
TRIANGLE-PARTITIONING EDGES OF PLANAR GRAPHS,
TOROIDAL GRAPHS AND k-PLANAR GRAPHS

Jiawei Gao1, Ton Kloks, and Sheung-Hung Poon2

1 Software School, Fudan University, 220 Handan Rd., Shanghai, China
gaojw76@gmail.com

2 Department of Computer Science & Institute of Information Systems and Applications
National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Rd., Hsinchu, Taiwan

spoon@cs.nthu.edu.tw

Abstract. We show that there is a linear-time algorithm to partition the
edges of a planar graph into triangles. We show that the problem is also
polynomial for toroidal graphs but NP-complete for k-planar graphs, where
k > 8.

1 Introduction

To partition the edges into a minimal number of cliques, and to cover them with
a minimal number of cliques, are problems that receive a lot of attention lately.
Both problems are NP-complete. Covering the edges with a minimal number of
cliques remains NP-complete for planar graphs and for graphs with maximal de-
gree at most six [6, 13]. The problem is polynomial for graphs with maximal
degree at most five. Also for linegraphs the problem can be solved in polyno-
mial time [20, 21]. Approximating the minimum number of cliques to cover the
edges within a constant factor smaller than two remains NP-complete [15]. Ap-
proximations with polynomial factors are obtained eg in [2]. A result of Gyárfás
implies that the problem of covering the edges with k cliques can be reduced
to a kernel with O(2k) vertices [10, 11]. Recently, it was shown that, under as-
sumption of the exponential time hypothesis, there is no polynomial algorithm
which reduces the problem to a kernel of size O(2o(k)) [7]. This contrasts the
problem of partitioning the edges into cliques. A result of De Bruijn and Erdös
implies that there are only two ways to partition the edges of a clique [5]. Ac-
tually, the only clique that has a nontrivial partition of the edges into triangles
is K7. Mujuni and Rosamond exploit this fact to derive a fixed-parameter algo-
rithm which reduces the problem to partition the edges into cliques to a kernel
of size O(k2). Fleischer and Wu obtain linear kernels for K4-free graphs and for
planar graphs [8]. Partitioning the edges of a graph into |E|/3 triangles remains
NP-complete for K4-free graphs [12, 22].

In this paper, we show that the problem can be solved in linear time for
planar graphs. Considering that the triangle covering problem for planar graphs
is NP-complete, this is a very surprising result. Moreover, we also show that the
problem for toroidal graphs can be solved in polynomial time. However, we find

that the problem is NP-complete for k-planar graphs, which are super classes of
planar graphs.

2 Partitioning planar graphs

We say that a graph has a partition if its edges can be partitioned into triangles.
We assume that the planar graph G is given together with a plane embedding,
i.e., G is a plane graph. In this section, our goal is to show the following theorem.

Theorem 1. There is a linear time algorithm to partition the edges of a planar
graph into triangles.

First, we need the following definitions.

Definition 1. Let G be a plane graph. Let T be a triangle in G. The triangle divides
the plane into two open regions. We refer to the two regions as the inside and outside
of T . If both regions contains vertices of the graph G− T then T is separating.

Definition 2. Let T be a separating triangle and let v ∈ T . The inside degree of
v, denoted as d̃(v), is the number of edges that contain v and of which the other
endpoint is inside T . A separating triangle is even if the inside degrees of its three
vertices are all even.

Definition 3. A separating triangle is outermost if it has no vertices inside any
other separating triangle.

2.1 The dual graph

Let H be the dual of plane graph G. First the following observation is obvious.

Lemma 1. When G has a partition then every edge is contained in a triangle.
Furthermore, if an edge of G is contained in only one triangle, say with edges e1,
e2 and e3, then G has a partition if and only if G− {e1, e2, e3} has a partition.

Disconnnected components of a graph can be edge-partitioned separately. A
connected graph can be divided into several biconnected components, each of
which again can be handled separately. Thus we may assume from now on that
G is biconnected. Furthermore, by Lemma 1, we may also assume that G has no
vertices of degree two.

