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PREFACE

In this book the authors introduce a new product on matrices called the
natural product. We see when two row matrices of 1 X n order are
multiplied, the product is taken component wise; for instance if X = (xy,
X2, X3, +.., Xp) @nd Y = (y1, Y2, ¥3, ..., ¥o) then X X Y = (X1y1, X2¥2, X33,
..., Xy¥n) Which is also the natural product of X with Y. But we cannot
find the product of a n X 1 column matrix with another n X 1 column
matrix, infact the product is not defined. Thus if

Xy Y

X=|"2| and Y= |2

Xy Ya
under natural product
Xl}]l
X % Y — XZYZ
Xn yl"l

Thus by introducing natural product we can find the product of column
matrices and product of two rectangular matrices of same order. Further



this product is more natural which is just identical with addition
replaced by multiplication on these matrices.

Another fact about natural product is this enables the product of any
two super matrices of same order and with same type of partition. We
see on supermatrices products cannot be defined easily which prevents
from having any nice algebraic structure on the collection of super
matrices of same type.

This book has eight chapters. The first chapter is introductory in
nature. Polynomials with matrix coefficients are introduced in chapter
two. Algebraic structures on these polynomials with matrix coefficients
is defined and described in chapter three. Chapter four introduces
natural product on matrices. Natural product on super matrices is
introduced in chapter five. Super matrix linear algebra is introduced in
chapter six. Chapter seven claims only after this notion becomes popular
we can find interesting applications of them. The final chapter suggests
over 100 problems some of which are at research level.

We thank Dr. K.Kandasamy for proof reading and being extremely
supportive.

W.B.VASANTHA KANDASAMY
FLORENTIN SMARANDACHE



Chapter One

INTRODUCTION

In this chapter we only indicate as reference of those the
concepts we are using in this book. However the interested
reader should refer them for a complete understanding of this
book.

In this book we define the notion of natural product in
matrices so that we have a nice natural product defined on
column matrices, m X n (m # n) matrices. This extension is the
same in case of row matrices.

We make use of the notion of semigroups and Smarandache
semigroups refer [13].

Also the notion of semirings, Smarandache semirings, semi
vector spaces and semifields are used, please refer [16].

Likewise S-rings, S-ideals, S-subrings are also used, refer
[18].



The concept of polynomials with matrix coefficients are
used. That is if

px) = i aixi
i=0

where x is an indeterminate and if a; is a matrix (a square matrix
or a row matrix of a column matrix or a m X n matrix m # n),
then p(x) is a polynomial in the variable x with matrix
coefficients (‘or’ used in the mutually exclusive sense).

Suppose
3 -2 0 7
(x) + 3 + ! Tt Ol
X) = X X X
P 0 0 1
-1 5 2 0

is a polynomial with column matrix coefficients.

We also introduce polynomial matrix coefficient semiring.
We call usual matrices as simple matrices.

The super matrix concepts are used. If X = (a; a, | a3 a4 | a5), a;
€ R (or Q or Z) then X is a super row matrix [8, 19].

If

o & o
R

Y=| |, R(orQorZ)

o

o




then Y is a super column matrix.

Let

is a super row vector.

[95]
I}
o o
o =

& ®
3

is a super 4 X 8 matrix (vector).

Likewise

i o
= o

=2 B -]
%

o
w

= 2N - -]

X | X X3 | Xy
Xs | Xg X7 | Xg
Xg | Xyo Xy | Xpp
Xz | Xe X5 | Xp6

o
oo

=N

o o o
)
=



I 4, a, 3 ]
a4 aS a6
a7 a8 a9
B=|a, a;, a,|witha € R (orQorZ)
a13 a14 alS
alG a17 a18
_a19 a20 a21_

is a super column vector [8, 19].

Also we use the notion of vector spaces, Smarandache
vector spaces and Smarandache linear algebra [17].
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Chapter Two

POLYNOMIALS WITH MATRIX
COEFFICIENTS

In this chapter we define polynomials in the variable x with
coefficients from the collection of matrices of same order. We
call such polynomials as matrix coefficient polynomials or
polynomials with matrix coefficients. We first give some
examples before we define operations on them.

Example 2.1: Letp(x)=(5,3,0,-3,2)+ (0, 1,2,3, H)x + (7,
0,1,0, Dx*+ (-7, -9, 10, 0, 0)x’ — (3, 2, 1, 2, )x’; we see p(x)
is a polynomial in the variable x with row matrix coefficients.

