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It has been recently proposed that the photon has imaginary mass and null real mass. Proca equations are 
the unique simplest relativistic generalization of Maxwell equations. They are the theoretical expressions 
of possible nonzero photon rest mass. The fact that the photon has imaginary mass introduces relevant 
modifications in Proca equations which point to a deviation from the Coulomb’s inverse square law. 
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          For quite a long time it has been 
known that the effects of a nonzero photon 
rest mass can be incorporated into 
electromagnetism through the Proca 
equations [1-2]. It is also known that 
particles with imaginary mass can be 
described by a real Proca field with a 
negative mass square [3-5]. They could be 
generated in storage rings, jovian 
magnetosphere, and supernova remnants. 
The existence of imaginary mass associated 
to the neutrino is already well-known. It has 
been reported by different groups of 
experimentalists that the mass square of the 
neutrino is negative [6]. Although the 
imaginary mass is not a measurable amount, 
its square is [7]. Recently, it was shown that 
an imaginary mass exist associated to the 
electron and the photon too [8]. The photon 
imaginary mass is given by  
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This means that the photon has null real 
mass and an imaginary mass, , expressed 
by the previous equation.  
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       Proca equations may be found in many 
textbooks [9-11]. They provide a complete 
and self-consistent description of 
electromagnetic phenomena [12]. In the 
presence of sources ρ  and j

r
, these 

equations may be written as (in SI units) 
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where hcmγγμ = , with the real variables 

γμ  and . However, according to Eq. (1) 
 is an imaginary mass. Then, 

γm

γm γμ  must be 

also an imaginary variable. Thus,  is a 

negative real number similarly to . 
Consequently, we can write that  
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whence we recognize λπ2=rk  as the real 
part of the propagation vector k

r
; 

( )722
irir kkikkkk +=+==

r

           Substitution of Eq. (6) into Proca 
equations, gives 
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         In four-dimensional space these 
equations can be rewritten as 
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where  and μA μj
r

are the 4-vector of 
potential ( )ciA φ, and the current density 
( )ρicj ,
r

, respectively. In free space the above 
equation reduces to 
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 2
which is essentially the Klein-Gordon 
equation for the photon.  
          Therefore, the presence of a photon in 
a static electric field modifies the wave 
equation for all potentials (including the 
Coulomb potential) in the form 
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For a point charge, we obtain 
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and the electric field  
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Note that only in the absence of the photon 

 the expression of   reduces to 
the well-known expression: 
( 0=rk ) ( )rE

( ) 2
04 rqrE πε= . 

Thus, these results point to an exponential 
deviation from Coulomb’s inverse square 
law, which, as we know, is expressed by the 
following equation (in SI units): 
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As seen in Eq. (16), the term  

( )rkr3
2

only becomes significant if  
( )1810~ 4λ−>r

This means that the Coulomb’s law is a good 
approximation when . However, if 

, the expression of the force 
departs from the prediction of Maxwell’s 
equations.   
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          The lowest-frequency photons of the 
primordial radiation of 2.7K is about 

[Hz810 13]. Therefore, the wavelength of 
these photons is m1≈λ . Consider the 
presence of these photons in a terrestrial 
experiment designed to measure the force 
between two electric charges separated by a 
distance r . According to Eq. (18), the 
deviation from the Coulomb’s law only 

becomes relevant if . Then, if we 
take 

mr 410−>
mr 1.0= , the result is  
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Therefore, a deviation of 17% in respect to 
the value predicted by the Coulomb’s law.  
          Then, why the above deviation is not 
experimentally observed? Theoretically 
because of the presence of Schumann 
radiation ( )mHzf 7

11 108.3,83.7 ×== λ  
[14-15]. According to Eq. (18), 
for , the deviation only 
becomes significant if   

m7
1 108.3 ×=λ

Kmr 8.310~ 1
4 => − λ

Since the values of r  in usual experiments 
are much smaller than the result is 
that the deviation is negligible. In fact, this is 
easy to verify. For example, if , we 
get 

Km8.3

mr 1.0=
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Now, if we put the experiment inside an 
aluminum box whose thickness of the walls 
are equal to 21cm * the experiment will be 
shielded for the Schumann radiation. By 
putting inside the box a photons source of 

m1≈λ , and making , then it will be 
possible to observe the deviation previously 
computed of 17% in respect to the value 
predicted by the Coulomb’s law.  

mr 1.0=

                                           
* The thickness δ  necessary to shield the experiment 
for Schumann radiation can be calculated by means of 
the well-known expression [16]: fz πμσδ 2105 ==  
where μ and σ  are, respectively, the permeability 
and the electric conductivity of the material; is the 
frequency of the radiation to be shielded.  
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