Lemma 2. If G has a partition, then H is bipartite.

Proof. Assume that G has a partition. Let C be a cycle in H. There is a one-to-one
correspondence between the edges of G and H. The edges of C correspond with
a cut set in G. Every triangle of the triangle partition has either all vertices on
one side of the cut or it has two vertices on one side, and one vertex on the
other side. Thus the cut has an even number of edges. This proves that every
cycle of H is even, and so H is a bipartite multigraph. It is easy to check that H
has no loops or multiple edges, since G has a partition and no vertices of degree
two. ⊓⊔

2

2.2 Triangle partitioning algorithm

A graph with some odd-degree vertex does not have a triangle partition. By
Lemma 2, we also see that a plane graph with non-bipartite dual does not have
a triangle partition. Thus from now on, we assume that the given plane graph G

satisfying the following conditions:

1. G is biconnected,
2. the dual H of G is bipartite,
3. every vertex in G has even degree at least four, and
4. every edge of G is in at least two triangles.

We consider two cases, namely, the graph G has separating triangles or not
in the following subsections.

Graphs without separating triangles. First, we consider the case where G has
no separating triangle. That is, every triangle is a face. Since every edge is in two
faces, it follows that every edge is in exactly two facial triangles and that every
face is a triangle.

Lemma 3. Assume that G has no separating triangle. Then G has a partition if
and only if every vertex of one color class H1 of the dual H has degree three.

Proof. Assume that all vertices in one color class H1 of H have degree three.
Since H is bipartite, H1 forms a vertex cover of H. All dual faces of vertices in
H1 are triangles and so each vertex of H represents one triangle of G. Therefore,
the color class H1 of H forms a partition of the edges of G into triangles.

Assume that G has a partition. The faces of the triangles in the partition are
vertices of H of degree three. Between any two of them, the distance is even,
and so they form a color class of H. ⊓⊔

Graphs with separating triangles. Consider a partition P of the edges of G

into triangles. We distinguish three types of separating triangles.

Definition 4. A separating triangle S = {x,y, z} is one of the following three types.

Type 1: Either S ∈ P or the three edges {x,y}, {x, z} and {y, z} are in triangles of P
with the third vertex inside S.

Type 2: The three edges {x,y}, {x, z} and {y, z} are in triangles of P of which the
third vertex is outside S.

Type 3: Some of the edges of {x,y}, {x, z} and {y, z} are in triangles of P with the
third vertex inside S and some of them are in triangles with the third vertex
outside S.

The following lemma shows that a separating triangle of Type 3 cannot be a
single triangle in any partition.

Lemma 4. If a separating triangle S is even, then it is of Type 1 or 2 in any parti-
tion. If S is not even, it is of Type 3 in any partition.

3

Proof. Let P be a partition and let S = {x,y, z} be a separating triangle. Consider
the graph G′ induced by the vertices inside S, including S. First assume that
S ∈ P. Then S is even, otherwise there is no partition of the edges in G′.

Assume that S /∈ P. Assume that {x,y} is in a triangle of P with the third
vertex outside S. Assume that the other two edges of S are in triangles of P with
the third vertex inside S. Thus S is of Type 3. Remove the edge {x,y} from the
graph G′. There is a partition of the edges of G′ − {x,y} which implies that the
degree of x and y is even. Then S is not even in G, a contradiction.

The other cases are similar. This proves that S is even if and only if S is of
Type 1 or Type 2 with respect to P. ⊓⊔

We suppose that all even separating triangles have been identified. (In later
subsection 2.3, we in fact design a linear-time algorithm to compute them.) Our
main algorithm traverses G starting from its outer boundary, and search for all
outermost even separating triangles. Our search stops at those outermost even
separating triangles when they are reached. Thus the interior of any outermost
even separating triangle is considered as being removed since our algorithm
does not go into it at the current step. The interior subgraph of each outermost,
even, separating, triangle will be dealt with in a later recursive step.

