.lsu.edu/departments/flin/papers/C20_extend_model_J_Phys_Cond_Matt19_456206.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.5197&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.5197&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.5197&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.5197&rep=rep1&type=pdf
http://arxiv.org/pdf/0905.2951
http://arxiv.org/pdf/0905.2951
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Edges: 

The 57x6 = 342 edges of the 57 tetrahedra of the 57-group considered separately
merge into 102 edges within the 57-group itself.

Pick one of the four icosahedra of the 57-group,  
whose 20 tetrahedra include the central tetrahedron, 

 

10 tetrahedra have all faces interior to the 57-group.
4 have 4x6 = 24 edges that are part of sets of 5 shared.
6 have 6x5 = 30 edges that are part of sets of 5 shared
and
6x1 = 6 edges that are part of sets of 3 shared.
The other 10 tetrahedra (white) of that icosahedron have one exterior face
Their 10x3 = 30 internal edges are part of sets of 5 shared.
so their 6x5 edges merge to 6 edges.
6x1 = 6 of their external edges are part of sets of 3 shared
and
6x2 = 12 of their external edges are part of sets of 2 shared.
4x3 = 12 of their external edges are part of sets of 2 shared.



The remaining 57 - 20 = 37 tetrahedra do not include the central tetrahedron: 

1 tetrahedron (yellow) sharing a face with the central tetrahedron 
has 6 edges all of which are part of sets of 5 shared; 



3 tetrahedra (green) sharing a face with the yellow tetrahedron
have 3x6 = 18 edges of which
5+5+5 = 15 edges are part of sets of 5 shared and
1+1+1 = 3 edges are part of sets of 3 shared.

15 = three 5-groups (cyan) each sharing two faces with green tetrahedra
have 15x6 = 90 edges of which
3x(3+3+3+3+3) = 45 edges are part of sets of 5 shared and
3x(1+1) = 6 edges are part of sets of 3 shared and
3x(2+3+3+3+2) = 39 edges are part of sets of 2 shared.

18 = two groups of 9:
one group of 9 (red)
with a total of 9x6 = 54 edges of which
3+3+3+3+5+3+3+3+3 = 29 are part of sets of 5 shared and
1+1+1+1+1+1+1 = 7 are part of a set of 3 shared and
2+3+2+2+2+2+3+2 = 18 are part of sets of 2 shared

and



one group of 9 (black)
with a total of 9x6 = 54 edges of which
3+5+3+3+3+3+3+5+3 = 31 are part of sets of 5 shared and
1+1+1+1+1+1+1+1 = 8 are part of sets of 3 shared and
2+2+2+3+2+2+2 = 15 are part of sets of 2 shared

so that

54+30+6+15+45+29+31 = 210 are part of sets of 5 and
6+6+3+6+7+8 = 36 are parts of sets of 3 and
12+12+39 +18+15 = 96 are parts of sets of 2.

There are therefore
210 unmerged edges that are parts of sets of 5 shared
36 unmerged edges that are part of sets of 3 shared
96 unmerged edges that are part of sets of 2 shared

Since 210 + 36 + 96 = 342 = 57x6
all 342 separate vertices of the 57 tetrahedra of the 57-group are accounted for.

After merger there are 210/5 + 36/3 + 96/2 = 42 + 12 + 48 = 102 edges.



Note that this shows that the 57-group can be seen from 4 points of view,
one for each of the 4 icosahedra that share the central tetrahedron. 
If the whole 57-group is viewed as having the structure of a very large tetrahedron, 
then (as Fang has noticed) you can decompose it into 

( images from web site at
http://isis.nmsu.edu/~breakingaway/Lessons/cuttingPH/tetrahedra.html )

4 corner tetrahedra and a central octahedron, 
with 
each of the 4 corner tetrahedra corresponding to 
a 10-group of 10 tetrahedra of one of the 4 icosahedra with an exterior face
and 
the central octahedron corresponding to the 17-group 

of interior tetrahedra. 

http://isis.nmsu.edu/~breakingaway/Lessons/cuttingPH/tetrahedra.html
http://isis.nmsu.edu/~breakingaway/Lessons/cuttingPH/tetrahedra.html


If you want to be a bit more detailed,
you can say that the big tetrahedron should be truncated on all 4 corners,
and that each of the 4 small tetrahedra should be truncated on one corner.

The difference between tetrahedral decomposition point of view 
and 
the intrinsic structural point of view from which 
the interior central 17-group looks more like a tetrahedron than an octrahedron 
and the 4 corner things look more like 4 half-icosahedra than 4 tetrahedra
is that 
the tetrahedral decomposition view shows how the components relate globally to
an overall large tetrahedron structure of the whole 57-group 
while 
the intrinsic structural view shows the local internal structure of the components. 

Both points of view (global and local) are useful.

From the point of view of a chosen icosahedron, the 57-group is made up of:

the icosahedron with 20 tetrahedra marked above with white dots;

a central cluster of 4 tetrahedra,
one sharing a face with the center tetrahedron (yellow)
and
three (green) sharing a face with the yellow tetrahedron;

3 pentagonal pyramid 5-groups marked above with cyan dots (15 tetrahedra);

a band of 18 face-sharing tetrahedra marked above with red and black dots
forming a ring surrounding the icosahedron and the central cluster of 4 tetrahedra.

Note that the band of 18 face-sharing tetrahedra consists of:

3 tetrahedra with no external face but do share a face with a green tetrahedron,
and so are part of the central 17 tetrahedra



and

15 tetrahedra that are in 3 chains of 5,
which 3 chains are separated by the 3 tetrahedra in the central 17.
Each of those 3 chains of 5, one of which is shown here

linked by a black line,
corresponds to one of the 3 pentagonal 5-groups outside the chosen icosahedron.

As is clear from the above image, a chain of 5 combines with its 5-group
to make up half of the 10 equatorial tetrahedra of the icosahedron that
could be formed within the 57-group by that 5-group.



There are 4 ways you can choose an icosahedron from the 57-group.
When you choose a particular one, you get:

If you set the chosen icosahedron aside, 



you can build the rest of the 57-group as follows:
1 - Take the 1+3=4 and put it in face contact with the top face of the icosahedron.
2 - Take the 3 single 1 and slide them (blue arrows) under the 1+3=4 and over the 
icosahedron, filling the big gaps there.
3 - Take the 3 chain 5 and put them in face contact with the 3 single 1. This makes 
a face-to-face closed loop chain of 18 tetrahedra that is indicated by red lines.
4 - Take the 3 pentagon 5 and put them on top of the structure.

