
The three primary motivations for this new math approach to countability

For hundreds of years, we've accepted the 'uncountability' of the irrational numbers, a proper subset of 
the reals – our common 'everyday' numbers. We've 'proven' this and accepted it as fact.

For math students, you won't find out until graduate school how 'different' the irrationals are from the 
rationals – the concept of Lebesgue measure is encountered in advanced undergraduate math courses 
for the first time (again, considering math students).

Math is the most precise science. We speak in precise terms, we define things precisely, and we state 
the exact conditions when a theorem is applicable. It's the reason why all other sciences use math. In a 
very real sense, using math automatically gives 'credibility' to ideas. (Abuses of this relationship 
abound with cranks/crackpots and frauds.)

To make the 'uncountable' countable, make this 'new' knowledge more accessible to younger students 
thereby encouraging young scientists and engineers to understand our common everyday numbers 
more deeply (and thereby encouraging more and better scientists and engineers), and make the 
unsatisfactory imprecision of 'uncountability' precise, we propose the following concepts.

Let's attempt to appropriately modify the notion of infinite countability. We can label infinite  
countability any way we want.. You can call it IC or modify the symbol for infinity, ∞. It almost doesn't 
matter what you label it as long as you're consistent and explicit about what it means. Let's go with ∞c 

for simplicity. Now that we've labeled infinite countability, what are the allowable ways, within 
mathematics, that we can modify that symbol? Immediately obvious are multiplication and 
exponentiation: 2∞c and ∞c

2, but right away, we must decide what that means precisely!

Let's ignore multiplication and focus on exponentiation. There seems to be more 'power' (to explain) 
and relevancy in that concept. If we define ∞c

2 to mean the number of elements in Z2, the set of all 
ordered pairs of integers, we've made 'infinite exponentiation' precise. Right away, we have 
applicability: the rationals, Q. One famous proof of the countability of the rationals actually ties these 
concepts together. From this proof alone, we can inspect the order of the rationals: 2. So we've 
expanded the notion of 'size' (of a set) to include countably infinite sets and orders of magnitude of 
those. This is actually fundamental and relevant as we shall soon see.

The size of a set no longer is limited to finite sets alone. We can meaningfully speak about countably 
infinite sets as well.. In this 'new framework' (it's not really new; it's 'been there' waiting for us to 
discover it), we can precisely identify the number of elements in countably infinite sets as well. The 
'question' from mathematicians (rephrasing line one above) becomes: are the irrational numbers 
countable in the 'new' sense above? To assume “no” is not math/science. We must attempt to answer 
this question rationally – based on facts / logical arguments.

The following six brief articles, together, do exactly that. Please forgive any 'sloppiness in notation'..  
When appropriate, definitions are precise and explicit. And, we find we give way too much 'authority' 
(associate 'deep meaning') to the transcendentals.. It's my sincere hopes these essays do not cause 
resentment or divisiveness within the math (and math education) community.. It is my hope we can 
work together formally developing these ideas, integrating them appropriately into mathematics, math  
education, and above all else – keeping the knowledge accessible to 'laypeople' and students..



A conjecture about real density

As mentioned previously, I'm using the mathematical term density rather loosely; here, what I mean by 
density is positive Lebesgue measure. It's clear the density of the reals is based on the density of its 
proper subset – the irrationals. But what of those? As with the previous article, let's return to binary 
representation since that's the simplest form:

1. sqrt(10)      = 1.011010100000100...
2. sqrt(10)/10 =  .1 011010100000100...
3. sqrt(p) =     w.uis

Before we discuss above, I need to cover another related topic: irrationality measure. Please visit the 
link and 'try to make some sense of it'. According to that article, there are basically three kinds of 
irrational numbers: algebraic, transcendental, and functional. An example of an algebraic irrational 
number is sqrt(2) (which is above on line one in binary format). An example of a transcendental 
irrational number is π (pi, the ratio of circumference to diameter of any circle). Please consult the link 
for examples of functional irrational numbers. Ready? Okay.. Now let's revisit what Jodie Foster talked 
about in Contact: the prime numbers: 2, 3, 5, 7, 11,... In binary: 10, 11, 101, 111, 1011,... Why? We'll 
see.. Prime numbers are unique whole numbers that are only divisible (with whole number result) by 
themselves and one. So now we're ready to review the statements above. Line one basically states in 
binary form that the square-root of two is equal to the value on the right-hand-side. Line two says what 
the square-root of two is divided by two – again, in binary representation. Notice the value on line two  
is simply the value on line one with the 'binary point' moved one – to the left. Also notice that both 
numbers are irrational. Finally notice that we can perform this operation forever – dividing an 
irrational by two – to get another unique irrational number.