Removing the interiors of even, separating triangles, turns these outmost
even separating triangles into triangular faces. Let’s denote this new graph as
G′. Then G′ has no more even separating triangles. We call a face of G′, which
corresponds to an outermost even separating triangle in G, a region.

Remark 1. Lemma 4 generalizes to the regions and faces of G′. Any even region
or face is one two types.

Type 1: The region or face is a triangle in the partition P of G′.
Type 2: All the edges of the boundary are in triangles of P with the third vertex

outside the region.

Notice that even, separating triangles in G that are of Type 1 correspond to
regions of G′ that are Type 1. Similarly, even, separating triangles in G of Type 2
correspond to regions in G′ of Type 2. Of course, faces of G′ that are not triangles
are automatically Type 2. In the next lemma, we show that the two color classes
of the dual of G′ correspond with the two types.

Lemma 5. Assume that G′ has a partition and let H′ be its dual. Let H1 and H2 be
the two color classes of H′. Then all the vertices of H1 are of one of the two Types 1
or 2 and all the vertices of H2 are of the opposite type.

Proof. Notice that the vertices of H′ along any path alternate between the two
types and, since H′ is connected, this proves the theorem. ⊓⊔

We use Lemma 5 to partition G ′, and we can see that there are at most
two ways to partition G ′. Then when we proceed to process a recursive step for
a subgraph inside an outmost even separating triangle S of G, if triangle S is

4

labeled Type 1 in G ′, then the related subgraph inside S to be processed in this
recursive step includes S; if triangle S is labeled Type 2, the interior subgraph
of S to be processed does not include S. Since all recursive steps are processed
on separate subgraphs of G, it is clear that the whole recursive procedure runs
in linear time. Thus the last remaining task for us is to find all even separating
triangles of G in linear time, which will be done in next subsection.

2.3 Finding even separating triangles

Definition 5. Let G = (V,E) be a plane graph. A level decomposition partitions
the vertices into levels L1,L2, . . . defined as follows.

(a) L1 is the outerface of G and,
(b) for i > 1, Li is the outerface of

G−

i−1∪
j=1

Lj.

Given a plane graph G, a level decomposition can be obtained in linear
time [17] (see also [3, 18]). Notice that any consecutive sequence of k levels
induces a k-outerplanar graph. It is well-known that k-outerplanar graphs have
treewidth at most 3k+ 1 (see eg [4]) and therefore they have O(k3n) triangles.
Each level induces an outerplanar graph. A graph is outerplanar if and only if
each biconnected component is a tree of cycles, that is, neighboring cycles in the
tree have one edge in common and there are at most two cycles incident with
each edge (see eg [14]). Next, we show how to find all even separating triangles
of G in linear time.

Lemma 6. All even separating triangles of a plane graph G can be found in linear
time.

Proof. By Lemmas 3 and 5 the bottleneck in the computation is the finding of
the even separating triangles of G. We describe below how all even separating
triangles can be determined in linear time.

Consider a level decomposition. The outerface L1 is outerplanar. Each bicon-
nected component of L1 induces a tree of cycles. Assume there is a cycle in this
tree of cycles which is a triangle T . Assume that L1 ̸= T and that the inside of T
is nonempty. Then T is a separating triangle. Using the clockwise orientation of
each neighborhood we can determine if it is even.

Consider a cycle C of L1. Assume that the inside of C is nonempty. Then it
contains a component of L2. First create a list of triangles that have at least one
vertex of C and at least one vertex of the part of L2 which is inside C. Since this
graph has treewidth at most 7 we can make a list of these triangles in linear
time. Check which triangles are even and have a nonempty interior using the
clockwise orientation of the neighborhoods.

5

When all even, separating triangles are determined that contain at least one
vertex of L1, then the vertices of L1 are deleted, and the algorithm continues
with the remaining graph in a similar manner as described above.

Using some suitable data structures this algorithm can be implemented to
run in linear time. This proves the lemma. ⊓⊔

With the triangle partition algorithm in Section 2.2 and Lemma 6, we thus
have a linear time algorithm to partition the edges of plane graph G into trian-
gles. This completes the proof of Theorem 1.

