On Nature of Gravity, Journal of Beijing Observatory (Chinese) 7(1976)32-38

Chun-Xuan Jiang

In 1976 in this paper we found a new gravitational formula

对（4）微分

$$
\begin{equation*}
d \bar{u} / d t=-c^{2} / u^{2} \cdot d u / d t \tag{5}
\end{equation*}
$$

（5）式说明快子加速度 $d \bar{u} / d t$ 和慢子加速度 $d u / d t$ 方向相反，同时产生，从图 1 清楚地看出，在 R_{2} 区一条双曲线上，速度从另增加到光速作正加速度，由共存原理，在 R_{5} 区一条双曲线上速度由无限大减到光速为快子作负加速度。

二，引力本质的 探 讨

从牛顿到爱因斯坦关于引力定量方面作了许多工作，关于引力本质是什么？引力如何产生？引力子是一种什么物质？都没有解决，下面我们证明引力是快子惯性力作用的

图2 匀速转动圆盘模型结果。

现在，我们研究匀速转动圆盘，如图 2 所示，我们假定快子是构成物质最小质点，圆盘是由普通物质构成的，而物质内的电子质子等又是由快子构成的，在圆盘转动时，在圆盘边缘的物质速度方向随时间都在改变，而这种改变将导致向心加速度，将产生较大的离心力作用使边缘物质有向外移动的可能性，这一点已经被实验所证实，同样物质最里面的快子速度方向也在改变，由共存原理，我们只研究快子在慢子方向相同改变部分。如图2所示，根据相似三角形。

$$
\begin{equation*}
\frac{\Delta u}{u}=\frac{\Delta l}{R}=\frac{u \Delta t}{R} \tag{6}
\end{equation*}
$$

由（6）得出慢子向心加速度

$$
\begin{equation*}
\frac{d u}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta u}{\Delta t}=\frac{u^{2}}{R} \tag{7}
\end{equation*}
$$

由共存原理，把（7）式代入（5），得出快子离心加速度。

$$
\begin{equation*}
d \bar{u} / d t=-\frac{c^{2}}{R} \tag{8}
\end{equation*}
$$

（8）式说明快子离心加速度和慢子向心加速度方向相反，同时产生，它与快子速度 \bar{u} 无关，在 $c \leqslant \bar{u} \leqslant \infty \Rightarrow 0 \leqslant u \leqslant c$ 范围内都成立，只与快子曲率半径 R 有关。快子离心加速度产生的惯性力是指向地球中心。即向心力，它又作用在物体上，迫使物体下降，无数快子在地面上形成一个向心力场，也就是引力场。引力场只与半径 R 和快子动质量 \bar{m} 分布有关，例如一个物体在地球上空受到二种力：一是离心力 $M u^{2} / R \cos \phi$ ，二是快子向心力 $\bar{m} c^{2} / R$ ，运动方程式：

$$
\begin{equation*}
M g=\bar{m} c^{2} / R-M \frac{u^{2}}{R} \cos \phi \tag{9}
\end{equation*}
$$

Φ 是当地纬度
$\Sigma \bar{m}$ 是作用在 M 上的快子动质量。
如在地面上离心力可以忽略，由（9）式得出

