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Abstract: This discussion demonstrates a theorem that, if some hypothetical metric g�� for either
field-space or spacetime exists which couples to spin-1

2 field/particles, one can define a class of
four-indexed spin-1

2 fields ���x� with which the standard model SU�3��SU�2��U�1� gauge group
is automatically associated due to topological and geometric considerations, regardless of the nature
of the field equation by which any specific field ���x� is defined. Specifically, for this class of fields
���x�, which reduces to a physically equivalent unindexed field ��x� in flat space where the metric
g�� reduces to the Minkowski metric ���, gauge transformations become exactly identified with
covariant transformations under general reference frame transformations. This identification is used
to construct a novel source of CP violation which may help to explain the degree to which the
symmetry between matter and antimatter observed in the universe is broken. © 2009 Physics Essays
Publication. �DOI: 10.4006/1.3050302�

Résumé: Cette communication démontre un théorème qui, si l’on suppose dans un espace-champ
ou dans un espace-temps l’existence d’une métrique g�� qui se couple à des champs ou des
particules de spin-1

2 , alors on peut définir une classe de champs ���x� de spin-1
2 à quatre indices

avec lesquels le groupe de jauge SU�3��SU�2��U�1� du modèle standard est automatiquement
associé par des considérations topologiques et géométriques, indépendamment la nature de
l’équation du champ par laquelle tout champ spécifique ���x� est défini. Plus spécifiquement, pour
cette classe de champs ���x�, qui se réduit à un champ physiquement équivalent non indicé ��x�
dans un espace plat où la métrique g�� se réduit à la métrique ��� de Minkowski, les transforma-
tions de jauge s’identifient exactement aux transformations covariantes dans les transformations
générales du cadre de référence. Cette identification est utilisée pour construire une nouvelle source
de violation CP qui peut aider à expliquer le degré avec lequel la symétrie observée dans l’univers
entre la matière et l’antimatière est brisée.

Key words: CP-violation; Yang–Mills Theory; Standard Model in Curved Spacetime; Gauge Transformations; Covariant
Transformations; Reference Frame Transformations; Dirac Equation.

I. INTRODUCTION

One of the outstanding problems in quantum cosmology
arises from the broken symmetry between field/particles and
antifield/particles, i.e., the abundance of ordinary matter as
opposed to the near absence of antimatter.1 Normally, in a
vacuum one excites particle events in the form of pair
production,2 leading to equal numbers of field/particles and
anti-field/particles in what is termed CP symmetry.1,2 At
some stage of the early universe, this symmetry was broken,
and radically so;1 all known classical objects in the universe
are constructed from field/particles, not from antifield/
particles. This symmetry-breaking process has been de-
scribed as a phase transition3 or a “see-saw mechanism.”4

The exact details of this process remain mysterious in that all
the known particle-producing processes which violate CP
symmetry taken together can only account for a small per-
centage of the observable mass in the universe, given the age

of the universe.5 This discussion presents a previously unrec-
ognized physical mechanism, by which cosmic expansion,6

i.e., vacuum expansion, produces field/particles but not
antifield/particles in violation of CP symmetry, after devel-
oping the underlying formalism.

That formalism introduces a class of four-indexed fields
���x�, a spinor7 field with one timelike and three spacelike
components, and demonstrates that the SU�3��SU�2�
�U�1� gauge group structure of the standard model8 arises
from geometric and topological restrictions on this class of
fields regardless of the specific field equation of which the
field ���x� is a solution. One advantage of this class of fields
���x� then lies in the fact that, simply by writing any given
field equation in terms of fields ���x�, a certain degree of
physicality is assured because of the field ���x�’s automatic
association with the SU�3��SU�2��U�1� gauge group. If
one considers for example a ��4 field theory2,9 where
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�����x�������x�� −
�

4
��x�4 = 0, �1�

the fields ��x� may or may not have an associated SU�3�
�SU�2��U�1� gauge group structure equivalent to that of
the standard model. One must establish that this sort of
gauge invariance applies in order to establish that degree of
physicality to the given ��4 field theory. However, if one
uses fields ���x� so that the SU�3��SU�2��U�1� gauge
group structure equivalent to that of the standard model fol-
lows automatically, then that level of physicality is assured
because the Lagrangian �density� which takes the form

L����x�,�����x�� = ������x��������x��

−
1

2
m2���x����x� −

�

4
����x����x��2

�2�

is written in terms of fields ���x�.
At the same time, though, the manner in which the

SU�3��SU�2��U�1� gauge group structure arises also es-
tablishes that the analogy between gauge transformations and
covariant transformations under general reference frame
transformations is exact. The similarity has been noted be-
fore, but the usual contention is that the analogy breaks down
due to the lack of an underlying field.10 This discussion dem-
onstrates that an underlying field does exist and is the same
in both classes of transformations. Thus, since one demon-
strates that the underlying field is the same for both classes
of transformations and that the analogy between the two
classes of transformations—namely, gauge transformations
and covariant transformations under general reference frame
transformations—is exact, these two classes of transforma-
tions must be equivalent physically. This is not just a math-
ematical nicety, but has direct physical consequences. Once
the physical equivalence between gauge transformations and
covariant transformations—under general reference frame
transformations—has been established, one can to some de-
gree interchange covariant and gauge transformations. They
then constitute two manifestations of the same thing. One
demonstrates this usage of a covariant transformation in lieu
of a gauge transformation with the Dirac equation2,8—as
modified to accommodate fields ���x�—in order to develop a
previously unrecognized mechanism for CP violation.
Namely, from the viewpoint of a comoving observer, mean-
ing an observer at rest with respect to local expansion of the
vacuum,8,11 a point expanding away from the observer is
boosted by the process of expansion; this nonconstant boost
frees �potential� energy from the vacuum which then pro-
duces field/particle excitations. However, in violation of CP
symmetry, according to which field/particles and antifield/
particles interact similarly, only field/particles are excited in
this process.

Discussion begins with a rigorous definition of four-
indexed fields. Next comes a note on the nature of a general
but unspecified spacetime and/or field-space metric2 g��, the
existence of which is assumed throughout. The exact physi-
cal nature of this hypothetical metric g�� in the present dis-
cussion remains in general unspecified except that four-

indexed fields ���x� couple to it in the sense that the
coordinate index � on a field ���x� can be lowered and then
again raised by means of that metric field. The fundamental
notion of the discussion is to demonstrate a theorem that, if
one can define a metric g�� which couples with four-indexed
fields ���x�—however, this may be done,— then association
of the familiar SU�3��SU�2��U�1� standard model gauge
group with four-indexed field ���x� follows automatically,
regardless of the governing field equation. After these pre-
liminaries, the treatment of gauge symmetries and
transformations8,13 begins, starting with a general treatment
of gauge symmetries in the absence of a specific field equa-
tion. A gauge condition is constructed from conservation of
probability, which is then shown to be equivalent to the usual
discussion based on the Lagrangian2 which in turn is based
on path integral formalism.14 This lays the groundwork for
addressing specific gauge symmetries. First, the U�1� gauge
symmetry8 is constructed from the physical arbitrariness of
the placement of the origin; this symmetry is related to a
global �constant� reference frame transformation. Second, the
SU�2� gauge symmetry8 is constructed from analytic �or ho-
lomorphic� conditions15 on a four-index spinor field ���x� in
either spacetime or a metricized field space. This leads to
incidental treatment of massless and massive fields, symme-
try breaking and field handedness; these issues8 are sugges-
tive concerning the nature of leptons and quarks or hadrons.
The usual covariant derivative8 is constructed and shown to
be a true covariant derivative. Only fields which are massive
even without symmetry-breaking effects8 �aside from the ac-
tion of a Higgs8,16 field� are subject to SU�3� gauge symme-
try which is constructed in connection with velocity-related
degrees of freedom. Again, the usual covariant derivative8 is
constructed and shown to be a true covariant derivative.12,1

This formalism is then applied in order to explain a pre-
viously unrecognized mechanism by which particles may be
produced in the process of vacuum expansion without at the
same time producing antiparticles, thus breaking CP symme-
try. Specifically, one first modifies the Dirac equation accord-
ingly and interprets this field equation in terms of a simple
harmonic oscillator �SHO�.17 One then uses the SU�3�
�SU�2��U�1� gauge group symmetry properties to con-
struct an external potential V�

��x� related to reference frame
transformation. The resulting field equation, which corre-
sponds to a driven oscillator, is applied to an expanding
vacuum; expansion drives the harmonic oscillator exciting
field/particles in the process without exciting antifield/
particles.