3 Partitioning toroidal graphs

A graph is toroidal if it can be embedded on the torus. Toroidal graphs [23] gen-
eralize planar graphs in many ways dramatically. For example, cliques with up
to seven vertices are toroidal. By the graph minor theorem toroidal graphs are
characterized by a finite collection of forbidden minors or topological obstruc-
tions. By Kuratowski’s or Wagner’s theorem, for planar graphs this obstruction
set has only two elements. For toroidal graphs these obstructions are still not
completely known. One has identified 16,629 forbidden minors and 239,322
forbidden topological obstruction [9]. For some subclasses the full set is known,
see eg [1, 9].

It is convenient to consider drawings of toroidal maps using a rectangular or
a square piece of paper. Opposite edges of the paper are point-by-point identified
(in the same direction); an edge of the graph which runs out on the right edge
of the square, comes back in on the left edge of the square, and similarly edges
wrap around on the top- and bottom-edge of the square. As an example one
may have a look at the embedding of K7 on a torus, ie, a representation of
Császár’s, or Szilassi’s polyhedron. Let G be a toroidal embedding of a graph.
We distinguish the following types of cycles in G.

Contractible cycles These are the boundaries of areas homeomorphic to open
discs, or faces.

Noncontractible and nonseparating cycles Consider the drawing of the graph
on a square piece of paper. These cycles consist of a path connecting the top-
and bottom-edge (with identified edges), or the left- and right-edge (with
identified edges). The removal of these cycles reduces the graph to a planar
graph, drawn on a cylinder.

Noncontractable, separating cycles These are the cycles whose removal sepa-
rate the graph into an inside component and an outside component, just as
in the planar case.

Lemma 7. Let G be a toroidal embedding of a graph. Assume that G has a parti-
tion P. Assume that all triangles are contractible. Then the dual is bipartite. Fur-
thermore, the triangles of P consist of one color class of the dual.

6

Proof. All triangles of G are faces. Since every edge is in exactly one triangle,
any path in the dual alternates between faces that are in P and faces that are
not in P. Thus all cycles of the dual are even. Furthermore, every path between
two faces of P has even length, so P consists of exactly the faces of one color
class of the dual. ⊓⊔

Consider representation of G on a rectangular planar region. Consider a left
to right ordering of the nonseparating triangles that wrap around the top- and
bottom-end of the region. Let T1 and T2 be two triangles with T1 left of T2 in
this order. Possibly T1 and T2 have some vertices in common, but we assume that
T1 ̸= T2. The piece G(T1, T2) consists of the vertices and edges that are in the
region between T1 and T2.

Definition 6. Consider a piece G(T1, T2). A bridge is either an edge or a path of
length two between two vertices, on in T1 \ T2 and the other in T2 \ T1, which wraps
around the right- and left edge of the plane region.

Consider two vertices x ∈ T1 \ T2 and y ∈ T2 \ T1. Assume that x and y are
adjacent such that the edge {x,y} is embedded in G(T1, T2). A bridge between
x and y of length two, together with the edge {x,y} creates a nonseparating
triangle. Similarly, a path of length two from x to y embedded in the piece
G(T1, T2) together with a bridge which is an edge, is a nonseparating triangle.

Theorem 2. There exists a polynomial-time algorithm which checks if the edges of
a toroidal graph can be partitioned into triangles.

Proof (Sketch). Separating triangles are treated in exactly the same manner as
in the planar case or, alternatively, via dynamic programming using Tarjan’s de-
composition tree [24]. Tarjan describes an O(nm) algorithm to find a binary
decomposition tree which decomposes a graph using clique separators. Using
dynamic programming on this decomposition tree we can obtain, for each even
separating triangle T , a table with boolean entries which tells us whether the
graph GT induced by the triangle and the inside has a partition P with

(a) T ∈ P, and
(b) all the edges of T are in triangles of P with some vertex outside T .