What about transcendental numbers? Off the top of my head, I can think of only two: π and e. That's 
pretty bad for a math major! One more thing before we state the conjecture. Line three above states the 
square-root of a prime number is equal to a whole number and unique-infinite-sequence fractional part. 
We're ready to state the conjecture:
   The density of the real numbers is based on the density of the algebraic irrationals which in turn is  
based on the (countably) infinite primes.

The point of this article is not to impress you with my mathematical fluency .. Allow me to digress..  
Many years ago, I realized there was absolutely nothing special about me. The only things that would 
allow me to 'stand out' in a crowd was my mind and perspectives. I firmly believe I have an average IQ: 
100, but I've tested far above.. Why? Because I've trained my mind .. More than this, I've come to 
understand we all have gifts; we simply need to discover them. There are mathematicians in the past 
who seemed connected to an 'infinite fountain of inspiration'. This is a historical fact. They give 
evidence, as does above, that we are merely conduits of inspiration and creativity. And finally, conduits 
of love. What more evidence of God do you need?

I challenge you to prove the conjecture above; I challenge you to find your unique gifts and inspirations 
– whatever your interests may be..

in true-love, sam

http://mathworld.wolfram.com/IrrationalityMeasure.html


Open questions about irrational numbers

Is π+e irrational? Is sqrt(2)+sqrt(3)? One of the open questions (they don't know either way) dealing 
with irrational numbers is: is the sum of of two irrational numbers irrational? To address this, let's 
think about the crucial property of irrationals: the unique-infinite-sequence (or uis) following the 
decimal/binary point representing the unique fractional part of an irrational number (as explained in the  
previous article). So in decimal format, 3-e and 4-π are what I call the uis-complements of e and π 
respectively. The reason I choose this term is because under addition, they produce whole numbers. It's 
not hard to visualize this critical feature in binary format; please try it.

When we fully understand 3-e, 4-π, 2-sqrt(2),.. are unique irrational numbers themselves, this so-called 
open question becomes almost trivial. From a probability standpoint anyways.. If we randomly choose 
a number from the real line, chances are it will be irrational is 100%! This is the astounding result from 
real analysis. What are the chances we choose a particular irrational number? 0%. So.. The chances 
π+e or π-e is rational is zero. When we think about the uniqueness of irrational complements, we're 
Confident about this claim.

Now we're ready to state another conjecture. Here, we introduce another term: distinct. For purposes of 
this discussion, I define distinct analogously to linear-independence. Two irrational numbers are 
distinct if you cannot make a liner combination of one out of the other using rational numbers. More 
explicitly, two irrational numbers are distinct, x and y, if you cannot find any non-zero rational 
numbers, a and b, such that y = ax + b is true. Conjecture 1:
   The sum of two distinct irrational numbers is irrational.

Conjecture 2:
   The product or quotient of two distinct irrational numbers is irrational.

Conjecture 3:
   The exponentiation of two distinct irrational numbers is irrational.

One and two together equate with conjecture 4:
   The set of distinct irrational numbers is a field.

Why is this important? In a sense, we don't 'need' rational numbers in math! (Remember, the rationals 
include the integers – the 'counting numbers'.) Any rational number can be 'approximated' with a 
nearby irrational. In a very real sense, we can dispense with all other numbers! ..Of course, these 
statements are facetious computationally but illustrate the overwhelming density of the irrationals.

Convince yourself: if you doubt above, try the operations above on your calculator. For instance, try 
using sqrt(2) and sqrt(3) as components and look at the results you get. Use any two distinct irrational 
numbers.. If you find two that violate a statement above, let me know! We all can make mistakes!