1 -1 6 1
2 -2 0 -1
Example 2.2: Letm(x)= 3|+ | 3 |x+|1|x*+| 2 [x bea
0 4 2 -2
10 ] 15| [O] | 3

column matrix coefficient polynomial or a polynomial with
column matrix coefficients.

11



Example 2.3: Let

30 I 0, [0 1], I 0} q
px) = + X+ X+ X+
-1 2 0 2 0 3 4 0
1 4 0 0 01

x® + X+ x'°
0 0 1 2 50

be a square matrix coefficient polynomial.

Example 2.4: Let

2 1 1 0 1 2 9 1
Tx)={0 1|+l L{x+|0 3|x*+|0 2|X
5 2 10 4 0 6 0

be a polynomial with 3 X 2 matrix coefficient.
Now we define some operations on the collection.
DEFINITION 2.1: Let
Vr = {Z ax'
i=0
are 1 x n row matrices, x; € R (or Q or Z); 1 <i <n} be the

collection of all row matrix coefficient polynomials. Vg is a
group under addition.

a; = (Xp,..., Xn)

Forifp(x) = Zaixi and q(x) = Zb_l.xj then
J=0

i=0

we define p(x) + q(x) = zai'xi + Zb_,-x’
i=0 j=0

= i(a,. +b )x'
i=0

12



0=(0,..,0) + (0,...0)x + ... + (0,... ,0)x" (n € N) is
defined as the row matrix coefficient zero polynomial.

oo

Let p(x) =Zaixi now —p(x) = z—aixi is defined as
i=0 i=0
the inverse of the row matrix coefficient polynomial. Thus (Vk,
+) is an abelian group of infinite order.

Example 2.5: Let

Ve = {Zaixi ai = (X1, X, X3, X4) With x; € Q; 1 £j<4}

i=0

be the collection of row matrix coefficient polynomials Vi is a
group under addition.

For if p(x) = (0, 2, 1, 0) + (7,0, 1, 2)x + (1, 1, I, Dx® +
(0, 1, 2, 0)x” and

qx)= (7,8,9,10) + (3, 1, 0, T)x + (3,0,1, 4)X3 -4, 2,3,
Hx*+(7,1,0,0x + (1, 2, 3, 4)x® are in Vi then

p(x) +qx) = (0,2, 1,0) + (7, 8,9, 10)) + (7, 0, 1, 2) + (3,
Lo, 7Nx+((1,1,1, )+ (3,0, 1,4)x’ + ((0,0,0,0) — (4, 2, 3,
ANx*+((0,1,2,0)+ (7, 1,0, 0)x° + (1, 2, 3, 4H)x*

=(7, 10, 10, 10) + (10, 1, 1, 9x + (4, 1, 2, 5)x° — (4, 2, 3,
Hxt +(7,2,2,0%° + (1, 2, 3, H)x°.

We see —p(x) = (0, -2, -1, 0) + (-7, 0, -1, -2)x + (-1, -1,
-1, —l)x3 + (0, -1, -2, 0)x acts as the additive inverse of pX).

13



Example 2.6: Let

Vr= {Zaixi a; = (X, X2, X3); X; € Z1p;1<j<3)

i=0

be the collection of all row coefficient polynomials. Vg is a
group under modulo addition 12.

Example 2.7: Let

a; = (di, dp) withdj e Q; 1 <j<2}

10 .
Vi = {Z ax'

i=0

be the row coefficient polynomial. Vg is a group under
addition.

Example 2.8: Let

5
Vi = {ZaiX‘ a; = (X1, X2); X1, X2 € Zyo}

i=0

be the row coefficient polynomial. Vg is a finite group under
addition.

We now can define other types of operations on Vg.

We see if (1,1,1,1)x’ — (0, 0, 8, 27) = p(x) then (1,1,1,1)x’ —
(0,0,2,3) =p(x)

=[(1,1,1, Dx = (0,0,2,3)][(1, 1, 1, Dx*+ (0, 0, 2, 3)x +
0,0, 4, 9)].

For this we have to define another operation on Vg called
product.

Throughout this book Vg will denote polynomial with row
matrix coefficient in the variable x.

14



We know Vg is a group under addition.