The algorithm determines the feasible partitions of pieces G(T1, T2) by dy-
namic programming. For each Ti it has a boolean value which indicates if there
is a partition with Ti as a triangle, and for each edge in Ti whether there is a par-
tition with the edge in a triangle with a third vertex inside the piece or outside
the piece.

Consider a piece G(T1, T2). The table also needs to keep track of the triangles
in partitions that use some vertex of T1 and some vertex of T2 are a bridge. For
any two vertices x ∈ T1 \ T2 and y ∈ T2 \ T1, for which there is a triangle which
uses a bridge, there are at most n such triangles. Furthermore, at most one of
them can be an element of a partition. The algorithm builds a table which lists
all partitions of the edges of the piece into triangles. For each pair of vertices x

7

and y an entry of the table contains the information whether a triangle is used
in the partition that uses a bridge of length one or two from x to y. Triangles
that use bridges cut the piece into parts.

The pieces are processed as follows. The triangles that use a bridge cut the
piece into smaller strips. Each strip is bounded on the top and bottom by paths
of length one or two. The table for the piece is computed using dynamic pro-
gramming on the strips. For each edge in the border of the strip, the information
is kept whether the border is a triangle in the partition, or which edges are in
triangles with the third vertex inside or outside the piece.

By dynamic programming the algorithm computes a table for all pieces in
order of increasing size. To write down the dynamic programming algorithm is
a standard technique. We omit the cumbersome write-up of all details. ⊓⊔

4 NP-completeness for k-planar graphs

A graph is k-planar if it has an embedding in the plane such that every edge
crosses at most k other edges. Note that 0-planar graphs are simply planar
graphs. In this section, we show that the partition problem for k-planar graphs
is NP-complete for all k > 8.

Theorem 3. The triangle edge partition problem for k-planar graph is NP-complete,
where k = 8.

First we show that the problem is in NP. Suppose we are given a triangle
partition of the edges of the given graph G. We can easily verify that whether
the given partition is a triangle partition of the edges of G.

Next we show that the triangle edge-partition problem is NP-hard for k-
planar graphs. We reduce the planar one-in-three 3SAT problem [16] to this
problem. We reduce from the 3SAT problem. The input instance for the planar
one-in-three 3SAT problem is a set {x1, x2, . . . , xn} of n variables, and a Boolean
formula F = c1 ∧ c2 ∧ . . . ∧ cm of m clauses, where each clause consists of
exactly three literals, such that the variable clause graph of the input instance
is planar. The planar one-in-three 3SAT problem asks for whether there exists
a truth assignment to the variables so that each clause in given formula F has
exactly one true literal and exactly two false literals. In the following, we will de-
scribe the construction of variable gadgets, literal gadgets, and clause gadgets,
respectively, for our polynomial-time reduction. In the construction, we repeat-
edly use the following construction unit, called an ω-tube. An ω-tube of length
ℓ and of width ω is a graph consisting of an integer grid of vertices {(x,y)} with
0 6 x < ℓ and 0 6 y < ω for some positive integers ℓ and ω. The edge set
of the ω-tube is formed by performing the following steps: (Note that the plus
operations relating to y indices here are all modulo ω.)

1. Connect an edge between (x,y) and (x,y+ 1) for 0 6 x < ℓ and 0 6 y < ω;
2. Connect an edge between (x,y) and (x+1,y) for 0 6 x < ℓ−1 and 0 6 y <

ω; and

8

3. Connect an edge between (x,y) and (x + 1,y + 1) for 0 6 x < ℓ − 1 and
0 6 y < ω.

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4)

(1, 0) (1, 1) (1, 2) (1, 3) (1, 4)

(2, 0) (2, 1) (2, 2) (2, 3) (2, 4)

Fig. 1. A variable gadget, which is a 3-
tube.

to variable

gadget

Connects

Connects

to clause

gadget

Fig. 2. A literal gadget, which is a 6-
tube.

See Figure 1 for an example of a 3-tube. The polygons {(0, 0), (0, 1), . . . , (0,ω−
1)} and {(ℓ − 1, 0), (ℓ − 1, 1), . . . , (ℓ − 1,ω − 1)} at the both ends of the ω-tube
are called the end polygons of the tube.