II. CONVENTIONS

Throughout this discussion, one uses natural units in
which �=c=1. The summation convention used assumes re-
peated indices summed upon unless otherwise stated. Greek

1Although a classical metric does not simply carry over in general to a
quantum field theoretical context, such a classical metric does physically
serve as the classical limit of any hypothetical metric which is definable in
a quantum field theoretical context. Definition of the usual classical metric-
space, including the metric and covariant derivatives, associated with gravi-
tation can be found in Ref. 12.
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indices range from 0 to 3. Roman indices range from 1 to 3
when capitalized. The spacetime position x� is however most
often written as x, in which the index has simply been sup-
pressed. States, in general bras ��� and kets ���, are con-
stants. Finally, the spacetime signature throughout this dis-
cussion is taken as �	,
,
,
�.

III. GAUGE AND COVARIANT TRANSFORMATIONS
FOR FOUR-INDEXED FIELDS REF. 18

A. Nature of four-indexed fields

A four-indexed spinor field ���x�, which should not be
confused with Dirac spinor notation,8 is defined to have four
components, one timelike component �0�x� and three space-
like components �1�x�, �2�x�, and �3�x�. Each component is
itself a spinor in the same sense that each component of a
vector is itself a one component vector, not a scalar. The
index � is thus a coordinate index. In principle, the timelike
field component �0�x� lies along a differential timelike coor-
dinate axis dx0, the spacelike field component �1�x� similarly
lies along a differential coordinate axis dx1 and so forth. The
existence of such differentials is implicit in the existence of a
metric field.12 Naturally, restrictions of simultaneous
measurability8,17 come into play. The result is that although
the field ���x� is well-defined, one cannot in principle treat
its components entirely separately. A field ���x� with a co-
ordinate index � cannot be resolved into four independent
fields.

A four-indexed field ���x� is in general defined by the
specific associated field equation. Nevertheless, if one as-
sumes that any given field equation written in terms of a
four-indexed field ���x� has an analogous, i.e., physically
equivalent �within certain restrictions developed immediately
below�, field equation written in terms of a conventional �un-
indexed� field ��x�, any four-indexed �spin-1

2 � field ���x� can
be constructed from a physically equivalent field ��x�, the
solution of some general field equation, in the following
manner. Just as the field ��x� can be written as a linear com-
bination of free fields �n�x� of the form2

��x� = an�n�x� � an exp�− ikn�x�� , �3�

where wave vector kn�, where integer n� �−� ,��, represents
the four-momentum of the nth field component in Hilbert
space. �See the discussion of vectors below, according to
which the second index of vector linear four-momentum is
dropped to construct a spinor “wave vector.” This means the
vector is diagonalized and mapped onto a spinor.� The physi-
cally equivalent field ���x� can be written as a similar linear
combination of the form

����x�� = an�
� ��n

��x�� �
an�

�

2 	
exp�ikn0x0�

exp�− ikn1x1�
exp�− ikn2x2�
exp�− ikn3x3�



�

. �4�

�The factor 1
2 is a normalization.� The field ��x� in a sense

represents8 the probability �amplitude� that the particle asso-
ciated with that field will occur at the spacetime location x.
So does the field ���x�; this is what is meant by saying that
the two fields ��x� and ���x� are physically equivalent. In
terms of probability �amplitude�, the field representation ��x�
takes the form of the multiplicative total probability �ampli-
tude� of four events which must simultaneously occur in or-
der to produce a physically observable particle, whereas the
field ���x� represents the total probability �amplitude� of the
same four simultaneous events in terms of a superposition.
Representation of the total probability �amplitude� of simul-
taneous events as a product or a superposition remains an
arbitrary choice based upon convenience when applied to
any given physical situation. Definition of the proper frame
of reference for any given field ���x� follows immediately
from the definition. This is the frame of reference in which
the three spacelike field components vanish and the field
becomes entirely a function of the proper time . The field
then reduces to the form

�proper
� �x� � an

� exp�− ik0nproper�

� ��proper�� , � = 0

0, � � 0.
� �5�

The timelike field component �proper
0 �x�, which again is itself

a spinor, becomes in the proper reference frame the field
solution �proper��, i.e., the solution in the proper reference
frame of the general field equation which does not relate to
four-indexed fields ���x� but rather to fields ��x�. The physi-
cally equivalent equation for unindexed field ��x� should
then be viewed as a special case of the field equation for field
���x�, namely the case where one considers a rest frame—
meaning a reference frame physically equivalent to the
proper frame of reference—so that the metric g�� becomes
the Minkowski metric ���.

The spinor nature of indices does not present a problem
of definition in general. One may always choose coordinates
so that a classical spacetime position vector

�xA� � 	
x0

x1

x2

x3

 �6�

becomes replaced by a vector

�x�
�� � 	

x0 0 0 0

0 x1 0 0

0 0 x2 0

0 0 0 x3

 . �7�

The second index on vectors would seem artificial, except
that it both lends itself to cases such as the quantum Hall

2This is fundamentally a Fourier series representation and physically de-
scribes a superposition of free fields.
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effect19 in which linear four-momentum becomes direction-
ally dependent and provides the correct transformation prop-
erties. Even the physical utility of the latter taken alone
should not be underestimated. The distinction between a vec-
tor such as a vector current density

�j�
�� � 	

j0 0 0 0

0 j1 0 0

0 0 j2 0

0 0 0 j3

 �8�

and an axial vector8 current density such as

� j̃�
�� � 	

j̃0 0 0 0

0 0 j̃1 0

0 0 0 j̃2

0 j̃3 0 0

 �9�

becomes transparent. Some arbitrariness exists in these defi-
nitions but this does not pose a difficulty so long as defini-
tions remain consistent.

From a practical stand-point therefore, in order to con-
struct basis fields �n

��x� as described above, one uses the nth
linear four-momentum basis, i.e., wave vector kn�

� , and the
spacetime position vector x�

� to which the field space is tan-
gent, eliminating the index � after applying the exponential
operator. Summation with an appropriate constant C� on in-
dex � accomplishes this latter as

�n
��x� � expikn�

� x�
��C�, �10�

where the exponential is defined by its Taylor series repre-
sentation and where the first term in the series representation
of basis field �n

��x� is defined as

�kn�
� x�

�C�� = 	
kn

0 0 0 0

0 − kn
1 0 0

0 0 − kn
2 0

0 0 0 − kn
3

	

x0 0 0 0

0 x1 0 0

0 0 x2 0

0 0 0 x3



�	
1

1

1

1

 . �11�

Other terms in the summation are defined accordingly. From
these basis fields �n

��x�, one constructs fields ���x� as indi-
cated above �4�.

