$\mathfrak{G e n e r a l i z e d} \mathfrak{F e r m a t ~ p r i m e s ~} \mathfrak{p}$ Such That 3 is a $\mathfrak{P r i m i t i v e} \mathfrak{R o o t} \mathfrak{M o d u l o ~ p}$

$\mathfrak{P r e d r a g} \mathfrak{T e r z i c h}$
$\mathfrak{A b s t r a c t}$: Wee explore property of generalized Fermat primes of the form :
$\mathfrak{F}_{n}(2 \cdot \mathfrak{q})=(2 \cdot \mathfrak{q})^{2^{n}}+1$, where $n>1 \mathfrak{a n d} \mathfrak{q}$ is an odd prime number

1. $\mathfrak{I n t r o d u c t i o n}$

$\mathfrak{G e n e r a l i z e d}$ Fermat numbers of the form $\mathfrak{a}^{2^{n}}+1$ with $a>2$, see [1] are $\mathfrak{g e n e r a l i z a t i o n ~ o f ~ u s u a l ~} \mathfrak{F e r m a t}$ numbers $2^{2^{n}}+1$. $\mathfrak{G e n e r a l i z e d}^{\text {Fermat }} \mathfrak{n u m b e r s}$ can be prime only for $\mathfrak{e v e n}$ a, because if \mathfrak{a} is odd then every $\mathfrak{g e n e r a l i z e d}$ Fermat number will $\mathfrak{b e}$ divisible by 2 . $\mathfrak{M a n y}$ of the known largest prime numbers are generalized fermat primes. Ad primitive root of aprime \mathfrak{p} is an integer \mathfrak{g} such that \mathfrak{g} (mod p) has $\mathfrak{m o d u l o}$ order $\mathfrak{p - 1}$, see [2]. St is known that 3 is a primitive root modulo \mathfrak{p} for every Fermat prime \mathfrak{F}_{n} with $n>0$. In this paper we explore for which conditions 3 is aprimitive root modulo \mathfrak{p} for $\mathfrak{g e n e r a l i z e d} \mathfrak{F e r m a t} \operatorname{primes} \mathfrak{F}_{\mathfrak{n}}(\mathfrak{a})$ with $n>1$ 。

2. Conjectures

2.1. $\mathfrak{D e f i n i t i o n : ~} \mathfrak{L e t} \mathfrak{p}$ be aprime $\mathfrak{n u m b e r}$ of the form $\mathfrak{p}=\mathfrak{F}_{2}(2 \cdot \mathfrak{q})=(2 \cdot \mathfrak{q})^{2^{2}}+1$, where q is an odd prime number.

Consider the output of the following Maple code:

```
with(numtheory):
i:=0:
n:=2:
for q from 1 to 8640200 do
if isprime(q) then
if isprime((2*q)^(2^n)+1) then
i:=i+1:
if not(primroot((2*q)^(2^n)+1)=3) then
print(q);
end if;
end if;
end if;
end do;
i;
```

3
48997
2.1. $\operatorname{Conjecture:~} \mathfrak{I f} \mathfrak{q}$ is \mathfrak{a} greater than 3 then 3 is a primitive root modulo por all \mathfrak{p}.
2.2. Definition: $\mathfrak{L e t} \mathfrak{p}$ be a prime number of the form $\mathfrak{p}=\mathfrak{F}_{3}(2 \cdot \mathfrak{q})=(2 \cdot \mathfrak{q})^{23}+1$, where \mathfrak{q} is an odd prime number.

Consider the output of the following Maple code:

```
with(numtheory):
i:=0:
n:=3:
for q from 1 to 8640200 do
if isprime(q) then
if isprime((2*q)^(2^n)+1) then
i:=i+1:
if not(primroot((2*q)^(2^n)+1)=3) then
print(q);
end if;
end if;
end if;
end do;
i;
```

271
18206
2.2. $\mathfrak{C o n j e c t u r e : ~} \mathfrak{I f} \mathfrak{q}$ is \mathfrak{a} greater than 271 then 3 is \mathfrak{a} primitive root modulo \mathfrak{p} for $\mathfrak{a l l} \mathfrak{p}$
2.3. Definition : Let \mathfrak{p} be a prime number of the form $\mathfrak{p}=\mathfrak{F}_{4}(2 \cdot \mathfrak{q})=(2 \cdot \mathfrak{q})^{{ }^{24}}+1$, where \mathfrak{q} is an odd prime $\mathfrak{n u m b e r}$.

Consider the output of the following Maple code:

```
with(numtheory):
i: =0:
\(\mathrm{n}:=4\) :
for \(q\) from 1 to 640200 do
if isprime (q) then
if isprime (( \(\left.\left.2^{*} q\right)^{\wedge}\left(2^{\wedge} n\right)+1\right)\) then
i: =i+1:
if not (primroot \(\left.\left(\left(2^{*} q\right)^{\wedge}\left(2^{\wedge} n\right)+1\right)=3\right)\) then
print(q);
end if;
end if;
end if;
end do;
i;
```

1901
2.3. Conjecture: 3 is a primitive root modulo \mathfrak{p} for all \mathfrak{p}.
2.4. Definition : Let \mathfrak{p} be a prime number of the form $\mathfrak{p}=\mathfrak{F}_{5}(2 \cdot \mathfrak{q})^{25}+1$, where \mathfrak{q} is an odd prime number.

Consider the output of the following Maple code:

```
with(numtheory):
i:=0:
n:=5:
for q from 1 to 840200 do
if isprime(q) then
if isprime((2*q)^(2^n)+1) then
i:=i+1:
if not(primroot((2*q)^(2^n)+1)=3) then
print(q);
end if;
end if;
end if;
end do;
i;
```

2.4. Conjecture: 3 is a primitive root modulo p for all \mathfrak{p}.

References

1. Definition of generalized Fermat number available at :

2. Definition of primitive root modulo pavailable at : $\mathfrak{h t t p}: / / \mathfrak{e n} . \mathfrak{w i k i p e d i a . o r g} / \mathfrak{w i k i} / \mathfrak{P r i m i t i v e}$ root_modulo_n
$\mathfrak{E}-\mathfrak{m a i l} \mathfrak{a d r e s s}$: tersit26@gmail.com