Counting infinities

This may not be the way they 'do it' in number theory nor may it be 'standard notation' but.. It seems the 
most intuitive approach toward measuring the actual density of irrationals and rationals. The existing 
notation in number theory seems to be deliberately obfuscating and I will deliberately avoid it here ..  
From the previously outlined view, the simplest algebraic irrational described in the simplest way is the  
square-root of 2 in binary:
 sqrt(10) = 1.011010100000100...
This is a single instance of an irrational number. The whole portion is immaterial at this moment. The 
irrationality of the number is completely defined by the fractional portion. If we flip the nth bit, this 
implies with this one irrational number, we can create a countably infinite set. Let's notate this with the 
symbol inf^1-sub-c or simply inf^1-c. Now if we flip the first and nth bit, this creates a whole new 
countably infinite set of irrationals with size inf^1-c. Carry this operation on forever implies the size of  
the set of irrationals we can create from the single irrational number sqrt(10) is inf^2-c! This is already 
quite revealing! From a single instance, we've created an order 2 infinite set of irrationals! (If not 
obvious, inf = infinity – the symbol for infinity, the 'lazy eight'. ^ = super-script or exponentiation. sub-
c or -c indicate a sub-script – here, it means 'c' for countable.)

This directly implies the O(sqrt(p)) = 3 or S(sqrt(p)) = inf^3-c where O and S mean order and size 
respectively. We've made tremendous progress simply by using convenient and intuitive notation! 
We've begun to actually count the irrational numbers! Now, let's use the field properties of the 
irrationals to count some more! From those, we know O(sqrt(p1)+sqrt(p2)) = 3 and O(sqrt(p1)sqrt(p2)) 
= 3 which implies S(*,+ o sqrt(p)) ≥ 2inf^3-c. In English, the size of the set with multiplication and 
addition operating on the set of the root-primes is greater than or equal to two times order-three 
countably infinite. Before we stop this tack, let's consider one final implication. If we consider 
sequences of operations on distinct root-primes, they produce order 4 sets:
 ∑(2,inf)S(∑(i,j)sqrt(p-i)) = inf^4-c  and  ∑(2,inf)S(∏(i,j)sqrt(p-i)) = inf^4-c
which implies S(I) ≥ 2inf^4-c. The irrational numbers are at least order 4.

Let's try another way of looking at this.. Let's explicitly look at addition, subtraction, multiplication,  
and division as operations on root-primes: +, -, *, 1/ . Let's denote distinct root-primes as a1, a2, a3, 
and a4. There's only one way to add: +a1+a2+a3+a4. But there are four ways to add: -a1+a2+a3+a4 
because we can move the minus sign to four distinct positions. Similarly, -a1-a2+a3+a4 can be added 
six ways based on the positions of the two minus signs.. And, -a1-a2-a3+a4, 4. Finally, -a1-a2-a3-a4 
can only be added one way. That totals 16 ways to add/subtract four distinct numbers. Similarly, we can 
explore the 16 ways to combine a1a2a3a4. The interesting question is: how many ways can we 
arithmetically combine four distinct numbers based on the four basic operations? The answer is 4^4. 
Examples are: a1-a2a3/a4 and (1/a1)a2-a3+a4. This implies S(+,-,*,1/ o sqrt(p)) = inf^4-c. So we've 
shown another way that the irrationals are order 4.

What about the rationals? What's their order? Let's consider the unit-interval. If we look at the whole 
number 1 then divide by two progressively until that limit is zero, we get the size of that subset as 
inf^1-c. But we don't have to start with 1; we can start with any rational number and move toward 
another limit rationally. That implies the size of the rationals is inf^2-c. Convention claims they're  
countably infinite which they are but.. They're clearly not order 1 .. I spent some time trying to 
convince myself the order of the rationals is greater than 2. I was trying to enumerate all unique 
complementary sequences. The challenging problem is to find complementary sequences so that their  
union is the rationals. Try this yourself. Here, what we mean by complementary is disjoint – no 
common elements. And, the notion relates to completeness so.. We're ready for a new conjecture:



 The union of all complementary rational sequences is the set of rational numbers with order 2.

