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Abstract

The holographic protection due to inflationary cosmology is a conse-

quence of a quantum tricritical point. In this scenario a closed spacetime

solution transitions into an inflationary de Sitter spacetime. Saturation

of the holographic entropy bound is prevented by the phase change in the

topology of the early universe.

\footnote{This essay received an \honorable mention” in the 2012 Es-

say Competition of the Gravity Research Foundation.} \vfill\eject

1 Introduction

The role of entropy bounds, holography and the accelerated universe consti-
tutes a considerable body of work. Fischler and Susskind proposed ways the
holographic principle (HP) does not conflict with inflation and the accelerated
cosmology [1]. The holographic principle is satisfied for entropy/energy ratios
for bounded systems with event horizons [2]. The closed Friedman-Lemaitre-
Robertson-Walker (FLRW) spacetime violates the HP. A proposed cosmological
model in [3] advances how the HP may accommodate inflation and dark energy,
and derives the equation of state for vacuum energy and pressure [4]. It is
thought the HP is more fundamental than inflation, where the HP constructs
states on a surface one dimension smaller than the general spacetime, while
inflation is spacetime dynamics based entirely on some initial conditions. A
closed FLRW spacetime will saturate the entropy bound or HP once the uni-
verse reaches its turn around point to a big crunch[5].

The FLRW metric for a closed homogeneous and isotropic cosmology is

ds2 = dt2 − a2(t)(dχ2 + sin2χdΩ2)
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for χ the azimuthal angle of the sphere S
3 and Ω the steradian measure on any

2-sphere for a given χ. The particle horizon is

χh =

ˆ t

tp

dt′

a(t′)
.

for tp a fiducial start time. The entropy density σ = (ρ+ p)/T is constant and
the entropy to area ratio is

S

A
= σ

2χh − sin(2χh)

4a2(χh)sin2(χh)

This saturates for χh = π/2 at maximal expansion of the closed FLRW cosmol-
ogy [5].

The inflationary model with a scalar inflaton field φ and potential V (φ)
evolves as ρ̇ = 3(ρ + p) = 3(1+w)ρ, which gives the equation of state parameter
w = −1 for ρ̇ = 0. The inflaton field φ evolves as

∇2φ − φ̇ − 3Hφ̇ − ∂V (φ)

∂φ
= 0,

for the Hubble parameter H = ȧ/a. Isotropy ∇2φ ≃ 0 simplifies this to

φ̇ + 3Hφ̇ + ∂V (φ)
∂φ = 0. The scale factor obeys

( ȧ

a

)2

= H2 = H2
0

[

Ωφ

(a0
a

)3(1+w)

+ Ωm

(a0
a

)4

− Ωk

(a0
a

)2]

,

where a0 and H0 are the initial scale factor and Hubble parameter. Ωφ, Ωm and
Ωk are the density ratios for the inflaton field, relativistic matter or radiation
and the spatial curvature for k = 1. The equation of state parameter −1 < w <
−1/3 are limits for inflation and k-dynamics due to spatial curvature. Inflation
occurs as w → −1 as Ωφ grows larger than Ωk which vanishes. The total
density Ω = Ωφ + Ωm = 1 + Ωk ≃ 1 is sufficiently close to unity for
Ωk = ρk0/ρc = 3M2

pl/8π(a0H0)
2 << 1. The k = 1 FLRW for closed

spacetime such that Ωk, no matter how small, saturates the HP at the turn
about in the cosmic evolution.

2 The three phases

The earliest phase is the pre-inflationary phase given by the FLRW equation

(

ȧ

a

)2

= H2 =
8πG

3M2
p

(a0
a

)4

− 1

a2
,

for a spherical space containing relativistic particles. The spatial dynamics of

the space is a(χh) = Asin(χh) for A =
√

8πGa40/3M
2
p . This solution for
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χh → π where S/A → ∞, where the singularity at χh = 0 is precluded by
the Planck scale cut-off in a0.