4.1 Variable gadget

A variable gadget is a 3-tube of length N. See Figure 1 as an example. First we
show in the following lemma that a variable gadget has exactly two partitions.

Lemma 8. A variable gadget has exactly two partitions.

Proof. A 3-tube has only 3 types of triangles:

1. α-triangle: {(x,y), (x,y+ 1), (x+ 1,y+ 1)},
2. β-triangle: {(x,y), (x+ 1,y), (x+ 1,y+ 1)}, and
3. γ-triangle: {(x, 0), (x, 1), (x, 2)}.

A triangle partition of a variable gadget must contain at least one α-triangle,
or one β-triangle, because γ-triangles do not contain any ((x,y), (x + 1,y + 1))
edge. If a partition contains an α-triangle, then the partition nearly only contains
α-triangles, except for one end γ-triangle {(0, 0), (0, 1), (0, 2)}. If a partition con-
tains a β-triangle, then the partition nearly only contains β-triangles, except for
one end γ-triangle {(N− 1, 0), (N− 1, 1), (N− 1, 2)}. ⊓⊔

The former partition corresponds to the true value for the variable, and thus
is called the true partition; the latter partition corresponds to the false value for
the variable, and thus is called the false partition.

Later on, if variable v appears as a literal v in clause c, we plan to delete an
α-triangle in the variable gadget of v and a hexagonal hole is thus formed. Such
a hole will identify with an end-hexagon of a literal gadget later on. If variable
v appears as a literal v̄ in clause c, we plan to delete a β-triangle to create a
hexagonal hole to connecting a literal gadget later on.

9

4.2 Literal gadget

A literal gadget is a subgraph that connects a variable gadget to a clause gadget.
We form a literal gadget as a 6-tube of length M. See Figure 2 for an example. It
serves the function of propagating a partition from one of its ends to the other.

Of the two end-hexagons of the literal gadget, one end merges with a hexag-
onal hole of a variable gadget as mentioned previously, the other will connect to
a clause gadget later on. In one partition of the literal gadget, it contains all α-
triangles of the literal gadget; however, in such a so-called partition, the edges of
the clause-end hexagon has not been included in any triangle of this partition.
This corresponds to the false value of this literal, and thus such a partition is
called the false partition of the literal gadget. In the other partition of the literal
gadget, it contains all β-triangles of the literal gadget; however, in such a so-call
partition, the edges of the variable-end hexagon has not been included in any
triangle of this partition. This corresponds to the true value of this literal, and
thus such a partition is called the true partition of the literal gadget.

4.3 Clause gadget

A clause gadget for a clause c is formed by simply identifying the clause-end
hexagons of the three corresponding literal gadgets. See Figure 4.3 for an exam-
ple. Because the clause end-hexagons of the three literal gadgets of clause gadget

Literal 1 Literal 2 Literal 3

Clause gadget

Fig. 3. The structure of a clause gadget.

are identified as one hexagon H, the edges of H lies in the triangle partition of

10

exactly one literal gadget among the three literal gadgets for clause c, but not in
partitions of the other two literal gadgets. This means that one literal gadget has
the true partition and the other two have false partitions. That is to say, exactly
one of the three literals is true and the other two literals are false. Moreover,
if variable v has the true value, the variable gadget is partitioned as the true
partition. For clauses with literal v, the literal gadget is partitioned as the true
partition, and the hexagon of the clause gadget is partitioned in the partition of
the literal gadget of v whereas the variable-end hexagon of this literal gadget is
partitioned in the partition of the variable gadget of v. For clauses with literal
v̄, the literal gadget is partitioned as the false partition, and the clause gadget
hexagon is not partitioned by current literal gadget whereas the variable-end
hexagon of this literal gadget is partitioned in the partition of this literal gadget.
If variable v have the false value, the variable gadget is partitioned as the false
partition. For clauses with literal v̄, the literal gadget is partitioned as the true
partition and the hexagon of the clause gadget is partitioned in the partition of
the literal gadget of v̄ whereas the variable-end hexagon of this literal gadget is
partitioned in the partition of the variable gadget of v. For clauses with v, the
literal gadget is partitioned as the false partition, and the clause gadget hexagon
is not partitioned by current literal gadget whereas the variable-end hexagon of
this literal gadget is partitioned in the partition of this literal gadget. Hence, the
whole constructed graph has a triangle partition if and only if there is a truth
assignment for all variables so that for any clause in formula F, exactly one lit-
eral is true and the other two literals are false. Therefore, the planar 1-in-3 3SAT
problem has a solution if and only if the constructed graph has a triangle par-
tition. This completes our reduction proof. However, we still need to obtain the
constant k for the k-planarity of the constructed graph, which is the following
lemma. Its proof is in the appendix.