This completes the 57-group.

Note that the 3 chain 5 correspond to

the 3 chains of 5 that you see when you look into one of the 4 large faces
of a glass truncated tetrahedron,
and also to 3 of the 12 lines (the other 9 come from the other 3 ways you could 
have chosen an icosahedron from the 57-group) in the Schafli Double-6 or the 12 
Parallel Pair lines both of which are inside the 27-line Configuration.



Consider the 18-tetra closed loop structures for all 4 of the icosahedra within the 
57-group. The configuration of the 4 icosahedra, and therefore of the 4 closed loop 
18-chains, is similar to 4 vertices of a tetrahedron, or, equivalently,
to 4 alternate vertices out of the 8 vertices of a cube or, equivalently,
to 4 alternate triangular faces out of the 8 of a cuboctahedron
(indicated below by red, green, blue, and yellow)

Therefore the 4 closed loop 18-chains describe circulation around each of the 4 
axes of the Fuller Vector Equilibrium cuboctahedron and therefore (since the 
cuboctahedron can be seen as a central figure in the 4-dim 24-cell that is a discrete 
version of the 3-sphere) to circulation around the 4 axes (t,x,y,z) of spacetime.

Of course, since 18x4 = 72 is greater that 57, 
the 4 closed loop 18-chains do share some of their tetrahedra.



Each closed loop 18-chain contains 15 tetrahedra with an exterior face 
and 3 interior tetrahedra. 
If the 10 exterior faces of the chosen icosahedra are as shown with white dots 
and the 5 faces of each of the corresponding 3 pentagonal 5-groups 
are shown with yellow, cyan, and magenta dots in the following two images 

then the remaining 40 - 25 = 15 exterior faces are 
the 15 exterior faces of the closed 18-loop 
which are indicated by red dots in the two images below 



Choosing another of the 4 icosahedra, say the one based on the yellow pentagonal 
5-group, would give the following 18-group structure: 



As to the total count of lines after merger (the image may not show all lines exactly 
accurately, and any errors are my fault in modifying the image from Lord et al): 

 
The 26 vertices of the 57-group are shown here numbered from the inside out: 

1 - 4 (blue) are the 4 vertices of the central tetrahedron.
There are 12 lines from each blue vertex.
5 - 8 (green) are the 4 exterior vertices of the 4 tetrahedra face-joining the center.
There are 9 lines from each green vertex.
9 - 14 (white) are an octahedron of 6 vertices on the outside of the 57-group.
There are 8 lines from each white vertex.
15 - 26 (red) are a cuboctahedron of the outermost 12 vertices on the outside of the
57-group. There are 6 lines from each red vertex.

Since each line connects two vertices, the total number of merged-edge lines
should be ( 4x12 + 4x9 + 6x8 + 12x6 ) / 2 = 204 / 2 = 102 lines.



Faces: 

The 228 = 57x4 faces of the 57 separate tetrahedra of the 57-group
merge into 134 faces of the merged 57-group,
because:

17 of the 57 tetrahedra are interior to the 57-group and
therefore have 17x4 = 68 faces that are part of facing pairs;

40 of the 57 tetrahedra have 1 exterior face of the 57-group
and 3 interior faces so that they have
40x3 = 120 faces that are part of facing pairs and
40x1 = 40 faces that are single and not paired to any other face

so that
the 68 + 120 = 188 paired faces merge to 94 faces
and
the 40 single faces do not merge

resulting in 94+40 = 134 faces in the merged 57-group.

The 94 merged pairs have 94x3 = 282 merged vertices,
but
this is NOT a full accounting of vertex mergers because

mergers of vertices that are not on the same merged face are omitted
and
mergeres of the vertices of the 40 exterior faces are omitted.



Tetrahedra:

The 57 separate tetrahedra do not merge as full tetrahedra,
so that after merger the 57-group still has 57 tetrahedra.

To study paths through the 57-group involving multiple tetrahedra:

1 - Start with this one (out of 6) purple/gold lines (vertex view)
between two antipodal exterior cuboctahedron vertices
that was the middle right one on my earlier image of 6 things.

It is a purple twisted line of 4 segments (5 vertices)
plus (if you change two segments to the gold ones) an oppositely-twisted line.
Note that each line involves one blue vertex of the central tetrahedron,
so the 2 twisted-line connections use 2 of the 4 blue vertices of
the central tetrahedron.



2 - Shorten and straighten (to no twist) the connection path to get

a straight line of 3 purple line segments.
Note that the straight short connection uses the other 2 of
the 4 blue vertices of the central tetrahedron.

Since there are 6 ways to choose pairs of tetrahedron vertices,
one for each of the 6 edges of a the central tetrahedron,
there are 5 more ways to do a similar construction 
corresponding to the 1+5 = 6 antipodal pairs of the exterior cuboctahedon vertices. 

Those 6 lines also correspond to 6 of the lines of the Schlafli Double-6 
in particular 



to the 6 green lines in this stereo image of the Double-6: 

The correspondence is to the 6 green lines shown here in this image 

of the central tetrahedron plus the outermost 4 tetrahedra of the 57-group. 



Showing the embedding of those 1+4 = 5 tetrahedra within the 57-group 
and showing the 6 lines and their external vertices in 6 different colors 

indicates that each of the 6 lines determines one of 
the 6 axes  for a helix axial core within the 57-group. 



3 - Each of the 3 purple line segments of the straight connection
is the axis of a 5-group

which is one of 6 ways you can form the 3x5 = 15-tetrahedron axial core
of a helix.
Note that the central 5-group contains the central tetrahedron,
and note the rotation of the 5-groups as they go up the axis.



4 - If you want to travel along that axis by face-to-face travel,
then you have to add more faces to make the face-to-face connections,
and you can do that by adding two pairs of tetrahedra. For example,
using a left-handed twist

you get a left-twisted helix along the axis made up of 7 tetrahedra.
Note that the total rotation from tetrahedron 1 to tetrahedron 7
is only 1/5 of 360 degrees (that is, it is 72 degrees).



5 - If you want to fill out each of the 4 added tetrahedra
into a full 5-group for each, you end up with 15 + 4x5 = 35 tetrahedra

6 - If you want to fill out the 35 tetrahedra into the full 57-group,
you add 22 more to get

the 57-group. also known as the gamma-Brass Cluster. 



