A Grothendieck Universe:
Clifford Algebra Cl(16) E8 AQFT

by Frank Dodd (Tony) Smith Jr.

Abstract:

The completion of the union of all tensor products of the real Clifford algebra Cl(16)
is proposed as a Grothendieck Universe
giving a Category Theoretical description of a realistic Algebraic Quantum Field Theory
that might clarify its relationship with Path Integral Quantization
of Standard Model + Gravity Lagrangian Physics.

At present, this paper is an outline of a proposed program of research
that is not yet complete.

(References are included in the body of the paper and in linked material.)
A Grothendieck Universe:
Clifford Algebra Cl(16) E8 AQFT

Frank Dodd (Tony) Smith Jr. - 2012

Daniel Murfet (Foundations for Category Theory 5 October 2006) said:
“... The most popular form of axiomatic set theory is Zermelo-Frankel (ZF)
together with the Axiom of Choice (ZFC) ... this is not enough, because we
need to talk about structures like the “category of all sets” which have no place in
ZFC ...[more useful foundations include]

...
(a) An alternative version of set theory called NBG (due to von Neumann,
Robinson, Bernays and Godel) which introduces classes to play the role of sets
which are “too big” to exist in ZF

(b) Extend ZFC by adding a new axiom describing Grothendieck universes.
Intuitively speaking, you fix a Grothendieck universe U and call elements of U
sets, while calling subsets of U classes. ... This ... seems to be the only serious
foundation available for modern research involving categories

(c) The first two options [(a) and (b)] are conversative, in that they seek to extend
set theory by as little as possible to make things work. More exotically, we can
introduce categories as foundational objects. This approach focuses on topoi as the
fundamental logical objects (as well as the connection with the more familiar
world of naive set theory). While such a foundation shows promise, it is not
without its own problems ... and is probably not ready for “daily use”.

...
Before we study Grothendieck universes, let us first agree on what we mean by
ZFC. The first order theory ZFC has two predicate letters A,B but no function
letter, or individual constants. Traditionally the variables are given by uppercase
letters X1,X2, ... (As usual, we shall use X, Y,Z to represent arbitrary variables).
We shall abbreviate A(X, Y) by X in Y and B(X, Y) by X = Y .
Intuitively e is thought of as the membership relation and the values of the
variables are to be thought of as sets (in ZFC we have no concept of “class”).
The proper axioms are as follows (there are an infinite number of axioms since an
axiom scheme is used):
Axiom of Extensionality Two sets are the same if and only if they have the same elements ...
Axiom of Empty Set There is a set with no elements. By the previous axiom, it must be unique ...
Axiom of Pairing If x, y are sets, then there exists a set containing x, y as its only elements, which we denote \{x, y\}. Therefore given any set x there is a set \{x\} = \{x, x\} containing just the set x ...
Axiom of Union For any set x, there is a set y such that the elements of y are precisely the elements of the elements of x ...
Axiom of Infinity There exists a set x such that the empty set is in x and whenever y is in x, so is y union \{y\} ...
Axiom of Power Set Every set has a power set. That is, for any set x there exists a set y, such that the elements of y are precisely the subsets of x ...
Axiom of Comprehension Given any set and any ... well formed formula ... wf B(x) with x free, there is a subset of the original set containing precisely those elements x for which B(x) holds (this is an axiom schema) ... Here we make the technical assumption that the variables A,B,C do not occur in B ...
Axiom of Replacement Given any set and any mapping, formally defined as a wf B(x, y) with x, y free such that B(x, y1) and B(x, y2) implies y1 = y2, there is a set containing precisely the images of the original set’s elements (this is an axiom schema) ...
Axiom of Foundation A foundation member of a set x is y in x such that y intersect x is empty. Every nonempty set has a foundation member ...
Axiom of Choice Given any set of mutually disjoint nonempty sets, there exists at least one set that contains exactly one element in common with each of the nonempty sets.

Looking at the axioms, only the Axiom of Replacement can produce a set outside our universe (beginning with sets inside the universe), although one could argue that the Axiom of Infinity also “produces” the set N, which may not belong to U . To get around the latter difficulty, we add the following axiom to ZFC ...
UA. Every set is contained in some universe ...
UA is equivalent to the existence of inaccessible cardinals, and is therefore logically independent of ZFC ...

[This gives]... The first order theory ZFCU ...
Grothendieck Universes

Whatever foundation we use for category theory, it must somehow provide us with a notion of “big sets”. In Grothendieck’s approach, one fixes a particular set U (called the universe) and thinks of elements of U as “normal sets”, subsets of U as “classes”, and all other sets as “unimaginably massive”.