Lemma 9. The graph constructed above is 8-planar.

5 Concluding remarks

In our result, we show that the triangle partition problem is linear-time solv-
able for planar graphs, but NP-complete for 8-planar graphs. We leave open
the question whether the triangle partition problem for k-planar graphs, where
1 6 k 6 7, is polynomial-time solvable or NP-complete.

We do not know about many complexity results on clique partitions in toroidal
graphs, let alone for graphs with arbitrary (fixed) genus. Our results indicate
that the partitioning problem can be solved in polynomial time for graphs of
fixed genus. One of the questions that remain open is whether the same holds
for partitions into cliques of arbitrary, bounded size.

References

1. Archdeacon, D., C. Bonnington, N. Dean, N. Hartsfield and K. Scott, Obstruction sets
for outer-cylindrical graphs, Journal of Graph Theory 38, pp. 42–64, 2001.

11

2. Ausiello, G., P. Creszensi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela and M. Pro-
tasi, Complexity and Approximation: Combinatorial optimization problems and their
approximability properties, Springer, 1999.

3. baker, B., Approximation algorithms for NP-complete problems, Journal of the ACM
41, pp. 153–180, 1994.

4. Bodlaender, H., A partial k-arboretum of graphs of bounded treewidth, Theoretical
Computer Science 209, Elsevier, pp. 1–45, 1998.

5. de Bruijn, N. and P. Erdös, On a combinatorial problem, Indagationes Mathematicae
10, pp. 421–423, 1948.

6. Chang, M. and H. Müller, On the tree-degree of graphs, proceedings WG Springer
LNCS 2204, pp. 44–54, 2001.

7. Cygan, M. M. Pilipczuk and M. Pilipczuk, Known algorithms for edge clique cover
are probably optimal. Manuscript ArXiV: 1203.1754v1, 2012.

8. Fleischer, R. and X. Wu, Edge clique partition of K4-free and planar graphs, Proceed-
ings CGGA, Springer LNCS 7033, pp. 84–95, 2011.

9. Gagarin, A., W. Myrvold and J. Chambers, The obstructions for toroidal graphs with
no K3,3’s, Discrete Mathematics 309, Elsevier, pp. 513–520, 2009.

10. Gramm, J., J. Guo, F. Hüffner and R. Niedermeier, Data reduction, exact, and heuris-
tic algorithms for clique cover, Proceedings ALENEX, SIAM, pp. 86–94, 2006.

11. Gyárfás, A., A simple lowerbound on edge clique covering by cliques, Discrete Math-
ematics 85, pp. 103–104, 1990.

12. Holyer, I., The NP-completeness of some edge-partition problems, SIAM J. Comput,
10, pp. 713–717, 1981.

13. Hoover, D., Complexity of graph covering problems for graphs of low degree, JCMCC
11, pp. 187–208, 1992.

14. Kloks, T., Treewidth - Computations and Approximations, Springer, Lecture Notes in
Computer Science 842, 1994.

15. Kou, L., L. Stockmeyer and C. Wong, Covering edges by cliques with regard to key-
word conflicts and intersection graphs, Comm. ACM 21, pp. 135–139, 1978.