During this phase Ωk >> {Ωm, Ωφ} and Ωk . 1 the scale factor dynamics
is

ȧ ≃ a0H0

√

Ωk

with

χh ≃ 1

a0H0

√
Ωk

ln

(

t

t0

)

,

for t0 ∼ tp. Assume the cutoff distance is the string length a0 ≃ ℓs and the
Hubble inverse time H0 ≃ 1/ℓp, for ℓp the Planck length. Thus a0H0 ∼ g−1/4,
for g the string coupling constant. The condition χh = π/2 for maximum
expansion corresponds to the time

t = t0exp(χha0H0

√

Ωk) = t0exp(π/2g
1/4)

The string parameter g1/4 ≃ .06 computes t = 2.3 × 1011tp, or t ≃ 2 ×
10−32sec, which agrees with current models. The S/A ratio is

S

A

∣

∣

∣

χh=π/2
= σ

π

4a2max

,

for σ the constant entropy density. The entropy is given directly by entropy
density Sm = πσ. The derivative of this function at χh = π/2 is

d

dχh

S

A

∣

∣

∣

π/2
=

σ

a2max

=
4

π

S

A

∣

∣

∣

π/2
,

giving the entropy bound at the maximal expansion S = kA/4ℓ2p, the satura-
tion point, where continued evolution surpasses the Bekenstein bound and S/A
diverges.

The cosmology at t ∼ 10−35sec gives a Bekenstein bound of ∼ 1016 bits
of information, or S ∼ 10−7J/K. The Boltzmann factor E/kT ∼ 1016

equals the quantum phase Eτ/~, for τ Euclidean time. For the temperature
approximately 10−8 times the Hagedorn temperature τ = ~/kT ∼ 10−34sec,
which corresponds to the onset of inflation and a phase transition. At this point
the energy density of the inflaton field became larger than the curvature; pre-
inflation ρk >> ρφ and inflationary ρφ >> ρk ∼→∼ 0. The strict Ωk = 0
preserves the HP, and the universe converts from S

3 to R
3. The geometry

ds2 = −dt2 + a2(t)dΩ2
3,

transitions to one of greater symmetry. The scale factor a(t) = sin(t/t0) is
replaced with a(t) = cosh(tΛ/3) for a de Sitter spacetime.
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The HP protection is a quantum critical phase transition. The FLRW equa-
tion

(

ȧ

a

)2

= H2 =
8πG

3
ρ − 1

a2
,

for a closed spherical spacetime predicts a large H for a ≥ 0. The gravity action
S =
´

d4x
√−gR is

S =

ˆ

d4x
√
g

(

∂gij

∂t
Gijkl

∂gkl

∂t
− δW

δgij
Gijkl

δW

δgkl

)

with the superspace metric,

Gijkl =
1

2
g−1/2(gikgjl + gilgjk − gijgkl).

The Ricci flow for the manifold is

∂gij

∂t
= 2Rij + ∇iN j + ∇jN i,

and ∂W/∂gij constructs a potential term. The metric for the FLRW gives the
relevant superspace metric components

Giiii = −Giijj =
1

2
a.

The metric time derivative is ∂gii/∂t = ∂a−2/∂t = −2(ȧ/a3) = 2Rii and
the kinetic energy is K = −6(ȧ/a)2a−3. The quadratic term (δW (gij)/δgij)

2

= 4(1 − a2/a20) gives the potential

δW

δgij
Gijkl δW

δgkl
= −6a−1

(

1 − a2

a20

)

.

The kinetic and potential energy give the Hamiltonian operator, and the irrele-
vant factor of 1/6 is ignored. The Hamiltonian acts on the wave functional Ψ[g]
as

(

ȧ

a

)2

+ a2
(

1 − a2

a20

)

→
[

π̂2
a + a2

(

1 − a2

a20

)]

Ψ[a] = 0,

for ȧ/a → π̂a = −i∂a, which gives this Wheeler-Dewitt equation. The
numerical solution for Ψ[a] for k = 1 and Ωk / Ω appears in figure 1. The
inflationary phase resets the potential term with constant ρ, which defines a de
Sitter space with a greater symmetry and where S

3 → R
3.
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The transition from “k-dynamics,” with w = −1/3 with equation of state
p = wρ, to the inflaton field, with w = −1 means the scale factor is replaced
with a(t) = cosh(Ht)/H . The inflationary metric expands as ∼ e2φgij with

the inflaton field φ. The Ricci flow ∂gij/∂t = 2φ̇gij gives the dynamical
equation ä/a = 4πG(ρ + 3p). The potential function, determined by W
above is a polynomial form, typically 1

2mφ2. The potential function for the
evolution with a slowly varying φ ∂φV (φ) ≃ H2 = Λ/3, is approximately

constant 8πGρ. The “friction term” 3Hφ̇ due to dilution the scalar field with
the wave equation in equation 4, so φ̇ < 0. A slowly varying potential defines
a de Sitter spacetime in the inflationary phase of the system.