B. Note on the metric

As stated in the introduction, the present discussion pre-
sumes the existence of some general but hypothetical metric
g��, the nature of which remains unspecified. The only as-
sumptions thus made are that the form of the metric g�� may
in any given reference frame vary from that of the
Minkowski metric ��� where

����� � 	
1 0 0 0

0 − 1 0 0

0 0 − 1 0

0 0 0 − 1



and that this metric g�� couples to a four-indexed field ���x�
in the sense that the metric acts as a raising and lowering
operator12

���x� = g�
����x� = g�����x� = g��g�����x� . �12�

The physical meaning and definition of such a metric g��

constitutes an issue which would require a full discussion in
and of itself.20,3 For the present purposes, one need only
imagine either the existence of some hypothetical field-space
g�� or a spacetime metric so defined that the metric g�� may
contract both four-indexed spinors and four vectors. The lat-
ter apparently simpler possibility would use the fact that any
given field space is tangent to spacetime at some position x
and would use the general metric g�� associated with that
spacetime position. Nevertheless, however, the metric g��

may be defined, the current discussion assumes primarily
that such a general metric g�� exists. Given its existence, the
metric in lowered form g�� or in raised form g�� and mixed
form g�

� then acts as a raising and lowering operator and as a
contraction operator

����x������x�� � �0���
†�x�����x��0�

� �0�g���†��x�����x��0� . �13�

C. Symmetry of fields ��
„x… and conservation of

probability

If one allows the metric g�� to be fully general, then in
order to transform fields ���x� from one reference frame
representation to another, one must expand upon the usual
homogeneous Lorentz group to the full Poincaré group12

where one still defines transformations of the form

����x� = ��
��x����x� , �14�

but the transformation operator ��
��x� now may include lo-

cal, i.e., position dependent, transformations due to the fact
that the metric g�� in principle also depends on position. The
field-gradient therefore becomes

������x� = �����
��x�����x� + ��

��x������x� . �15�

No field equation has been specified and so one may not
follow the usual procedure of direct substitution into the field
equation in order to establish gauge invariance.8 However,
one may instead invoke conservation of probability. The
probability P�����x� ��� of observation of a field event
����x� in a given region � takes a form

3The notion behind the use of a metric in association with quantum fields
would most likely be a geometrized form of the standard model. Although
the nature of such a metric formulation of the standard model lies beyond
the purview of the present discussion, a geometric view of the standard
model is not a new idea. See Ref. 20.
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P�����x���� � �0��
�

d3x���
†�x�a����x��0� , �16�

where a is a constant operator �such as Dirac’s �0 for ex-
ample�. Since the four-gradient �� is a Hermitian operator,
conservation of probability demands

������
†�x�����x�� = 0. �17�

One can always choose a reference frame where4

������x� = 0. �18�

This demands, however,

�����
��x�����x� + ��

��x������x� = 0, �19�

as well. Expression �19� acts as a gauge condition. This
gauge condition �19� is identically that condition associated
with gauge transformations constructed with respect to a La-
grangian �density� L, which8 is sufficient to demonstrate that
the transformations described below constitute gauge trans-
formations. Admittedly, in principle this condition may or
may not leave equations of motion invariant, depending on
one’s choice of a field equation and hence a Lagrangian L,
but Lagrangians for which the equations of motion are not
invariant under this type of gauge transformation are non-
physical.

Conservation of probability constitutes the more funda-
mental consideration. For the present purposes, one need not
go into great depth and detail of the technicalities, but a short
description will help to address any doubts that the transfor-
mations to be discussed do indeed constitute gauge transfor-
mations. The usual form of the symmetry demanded8 is

L������x�� = L����x�� − ���J�, �20�

where the parameter � is some constant and J� is defined as
some conserved Noether current. Yet, this is a condition
more strict than necessitated by a demand that the equation
of motion

��

�L����x��
�������x��

−
�L����x��

����x�
= 0 �21�

remain invariant. For example, a Lagrangian scaled by some
constant b such as

L������x�� = bL����x�� − ���J� �22�

would also leave the equations of motion invariant, since the
scale factor would cancel. Yet, such a transformation is in-
deed physically precluded as a valid symmetry. The reason is
usually stated as that scaling of the Lagrangian leads to scal-
ing of the action8

S����x�� � � L����x��d4x , �23�

by definition. From a physical point of view, one may ask
why this scaling of the action is a problem. The answer lies

in the connection between the action and probability ampli-
tude, as most clearly shown in the construction of path
integrals.14 In the standard formulation, propagation of a
field/particle with Hamiltonian H from a position xa to a
position xb in time t is described by a propagation amplitude

�xb�exp�− iHt��xa� =� Dx�t�expiS����x��� , �24�

where the specific nature of the Feynman propagator Dx�t�,
other than to notice it involves only repeated integration,
does not matter for the present purposes. The Feynman
propagator Dx�t� can be ignored. What does matter is the
implicit but clear relationship between probability amplitude
and the action S����x�� in this quite general expression. Con-
versely, if probability is conserved, the action must be invari-
ant due to the above expression. If the action S����x�� is
invariant, then the remainder of the usual construction of
gauge invariance must follow. So, conservation of probabil-
ity does indeed form a foundation on which to construct
valid gauge symmetries; therefore, the transformations to be
described are actual gauge symmetries.

Nonetheless, they are constructed from reference frame
transformation12 of fields. Under this topic comes covariant
derivatives

D����x� = �����x� − �����
��x�����x� , �25�

such as those familiar from the usual discussion of gauge
symmetries. One difference exists however. Usually, one
speaks of “so-called” covariant derivatives which are not in
the strict sense of the term regarded as actual covariant
derivatives.8 Mathematically, a covariant derivative is de-
fined as a generalized derivative ��→D� which keeps a lo-
cally constant field, such as the field ���x� where �����x�
=0, constant with respect to the defined covariant derivative
D� regardless of position x at which one takes the
derivative.12 Classically, covariant derivatives are by conven-
tion associated only with gravitational fields. Nevertheless,
the covariant derivatives associated with quantum fields in
the current discussion are constructed to be invariant under
reference frame transformation. This is the defining charac-
teristic of actual physical covariant derivatives. Therefore, in
the present discussion, one constructs actual covariant de-
rivatives as one simultaneously treats gauge symmetries, and
this is the case even though these gauge symmetries are not
in and of themselves associated with gravitational fields in
any way. Admittedly, the general form of the metric g�� may
be associated with a gravitational field, which may in turn
have an effect on the specific nature of the transformation
operator ��

��x�, but this fact is irrelevant to the general nature
of the symmetries involved because the general form of the
metric g�� may also not be associated with a gravitational
field.

In principle, four classes of gauge transformations exist
because transformations can be either global or local and
either Abelian or non-Abelian.8 In reality, this reduces to
three classes because global non-Abelian transformations,
i.e., those involving global rotations, can be reconstructed in

4This does not require a massless field ���x�, although m2= P�P� and the
four-momentum operator is generally P�= i��, because by definition four-
momentum P� vanishes in the proper frame of reference.
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principle as Abelian transformations,5 although this is not
necessarily a simple procedure. However, local rotations can-
not in general be deconstructed into Abelian transformations.
One therefore proceeds to construct the U�1�, SU�2�, and
SU�3� symmetries from geometric and topological consider-
ations to show that these respectively correspond to global
Abelian, local Abelian, and local non-Abelian gauge
transformations.8

D. Origin of U„1… symmetry

Construction of the U�1� group symmetry for fields
���x� begins with construction of an effective trajectory or
world line. Of course, propagation of fields does not occur
along a single unique path, nor is such a situation necessary
in order to construct such an effective trajectory. Rather, one
makes use of expectation values; defined in terms of the
isotropic vacuum state �0�, one writes the expectation value
�A� of some Schrödinger picture �physical� operator A or
Heisenberg picture �physical� operator A�x� as

�A� � �0����x�A���x��0� � �0�A�x��0� . �26�

One then uses the expectation value of the four-momentum
operator P�

� �in which the second spacetime index reflects the
possibility of a directional dependence of the four-
momentum as noted above19� to construct as effective trajec-
tory X�

� associated with a field ���x�. For purposes of clarity,
one uses coordinates which allow one to diagonalize these
vectors and so suppress one index; this can always be done
for nonpathological topologies. For massive fields �of mass
m�, topologically definable as fields for which four-velocity
�tangent� ���g0

�, one obtains a differential equation with
respect to proper time  as

�P�=�
� � = m

dX�=�
�

d
. �27�

For massless fields, one must use an alternate proscription
such as

g�=�
� =

dX�=�
�

d
. �28�

In either case, one solves for the effective trajectory X�=�
�

using a boundary condition of the form

X�=�
� � = 0� � x�0�

� . �29�

One could equally as well have constructed such differential
equations for each physical path and summed over all pos-
sible paths, but this is by definition equivalent.

