Matrix Exponential

Pierre-Yves Gaillard

Abstract

Let a be an element of a finite dimensional \mathbb{C}-algebra with 1 . Then there is a unique polynomial f_{a} such that $f_{a}(a)=e^{a}$ and $\operatorname{deg} f_{a}<\operatorname{dim} \mathbb{C}[a]$. We give an explicit formula for f_{a}.

For any element a of any finite dimensional \mathbb{C}-algebra with 1 , let $f_{a} \in \mathbb{C}[X]$ be the unique polynomial of degree $<\operatorname{dim} \mathbb{C}[a]$ satisfying

$$
f_{a}(a)=e^{a} .
$$

[Here X is an indeterminate.]
Let $m \in \mathbb{C}[X]$ be the minimal polynomial of a, let λ be a multiplicity $\mu(\lambda)$ root of m, and let $x(\lambda)$ be the image of X in $\mathbb{C}[X] /(X-\lambda)^{\mu(\lambda)}$.

Then f_{a} can be computed by solving, thanks to Taylor's Formula, the congruences

$$
f_{a} \equiv f_{x(\lambda)} \quad \bmod \quad(X-\lambda)^{\mu(\lambda)}
$$

where λ runs over the roots of m. Explicitly:

$$
\begin{gathered}
f_{x(\lambda)}=e^{\lambda} \sum_{n<\mu(\lambda)} \frac{(X-\lambda)^{n}}{n!}, \\
f_{a}=\sum_{\lambda} T_{\lambda}\left(f_{x(\lambda)} \frac{(X-\lambda)^{\mu(\lambda)}}{m}\right) \frac{m}{(X-\lambda)^{\mu(\lambda)}},
\end{gathered}
$$

where T_{λ} means "degree $<\mu(\lambda)$ Taylor polynomial at $X=\lambda$ ".

