An Important Application of the Computation of the Distances between Remarkable Points in the Triangle Geometry

Prof. Ion Pătraşcu, The Frații Buzeşti College, Craiova, Romania Prof. Florentin Smarandache, University of New Mexico, U.S.A.

In this article we'll prove through computation the Feuerbach's theorem relative to the tangent to the nine points circle, the inscribed circle, and the ex-inscribed circles of a given triangle.

Let $A B C$ a given random triangle in which we denote with O the center of the circumscribed circle, with I the center of the inscribed circle, with H the orthocenter, with I_{a} the center of the A ex-inscribed circle, with O_{9} the center of the nine points circle, with $p=\frac{a+b+c}{2}$ the semi-perimeter, with R the radius of the circumscribed circle, with r the radius of the inscribed circle, and with r_{a} the radius of the A ex-inscribed circle.

Proposition

In a triangle $A B C$ are true the following relations:

$$
\begin{array}{lll}
\text { (i) } & O I^{2}=R^{2}-2 R r & \text { Euler's relation } \tag{i}\\
\text { (ii) } & O I_{a}^{2}=R^{2}+2 R r_{a} & \text { Feuerbach's relation }
\end{array}
$$

(iii) $O H^{2}=2 r^{2}-2 p^{2}+9 R^{2}+8 R r$
(iv) $\quad I H^{2}=3 r^{2}-p^{2}+4 R^{2}+4 R r$
(v) $\quad I_{a} H^{2}=r^{2}-p^{2}+2 r_{a}^{2}+4 R^{2}+4 R r$

Proof

(i) The positional vector of the center I of the inscribed circle of the given triangle $A B C$ is

$$
\overrightarrow{P I}=\frac{1}{2 p}(a \overrightarrow{P A}+b \overrightarrow{P B}+c \overrightarrow{P C})
$$

For any point P in the plane of the triangle $A B C$.
We have

$$
\overrightarrow{O I}=\frac{1}{2 p}(a \overrightarrow{O A}+b \overrightarrow{O B}+c \overrightarrow{O C})
$$

We compute $\overrightarrow{O I} \times \overrightarrow{O I}$, and we obtain:

$$
O I^{2}=\frac{1}{4 p^{2}}\left(a^{2} O A^{2}+b^{2} O B^{2}+c^{2} O C^{2}+2 a b \overrightarrow{O A} \times \overrightarrow{O B}+2 b c \overrightarrow{O B} \times \overrightarrow{O C}+2 c a \overrightarrow{O C} \times \overrightarrow{O A}\right)
$$

From the cosin's theorem applied in the triangle $O B C$ we get

$$
\overrightarrow{O B} \times \overrightarrow{O C}=R^{2}-\frac{a^{2}}{2}
$$

and the similar relations, which substituted in the relation for $O I^{2}$ we find

$$
O I^{2}=\frac{1}{4 p^{2}}\left(R^{2} \cdot 4 p^{2}-a b c \cdot 2 p\right)
$$

Because $a b c=4 R s$ and $s=p r$ it results (i)
(ii) The position vector of the center I_{a} of the A ex-inscribed circle is give by:

$$
\overrightarrow{P I_{a}}=\frac{1}{2(p-a)}(-a \overrightarrow{P A}+b \overrightarrow{P B}+c \overrightarrow{P C})
$$

We have:

$$
\overrightarrow{O I_{a}}=\frac{1}{2(p-a)}(-a \overrightarrow{O A}+b \overrightarrow{O B}+c \overrightarrow{O C})
$$

Computing $\overrightarrow{\mathrm{OI}_{a}} \cdot \overrightarrow{\mathrm{OI}_{a}}$ we obtain
$\overrightarrow{O I}_{a}^{2}=R^{2} \cdot \frac{a^{2}+b^{2}+c^{2}}{2(p-a)^{2}}-\frac{a b}{2(p-a)^{2}} \overrightarrow{O A} \times \overrightarrow{O B}+\frac{b c}{2(p-a)^{2}} \overrightarrow{O B} \times \overrightarrow{O C}-\frac{a c}{2(p-a)^{2}} \overrightarrow{O A} \times \overrightarrow{O C}$
Because $\overrightarrow{O B} \times \overrightarrow{O C}=R^{2}-\frac{a^{2}}{2}$ and $s=r_{a}(p-a)$, executing a simple computation we obtain the Feuerbach's relation.
(iii) In a triangle it is true the following relation

$$
\overrightarrow{O H}=\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}
$$