... Definition 3. A Grothendieck universe (or just a universe) is a nonempty set U with the following properties:

U1. If x in U and y in x then y in U (that is, if x in U then x subset U).

U2. If x, y in U then $\{x, y\}$ in U.

U3. If x in U, then ... power set ... $P(x)$ in U.

U4. If I in U and $\{x_i\} (i$ in $I)$ is a family of elements of U, then the union over i in I of the x_i belongs to U.

...

Therefore any finite union, product and disjoint union of elements of U belongs to U. In particular every finite subset of U belongs to U ... by our convention U contains \mathbb{N}, and therefore also $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ and all structures built from these using the theory of sets ...”.

The Wikipedia article on Grothendieck universe said: “... The idea of universes is due to Alexander Grothendieck, who used them as a way of avoiding proper classes ... **There are two simple examples of Grothendieck universes:**

The empty set, and The set of all hereditarily finite sets ... “.
Another Grothendieck universe describes a realistic E8 AQFT. It is the completion of the union of all tensor products of Cl(16) which I will denote as UCl16.

and which may be extraordinarily useful in using category techniques to understand math and physics.

Since the real Clifford algebra Cl(16) = Cl(Cl(4)) = Cl(Cl(Cl(Cl(Cl(0))))) it can be constructed by iterating the Clifford construction beginning with a point. Since Cl(16) = Cl(8)xCl(8) it can be used to construct, by 8-periodicity, any arbitrarily large Cl(m).

UCl16 is a hyperfinite von Neumann factor algebra, being a real generalization of the usual complex hyperfinite II1 von Neumann factor.

Further, UCl16 inherits from its Cl(16) factors some structures that are useful in areas including, but not limited to, physics model building which structures can be seen in Category Theoretical terms:

Vectors
BiVector Lie Algebras and Lie Groups
Symmetric Spaces
Complex Domains, their Shilov boundaries, and Harmonic Analysis
Spinors with Fermion properties
E8 Lie Algebra
Sl(8)xH92 Algebra (Contraction of E8)

Some other Categories useful with respect to physics model building are:

Classical Physics Lagrangian
Lagrangian Spinor Fermion term
Lagrangian Base Manifold
Lagrangian MacDowell-Mansouri Gravity term
Lagrangian Standard Model Gauge Boson term

Quantum Physics Hamiltonian/Heisenberg Algebra
Position/Momentum
Gravity + SM boson Creation/Annihilation
Fermion Creation/Annihilation
With respect to those Categories, there exist Functors

\[\text{Cl}(16) \rightarrow E8 \rightarrow \text{Classical Physics Lagrangian} \]

and

\[\text{Cl}(16) \rightarrow \text{Sl}(8)xH92 \rightarrow \text{Quantum Physics Hamiltonian/Heisenberg Algebra} \]

defined by

\[\text{Cl}(16) \rightarrow E8 \]

- \(E8 \) 128 Spinors \(\rightarrow \) Lagrangian Spinor Fermion term
- \(E8 \) 64 Position/Momentum \(\rightarrow \) Lagrangian Base Manifold
- \(E8 \) 28 D4 Gravity \(\rightarrow \) Lagrangian M-M Gravity term
- \(E8 \) 28 D4 Standard Model \(\rightarrow \) Lagrangian SM Gauge Boson term

and

\[\text{Cl}(16) \rightarrow \text{Sl}(8)xH92 = \text{Sl}(8)xH(28+64) \]

- \(\text{Sl}(8) \) \(\rightarrow \) Position/Momentum
- \(H28 \) \(\rightarrow \) Gravity + SM boson Creation/Annihilation
- \(H64 \) \(\rightarrow \) Fermion Creation/Annihilation

Therefore **Path Integral quantization of Classical Physics Lagrangian**

has a Category Theoretical relationship with

Quantum Physics Hamiltonian/Heisenberg Algebraic Quantum Field Theory

that may show a Categorification of Lagrangian Path Integral

that is more directly related to the Standard Model + Gravity

than the

Chern-Simons theory whose Path Integral Quantization to a Topological Quantum Field Theory is described by Daniel Freed in Bull. AMS 46 (2009) 221-254.

Details of the physics structures mentioned above can be found in my paper

Introduction to E8 Physics that is on the web at these URLs:

http://vixra.org/abs/1108.0027

http://www.tony5m17h.net/E8physics2011.pdf