7 - If you add 12 more vertices, and 40 more tetrahedra, you get 

the Augmented gamma-Brass Cluster with 38 vertices and 97 tetrahedra. 

Note that the 4 outermost (orange in the image) triangular faces 
correspond to the 4 triangular faces of a Truncated Tetrahedron

so that the Augmented gamma-Brass Cluster is a tetrahedral-cluster 
representation of a Truncated Tetrahedron. 



8 - If you went inside the Augmented gamma-Brass Cluster Truncated Tetrahedron 
and looked at one of the triangular face corners you would see 
    

something very much like (except for the slight gaps due to trying to assemble a 
cluster of tetrahedra in flat 3-dim space) an icosahedron. 

9 - If you look into a glass Truncated Tetrahedron 

you see 5-chains of faces of half-icosahedra that appear due to reflection. 
There are 3 chains for each of the 4 truncated faces of the Truncated Tetrahedron.  
Those 3x4 = 12 chains correspond to the 12 lines of a Schlafli Double-6. 



The Schlafli Double-6 

is a configuration of 12 lines whose geometry is similar to that of 

a Truncated Tetrahedron and an Augmented gamma-Brass Cluster. 

The 12 lines of the Schlafli Double-6 are a subset of the 27 lines 
of the Configuration of 27 Lines on a General Cubic Surface. 



The 27-line General Cubic Surface Configuration 

 
contains, in addition to the 12 lines of the Schlafli Double-6 (red and green), 
15 more lines (shown in blue) that are of two types: 
3 orthogonal lines (roughly the Cartesian X, Y, Z axes of 3-dim space); 
12 lines in 6 Parallel Pairs, 
each Parallel Pair being parallel to one of the 6 edges of a tetrahedron. 

Each of the 12+15 = 27 lines have 5 points of crossing, 
so the configuration has 27x5 = 135 points. 
In case it might help in visualization, here is a stereo image 

of the dual 27 line 45 point configuration.



Here is how the Double-6 related twelve 5-chains of faces of half-icosahedra that 
appear due to reflection of truncated faces of the Truncated Tetrahedron correspond 
to six pairs of 5-chains of vertices of the 57-group gamma-Brass Cluster. 

Note that each of the chains connects two antipodal external vertices of the 
cuboctahedral outermost substructure. 

Here is how they correspond to the 12 lines of the Schlafli Double-6 on the 
General Cubic Surface (image from mathcurve.com by Ferreol and Esculier)

which surface looks like a continuum version of a Truncated Tetrahedron. 



Now consider the 12 lines of the 6 Parallel Pair subset of 
the 27-line General Cubic Surface Configuration 

which are shown in yellow (image from mathcurve.com by Ferreol and Esculier). 

Note that:

The 12 lines of the Double-6 plus the 12 lines of the Parallel Pairs
 plus the 3 Orthogonal XYZ Axes Lines of the 27-line Cubic Configuration

correspond to 
the 27-dim Exceptional Jordan Algebra J(3,O) 

of 3x3 Hermitian Matrices of Octonions

The lattice version of the J(3,O)o traceless part of J(3,O) is 
the 26-dimensional Lorentz Leech lattice /\25,1

which is the basis for 
a realistic 26-dimensional Bosonic String Theory 

based on E6 structure and World-Lines as Strings

The Weyl Group of the Lie Agebra E6 of order 72x6! = 51,840 is 
the symmetry group of the 27 line Configuration 

(Coxeter, Math. Z. 200 (1988) 3-45).

“... the smallest nontrival string theory that nature allows ... Bosonic 26-
dimensional space-time ... "compactified" on 24 dimensions ...[ has as its ]... 

automorphism group ... the Fischer-Griess Monster M ... 
of order about 10^54 ...”

(quote from James Lepowsky in math.QA/0706.4072) 



Here is an identification of paths through a 57-group with particles: 

 
 

 - neutrino - no color charge - no electric charge
2 point path between 2 antipodal points with no intermediate points  

----------------------------------------------------------------------------------------------------

3 down quarks - one for each color charge - electric charge -1/3

two 5 point paths between 2 antipodal points with 3 intermediate points 



electron - no color charge - electric charge -1
4 point path between 2 antipodal points with 2 intermediate points 

3 up quarks - one for each color charge - electric charge +2/3

----------------------------------------------------------------------------------------------------

 

Path Flow is from the small-ball point to the large-ball point for Particles.  

Path Flow is from the large-ball point to the small-ball point for Antiparticles. 

two 5 point paths between 2 antipodal points with 3 intermediate points 

Each path is between a small-ball point and a large-ball point.

 



What if you regard each tetrahedron in a QC dense-packing as being a 57G ?

Since a 57G has the overall appearance of a tetrahedron, 
make the QC by dense-packing a lot of 57G 
using the method of Chen et al in arXiv 1001.0586
in which the 57G (playing the role of tetrahedra) form clusters that look like 

and have the same periodicity as Clifford algebras. 

That would give you quantum theory from the Clifford algebras / QC dense packings
and 
the fermions of the Standard Model from the paths / Philix in the 57G that 
are being packed (playing the role of tetrahedra). 



The 12 Double-6 lines are in a sense dual to the 12 Parallel Pair lines.

Here is how the Parallel Pair 12 lines correspond to 
six pairs of 5-chain-Pentagons of vertices of the 57-group gamma-Brass Cluster. 

Note that six pairs of pentagons describe a dodecahedron
(image adapted from www.kjmaclean.com/Geometry/dodecahedron.html): 



Since a cube sits (5 ways) inside a dodecahedron 

 

  

(images from wolfram math world and adapted from Steven Dutch web site) 

and 



a tetrahedron sits (2 ways) inside a cube (image adapted from Steven Dutch web site)

dodecahedral/icosahedral Golden Ratio sqrt(5) symmetry 
includes cubic/octahedral/cuboctahedral sqrt(3) symmetry 
which includes tetrahedral sqrt(2) symmetry. 

