Matrix Exponential

Pierre-Yves Gaillard

Abstract. Let *a* be an element of a finite dimensional \mathbb{C} -algebra with 1. Then there is a unique polynomial f_a such that $f_a(a) = e^a$ and deg $f_a < \dim \mathbb{C}[a]$. We give an explicit formula for f_a .

For any element a of any finite dimensional \mathbb{C} -algebra with 1, let $f_a \in \mathbb{C}[X]$ be the unique polynomial of degree $< \dim \mathbb{C}[a]$ satisfying

$$f_a(a) = e^a.$$

[Here X is an indeterminate.]

Let $m \in \mathbb{C}[X]$ be the minimal polynomial of a, let λ be a multiplicity $\mu(\lambda)$ root of m, and let $x(\lambda)$ be the image of X in $\mathbb{C}[X]/(X-\lambda)^{\mu(\lambda)}$.

Then f_a can be computed by solving, thanks to Taylor's Formula, the congruences

$$f_a \equiv f_{x(\lambda)} \mod (X - \lambda)^{\mu(\lambda)},$$

where λ runs over the roots of *m*. Explicitly:

$$f_{x(\lambda)} = e^{\lambda} \sum_{n < \mu(\lambda)} \frac{(X - \lambda)^n}{n!} ,$$

$$f_a = \sum_{\lambda} T_{\lambda} \left(f_{x(\lambda)} \ \frac{(X - \lambda)^{\mu(\lambda)}}{m} \right) \frac{m}{(X - \lambda)^{\mu(\lambda)}} \quad ,$$

where T_{λ} means "degree $\langle \mu(\lambda) \rangle$ Taylor polynomial at $X = \lambda$ ".

 $This \ is \ version \ 1. \ Last \ version \ available \ at \ http://www.iecn.u-nancy.fr/~gaillapy/DIVERS/Matrix-exponential/diversion \ available \ at \ bt \ available \ at \ bt \ available \ at \ bt \ available \ at \ at \ available \ available \ available \ at \ available \ at \ available \ at \ available \ availabl$