What's the point of all this? To simply befuddle? [wink] No. The purpose of this approach is to get a 
'handle' (intuitive idea) of the respective densities of the rationals and irrationals. To say one is 
countably infinite and sparsely dense while the other is uncountably infinite and dense is not adequate. 
We need new measures that differentiate exactly why they're different. The notions introduced above 
allow us to create an analogy so we can understand the relative densities completely .. Here is the 
analogy we've been looking for.. The density of the irrationals compared to the density of the rationals 
is perfectly analogous to the following scenario. Imagine you pick a random point in R^3, what are the 
chances your number is on the x-axis? Clearly zero. What are the chances it's elsewhere? 100%. R^3 is 
two orders of magnitude 'more infinite' than R^1 (order 12 vs order 4). So we're ready for another 
conjecture:
 The order of the reals is 4; the size is inf^4-c + inf^2-c based on the respective sizes of irrationals  
and rationals.

This approach gives us a much more intuitive understanding of relative densities. No longer are sets 
simply 'countably infinite' or 'uncountably dense'.. We have a very precise language now to describe 
different 'levels of infinities' .. Let's practice our new skills and identify sizes and orders of common 
sets.. Ready?

What's the size and order of I^2? It should be clear the size is not 2inf^4-c but inf^8-c. The order is 
therefore 8.

What's the size and order of R^2? By now, the 'technique' should be clear:
 S-R^2 = (inf^4-c + inf^2-c)^2 = (S-I)^2 + (S-Q)^2 + 2(S-I)(S-Q)
                 inf^8-c + inf^4-c + 2inf^6-c
The corresponding order is 8 clearly from the dominating subset I^2.

Calculating the size and order of R^3 is left to the reader.

What about C, the set of complex numbers? This may appear confusing at first because a complex 
number is typically written as a+bi where a is the real part and b is the coefficient of the imaginary part.  
Don't worry, the complex-plane corresponds to R^2 so we can 'cheat' by simply inspecting those 
associated values. S-C = S-R^2 and O-C = O-R^2.

Size is an appropriate term because it essentially equates with the number of elements in a set. But the 
old notation typically found in texts on number theory simply makes the knowledge inaccessible to 
many, if not most, students. If the arguments in these last few articles are sound, we have made number 
theory and real analysis accessible to high-school students. It's a tremendous leap forward for the 
mathematical sciences and education .. With this perspective, there's not many open questions left, but  
thank God there are:
 Is π an element of {+,-,*,1/ o sqrt(p)}?
 Is e an element of {+,-,*,1/ o sqrt(p)}?
 What's S-T where T are the transcendentals?
From one perspective, they're inconsequential. From another, 'just' as important as sqrt(2) (possibly 
more-so). For instance, if they're not elements of the set based on root-primes, they may represent a 
subfield of I. As the primes may represent a 'basis' for I, π and e may be a basis for T. It's an interesting 
problem I pose for the reader.



Pi and e seem important but..

They're not. Before we get into that, I need to provide another argument about the size of the rationals. 
Let's consider the unit interval. Let's take the midpoint. Now let's take midpoints of those two intervals 
created by taking the first midpoint. Let's keep doing that forever and try to visualize what we just did.  
Essentially, we're enumerating all the rationals inside the unit interval. Let's try to count all those  
midpoints we just tried to identify.. 1+2+4+8+16+32.. It's clearly infinity but what order? Most 
certainly, it's higher than order 1. Let's recall, we identify order 1 with the integers. When we say 
countable with order 1, we simply mean a one-to-one correspondence with the naturals. Now.. Back to 
the problem.. How do we relate that infinite sum above to the naturals? They're both infinite.. The 
'trick' is to think about rates of approaching infinity.. The naturals approach infinity in a very regular 
'normal' stepwise way: 1, 2, 3, 4, 5,.. - very linear. The terms of the sum above are: 1, 2, 4, 8, 16, 32,.. 
which, if we think carefully, are on a line with slope 2, y=2x. A sum is a discrete version of an integral 
so.. If we integrate 2x, we get x^2. Boom: we've just shown another way – the order of the rationals is 
2. You might object: “Hey! We only calculated for the unit interval! What about the rest!” At first, I  
mistakenly thought we must multiply by inf^1-c to get an order 3 set but.. If you think about the start of 
the problem, we just arbitrarily started with the unit interval – we could have chosen any large interval 
in R. So.. There we are. :) (This morning, I believed I had made an error in postulating the order of the 
rationals is 2. I started trying to construct rationals, in binary form, from 'scratch'. I found at least three 
ways to to make them. If so, then that would imply the rationals are a 3rd order set. It's allowable if we 
consider the irrationals are 4th order and so the analogy would be, in that case, R^3 to R^2. The 
probability of choosing a point on the real-plane vs R^3 is zero but.. With the evidence above, I'm still 
going with 2nd order rationals.)