Those symmetries based on 5 and 3 and 2 (and so also 10 and 6 and 4) 
can also be seen in the 600-cell and the E8 root vectors. 
In the case of the 600-cell, two Golden Ratio copies of which make up 
the 240 root vectors of E8, the 120 vertices can be seen in terms of 
the Clifford-Hopf fibration of the 3-sphere S1 -> S3 -> S2
(S1 = circle or line, S3 = 3-sphere, S2 = 2-sphere base of fibration)
in three different ways (See the book "Geometrical Frustration" by Sadoc and Mosseri):

Ten-fold Screw Axis: (image from Bathsheba Grossman E8 glass)

10 on a vertical axis
5 sets of 10 on 5 circles on an large intermediate torus
5 sets of 10 on 5 circles on a small intermediate torus
10 on a circle in a plane perpendicular to the vertical axis.
There are 1+5+5+1 = 12 Ten-fold Screw Axis fibres,
corresponding to the vertices of an icosahedron in the base 2-sphere



Six-fold Screw Axis: (image from Bathsheba Grossman E8 glass)

20 sets of 6 on 20 circles. There are 20 Six-fold Screw Axis fibres,
corresponding to the vertices of a dodecahedron in the base 2-sphere

Four-fold Screw Axis: (image from Bathsheba Grossman E8 glass)

30 sets of 4 on 30 circles. There are 30 Four-fold Screw Axis fibres,
corresponding to the vertices of an icosidodecahedron in the base 2-sphere.
The vertices as a ball with 8 layers of 30 vertices each,
which 8x30 = 240 vertices correspond to two copies of the 30 sets of 4,
which can be thought of as the 8 circles of 30 
that are often used for graphic pictures of the 240 E8 root vectors. 



E8 lives inside Cl(16)  as Adjoint D3 + Conjugate Spinor D8 

Cl(16) x ...(N times tensor product)... x Cl(16) 
by 8-periodicity is Cl(16N) 

Completion of Union of All Cl(16) Tensor Products 
gives 

hyperfinite II1 factor Algebraic Quantum Field Theory



Water and Tetrahedra
Frank Dodd (Tony) Smith, Jr. - 2011

Water as Cellular Automata

Water Self-Replicating Structures 

Water as Tetrahedral Fluid 

Water as Tetrahedral Quasicrystal 

Water as Tetrahedral Dimers

Water Planet (Earth) and 57-group of Tetrahedra



Water as Cellular Automata
Kier, Cheng, and Testa in Future Generation Computer Systems 16 (1999) 273-289 
say: “... Cellular automata are dynamical computational systems that are discrete in 
space, time and state and whose behavior is specified completely by rules 
governing local relationships. ... Our model is composed of a grid of spaces called
cells on the surface of a torus to remove boundary conditions. Each cell i has four 
tessellated neighbors, j , and four extended neighbors, k, in what is called an 
extended von Neumann neighborhood ... The ... DOS ... programs, collectively 
called Ding Hao, are in the process of being transferred to a Windows operating 
system. ...

... The configurations achieved after many iterations reach a collective organization

... What we observe and record from the cellular automata simulations are 
emergent attributes of a complex system ... 
A ... model of water is that of an extended network of hydrogen-bonded molecules 
that lack a single, identifiable, long-lived structure. The hydrogen bonds 
continually form and break producing a constantly changing mosaic when viewed 
at the molecular system level. This model lends itself to simulation using dynamic 
methods such as cellular automata ... using rules governing the joining and 
breaking of water-designated cells. ...
Two parameters were adopted in our model to govern the probabilities of water 
particles moving in the grid. ... The grid was the surface of a torus to eliminate
boundary conditions. ... 



The breaking probability, PB, is the probability for a molecule at i to break away 
from another at j when there is exactly one occupied j cell ... The value for PB lies 
in the closed unit interval. 
The second parameter, J , describes the movement of a molecular particle at i 
toward or away from the particle at a k cell in the extended von Neumann
neighborhood ... when the intermediate j cell is vacant. J is a positive real number. 
When J = 1, it indicates that the particle, i, has the same probability of movement 
toward or away as for the case when k is empty. When J > 1, it indicates that i has a
greater probability of movement toward an occupied cell, k than when k is empty. 
When J < 1, it indicates that i has a lower probability of such movement. ...
Our studies on water have shown a relationship between PB and J expressed as: 

log J(W) = -1.50 PB(W) + 0.60 
... 
The study also produced an approximate relationship between the breaking 
probability of two joined cells PB(W), and the fraction of free water particles 
associated with a particular temperature ... This observation translates into a 
relationship between a numerical value of the probability rule and the water 
temperature PB(W) = 0.01 T (degrees C). ...
From the dynamics simulating water, several attributes
are recorded.

f0 fraction of cells not bound to other cells;
f1 fraction of cells bound to only one other cell;
f2 fraction of cells bound to two other cells;
f3 fraction of cells bound to three other cells;
f4 fraction of cells bound to four other cells;
fH free hydrogen fraction = 1/2 of fraction of unbound
cell faces;
NHB number of hydrogen bonds per water cell = count of joined faces per cell.

... These attributes characterize the particular configuration associated with a set of
PB and J rules. ... 

A profile of water cells, described by the fraction of each bonding type, f0–f4, for 
each temperature, is shown ... 



... a set of equations relating several physical properties of water to attributes
from the cellular automata simulations are shown ...

... These correlations between simulated water attributes and various physical
properties indicate that the water model we have created with cellular automata has 
significant validity. ...”. 

Kier, Seybold, and Cheng have written a textbook “Modeling Chemical 
Systems Using Cellular Automata” (Springer 2005) on the subject. 



Water Self-Replicating Structures 
Robin J. Speedy in J. Phys. Chem 88 (1984) 3364-3373 says: 
“... pentagonal rings of hydrogen-bonded water molecules ... have the qualities of 
(a) self-replication and (b) association with cavities 
...
Water differs from other liquids in that when it is cooled below 0 degrees C 
thermodynamic properties show increasing fluctuations about their average values, 
with possible divergences at Ts = -46 degrees C.  It is as though the valley on the 
free energy surface ...

... whose minimum determines the properties supercooled water, becomes shallow 
and broad (with respect to some structural order parameter ...), allowing the system 
to sample an increasingly diverse range of structures, and eventually flattens out 
completely so that the valley comes to an end at Ts. ... 
in cold water each molecule is hydrogen bonded to three or four neighbors which 
tend to be tetrahedrally disposed and that, at any instant, the structure can be 
viewed as a single connected three-dimensional ... tetrahedral ... network. 
To account for the anomalies it is then logically sufficient to suppose that there are, 
in the network, some particular structures which are (a) self-replicating and (b) 
associated with cavities. ... 
pentagonal rings of hydrogen-bonded water molecules are self-replicating, in the
sense that the presence of a pentagon biases adjacent regions of the network in 
favor of reproductions of itself and that each pentagon is probably associated with 
a pair of cavities ...