The U�1� group symmetry arises from the arbitrariness
of the boundary condition. Different choices of boundary
conditions lead to a relative phase

�� � k��x�0�
� − x�0���� , �30�

no summation on index �, when applied to the definition of
fields ���x� above. In terms of the inhomogeneous Lorentz

group,12 this U�1� symmetry describes the relative displace-
ment of the origin. Such a displacement of the origin repre-
sents a global transformation

����x� = ��
����x� � exp�− i������x� , �31�

with again no summation on index �. The transformation
operator ��

��x����
� is constant, i.e.,

����
��x� � �� exp�− i��� = 0, �32�

and so the gauge condition �19� established above is trivially
fulfilled. The generator of the group is the phase �� itself.

E. Origin and implications of SU„2… symmetry

The SU�2� group structure associated with electroweak
interactions8 arises in an interesting but related context, that
of analytic �or holomorphic� conditions.15 In any frame of
reference other than the proper frame, the spacetime position
x �a parameter of the configuration space as usual� has at
least two components, one timelike component and at least
one spacelike component. The same is therefore true of the
field ���x�. This leads to analytic �holomorphic� restrictions
exactly analogous to Cauchy–Riemann restrictions on a com-
plex function in complex space because a �1-1� mapping ex-
ists between a spacetime manifold of the form M~�R3 and
a hypercomplex manifold �with three imaginary axes� of the
form C~R�I3. Using the effective trajectory �described
above Eqs. �27�–�29�� X�=�

� ����x��—a functional of the as-
sociated field—to define coordinates such that two spacelike
indices vanish �arbitrarily chosen as x2 and x3�, these restric-
tions reduce to the form

��0�x0�
�x0 =

��1�x1�
�x1 , �33�

��0�x0�x1��
�x1 = −

��1�x1�x0��
�x0 . �34�

�One must treat spacetime coordinates in the second expres-
sion �34� as functionally dependent in order to define the
derivatives.� For basis fields �n

��x�, defined by Eq. �4�, these
restrictions can be combined into the form

��
�n

0�x0�
�n

1�x1��2

= 1. �35�

This leads to basis fields of the form

��n
��x�� = �

�n

�2
��1

1
��

, �36�

where �n=�n
0�x0� for operators of the form O=O�x0� and

�n=�n
1�x1� for operators of the form O=O�x1�. Components

�n
2��n

3�0 have been suppressed. The overall minus sign is
used for antiparticles.

5This is equivalent to saying that one may construct mutually independent
coordinates in flat space.

6 Phys. Essays 22, 1 �2009�

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517



One should notice that the overall factor �n makes the
field �n

��x� remain a spinor, not a vector, because the com-
ponents of the field �n

��x� transform as single-component
spinors; the overall transformation properties of the field
�n

��x� are therefore those of a multicomponent spinor. To
understand this, one ought recall that components of an or-
dinary vector transform as one-component vectors, not truly
as scalars. One just functionally treats them as scalars in
most cases. Nevertheless, a choice of coordinates so that
some arbitrary vector becomes a one-component vector does
not fundamentally change that vector’s transformation prop-
erties. Similar reasoning applies in this instance as well.

The bases � �1
1

� may look familiar as eigenvectors of the
Pauli matrices,15 which ought be no surprise due to the as-
sociation of these matrices with intrinsic spin-1

2 fields.8 For
convenience �both physical and mathematical as will be
seen�, these bases can be rotated to new bases

�1

0
� =

1

2
�− 1 1

1 1
��− 1

1
�, �0

1
� =

1

2
�− 1 1

1 1
��1

1
� .

�37�

Consequently, any general field ���x� can be written as a
linear combination of such bases

����x�� = � exp�−
i

2
a�M

� �M��p

n
��

= � exp�−
i

2
a�M�� �M��n − p

n + p
��

, �38�

for which parameters p and n may for now be regarded as
arbitrary. The resemblance of the former to isospin bases8

will be seen however to be purposeful, as that physical basis
can be regarded as one form these bases may take.

If one considers this SU�2� symmetry from the view-
point of symmetry-breaking, one notices a fundamental dif-
ference between bases � 1

1
� and � −1

1
�. Under inversion of axes,

i.e., x0→x1 and x1→x0, these bases are, respectively, sym-
metric and antisymmetric. These are not, respectively,
bosons and fermions in this case, since the linear combina-
tion must ensure the transformation properties of the field
���x� remain the same. Nevertheless, clearly two fundamen-
tal classes of basis fields have arisen. The exact symmetry
between spacelike and timelike components remains for ba-
sis fields �n

��x�� � 1
1
�, but this same symmetry has as clearly

become broken for basis fields �n
��x�� � −1

1
�. When one con-

siders the field components of basis fields �n
��x� simply as

two separate fields, some physical consequences of this sort
of symmetry breaking are well-known in that this class of
physical situation is usually associated with the construction
of massive gauge bosons.8 So, in the case of massless fields,
the symmetric basis field �n�

��x�� � 1
1
� remains massless, but

the antisymmetric basis field �n
��x�� � −1

1
� does not. In fact,

any arbitrary equation of motion must compensate for the
latter’s components’ difference of sign. Therefore, if the field
were chargeless before symmetry breaking, it acquires

charge.6 If the field were charged, the same reasoning leads
to a difference in charges. Again, in the case of fields which
are massive before symmetry breaking, the two classes of
fields acquire a mass difference.

This situation corresponds exactly to the doublets � e−

�e
�,

etc., for leptons, � p+

n0 �, etc., for baryons and � d
u

�, etc., for
quarks.8 One therefore defines leptons in this description as
fields which are massless before any symmetry-breaking ef-
fects. Hadrons are associated with fields which are massive
even before symmetry-breaking effects. The intrinsic mass of
hadrons may be associated with the binding energy of
quarks, which are themselves intrinsically massless apart
from symmetry-breaking effects. Quark and hadron fields are
however discussed in more detail in the construction of the
SU�3� symmetry below.

In a sense, however, an element of arbitrariness exists in
the identification of basis vector � 1

1
� with the neutral leptons

and hadrons or the charge + 2
3e quarks and of basis vector

� −1
1

� with the charged leptons and hadrons and the charge
− 1

3e quarks. One could have as easily reversed the associa-
tions, whatever may be the aesthetic reasons for the conven-
tion chosen. If standard usage had chosen to also use left-
handed coordinate systems rather than only right-handed
coordinate systems, one could relate coordinate systems of
differing handedness by the transformation x0→−x0, the
spacelike component remaining untransformed. Then the ba-
sis vectors would reverse � �1

1
�→ � �1

1
�. Physically, from the

reference frame of a charged field/particle, an uncharged
field/particle is charged and of course vice-versa. Therefore,
one includes this type of “handedness” in the definition of
any frame of reference. A massless field with unbroken sym-
metry �a neutrino� can only have contributions from one
class of basis fields and so it must have a single, unique
handedness, in spite of arbitrary standard usage left-
handedness. Handedness of massive fields, even with unbro-
ken symmetry, can always be viewed from a boosted frame
of reference such that a momentum vector, for example, par-
allel the spacelike axis becomes antiparallel, which is
equivalently a change of handedness.8 Finally, antifield/
particles, as equivalent to negative energy solutions, have in
a sense “flipped” the timelike axis �i.e., x0→−x0� and so
would have opposite handedness. This only has especially
meaningful consequences for the massless antifield/particle
with unbroken symmetry, the antineutrino, since only the
neutrino of the ordinary field/particles has a unique handed-
ness. Thus, all antineutrinos must be right-handed since all
neutrinos are left-handed, as is observed.8

If one returns to the above-mentioned representation of
the field ���x� in form

6This view associates charge with both a sign-dependent deflection of a
field/particle from the effective path of a similar neutral field/particle under
certain conditions and association of this deflection with a term in the field
equation. This type of field term would be analogous to the classical Lorentz
term in the geodesic equation associated with a charged classical particle. In
the standard model, this type of field term would be a charge coupling term.
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����x�� = � exp�−
i

2
a�M

� �M��p

n
��

, �39�

from Eq. �38�, one may notice that setting �=1 implicitly
selects a certain class of field as the only class of field to
which the resultant expression then applies. Use of the nucle-
onic isospin basis8

����x��nucleonic isospin = exp�−
i

2
a�M

� �M��p

n
� �40�

excludes fields which cannot be represented as a superposi-
tion of nucleons. Isospin is thus only one manifestation of a
more general type of symmetry.