This is the Sylvester's relation.
We evaluate $\overrightarrow{O H} \times \overrightarrow{O H}$ and we obtain:

$$
O H^{2}=9 R^{2}-\left(a^{2}+b^{2}+c^{2}\right)
$$

We'll prove that in a triangle we have:

$$
a b+b c+c a=p^{2}+r^{2}+4 R r
$$

and

$$
a^{2}+b^{2}+c^{2}=2 p^{2}-2 r^{2}-8 R r
$$

We obtain

$$
\frac{s^{2}}{p}=(p-a)(p-b)(p-c)=-p^{3}+p(a b+b c+c a)-a b c
$$

Therefore

$$
\frac{s^{2}}{p^{2}}=-p^{2}+a b+b c+c a-\frac{4 R s}{p}
$$

We find that

$$
a b+b c+c a=p^{2}+r^{2}+4 R r
$$

Because

$$
a^{2}+b^{2}+c^{2}=(a+b+c)^{2}-2(a b+b c+c a)
$$

it results that

$$
a^{2}+b^{2}+c^{2}=2 p^{2}-2 r^{2}-8 R r
$$

which leads to (iii).
(iv) In the triangle $A B C$ we have

$$
\overrightarrow{I H}=\overrightarrow{O H}-\overrightarrow{O I}
$$

We compute $I H^{2}$, and we obtain:

$$
\begin{aligned}
& I H^{2}=O H^{2}+O I^{2}-2 \overrightarrow{O H} \cdot \overrightarrow{O I} \\
& \overrightarrow{O H} \times \overrightarrow{O I}=(\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}) \cdot \frac{1}{2 p}(a \overrightarrow{O A}+b \overrightarrow{O B}+c \overrightarrow{O C}) \\
& \overrightarrow{O H} \times \overrightarrow{O I}=\frac{1}{2 p}\left[R^{2}(a+b+c)+(a+b) \times \overrightarrow{O A} \times \overrightarrow{O B}+(b+c) \times \overrightarrow{O B} \times \overrightarrow{O C}+(c+a) \times \overrightarrow{O C} \times \overrightarrow{O A}\right]= \\
& =3 R^{2}-\frac{a^{3}+b^{3}+c^{3}}{2(a+b+c)}-\frac{a^{2}+b^{2}+c^{2}}{2} . \\
& I H^{2}=4 R^{2}-2 R r-\frac{a^{3}+b^{3}+c^{3}}{a+b+c}
\end{aligned}
$$

To express $a^{3}+b^{3}+c^{3}$ in function of p, r, R we'll use the identity:

$$
a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right) .
$$

and we obtain

$$
a^{3}+b^{3}+c^{3}=2 p\left(p^{2}-3 r^{2}-6 R r\right)
$$

Substituting in the expression of $I H^{2}$, we'll obtain the relation (iv)
(v) We have

$$
\overrightarrow{H I_{a}}=\frac{1}{2(p-a)}(-a \overrightarrow{H A}+b \overrightarrow{H B}+c \overrightarrow{H C})
$$

We'll compute $\overrightarrow{H I}_{a} \times \overrightarrow{H I}_{a}$

$$
H I_{a}^{2}=\frac{1}{4(p-a)^{2}}\left(a^{2} H A^{2}+b^{2} H B^{2}+c^{2} H C^{2}-2 a b \overrightarrow{H A} \times \overrightarrow{H B}-2 a c \overrightarrow{H A} \times \overrightarrow{H C}+2 b c \overrightarrow{H B} \times \overrightarrow{H C}\right)
$$

If A_{1} is the middle point of $(B C)$ it is known that $\overrightarrow{A H}=2 \overrightarrow{O A_{1}}$, therefore

$$
A H^{2}=4 R^{2}-a^{2}
$$

also,

$$
\overrightarrow{H A} \times \overrightarrow{H B}=(\overrightarrow{O B}+\overrightarrow{O C})(\overrightarrow{O C}+\overrightarrow{O A})
$$