 ... A pair of dodecahedra, for example, can stabilize each other by sharing a 
pentagonal face and therefore tend to cluster together. 
... 
Given the enhanced probability of one pentagon adjacent to a solute, the self-
replicating propensity of the pentagon implies an enhanced probability of more 
pentagons in the region extending perhaps several pentagon diameters away from 
the solute. Therefore, the “influence” of a solute on the solvent need not be 
localized to its immediate solvation shell, or even to that region of the solvent that 
lies within the range of direct interactions, but can be spread diffusely over an 
extended region. ...”. 

Water as Tetrahedral Fluid
Kolafa and Nezbeda in Molecular Physics 84 (1995) 421-434  say:
“... Despite the fact that there are no attractive forces acting between hard 
tetrahedrons, their shape induces, at high densities, a structure which resembles the
structure of liquid water ...
Hard tetrahedrons ... HTH ... exhibit an extreme non-sphericity and their specific 
way of packing ... in ... a fluid of regular hard tetrahedrons ... gives rise to ... the 
structure of water ... with ... pentagonal formations of tetrahedrons from 
'selfreplicating structures' ... 
Liquid water is known to exhibit a number of anomalies, which result from a well-
developed hydrogen-bond network with a more or less regular tetrahedral 
symmetry. ... a purely geometrical theory due to Speedy, based on pentagonal (and 
higher) formations of hydrogen-bonded molecules, seems to be the 'deepest' ... 
insight into the structure of the hydrogen-bond network and hence to explain the 
anomalous properties of water qualitatively ...
For the HTH fluid the functions of main interest are the centre-to-centre ... and 
vertex-to-vertex ... correlation functions. ...
The concept of an irregular distorted but locally tetrahedral network of hydrogen
bonds (HBs) has become a standard tool for describing properties and anomalies of



liquid water. This view has been supported by molecular simulations using 
different potential models and has allowed the study of phenomena such as 
polygons (cycles) in the HB network or the occurrence of various polyhedrons.
...
(1) There is a high probability that an arbitrarily selected molecule has four
neighbours which are tetrahedrally arranged.
(2) The hydrogen-bond network is fully connected (percolated). Two-, three-, and
four-bonded molecules are the most probable.
(3) The conformation of a hydrogen bonded pair of molecules is more likely to
be staggered ... than eclipsed ... 
(4) Of all bridgeless (non-short-circuited) polygons made from hydrogen-bonded
molecules, pentagons and hexagons are the most probable, although neither longer 
polygons are negligible.
(5) Pentagonal rings of bonded molecules form self-replicating structures,
i.e., it is more probable to find a pentagon in the vicinity of another pentagon than 
at a random place. A similar (but weaker) phenomenon occurs for hexagons.
(6) Water at low temperatures (supercooled water) contains bulky polyhedrons 
with pentagonal and hexagonal faces. These polyhedrons are bound by their faces 
in an irregular way. ...

... 
The shortest centre-to-centre distance ... (a) ... face-to-face ...
For ... (b) ... two tetrahedrons ... form a double hydrogen bond with ... a third ... 
for ... (c) ... it is not possible to decide ... which ... face ...is ‘bonded’ ... 



with increasing density/pressure the specific way of packing of the HTHs begins to
dominate ... for the highest density ... BP = 3.5 ...  the centre-to-centre correlation
function ... becomes water-like ... Concentrations of ... bridgeless polygons ...  are 
shown ... for ... hydrogen bond ... distance... 1.7 ... 

... A sharp peak at n = 5 is observed ... The value for n = 8 ... reflect[s] ... two 
pentagons sharing one edge ...
The polygon structure of the HTH may be compared with the structure of water, 
where both pentagons and hexagons are present in approximately equal
numbers ... this difference between water and hard tetrahedrons can be explained 
by the tendency of a pair of bonded water molecules to be in a staggered 
conformation, whereas a pair of face-to-face tetrahedrons prefers an eclipsed 
conformation. ...
Since the role of pentagons in the HTH fluid is even more pronounced
than in water, we ... calculated the pentagon-pentagon correlation function ...

... We can thus conclude that pentagonal rings in the HTH fluid form 'self-
replicating structures': when we consider any edge (pair of 'hydrogen bonded' 
tetrahedrons) of a pentagon, the eclipsed conformation of these two tetrahedrons 
makes it easier for the other three tetrahedrons to form an additional pentagon 
containing this edge ...”. 



Water as Quasicrystal 
Haji-Akbari1, Engel, Keys, Zheng, Petschek, Palffy-Muhoray, and Glotzer in 
arXiv 1012.5138 say: 
“...  a fluid of hard tetrahedra undergoes a first-order phase transition
to a dodecagonal quasicrystal, which can be compressed to a packing
fraction of φ = 0.8324. 
By compressing a crystalline approximant of the quasicrystal, the highest packing 
fraction we obtain is φ = 0.8503. 
If quasicrystal formation is suppressed, the system remains disordered, jams, and 
compresses to φ = 0.7858.
Jamming and crystallization are both preceded by an entropy-driven transition 
from a simple fluid of independent tetrahedra to a complex fluid characterized by 
tetrahedra arranged in densely packed local motifs that form a percolating network 
at the transition. ...
Aside from studies of packing, hard tetrahedra have been used to model the 
structure of water. 
... 
In hard particle systems, the potential energy of two particles is considered
infinite if they interpenetrate and zero otherwise. ... hard particles can maximize 
entropy by ordering ... In the limit of infinite pressure, an arrangement with 
maximum packing fraction is stable because it minimizes specific volume and 
Gibbs free energy. One of the simplest shapes for which the packing problem is 
still unsolved is the regular tetrahedron. 
Tetrahedra do not tile Euclidean space. However, if extra space is allowed between 
tetrahedra, or between groups of tetrahedra, dense ordered structures become 
possible. Imagine building a dense cluster, one tetrahedron at a time. As shown ... 
tetrahedral dice are stuck together with modelling putty ... 

... a pentagonal dipyramid (PD) is easily built from five tetrahedra if one allows an 
internal gap of 7.36°. 