Now we're ready to consider the very simple illumination I had today.. Ask yourself the question: 
where do π and e come from? The most natural place π comes from is R^2. From an engineering 
perspective, e comes from C. Then the 'ahah!' hit me.. We ascribe so much importance to those two 
numbers: π and e.. But.. When you think about it carefully, they're 'nothing' but projections from R^2 
onto R! They're artifacts from R^2! We do take them very seriously in engineering but.. Now that I 
think of them in that way – not that important..

You may be able to create an order 2 set from  π/e alone but.. So you can from any algebraic irrational. 
And, we still don't know those sets are disjoint. Perhaps some/all of those created irrationals belong to 
the set created by the root-primes. Further, we don't know if  π/e are in the order 4 set created from all 
root-primes themselves. It's interesting from a historical standpoint but in my view, not mathematical.



Countable bases

Conjecture:
 Generally, when a set has a countable basis, it has finite order; all finite-order sets have countable  
bases.

An example of a basis is the natural numbers. These can be used to construct all positive rational 
numbers. We can inspect the order of this set. The definition of a rational number is an integer divided 
by another: a/b where a and b are integers, b non-zero. Don't fret about that one point; taking a single 
point out of a countably infinite set still leaves a countably infinite set. There are an infinite number of  
choices for a and an infinite number of choices for b. This equates with an ordered pair of infinite 
combinations of integers; the rationals have order 2 .. About the irrationals.. We have previously 
conjectured that the countable root-primes form a basis for them. We could have chosen the non-
perfect-squares as a basis. That's a larger set; wouldn't it be a 'more complete' basis? It's a fair question 
but I chose the root-primes for simplicity. Admittedly, root-naturals include root-non-perfect-squares 
include root-primes so the root-primes are a 'fractional subset' of an order 1 set. My point is they're all 
order 1 sets. Again, I chose the primes out of simplicity. With or without the field assumptions, the 
irrationals have finite order. If the field assumptions are incorrect, some of the operations on irrationals  
produce rational numbers – producing a smaller resultant set. The real 'trick' for me is to convince  
mathematicians the irrationals have a countable basis.. Let's attempt to use (the distasteful) proof-by-
contradiction. Suppose the irrationals did not have a countable basis. That would imply you could come 
up with at least one instance that violated the premise. So you claim to have found a number that is  
irrational and cannot be created with a countable basis. I say that's impossible. Why? Let's look at the 
so-called transcendental number e. It can be approximated to any desired precision by a finite sum. It 
has been proven to be equal to a (countably!) infinite sum. We've created a 'super special' 
transcendental number from a countable basis! That implies any irrational number can be created with 
a countable basis! In other words, the irrationals have finite order.

As you can see, we've moved from number theory to set theory rather quickly. Extending the definition 
of countability to higher-order sets has allowed this progress. This is the nature of 'fundamental' 
discoveries such as: the calculus, relativity, and the helical structure of DNA .. I'm sure there are other 
implications in set theory I cannot 'see right away'.. This is only the beginning .. Back to the irrationals 
(and their order).. Looking at this problem heuristically, we know it's finite, we know it's greater than 2, 
we know it's less than or equal to 4 depending on field properties.. That leaves two options: 3 or 4. As 
mentioned before, 3 is acceptable because it preserves the Lebesgue property. So the real 'final 
question' (it all depends on) is: do field operations on two distinct irrationals produce another distinct 
irrational? If we 'try it by hand' with examples and pay particular attention to uises, we find: yes. Based 
on probability, the order of the irrationals is most likely 4.

Based on some fairly simple assumptions, we've been able to determine (from several views) that the 
irrationals (and therefore reals) are a countable set, that there is precise meaning associated with this 
notion, and that there are significant implications (such as in set theory) .. Before we consider one last 
way to count the irrationals, let's state a final conjecture that relates to above:
Conjecture:
 There is only one way to create a truly uncountable set: infinite exponentiation.