The next phase of the system is reheating, where φ ≃ 0. This is the period
of particle creation and the thermalization of the universe. This is the thermal
“bang” in the big bang, after inflation that lasts t ≃ 10−35 seconds, with cosmic
expansion under the influence of relativistic particle or radiation with w = 1/3.
This phase is a bubble nucleation of a pocket universe in the de Sitter inflating
space. The cosmic reheating and particle production governs inflaton decay

φ̈ + 3Hφ̇ + ∂φV (φ) = −Γφ̇,

for Γ the rate of particle production. The dilution of radiation matter in the
universe eventually pushes the universe into a w = −1 equation of state after
the radiation and matter dominated periods.

The three phases are from a Lifshitz tricritical quantum critical point, such
as seen in condensed matter physics [6]. The first corresponds to a dynamical
φ, which is the pre-inflationary phase. The next is the high potential phase or
ρ(φ) ∼ 1072GeV 4 and the last phase with small density ρ(φ) ∼ 10−48GeV 4,
corresponding to the current cosmological constant. This Lifshitz triple point
is illustrated below, where the ordinate and abscissa are energy (temperature)
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and pressure. The system evolves from the top left as the closed cosmology
in the pre-inflationary phase, to the phase corresponding to inflation, and the
potential collapses in the bottom right which produces particles in the reheating
phase. The scale of the diagram and the path drawn are heuristics.

3 Quantum tricritical phases

The HP violation is avoided by a quantum critical point and a phase transition
to the inflationary phase, which enters then into another phase, which is the
reheating of the universe and the current cosmic state. The Lifshitz tricritical
point connects the scalar field φ in a spatially modulated phase with the phases
φ = const and φ & 0. The spatially modulated phase is the scalar or
inflaton field in the closed spacetime configuration. The next phase is a large
vacuum energy with φ ≃ const, and inflation. The final transition to φ & 0
reheating phase is bubble nucleation of pocket universes. The tricritical point in
connection to relativity is explored by Horava[7], with the reparameterizations
t → bzt and x → bx, for z the critical exponent, which give conformal or
Ricci flow gij → e2φgij , for z = 1.

The ground state wave functional Ψ[φ(x)] = exp(−W/2) has dynamics
given by

S =
1

2

ˆ

dtdnx
(

φ̇2 − (
1

2
∆φ)2

)

.

The functional W for k-dynamics gives the critical exponent x → b[φ]x is then
[φ] = 0. This is the spatially modulated phase determined byW . The inflation-
ary phase with a changed critical dimension and conformal flow xi → xie

φ. The
critical exponent xi → xib

[x] defines the factor b = e2φ scale factor with scale
weight [x] = 1. The conversion of the closed sphere S3 to R

3 in a simple model
is a stereographic projection. Cartesian coordinates of S3, such at(x1, x2, x3, z)
for z some fictional embedding spatial coordinate, map as xi → xi/(1 − z).
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We express the coordinate z according to a field φ as 1/(1 − z) = eφ so
conformal dynamics is a manifestation of topological change S

3 → R
3.

The renormalization group flow follows from a conformal rescaling, which has
a rich structure stemming from Zamolodchikov [8] and the Cardy a-conjecture
[9]. The Ricci flow ∂gij/∂t = 2φ̇gij computes the kinetic energy term

∂gij
∂t

Gijkl ∂gkl
∂t

= 4

(

∂φ

∂t

)2

gijgklGijkl =
k

2

(

∂φ

∂t

)2

for k = 2gijgklGijkl and φ rescaled to φ/2. The potential energy term is

δW

δgij
=

δW

δφ

∂φ

∂gij
=

1

2

δW

δφ
gij

so
δW

δgij
Gijkl δW

δgkl
=

1

4

(

δW

δφ

)2

gijgklG
ijkl =

k

2

(

δW

δφ

)2

.

The Lagrangian

L =
k

2

(

∂φ

∂t

)2

− k

2

(

δW

δφ

)2

.

with the functional W = W [φ] of the form φ̇2 − (12∆φ)2 for ∆φ = P (φ), a
polynomial so

L =
k

2

(

∂φ

∂t

)2

- k
∑

n

an
n
φn.