Two PDs can share a single tetrahedron to form a nonamer. 

Twelve interpenetrating PDs define an icosahedron with a gap of 1.54
steradians. ...

... a dense, one-dimensional packing given by a linear arrangement of tetrahedra 
with touching faces [is] known as a tetrahelix, or Bernal spiral ... The tetrahelix
maximizes packing density in one dimension. ...



To obtain dense packings of hard regular tetrahedra, we carry out Monte-Carlo
(MC) simulations ... of a small system with 512 tetrahedra and a large system with 
4096 tetrahedra. ... The large system undergoes a first order transition on 
compression of the fluid phase and forms a quasicrystal. ... 

... We see that the fraction of tetrahedra belonging to at least one PD increases well 
before jamming or crystallization. 

With increasing pressure, interpenetrating PDs form icosahedra and finally merge 
into a percolating PD network as the fraction of tetrahedral in PD approaches 
unity. ...[The figure shows]... Mean cluster size of interpenetrating PDs ...[and]... 
suggests a percolation transition of the PD network ... at P*p = 58 +/- 2, prior to 
both jamming and crystallization. We do not observe tetrahedratic liquid crystal 
phases ...

... For the large system, the fraction of tetrahedra in icosahedra suddenly drops at 
P* = 62 when crystallization occurs. Comparison with the glass shows that many 
fewer icosahedra remain in the quasicrystal. ... 



Structural changes of the fluid are revealed by the unusual behaviour of its radial
distribution function g(r), as shown ...

... We find that the first peak near r = 0.75σ disappears upon compression at low 
pressure, only to reappear for higher pressure, splitting into two peaks at r = 0.55σ 
and r = 0.80σ. The positions of these peaks are characteristic of face-to-face and 
edge-to-edge arrangements, respectively, within a single PD. 
...
The spontaneous formation of a quasicrystal from the fluid is remarkable ...

 ... it can be seen that the quasicrystal consists of a periodic stack of corrugated 
layers with spacing 0.93σ. The view along the direction of the stacking vector 
reveals details of the structure within the layers. Twelve-fold symmetric rings 
formed by interpenetrating tetrahelices exist throughout the structure. 
The helix chirality is switched by 30° rotations ... 



The structure of the quasicrystal can be understood more easily by examining
the dual representation constructed by connecting the centres of mass of 
neighbouring tetrahedra. In the dual representation, PDs are represented by 
pentagons. The mapping is applied to a layer of an 8000 particle quasicrystal ...

... Recurring motifs are rings of twelve tetrahedra that are stacked periodically to 
form “logs”...

... the symmetry axes of the logs arrange into a non-repeating pattern of squares 
and triangles (tile edge length 1.83σ) – an observation that we confirm in systems 
with 13824 and 21952 particles ... The diffraction pattern obtained by positioning 
scatterers at the centres of tetrahedra shows rings of Bragg peaks, indicating the 
presence of long-range order with twelve-fold symmetry not compatible with 
periodicity. Perfect quasicrystals are aperiodic while extending to infinity; they 
therefore cannot be realized in experiments or simulations, which are, by necessity, 
finite. The observed tilings and diffraction patterns with twelve-fold symmetry are 
sufficient in practice for the identification of our self-assembled structures as 
dodecagonal quasicrystals. ...



Quasicrystal approximants are periodic crystals with local tiling structure
identical to that in the quasicrystal. Since they are closely related, and they are
often observed in experiments, we consider them as candidates for dense packings. 
The dodecagonal approximant with the smallest unit cell (space group ) has 82
tetrahedra ... 

... and corresponds to one of the Archimedean tilings. At each
vertex we see the logs of twelve-member rings (shown in red) capped by single 
PDs (green). The logs pack well into squares and triangles with additional, 
intermediary tetrahedra (blue). The vertex configuration of the tiling is ...

  

... Interpenetrating tetrahelices can also be seen in the approximant ... 
[and in] the dodecagonal quasicrystal ... 

... Tetrahelices containing more than 48 tetrahedra  ... in the N = 13824 system ... 
projected along the twleve-fold axis ... are limited to twelve directions. ... The 
chiralilty ... is switched every 30 degrees. ...   



“Building” and numerically compressing a unit cell of this ideal structure achieves 
a packing fraction of φ = 0.8479. If we compress a 2x2x2 unit cell, the packing 
fraction marginally increases to φ = 0.8503 ... 

... For ease of viewing, the 2x2x2  cell has been periodically continued into a 
2x2x8 cell. ... In the translucent image, the twelvefold logs can be identified. The 
logs arrange into triangle (c) and square (d) tiles with 9.5 and 22 tetrahedra, 
respectively. ... 

Why should square-triangle tilings be preferred for dense packings of
tetrahedra?

First, we compare the packing fraction of the square tile (22 tetrahedra) to
that of the triangle tile (9.5 tetrahedra). 
Their ratio φTriangle / φSquare = 19 / 11√3 ≈ 0.9972 is nearly unity, 
which suggests that tetrahedra pack equally well in both tiles. 
Second, we note that rings comprising the logs are tilted ... and the layers of the
structure are corrugated ... This is a direct consequence of the face-to-face
packing of tetrahedra where neighbouring logs kiss. As a result, the square tile has 
a negative Gaussian curvature while the triangle tile has a positive one. 
Alternating the two tiles produces a net zero curvature in the layers, as observed in 
the quasicrystal and its approximant. ...



Bragg peaks have perfect twelve-fold symmetry in the dodecagonal quasicrystal 
(a), the symmetry is broken to four-fold symmetry in the approximant (b). ...

... As indicated by white dashed lines and ellipsoids, weak Bragg peaks of the 
approximant are shifted slightly from their positions in the quasicrystal. 
... 
the local structure of the ... approximant, the dodecagonal quasicrystal and the 
disordered glass ... are ... only subtly different, and more sensitive measures of 
local order, as ... Fraction of tetrahedra participating in pentagonal dipyramids ... 
and icosahedra ... are required. The crucial step during crystallization is the 
transformation of the percolating PD network into layers, and the elimination of 
icosahedra. ...”. 

Water as Dimers
Chen, Engel, and Glotzer in arXiv 1001.0586 say: 
“... We present the densest known packing of regular tetrahedra with density 
Phi = 4000 / 4671 = 0.856347 ...