We obtain:

$$
\overrightarrow{H A} \times \overrightarrow{H B}=4 R^{2}-\frac{1}{2}\left(a^{2}+b^{2}+c^{2}\right)
$$

Therefore

$$
a^{2}+b^{2}+c^{2}=2\left(p^{2}-r^{2}-4 R r\right)
$$

It results

$$
\overrightarrow{H A} \times \overrightarrow{H B}=r^{2}-p^{2}+4 R^{2}+4 R r
$$

Similarly,

$$
\overrightarrow{H B} \times \overrightarrow{H C}=\overrightarrow{H C} \times \overrightarrow{H A}=r^{2}-p^{2}+4 R^{2}+4 R r
$$

$$
H I_{a}^{2}=\frac{1}{4(p-a)^{2}}\left[4 R^{2}\left(a^{2}+b^{2}+c^{2}\right)-\left(a^{4}+b^{4}+c^{4}\right)+\left(r^{2}-p^{2}+4 R^{2}+4 R r\right)(2 b c-2 a b-2 a c)\right]
$$

Because $b+c-a=2(p-a)$, it results

$$
\begin{aligned}
& 2 b c-2 a b-2 a c=4(p-a)^{2}-\left(a^{2}+b^{2}+c^{2}\right) \\
H I_{a}{ }^{2}= & \frac{1}{4(p-a)^{2}}\left[\left(a^{2}+b^{2}+c^{2}\right)\left(p^{2}-r^{2}-4 R r\right)+4(p-a)^{2}\left(r^{2}-p^{2}+4 R^{2}+4 R r\right)-\left(a^{4}+b^{4}+c^{4}\right)\right]
\end{aligned}
$$

It is known that

$$
16 s^{2}=2 a^{2} b^{2}+2 b^{2} c^{2}+2 c^{2} a^{2}-a^{4}-b^{4}-c^{4}
$$

From which we find

$$
a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}=(a b+b c+c a)^{2}-2 a b c(a+b+c)=\left(r^{2}+p^{2}+4 R r\right)^{2}-4 p a b c
$$

Substituting, and after several computations we obtain (v).

Theorem (K. Feuerbach)

In a given triangle the circle of the nine points is tangent to the inscribed circle and to the ex-inscribed circles of the triangle.

Proof

We apply the median's theorem in the triangle $O I H$ and we obtain

$$
4 I O_{9}^{2}=2\left(O I^{2}+I H^{2}\right)-O H^{2}
$$

We substitute $O I^{2}, I H^{2}, O H^{2}$ with the obtained formulae in function of r, R, p and after several simple computations we'll obtain

$$
I O_{9}=\frac{R}{2}-r
$$

This relation shows that the circle of the nine points (which has the radius $\frac{R}{2}$) is tangent to inscribed circle.

We apply the median's theorem for the triangle $O I_{a} H$, and we obtain

$$
4 I_{a} O_{9}^{2}=2\left(O I_{a}{ }^{2}+I_{a} H^{2}\right)-O H^{2}
$$

We substitute $\mathrm{OI}_{a}, \mathrm{I}_{a} \mathrm{H}, \mathrm{OH}$ and we'll obtain

$$
I_{a} O_{9}=\frac{R}{2}+r_{a}
$$

This relation shows that the circle of the nine points and the A-ex-inscribed circle are tangent in exterior.

Note

In an article published in the Gazeta Matematică, no. 4, from 1982, the late Romanian Professor Laurențiu Panaitopol asked for the finding of the strongest inequality of the type $k R^{2}+h r^{2} \geq a^{2}+b^{2}+c^{2}$ and proves that this inequality is

$$
8 R^{2}+4 r^{2} \geq a^{2}+b^{2}+c^{2}
$$

Taking into consideration that

$$
I H^{2}=4 R^{2}+2 r^{2}-\frac{a^{2}+b^{2}+c^{2}}{2}
$$

and that $I H^{2} \geq 0$ we re-find this inequality and its geometrical interpretation.

References

[1] Claudiu Coandă, Geometrie analitică în coordonate baricentrice, Editura Reprograf, Craiova, 1997.
[2] Dan Sachelarie, Geometria triunghiului, Anul 2000, Editura Matrix Rom, Bucureşti, 2000.