One can also use the general form above to define a
transformation

����x� = exp�−
i

2
a�M

� �x��M����x� . �41�

The coefficients a�M
� �x� must be local, i.e., dependent on

spacetime position x, because the symmetry relates to ana-
lytic �holomorphic� conditions which are intrinsically local
conditions. No rotations of spacetime coordinates are in-
volved in satisfying analytic �holomorphic� conditions and so
the transformation operator

��
��x� � exp�−

i

2
a�M

� �x��M� �42�

and its generator

f�
��x� �

1

2
a�M

� �x��M �43�

must be Abelian. To satisfy the gauge condition above, one
must therefore construct an associated covariant derivative.

As usual,8,12 a covariant derivative operator D� is de-
fined to replace an ordinary derivative operator ��. There-
fore, one demands definitions

D����x� = �����x� − �����
��x�����x� , �44�

D���
��x� � ����

��x� , �45�

so that the product rule expression

�D���
��x�����x� + ��

��x�D����x� = 0 �46�

reduces to the original untransformed condition

�����x� = 0 �47�

stated above Eq. �18�. One can associate the covariant de-
rivative D� with the photon field A��

� and charge q in the
usual manner8 so that

����
��x� = iqA��

� . �48�

The two seemingly additional indices are added to the pho-
ton field A��

� , as opposed to the more familiar form of the
photon field A�, in order to allow coupling with the four-
indexed field ���x�.

F. Origin and nature of SU„3… symmetry

Fields which are massive also differ in one clearly fun-
damental respect from massless fields; they have velocity
related degrees of freedom, whereas for massless fields ve-
locity ��=g0

�. In the case of leptons, although half of these
acquire mass in symmetry breaking, one may always choose
a field-space reference frame in which that particular lepton
remains massless as discussed above, and so these degrees of
freedom are not physically significant in most respects. In-
deed, except for artifices due to arbitrary choice of frame of
reference, leptons can always be treated as massless field/
particles, i.e., in the chiral limit,8 by definition in the pro-
posed description. For massive fields however, velocity ��

�g0
� represents true degrees of freedom. Therefore, one may

describe massive fields ���x� in terms of a functional depen-
dence

���x� = ���x,�M�x�� . �49�

Since the component �0 is a constant at any spacetime loca-
tion x, this effectively leads to dependence on only the space-
like components of velocity ��. In an exact analogy with the
procedure described above, Eqs. �3� and �4�, in which one
constructs field ���x� from field ��x�, one constructs a field
��M�x� from field ���x�, for which the index M describes the
dependence on the spacelike components of velocity ��,
namely �M. Explicitly, one writes the field �M

� �x� for velocity
�M nonuniaxial as

��M
� �x�� � an�M

�N ��nN
� �x�� � an�M

�N 	
exp�− im�1nx0� exp�− im�2nx0� exp�− im�3nx0�
exp�− im�1nx1� exp�− im�2nx1� exp�− im�3nx1�
exp�− im�1nx2� exp�− im�2nx2� exp�− im�3nx2�
exp�− im�1nx3� exp�− im�2nx3� exp�− im�3nx3�



N

�

. �50�

The index M lends itself to interpretation as a field-index, specifically an index among three fields constituent to the total
observable field ���x�. However, whenever the velocity �M is uniaxial, mathematically Fourier series representation or
physically ordinary quantum mechanical considerations demand a superposition of the form
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��M
� �x�� �

an�M
�1

�2 �	
exp�− im�1nx0�
exp�− im�1nx1�
exp�− im�1nx2�
exp�− im�1nx3�



1�n�0�

�

+ 	
exp�im�1nx0�
exp�im�1nx1�
exp�im�1nx2�
exp�im�1nx3�



1�n�0�

�

+ 	
exp�− im�10x

0�
exp�− im�10x

1�
exp�− im�10x

2�
exp�− im�10x

3�



1�n=0�

�

� . �51�

This is a superposition of a field/particle, its antifield/
particle, and its vacuum field.8 Such a decomposition of a
general field ���x�, respectively, into particle �n

��x�, antipar-
ticle �−n

� �x�, and vacuum �n=0
� �x� field contributions

���x� = an�
� �n

��x� = �n
��x� + �−n

� �x���n�0� + �n=0
� �x� �52�

applies to any species of field, not just quarks. �One may
notice that the vacuum field �n=0

� �x� remains in general both
nontrivial and even in principle nonisotropic.� Therefore, ob-
servable intrinsically massive fields �i.e., hadrons� come in
two varieties, those made up of three constituent fields which
are mutually orthogonal and those made up of two constitu-
ent fields, a field/particle and its antifield/particle. The ob-
servable field/particles are respectively defined as baryons
and mesons, the constituent field/particles �each Mth compo-
nent of the field ��M�x� for baryons and partial sum ��n�0�

�M �x�
for mesons� which are not independently observable are de-
fined as quarks.

The usual SU�3� symmetry8 arises from rotations in the
�spacelike� velocity three-space and so any field ��M�x� can
be written as a superposition which is represented in matrix
form as

���M�x�� = � exp�−
i

2
bN

M · ��K
�N�	r

b

g



�K

. �53�

Transformation among such fields ��M�x� then must take the
form

���M�x� = exp�−
i

2
bN

M�x� · ��K
�N���K�x� , �54�

where �N
K takes the form of the usual gluon-associated SU�3�

basis matrices.8 The color labels red, blue, and green there-
fore label directions in the �spacelike� velocity three space,
but such labels remain arbitrary and so the choice of color
labels do also. The associated group SU�3� is non-Abelian,
since the group geometrically represents rotations in a Eu-
clidean three-space which are of course non-Abelian. In prin-
ciple, a caveat should, however, be associated with this dis-
cussion. A velocity-associated three space constitutes a
subspace. To contract three vectors, one must in principle

define the timelike component for three vectors to be identi-
cally zero and use a metric g�� written in terms of spacelike
axes labeled red, blue, and green. Nevertheless, no physical
reason precludes the choice of coordinates so that red, blue,
and green axes form a Euclidean basis, and moreover no
apparent advantage is associated with not doing so. The ca-
veat therefore does not really apply.

Again, in order to satisfy the original gauge condition
�19�, one must replace the ordinary derivative by a covariant
derivative

D����x� = �����x� − �����
��x�����x� , �55�

D���
��x� = ����

��x� . �56�

The essential part of the generator of the symmetry
1
2bN

M�x� ·��K
�N is the matrix ��K

�N, which may itself loosely be
termed the generator. One then defines the gauge field B��

�

and coupling a �analogous to electrostatic charge q in quan-
tum electrodynamics� as

− iaB��
� � �� exp�−

i

2
bN

M�x� · ��K
�N� . �57�

The usual notation g for the coupling constant is avoided to
prevent confusion with the modulus of the metric. The com-
mutation properties of this gauge field and its generators are
as usually associated with QCD.

IV. THE DIRAC EQUATION, VACUUM EXPANSION,
AND SYMMETRY BREAKING

A. Nature of the example

In order to demonstrate the power and implications of
the above formalism, one applies that formalism to descrip-
tion of expansion of the vacuum, i.e., cosmic expansion.21 In
short, one considers two points in empty space, i.e., vacuum,
x0�t� and x��t�. Initially, at time t=0, these spacetime loca-
tions are not resolvable so that the separation

a�t� � �x0�t� − x��t�� �58�

has the boundary condition

a�t = 0� = 0. �59�

The separation increases with time so that

�0a�t�
a�t�

� 0. �60�

Similarly, the vacuum expansion rate, as per current physical
results,21 is accelerating so that cosmic acceleration is char-
acterized as

��0�2a�t�
a�t�

� 0, �61�

as well. This situation will be described using the Dirac
equation modified for four-indexed fields ���x� and inter-
preted as a harmonic oscillator. The process of expansion
drives this oscillator leading to the excitation of field/
particles.
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B. Dirac equation for four-indexed fields

Construction of the Dirac equation as modified for four-
indexed fields ���x� mainly requires algebra. A Lagrangian
for the Dirac equation has been formulated,2 but that La-
grangian was constructed to lead to the desired form of the
field equation, rather than the field equation deriving origi-
nally from it. So, to construct the form of the Dirac equation
for four-indexed fields ���x� in the absence of an external
potential, one uses the conventional Dirac equation

�i���� − m���x� = 0. �62�

One first factors each basis field �n�x�, in terms of which the
ordinary Dirac field ��x� takes the form

��x� � an�n�x� , �63�

to construct the field

���x� � an�
� �n

��x� . �64�

The additional indices introduced on the coefficients an�
� ,

with respect to an, allow components of basis fields �n
��x� in

principle to couple. Where one can apply separation of vari-
ables to the field ���x� directly, the coefficients an�

� �ang�
�.