... The dimer structures are remarkable in the relative simplicity of the 
4-tetrahedron unit cell as compared to the 82-tetrahedron unit cell of the 
quasicrystal approximant, whose density is only slightly less than that of the 
densest dimer packing. The dodecagonal quasicrystal is the only ordered phase 
observed to form from random initial configurations of large collections of 
tetrahedra at moderate densities. It is thus interesting to note that for some certain 
values of N, when the small systems do not form the dimer lattice packing, they 
instead prefer clusters (motifs) present in the quasicrystal and its approximant, 
predominantly pentagonal dipyramids. This suggests that the two types of packings 
- 

the dimer crystal and the quasicrystal/approximant - 
may compete, raising interesting questions about the relative stability of the two 
very different structures at finite pressure. ...”. 



If you regard a Tetrahedron as a pair of Binary Dipoles 
then the high ( 0.85+) density configurations have the same 8-periodicity 
property as the Real Clifford Algebras:

which is consistent with regarding the 4 vertices of a Tetrahedron 
as the 4 elements of the Cl(2) Real Clifford Algebra, 
isomorphic to the Quaternions,  with graded strucure 1+2+1, 
and so 4 tetrahedra as Cl(4x2) = Cl(8).  
From that point of view, the Large N Limit of 4N Tetra Clusters =
= Completion of Union of All 4N Tetra Clusters   
would correspond to a generalized Hyperfinite II1 von Neumann factor  
that gives a natural Algebraic Quantum Field Theory structure to E8 Physics.



Spinor Growth Sequence 
Frank Dodd (Tony) Smith, Jr. - 2012

-----------------------------------------------

0 = Integers

-----------------------------------------------

1 = Real Numbers (basis = {1}) 

-----------------------------------------------

2 = Complex Numbers C (basis = {1,i}) = Cl(1) = half-spinors of Cl(4) Minkowski

These half-spinors are the basis of the conventional Fermionic Fock Space 
Hyperfinite II1 von Neumann Factor Algebraic Quantum Field Theory (AQFT) 

-----------------------------------------------

4 = Quaternions Q  (basis = {1,i,j,k}) = Cl(2) = half-spinors of Cl(6) Conformal 

WHICH CORRESPOND TO TETRAHEDRA

-----------------------------------------------



----------------------------------------------- 

8 = Octonions O (basis = {1,i,j,k,I,J,K,E}) = half-spinors of Cl(8)

WHICH CORRESPOND TO 
Chen-Engel-Glotzer (arXiv 1001.0586 ) DIMER PAIRS OF TETRAHEDRA 

-----------------------------------------------

2^(8/2) = 2^4 = 16 = full spinors of Cl(8) = vectors of Cl(16) 

-----------------------------------------------

2^(16/2) = 2^8 = 256 = 4 x 64 = full spinors of Cl(16) 

These are the basis of the unconventional generalization of 
the Hyperfinite II1 von Neumann Factor 
that I use for Algebraic Quantum Field Theory (AQFT)
-----------------------------------------------
2^(256/2) = 2^128 = 3.4 x 10^38 = full spinors of Cl(256)
Such a large number as 2^128 is useful in describing 
the inflationary expansion of our universe 
and the production of the large number of particles that it contains. 



The 4-tetrahedra 2-dimer  corresponding to Cl(8) 
has 16 vertices in each basic cell. It takes 16 of those cells to get enough vertices to 
represent the 256 = 16x16 elements of Cl(8): 

The 8-tetrahedra 4-dimer corresponding to C(8)xCl(8) = Cl(16) 
has 32 vertices in each basic cell. It takes 2048 of those cells to get enough vertices 
to represent the 65536 = 32x2048 = 256x256 elements of Cl(16): 

 x  =   ... 2048 cells 
The 8x2048 = 16384 tetrahedra whose 65536 vertices represent Cl(16) form a 
dense ( 85.63 % ) packing of flat 3-dim space. 

A much less dense diamond lattice   in flat 3-dim space can be 
formed from Pearce clusters. Combining Pearce structures with four 57-groups 

gives a 240-polytope made up of two 600-cells that describe the E8 Lie algebra 
which has 248 elements, 240 of which are root vectors. 

What part of the very dense 65536-dim Cl(16) 
forms the very thin diamond lattice with 248-dim E8 
whose symmetry describes a realistic physics model? 



As shown by graded structure, 248-dim E8 is made up of 
the bivector 120 of Cl(16) 

plus 
a 128 Cl(16) half-spinor 8x8 = 64 + 8x8 = 64 

so that only 120+128 = 248 of the 65536 elements of Cl(16) are used for E8. 



In fact, 120+128 = 248-dim E8 can fit inside only one copy of 256-dim Cl(8) 

where the 1 scalar, 6 of 70 middle elements, and 1 pseudoscalar are not used 
and where the physical interpretation of the structure is naturally realistic 
(E8 fermions in Cl(8) odd part, E8 bosons + spacetime in Cl(8) even part). 

The E8 grading      8  28  56  64  56  28   8   can be seen as 

63
8  28  56      1    56  28   8

which as shown by 
Rutwig Campoamor-Stursberg in Acta Physica Polonica B 41 (2010) 53-77
can be contracted to SL(8) + H92 
where 

SL(8) = 63 of 64 = 8x8 Position/Momentum combinations of 8-dim spacetime 

H92 = Heisenberg Algebra with 
gauge boson creation/annihilation operators in the even part 28 + 1 + 28 

and 
fermion creation/annihilation operators in the odd part 8+56 + 56+8

From the Clifford Algebra point of view:

The loose E8 structure sits inside less than 1 / 256 
of the dense packing of 256x256 = 65536-element Cl(16). 

What is the physical interpretation of all that “extra” space ?



Since 4-dim HyperDiamond and 3-dim Diamond and 2-dim Feynman 
Checkerboard and 1-dim Line Segment lattices can be seen as 
sublattices or projections of the 8-dim E8 lattice structure 
 [ Note - Quasicrystals in 4 and 3 and 2 and 1 dimension can be seen as 
irrational slices through the 8-dim E8 lattice structure, 
especially by slicing by the most irrational number, the Golden Ratio, 
thus producing Fibonacci Quasicrystal structure ] 
 

the physical interpretation of the vast “extra” space 
covered by dense Large N 4N Tetra Packing 

but not covered by loose Diamond Lattice Structure 
will be discussed here in terms of E8 Lattice Structure.