Today I discovered one 'final' argument about the order of the irrationals that should appeal to many 
mathematicians. It has to do with rational numbers and rational scaling. If some/many are not happy 
with the root-primes approach, if the primes are not 'dense enough' to convince you they're a sufficient 



basis for the irrationals, then let's consider positive rational numbers.. If we examine the following: 
(a/b)sqrt(c/d) where c/d>0, d and b ≠ 0, a, b, c, and d are integers, we see that (a/b) is a scaling and 
translation factor – and – sqrt(c/d) acts as the 'irrational seed' to modify. If we can accept this scenario 
as dense enough to create all irrationals, we don't need to consider operations on them .. If we 
implement this solution on a computer, we essentially truncate all numbers to a finite sequence. From 
this perspective, it's easy to see the scenario above is sufficient to create any truncated irrational. Once 
we realize this fact, we can understand the length of truncation does not matter. So truncated or not, we 
need at most four integers to uniquely determine an irrational number. This directly implies the order of 
the irrationals is at most 4 .. If we can show 3 is not enough (from this perspective), we've essentially 
proven the order of the irrationals.. Let's attempt to do just that.. If we only use three integers to specify 
a truncated irrational, we only need to miss one of all possible to prove we need more than 3. If we fix 
one of the four to equal 1, we've lost one degree-of-freedom in the scenario. If it's a, then (a/b) can only 
be a negative or positive fraction. We've missed all multiples greater than 1. Therefore, we've just 
proven we need 4 integers to specify all possible (truncated and non-truncated) irrationals. The order of 
the irrationals is 4.

What this means exactly is this.. The size of I is the same as the size of Z4. The number of elements in I 
is the same as the number of elements in Z4. This is 'uncanny' wisdom .. A few weeks ago, the real 
numbers were 'uncountable' due to the 'uncountability' of the irrationals.. Now, they're countable and 
match the size of a known set.. All because a shift in perspective.. So.. Heuristics is absolutely correct:  
how you frame a problem determines feasibility of a solution (set) .. If we didn't have heuristics, what 
would we have? Not science – that's for sure..



Uncountable sets

Restating the last conjecture:
 There is only one way to create a truly uncountable set: infinite exponentiation.

An example of an uncountable basis is Z∞. That's a truly uncountable set. Other examples of 
uncountable sets are: I∞ and R∞ .. I debated writing/including this brief treatment of 'infinite 
dimensional spaces' honestly for lack of interest. I've heard of the concept being useful in conventional 
quantum mechanics .. If you've read any of my physics articles, you know I have no great love of the 
primary assumptions behind the Standard Model nor convention's abuse of math by trying to give 
credibility to the SM by associating parts of 'advanced math' to it. What does group theory or infinite 
dimensional spaces have to do with physics? Ask a 'mathematical physicist'.. This critical error in 
science is much like the axiom: publish or perish. So academicians publish because they must in order 
to keep their jobs.. No matter now inane.. No matter how trivial.. That way, advances in science almost 
never come in spurts; they're almost always incremental. It takes someone like me who, practically 
from birth, forcibly if required, must think outside the box. How else could an 'average shmuck' come 
up with a viable deterministic alternative to the SM or above? Divine inspiration? Atheists refuse to 
accept that.. No.. I sincerely doubt infinite dimensional spaces have anything to do with physical reality  
and therefore, not much point to study in math.. Perhaps I should have left this section unwritten after 
all.. [wink] Ah live and learn..

Addendum: after several days checking my own logic, I was convinced I was absolutely wrong: the 
reals are uncountable; they're an infinite-order set; period. What convinced me I was wrong yet again is 
the following realization/conjecture:
 Any infinite-order set that can be approximated, to any arbitrary precision, by a finite-order set is  
equivalent to that set.

Because I can show you explicitly why the reals are uncountable and that I can find a particular set to 
model them with arbitrary precision, the statement above is self-evident.. I challenge you to find a 
counter-example .. To put the statement above in terms of the reals: because I found an order 4 set to 
approximate the irrationals (to any arbitrary precision): Z4, the irrationals are equivalent to Z4.

“When something is really important to you, never let anyone tell you 'it can't be done'.”

Whether or not you can, you must believe you can!