In general though, one obtains the expression

�i	
�0�0 0 0 0

0 �1�1 0 0

0 0 �2�2 0

0 0 0 �3�3



�

�

− m�g�
�������x�� = 0,

�65�

if

��an�
� = 0, �66�

as is assumed to be at least locally valid. The condition
��an�

� =0 will always be true in some frame of reference and
since the coefficients are essentially arbitrary can always be
constructed to be true. When such a condition is fulfilled, the
nature of the field ���x� makes this equivalent to

�i	
�0�0 �0�1 �0�2 �0�3

�1�0 �1�1 �1�2 �1�3

�2�0 �2�1 �2�2 �2�3

�3�0 �3�1 �3�2 �3�3



�

�

− m�g�
�������x�� = 0,

�67�

which is more compactly written as

�i���� − mg�
�����x� = 0. �68�

If an external potential V�
��x� is present, one modifies this

expression to

�i���� − mg�
�����x� = V�

��x����x� . �69�

The form of potential may be V�
��x�=V�x�g�

�, but this may
not necessarily be the case. Also, the Dirac matrix operator
�� in these expressions has the well-known definition8

1

2
��,��� �

1

2
����� + ����� � g��, �70�

but here the metric g�� is general so that usual forms of the
matrices may serve of bases but not as general forms. Math-
ematically, one has constructed a completely equivalent field
equation, which when one lowers indices can also take the
form

�ig������ − mg������x� � �i���� − mg������x�

= V���x����x� . �71�

Physically, this modified Dirac equation couples the field
���x� with a general metric g�� explicitly and allows com-
ponents of the field ���x� to couple with the external poten-
tial V���x� independently.

C. Construction as a SHO

Because of the SHO’s association with a number
operator,7 transformation of the Dirac equation into a har-
monic oscillator facilitates discussion. If one defines a Her-
mitian generalized momentum operator

��
� = i����, �72�

the form of the Dirac equation above can alternately be writ-
ten quadratically as

���
� − mg�

��†���
� − mg�

�����x� = ���
���

� − m2g�
�g�

�����x�

= V�
�V�

����x� , �73�

subject to restrictions

��
���

� = m��
�, �74�

V�
�V�

� = mV�
�, �75�

a form which facilitates interpretation as a SHO.
The Dirac equation is a Lagrangian based expression, by

definition. If one defines a generalized Hamiltonian operator
H�

�, one writes the equivalent Hamiltonian expression

H�
�m���x� �

1

2
���

���
� + V�

�V�
� + m2g�

�g�
�����x�

�
V�

�

2
�a�

†�a�
� +

1

2
g�

�����x� �
V�

�

8
�N

+
1

2
����x� . �76�

One reads off from this creation and annihilation operators,
respectively,

a�
� �� m

V�
��g�

� +
1

m
�i��

� − V�
��� , �77�

a�
†� �� m

V�
��g�

� −
1

m
�i��

� + V�
��� . �78�

Definition of the number operator
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N �
a�

†�a�
�

4
�79�

is implied if one absorbs a constant into the characteristic
frequency ��

� �in natural units the energy of the �th field
component as measured with respect to the �th local coordi-
nate axis� as

��
� =

V�
�

2m
g�

�. �80�

In the usual manner,8 one is able to associate separate cre-
ation and annihilation operators with each field/particle by
treating these operators as functions of mass and linear four
momentum. Notably, these operators cannot be defined for
either zero mass or zero external potential. The former re-
striction m�0 is not problematic, even with respect to mass-
less neutrinos, because the symmetry associated with leptons
l and associated neutrinos �l described above implies an ef-
fective association of the lepton l’s mass with the neutrino �l.
This effective mass is physically a mass difference between a
lepton l and an associated neutrino �l. The latter restriction
V�

��0 coincides with the usual definition of the ground of
any field, i.e., as being the vacuum field. In short, in the
absence of an external potential, fields remain at ground and
therefore no particles are produced.8

D. Vacuum expansion as driving the SHO

One now returns to the specific physical problem at hand
namely vacuum or cosmic expansion. Initially, no physical
difference arises if one defines the origin of one’s frame of

reference at either position x0�t� or position x��t�, since the
initial separation a�t=0�=0 by definition. One chooses a ref-
erence frame with respect to position x0�t�. The governing
field equation

�i���� − mg�
�����x0� = 0 �81�

remains unchanged for position x0�t�. No external fields are
present with which a spin-1

2 field ���x� interacts as far as an
observer at position x0�t� is concerned. This is only initially
true for an observer at position x��t�; in general, the field
equation must be transformed, using the covariant derivative

D����x�� = �����x�� − �����
��x������x�� . �82�

The transformation operator ��
��x�� transforms from the ref-

erence frame with respect to position x��t� back to the posi-
tion x0�t��x0. Direct substitution of covariant derivative D�

for ordinary derivative ��, as required for covariant transfor-
mation, leads to the field equation

�i��D� − mg�
�����x0� = 0, �83�

�i���� − mg�
�����x0� = i�������

��x������x��

� V�
��x�����x�� �84�

at position x��t� as observed from position x0. As seen from
position x0, a potential exists at position x��t�. That potential
increases as the relative separation a�t� does because, as per
Hubble’s law,12 the relative velocity �0a�t� increases with
distance. At each given moment, an observer at position x��t�
can be described as having received a boost with respect to
an observer at position x0 so that the transformation operator
takes the form

��
��t,a�t��� =�

1 − ��0a�t��2�−1/2 − ��0a�t��1 − ��0a�t��2�−1/2 0 0

− ��0a�t��1 − ��0a�t��2�−1/2 1 − ��0a�t��2�−1/2 0 0

0 0 1 0

0 0 0 1
�

�

�

, �85�

in spherical polar coordinates �where angular coordinates x2 and x3 do not matter� with respect to position x0, but the amount
of that boost continuously increases. Accordingly, the four gradient of this transformation operator ����

��x�� takes the form

�����
��x��� = 	

1 − ��0a�t��2�−3/2��0a�t�����0�2a�t��
− ���0�2a�t���1 − ��0a�t��2�−1/2 + ��0a�t��21 − ��0a�t��2�−3/2�

0

0



�

. �86�

From this one constructs the potential

V�
��x�� � i������

��x�� �87�

as defined above �Eq. �84��.
The time-dependence of the number operator N can then

be determined from the expectation-valued expression

���x��0H�
����x� � ���x��0H���x� = ���x��0 V�

�

2m
�N

+
1

2
����x� , �88�

since the generalized Hamiltonian operator H is constant, by
definition. This leads to the operator expression
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�0N = −
��0V�

��
2V�

� , �89�

since initially no particles are excited so that one applies the
boundary condition N�t=0�=0. One assumes the operator ��

constant hereafter, since this has no effect on the physical
results; one may always describe spacetime as locally flat.12

The potential in this case leads to the trace of the potential as

V�
� = i

���0�2a�t��
1 − ��0a�t��2�1/2 ��01 − ��0a�t��2�−1��0a�t��

+ �1�1 + ��0a�t��21 − ��0a�t��2�−1�� . �90�

One will assume ��0�2a�t� constant as well, i.e., a time-
independent cosmic acceleration,21 so that the time depen-
dence of the trace of the potential becomes

�0V�
� = i���0�2a�t��21 − ��0a�t��2�−5/22�0��0a�t��2 + �0

+ 3�1��0a�t��� � 0. �91�

In this case, the trace of the potential V�
� takes the form of an

operator so that definition of the inverse operator �V�
��−1

would be long and tedious. However, one may notice that if
one defines operator

V�
� = i Im V�

�, �92�

then the imaginary portion Im V�
� of the operator V�

� is posi-
tive definite. The inverse of the operator Im V�

� must there-
fore also be positive definite but the factor i in the original
operator leads to a factor −i in its inverse; inverse operator
�V�

��−1 is negative definite. In short, the time dependence of
the number operator is positive definite as

�0N = −
1

2
�V�

��−1��0V�
�� =

1

2
��V�

��−1���0V�
�� � 0. �93�

As one expects with a driven oscillator, excitations are pro-
duced. In this case, those excitations are excitations of field/
particles. Excitation of antifield/particles would decrease the
expectation value of number operator N. Therefore, field/
particles must be excited in this process in greater numbers
than antifield/particles, in violation of CP symmetry.