Although the 240 root vectors of E8 symmetry are often shown with 30-fold 
symmetry as in the left image below from Bathsheba Grossman’s web site 

E8 can also be seen to have 12-fold (center) and 10-fold (right) symmetries as can 
be seen by rotating Bathsheba Grossman’s 3-dim glass E8 sculptures. 

Such 12-fold symmetry is also characteristic of Tetra/Quasicrystal Packing as 
discussed by Haji-Akbari1, Engel, Keys, Zheng, Petschek, Palffy-Muhoray, and 
Glotzer in arXiv 1012.5138 where they describe “... A quasicrystal with packing 
fraction φ = 0.8324 obtained by first equilibrating an initially disordered fluid of 
13824 hard tetrahedra using Monte Carlo simulation and subsequent numerical 
compression ...” and say “... The images show ... opaque and translucent views of 
two rotated narrow slices (c)-(d). The white overlay in (d) shows the distinctive 
twelve-fold symmetry of the dodecagonal quasicrystal. ...



... Corrugated layers with normals along z are apparent in (c). The colouring of 
tetrahedra is based on orientation. ... By compressing a crystalline approximant of 
the quasicrystal, the highest packing fraction we obtain is φ = 0.8503. ...
Aside from studies of packing, 
hard tetrahedra have been used to model the structure of water. ...”. 

Just as water is the medium in which the structures of life live in Earth’s oceans, 
the dense tetrahedra of the Large N 4N Tetra Packing 

are the active vacuum/medium 
necessary for 

Quantum Phenomena in the thin Lattice of E8 HyperDiamond Physics. 

As Schroer said in hep-th/9908021, in any interacting system "... any compactly 
localized operator applied to the vacuum generates clouds of pairs of particle/
antiparticles ...". 

The source of those clouds of pairs of particle/antiparticles is the active 
vacuum/medium of the dense Large N 4N Tetra Packing in which lives the 

thin Lattice of E8 HyperDiamond Physics. 



Earth as a 57-group
Frank Dodd (Tony) Smith, Jr. - 2011

If you think of the chosen icosahedron as Africa, Europe, and West Asia (including 
India) and the opposite 3 pentagonal 5-groups as the Pacific Ocean and
the 15 exterior faces of the 18-cycle as North and South America, Antarctica, 
Australia, Indonesia, Vietnam, China, Korea, Japan and Siberia
then
you see that the Earth has the structure of the 57-group with Africa-Europe-West 
Asia as the Icosahedron chosen from the 4 icosahedra.





To describe tetrahedral packing gaps of the 57-group in detail, 
use dodecahedra at each unsplit vertex where 20 tetrahedra come together (using 
partial dodecahedra at relatively outer vertices) at each of the 26 vertices of the 57-
group and then distort the dodecahedra to account for the gaps of 3-dim flat space.

For the case of a pentagonal 5-group the gaps are pairs of vertices
instead of dodecahedra, and since pairs of points determine lines,
you can compare the lengths of the 5 gap lines of the 5-group.

A simple comparison would be between the cases:
4 of the gap lines zero, all of the gap into one gap line and
all 5 gap lines of equal length, the gap spread evenly.

Then you can calculate the total gap volume, and
since the 5 tetrahedra all have the same volume,
the total volume of the 5-group is 5 x tetrahedron volume plus total gap volume.

The configuration with the smallest total gap volume should be the most dense.

As the following image of diagrams and calculations shows the most dense 
configuration is with all the gap into one gap line.

Note that the diagram text mentions volume calculation, 
when I actually only calculated the area of a cross-section of the volume,
but the relative comparison result may still be the same.

As Fang said “... the gap volume for the five-group case ...[is]... (if we assume the 
tetrahedral edge length is 1) 
1/8 Sin[2Pi-5ArcCos[1/3]] = 11 Sqrt[2]/972, 
thus the ratio 
to the tetrahedral volume (Sqrt[2]/12) is 11:81.





The most interesting dynamic structure is of the 57-group, rather than smaller or 
larger clusters and the key to 57-group dynamic structure is its 18-tetrahedron ring 
structure 

with 3 groups of 5 tetrahedra that fit exactly face-to-face connected by 3 junction 
tetrahedra that contain the gap angles.

Consider these clusters of tetrahdedra:

pentagonal 5-group - maximal density if gap-angle concentrated in one gap
(see calculations above)



icosahedron 20-group - maximal density may be if gap concentrated at one vertex 
(with some other vertices necessarily having partial gaps)
(I have not yet done the calculations)

57-group - 4 icosahedra interpenetrating each other -
maximal density might NOT be with all 4 icosahedra in the icosahedral maximal 
density state, because the 4 icosahedra interpenetrate and it may be that putting one 
icosahedron in maximal state might block others from being put in maximal state.
Also, the 57-group has 4 ring structures of 18 tetrahedra,
one for each of the 4 interpenetrating icosahedra,
so that gaps in the rings should be taken into account.
In short,
the 57-group has more interesting internal structure than either the smaller groups 
within it or the larger groups beyond it.



Pearce 81-group - 4 icosahedra plus 1 center tetrahedron each of whose faces are 
shared with 1 face of 1 of the 4 icosahedra - maximal density may be each of the 4 
icosahedra in the icosahedral maximal density state

Diamond lattice network basis cluster of 4 Pearce 81-groups - maximal density 
may be each of the 4 icosahedra in the icosahedral maximal volume state.

Note that the 600-cell structure with 120 vertices contains two 57-groups as its 
dynamic keystones 

as described on pages 26-28 of my 150 page paper at 
http://tony5m17h.net/TetraJJDECF.pdf
and 



the 240 Polytope with 240 vertices and 600+600 = 1200 cells 
contains four 57-groups as its dynamic keystones 

as described on page 33 of my 150 page paper at 
http://www.valdostamuseum.org/hamsmith/TetraJJDECF.pdf

Note that setting a 57-group as a dynamic keystone chooses one of the four 
icosahedra, so all four dynamic keystone 57-groups are needed to produce 
four 18-tetrahedra rings corresponding to the four axes of the Fuller Vector 
Equilibrium 

  
cuboctahedron and therefore (since the cuboctahedron can be seen as a central 
figure in the 4-dim 24-cell that is a discrete version of the 3-sphere) to circulation 
around the 4 axes (t,x,y,z) of spacetime. 