A possible first choice of a potential is

(

δW

δφ

)2

= V (φ) =
a2
2
φ2 +

a4
4
φ4

which is zero for φ = 0 and φ =
√

−2a2/a4 for a2 < 0. The Thomas-Fermi
approximation [10] [11] for phase transitions employs a cubic term

V (φ) =
a2
2
φ2 − a3

3
φ3 +

a4
4
φ4

For a2 < a23/4a4 there is a third minimum

φ0 =
a3
2a4

(

1 +
√

1 − 4a2a4/a23

)

The potential for different values of a3 appears in figure 3

7



The field exhibits a phase transition jump to φ = 0 from φ0 = 2a3/3a4.
The coherence length of the φ-fluctuations for a3 = 0 is computed from the
nonzero expectation of the field 〈φ〉 = φ0 =

√

−a2/a4, which corresponds to
a Higgs-like mass, and the coherence length ξ = 1/

√
−2a2[12]. In supercon-

ductivity this connects the Meissner-Higgs mass term to the penetration depth
of a magnetic field λ ∼ 1/φ. The ratio of the two length scales is the Ginsburg
parameter k = λ/

√
2ξ, which is large for type I superconductors and small for

type II. Including the cubic term the coherence length is

ξ =
1

√

a2 + 3a4φ2 - 2a3φ
,

which around φ = 0 is ξ = 1/
√
a2. For a3 = 0 the field jumps to

φ0 =
√

2a3/3a4 and the φ-fluctuation length jumps to

ξ1 =
3

a3

√

a4
2

corresponding to a first order phase transition.
The expected field φ0 = 〈φ〉 =

√

2a3/3a4 is the critical parameter for infla-
tion and HP protection. The metric at this critical value gij = exp(2φ0) ∼ a(t′)
cuts off at the value of π/2 < θ < π where the entropy bound is saturated.
The phase change initiates inflation or de Sitter dynamics with a large vacuum
energy density and pressure.

Transition to the third phase with φ & 0 causes production of particles.
The vacuum energy becomes very small, with inflationary expansion with a
larger e-fold time te = 1/H . This is bubble nucleation [13] transpires on
the de Sitter spacetime inflating on a time scale t ≃ ℓs, where each bubble
subsequently expands on a time scale 1/H . This is the first multiverse scenario
where the space R3 rapidly inflates and local regions tunnel into a lower energy
configuration. These regions define pocket universes within the Guth-Linde-
Vilenkin multiverse scenario [14][15].
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4 Final Remarks

This potentially connects ”braney” physics with the standard cosmological model.
A cosmology is then the stringy content of a D3-brane. Some models have cos-
mologies generated by the collision between two branes [16]. However, it may
be quite the opposite. It is possible that the elementary particles in our universe
are truly point-like according to zero electric dipole moments, as experiments
are beginning to suggest, with dipole moment 0.07 ± 0.07 × 10−26e · cm[17],
which is close to some SUSY predictions of an electric dipole. The strings for
these particles connect two D3-branes. We might think of some field flux which
causes open strings to connect two branes together, instead of both endpoints
on a single brane. The branes may be dynamical and are moving apart, which
stretches the string. The string may break, but rather than having free end-
points they are attached to a new braney object. This object has the topology
of a sphere, which transforms its topology to R

3. Consider a foliation of D3-
branes in expanding bulk space which pulls branes apart. As teh brane foliation
separates gaps are filled by the generation of new branes, which contain nascent
inflationary cosmologies, which in turn generate pocket universes. The tricriti-
cal phase transitions are associated with both the generation of the brane and
subsequent bubble nucleation on it.

Dp-branes have a large N~ content and are classical. The emergent small
S
3 with the end points of the cut string has more quantum mechanical content.

S
3 → R

3 is a transition to classical mechanics for the large D3-brane. The
tricritical phase transition from a varying field to constant field transforms S

3

into a classical spacetime R
3. This middle phase is the inflationary period

of the universe. The final phase is bubble nucleation and the formation of
pocket universes. This reheating phase produces the radiation, matter and
small accelerated phases of the universe we observe.

The reheating phase of the universe breaks the Weyl transformation or con-
formal scaling of the inflationary period. The large inflationary Λ is reduced to
near zero, which accompanies the breaking of conformal symmetry if Λ = 0
identically. The dilaton in this setting emerges in vacua with spontaneous broken
conformal symmetry. However, physically it is not identically zero. It is possible
high energy scale physics of inflation is dual to the low energy physics of the
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cosmological constant of the current universe in a T-duality or k → 1/k. The
high energy physics is k ∼ Mpl, and the low energy physics is k → K2/k ∼
MΛ = 10−12GeV . The implicit constant at work here is the intermediary mo-
mentum or mass K =

√

MΛMpl ∼ 103GeV , or about the LHC energy scale.
The dual when written according to proper units is Mpl → K2/Mpl ∼ MΛ.
This is the value of the vacuum energy for the universe and the cosmological con-
stant. This suggests some underlying UV/IR duality to renormalization group
flow.
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