V. CONCLUSION

The foregoing discussion has simultaneously constructed
gauge transformations8 and covariant transformations, under
general reference frame transformations,12 showing at each
step how each transformation under discussion can be de-
scribed as either class of transformation. The class of fields
���x� considered are defined as solutions of the form

����x�� =
an�

�

2 	
exp�ikn0x0�

exp�− ikn1x1�
exp�− ikn2x2�
exp�− ikn3x3�



�

�94�

to some general but unspecified field equation. The index �
on fields ���x� is a coordinate index in the sense that it is
raised and lowered by means of a metric field and that �
=0 denotes a timelike field component and �=1,2 ,3 denotes

spacelike field components. One assumes the field equation
to be physically meaningful, but no details of its form are
discussed. Conservation of probability is used to construct a
gauge condition

������x� = �����
��x�����x� + ��

��x������x� �95�

for any field transformation of the general form

����x� = ��
��x����x� . �96�

The field/particle interpretation of any field equation—as op-
posed to a single particle interpretation of that same
equation—necessitates a local reference frame transforma-
tion operator ��

��x�. The operator ��
��x� transforms the field

���x� not from the reference frame of one localized particle
to that of some other localized particle but from the reference
frame of one multiparticle field to that of some other multi-
particle field. In effect, the operator ��

��x� represents the set
of all possible transformations between pairs of all possible
field/particle excitations. Even within the class of rest
frames, the elements of such a set of transformations will
only be constant within a very restrictive set of physical cir-
cumstances.

Although no Lagrangian is specified, one has demon-
strated that this class of transformations, subject to the above
condition, does indeed constitute a gauge transformation.
The same condition above used as a gauge condition also
constitutes a condition for covariance. Thus, when one con-
structs a covariant derivative

D����x� � �����x� − �����
��x�����x� , �97�

D���
��x� � ����

��x� , �98�

this is an actual—not an effective—covariant derivative.
The first class of transformations considered above was

those where the transformation operator ��
��x�=��

� is con-
stant with respect to spacetime location x, termed global
transformations. This involves the usual U�1� gauge symme-
try associated with the arbitrary nature of the choice of a
coordinate system’s �reference frame’s� origin. The covariant
derivative is this case is trivial in that D����x�=�����x�
since ����

��x�=0. The generator of the symmetry group is
the phase �� in each �th field component ���x� associated
with displacement of the origin with respect to which one
describes fields ���x�. Only Abelian global transformation
operators need be treated because non-Abelian global trans-
formation operators, such as those involving rotations, can
be constructed from Abelian operators in the global case.

The second class of transformations remains Abelian but
allows the transformation operator ��

��x� to depend on
spacetime position x, so that the operator is locally defined as
discussed above. This leads, via analytic �holomorphic�
restrictions15 of fields ���x�, to the SU�2� symmetry most
familiar from isospin, but the symmetry is also used to con-
struct lepton doublets � l

�l
�. Essentially, analytic �holomor-

phic� restrictions lead to decomposition of fields ���x� into
superpositions of two classes of basis fields, with and with-
out symmetry breaking. These classes of basis fields are re-
spectively mappable as proportional to � −1

1
� and � 1

1
�. That

these matrices form a basis for the Pauli group15 should be
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no surprise. Particle handedness is viewed as a property of
the given field/particle or equivalently its proper frame of
reference. Similarly, determination of which form of field
���x� arises through symmetry breaking is associated with a
choice of reference frame. These properties are described by
the transformation operator ��

��x� where

����
��x� � −

i

2
��a�M

� �x��M�exp�−
i

2
a�N

� �x��N�
� iqA��

� . �99�

The additional indices on the photon field A��
� allow it to

couple with the field ���x�. The Pauli matrices �A should be
expected given the basis matrices delineated just above. The
covariant derivatives then becomes

D����x� = �����x� − iqA��
� ���x� , �100�

where the photon field A��
� takes the form

qA��
� � −

1

2
��a�M

� �x��M�exp�−
i

2
a�N

� �x��N� . �101�

The SU�2��U�1� gauge symmetry is associated with fields
���x� whether the field ���x� is massive or massless apart
from symmetry-breaking effects.

Only fields ���x� which are massive even apart from
symmetry-breaking effects truly possess velocity-related de-
grees of freedom. This can be shown in at least either of two
ways. One can argue from the fact that symmetry breaking is
a reference frame phenomenon but the speed of light �to
which massless field/particles are constrained� is constant in
any frame of reference. Then, since either excitation of the
field ���x�, i.e., either member of the SU�2� doublet, can be
seen as the portion that travels at lightspeed,7 neither can
possess true velocity degrees of freedom. Alternatively, since
the field ���x� possesses no velocity degrees of freedom
aside from symmetry-breaking effects, an excitation of the
field ���x� which “becomes” massive due to symmetry-
breaking effects cannot “gain” true velocity-related degrees
of freedom due to continuity restrictions. However, one ar-
gues the fact, only those fields which are massive even apart
from symmetry-breaking effects can possess velocity-related
degrees of freedom. �Specifically, this represents three de-
grees of freedom, since timelike velocity �0�1.� This veloc-
ity dependence allows one to functionally describe inherently
massive fields

���x� � ���x�,�N� . �102�

In a decomposition process similar to that by which one
constructed four-indexed fields ���x� from nonindexed but
physically equivalent fields ��x�, one constructs a field

��M
� �x,��� �

an�
�

2 	
exp�imx0�

exp�− im�nMx1�
exp�− im�nMx2�
exp�− im�nMx3�



�

where �� � 	
1

�

0

0

 , �103�

��M
� �x,��� �

an�
�

2 	
exp�imx0� + exp�− imx0�

exp�− im�nMx1� + exp�im�nMx1�
0

0



�

,

where �� = 	
1

�

0

0

 . �104�

These are, respectively, termed hadrons and mesons. Each
Mth component field �M

� �x ,�� represents a quark. This leads
directly to confinement because quarks are not constructed as
independent fields, only functionally independent fields. Al-
ternately, this leads to strict quark confinement because mass
m acts as a proportionality constant which relates velocity ��

and momentum P� as

P� = m��. �105�

Quarks fields are constructed parallel spacelike components
of velocity �� and therefore of momentum P�. If any one
quark could be physically separated to occur as an indepen-
dent physical event, one would be able to specify a hyper-
surface to which the remaining quarks are confined, but this
violates physical restrictions on simultaneous measurability.
Color labels the axes of velocity three-space so that chro-
matic transformations become rotations within a �Euclidean�
three space, leading to asymptotic freedom. Velocity how-
ever remains a local, i.e., spacetime position x dependent,
quantity. Thus, one obtains a local non-Abelian symmetry
which applies only to fields ���x� which are massive even
aside from symmetry-breaking effects, not to those fields
���x� which are intrinsically massless. On this basis the lat-
ter are identified with leptons, the former with baryons. The
usual covariant derivative, adapted for four-indexed fields
���x�, then applies

D����x� = �����x� − ��� exp�−
i

2
bN

M�x� · ��K
�N�����x�

� �����x� + iaB��
� ���x� . �106�

Gluons matrices ��K
�N take the usual forms. Again, this is a

true covariant derivative, not an effective one, for the same
reasons as in the case of SU�2� symmetry.