16. Laroche, P., Planar 1-in-3 satisfiability is NP-complete, Comptes rendus de l’Acade’mie
des sciences, Se’rie 1, Mathe’matique, pp. vol. 316, no4, pp. 389-392, 1993.

17. Lipton, R. and R. Tarjan, A separator theorem for planar graphs, SIAM Journal on
Applied Mathematics 36, SIAM, pp. 177–189, 1979.

18. Lipton, R. and R. Tarjan, Applications of a planar separator theorem, SIAM Journal
on Computing 9, SIAM, pp. 615–627, 1980.

19. Mujuni, E. and F. Rosamond, Parameterized complexity of the clique partition prob-
lem, Proceedings CATS, Australian Computer Society, 77, pp. 75–78, 2008.

20. Orlin, J., Contentment in graph theory: covering graphs with cliques, Proceedings of
the Nederlandse Academie van Wetenschappen, Amsterdam, Series A 80, pp. 406–424,
1977.

21. Pullman, N., Clique covering of graphs IV. Algorithms, SIAM Journal on Computing
13, pp. 57–75, 1984.

22. Shaohan, M., W. Wallis and W. Lin, The complexity of the clique partition number
problem, Nineteenth Southeastern Conference on Combinatorics, Graph Theory and
Computing, Congr. Numer. 67, pp. 59–66, 1988.

23. Surhone, L., M. Tennoe (ed.) and S. Henssonow (ed.), Toroidal graph, Betascript
Publishing, 2010.

24. Tarjan, R., Decomposition by clique separators, Discrete Mathematics 55 pp. 221–232,
1985.

25. Valiant, L., The complexity of computing the permanent, Theoretical Computer Sci-
ence 8, pp. 189–201, 1979.

12

Appendix

A. Proof of Lemma 9.

Proof. Along either a variable gadget or a clause gadget, the intra-gadget edges
may intersect. Apart from these intersections, intersections between different
gadgets may occur too. Hence, by following the planar structure of variable
clause graph of the planar one-in-three 3SAT instance, we make the clause gad-
gets and the conjunction positions between variable gadgets and literal gadgets
reasonably far apart so that the intersection situation for one of such positions
does not interfere other positions.

First we consider the intersection situation around the clause gadget for a
clause c. We can draw the neighborhood of a clause gadget so that the intersec-
tion structure around this clause gadget only involves the edges incident to the
vertices of the hexagon of the clause gadget. This intersection structure is shown
in Figure 4. In the figure, we can see that the number of intersections for each

Literal 1

Literal 3

Literal 2

Clause

gadget

Fig. 4. The intersection structure around a clause gadget.

edge in this structure is at most 8.
Next we consider the intersection situation around the conjunction position

between a variable gadget and a literal gadget. Again we try to draw the neigh-

13

borhood of such a connecting position so that the intersection structure around
the connecting hexagon only involves the edges incident to the vertices of the
connection hexagon between the variable gadget and the clause gadget. This
intersection structure is shown in Figure 5. In the figure, we can see that the

Literal gadget

Variable gadget

Fig. 5. The intersection structure around the conjunction hexagon of a variable gadget
and a literal gadget.

number of intersections for each edge in this structure is at most 5.
Apart from these two intersection structures, we also need to consider the

intra-gadget intersection structures inside a variable or literal gadget. Along a
variable gadget, at those positions where no connection to literal gadgets occur,
we construct the intersection structure as shown in Figure 6. In the figure, we

Fig. 6. The intra-gadget intersection structure along a variable gadget.

can see that the number of intersections for each edge in this structure is at most
3.

14

Along a literal gadget, at those positions where no connection to variable
gadgets or clause gadgets occur, we construct the intersection structure in the
literal gadget as shown in Figure 7. In the figure, we can see that the number of

Fig. 7. The intra-gadget intersection structure along a literal gadget.

intersections for each edge in this structure is at most 5.
All in all, by combining the above local intersection structures altogether,

we can obtain a drawing for the constructed graph such that each edge can
contains at most 8 intersections. Hence, the constructed graph in our reduction
is 8-planar. ⊓⊔

15