The significance of these results can be assessed at a few
levels. If one seeks immediate practical consequences with-
out looking for deeper implications, one finds that a certain

7By convention, electromagnetic effects are excluded from spacetime cur-
vature. Were this not the case, one could in principle define both charged
and uncharged photonlike events. In the proposed view of leptons, leptonic
field/particles are excitations of charged �and therefore in the conventional
view massive� photonlike field events.
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high degree of physicality �namely, the SU�3��SU�2�
�U�1� gauge group structure associated with the standard
model� is assured to any field theory consistently constructed
in terms of four-indexed fields ���x�. Thus, if one returns to
the example given in the introduction of a ��4 field theory
with Lagrangian

L����x�,�����x�� = ������x��������x��

−
1

2
m2���x����x� −

�

4
����x����x��2,

�107�

a driven quantum oscillator familiar from both Higgs theory
and statistical mechanics,9 one can immediately write down a
transformed Lagrangian

L������x�,������x�� = �D�����x���D�����x��

−
1

2
m2����x�����x�

−
�

4
�����x�����x��2, �108�

without any need to supply additional justification that this
Lagrangian has the gauge properties of the standard model
Lagrangian. �No primes are needed on the mass m and cou-
pling � because the modulus ���x����x�=����x�����x� is not
changed by transformation, since it is a scalar quantity.� Any
analytic field solution ���x� of the associated Euler–
Lagrange equation

����� + m2 +
�

2
���x����x�����x�

= �D�D� + m2 +
�

2
��� �x�����x������x� = 0 �109�

must transform in this manner, a constrain which acts as a
powerful tool when solving the associated field equation.
The difference of a factor 1

3 from the equation associated

with a Lagrangian L���x� ,����x�� for fields ��x� which are
not four indexed in the final term can in this case be ab-
sorbed into the coupling �, but this serves to illustrate an
important point; the equations of motion obtained when one
employs four-indexed fields ���x� may differ by more than
writing an index on each field.

At a more fundamental level, association of standard
model gauge symmetries with actual, rather than effective,
covariant derivatives D� eliminates one of the many techni-
cal difficulties which must be surmounted if anyone is to
ever construct an eventual physically meaningful quantum
theory of gravitation. Likewise, the demonstration that a
four-indexed field ���x� reduces to an unindexed but other-
wise physically equivalent field ��x� when restricted to rest
frames so that the metric g�� becomes the Minkowski metric
��� �as discussed above� suggests that any truly generally
relativistic quantum field theory must be written in terms of
four-indexed fields ���x�.

This formalism has been additionally clarified by the
consideration of the excitation of field/particles by expansion
of the vacuum using the Dirac equation.8 The Dirac equation
when modified for four-indexed fields becomes

�i���� − mg�
�����x� = V�

��x����x� . �110�

The form of the Dirac matrix operator ��, defined implicitly
as

1

2
��,��� �

1

2
����� + ����� � g��, �111�

varies when one allows a general form of the metric g��, but
the example used considers the vacuum as locally flat so that
one uses the Minkowski metric as usual. If one considers a
point x��t� expanding away from a fixed point x0 and sepa-
rated by a radius a�t�, one defines the potential with respect
to the stationary point vacuum so that

V�
��x0� = 0, �112�

but an observer at point x0 sees a nonzero and time depen-
dent potential

�V�
��x��� = i�����

1 − ��0a�t��2�−1/2 − ��0a�t��1 − ��0a�t��2�−1/2 0 0

− ��0a�t��1 − ��0a�t��2�−1/2 1 − ��0a�t��2�−1/2 0 0

0 0 1 0

0 0 0 1
�

�

�

�113�

at point x��t�, due to the relative motion of the two points.
Because both the relative velocity �0a�t� and relative accel-
eration ��0�2a�t� of the two points are positive quantities, in
accordance with the observed accelerating vacuum expan-
sion rate, field/particles are excited. In fact, in terms of a
number operator N, one finds that

�0N � 0. �114�

Field/particles are excited at the point x��t� in clear violation
of CP symmetry. This is similar to emission of a photon by
an electron due to wave spreading phenomena. The vacuum
state of the field ���x� spreads as the vacuum itself expands.
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This lowers the energy of the ground state of the vacuum, but
energy must be conserved. At some critical point, a particle
excitation of the field ���x� occurs because this spreading
lowers the excitation energy sufficiently. Clearly, this vio-
lates conservation of lepton and/or baryon number, but some
have suspected for some time that these quantities are not
strictly conserved. Indeed, if one assumes that the universe
started out as vacuum, some process or processes must exist
which violate particle number conservation laws quite badly.
This process for field/particle production does just that.
However, a physical process of this sort could only be rec-
ognized if one establishes the physical equivalence of gauge
transformations and covariant transformations, under general
coordinate transformations.
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APPENDIX A: USAGE OF THE TERM “METRIC” IN
THIS DISCUSSION

Whenever one refers in this discussion to a metric g��,
one refers to a symmetric bilinear objection �a tensor or a
spin-tensor� g�� like that used in a line-element

ds2 = g��dx�dx�. �A1�

Loosely, the explicit line-element such as

ds2 = �1 −
rS

r
�dt2 − �1 −

rS

r
�−1

dr2 − r2�d�2 + sin2 �d�2�

�A2�

in the case of a Schwarzschild metric is sometimes also re-
ferred to as the metric. When metric g�� in strictly diagonal,
this looser usage leads to no confusion; one can read off the
elements of metric g�� with a minimum of effort if need be.
Representation of the metric g�� via the explicit line-element
ds2 is still possible but much more cumbersome when all ten
independent components of a metric g�� are in principle non-
vanishing as in the case of a line-element

ds2 = g00dt2 + 2g01dtdx1 + ¯ + 2g23dx2dx3 + g33�dx3�2.

�A3�

The association of mixed differential coordinates and the fac-
tor 2 in the case of off-diagonal terms tends more to obscure
the nature of the metric g�� than otherwise. Yet, throughout
this discussion, the possible existence of nonvanishing off-
diagonal terms of a metric g�� is central to the logic of the
argument presented. Such nonvanishing off-diagonal metric
components g�� are most often encountered in the context of
reference frame transformations, as when one boosts a
strictly diagonal metric. The metric transformation rule

g��� = g����
���

� �A4�

is simply not as clearly or succinctly expressed in terms of a
line-element ds2. For this reason, the sake of clarity, the more
strictly rigorous usage of the term metric—which refers to a

bilateral symmetric object g�� by which one in principle
specifies a line-element ds2—is used throughout this discus-
sion.

APPENDIX B: CONSTRUCTION OF SU„2… BASES
„REF. 18…

Construction of the SU�2� bases cited above begins with
the analytic restrictions

��0�x0�
�x0 =

��1�x1�
�x1 ,

��0�x0�x1��
�x1 = −

��1�x1�x0��
�x0 , �B1�

also cited above. �The field has been constructed to be inde-
pendent of the remaining spacelike axes as explained in the
main discussion.� In direct analogy with Cauchy–Riemann
restrictions on a complex function in a complex domain, one
derives these restrictions by insisting that definition of the
divergence �����x� be path independent. One plugs into
these expressions the form of the bases defined above

�n�x� � exp�− ikn�x�� . �B2�

One combines expressions in the form

��0�x0�
�x0

��0�x0�x1��
�x1 =

��1�x1�x0��
�x0

��1�x1�
�x1 , �B3�

using the fact that spacelike components square negatively,
and then applies definitions

dx0

dx1 � �dx1

dx0�−1

, �B4�

� k0

k1
�2�dx1

dx0�−2

� 1. �B5�

The general form

��
�n

0�x0�
�n

1�x1��2

= 1 �B6�

cited above then follows from algebra.
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