Now we can define product on Vg as follows:

Let p(x) = (0,1,2) + (3,4,0)x + (2,1,5)x + (3,0,2)x’ and
q(x) = (6,0,2) + (0,1,4)x + (3,1,00x + (1,2,3)x* be in V.
We define product of p(x) with q(x) as follows.

pP(x) X q(x)

= [(0,1,2) + (3,4,00x+ (2,1,5%* + (3,0,2)x°] x [(6,0,2) +
0,1,4)x + (3,1,0)x* + (1,2,3)x"]

= (0,1,2) (6,0,2) + (3,4,0) (6,0,2)x+(2,1,5) (6,0,2)x> +
(3,0,2) (6,0,2)x> + (0,1,2) (0,1,4)x + (3,4,0) (0,1,4)x* +
(2,1,5) (0,1,H)x* + (3,0,2) (0,1,4)x* + (0,1,2) (3,1,0)x> +
(3,4,0) (3,1,00x* + (2,1,5) (3,1,0)x* + (3,0,2) (3,1,0)x° +
0,1,2) (1,2,3)x* + (3,4,0) (1,2,3)x° + (2,1,5) (1,2,3)x° +
(3,0,2) (1,2,3)x’

= (0,0,4) + (18,0,0)x + (12,0,10)x* + (18,0,4)x> + (0,1,8)x
+ (0,4,00x* + (0,1,20x* + (0,0,8)x* + (0,1,00x> +
9,4,0x* + (6,1,00x* + (9,0,00x° + (0,2,6)x* + (3,8,0)x
+(2,2,15)x° + (3,0,6)x’

= (0,04) + (18,1,8)x + (12,5,10x* + (27,524)x> +
(6,3,14)x* + (12,8,0)x° + (2,2,15)x° + (3,0,6)x .

Now we see with componentwise product we see Vr under
product is a commutative semigroup.

We see Vr has zero divisors.

Now we proceed onto give one or two examples.

15



Example 2.9: Let

ai=(Xp, ..., Xg); X € Q; 1 <i<8}

Vr= {ZS: ax'
i=0

be a semigroup of row matrix polynomials. Vg is a monoid
under product.

Now we see (Vg, +, X) is a commutative ring of
polynomials with row matrix coefficients.

We give examples of them.

Example 2.10: Let

Vi ={px) = Z:aixi ;5= (X1, X2..., X13); Xi € R; 1 €1 <18}
i=0
be a ring of polynomials with row matrix coefficients.

Now we have shown examples of polynomial row matrix
coefficients in the variable x.

Example 2.11: Let

.
X2

Ve= 1> ax!| aj=|x; |withx; € Z; 1 <i< 5},
i=0 X
4
Xs

V¢ is a group under addition.

3 1 0
0 0 1
px) =|1|+|0x+]|2 x” and
0 2 3
12| 0] 10

16



47 [2] [2] [ 2] [ 2]
2 3 3 -1 -1
qx)=1| 1 [+ |4]|x+]1 x>+ 1 [xX*+] 2 [x*bein Vc.
—4 5 4 0
o] o] [5] [4) | 0|
31 [47] [1] [2] o] [2]
0| |2 0| |3 1| |3
pX)+qX)=|1[+| 1 [+ |0]|+[4]|x+||2]+|1]]|x?
0| |4 2| |5 3| |4
2] o] (o] |O] 0] |5]
T T
-1 -1
1|3+ ] 2 |x*
0 3
_4_ L _
7] [3] 2] [ 2] (2]
21 13 4 -1 -1
=| 2 [+|4|x+|3|x+] 1|+ x*is in V.
4| |7 7 0 3
2] 0] [5] | 4 | 0 |

Thus V¢ is a commutative group under addition.

We see on V¢ we cannot define product for it is not defined.

17



Thus

xl

. <
Vc={2aix‘ ai=| /|;xe Q(rRorZ);1<i<n)}

i=0 .

X

n

is an abelian group under addition with polynomials whose
coefficients are column matrices.

Now V., denotes the collection of all polynomials whose
coefficients are nxXm matrices. Vxm is a group under addition.

Now if m # n then on V,, we cannot define product. We
will illustrate this situation by an example.

Example 2.12: Let

Vs = {Z:aixi a =X, X, Xz |wherex;e R;1<i<15}

i=0

be the group of polynomials under addition whose coefficients
are 5X3 matrix.

Example 2.13: Let

V2><4 = {i .’:liXi

i=0

a‘{yl Y2 ¥ yq
Ys Yo Y1 YV

wherey; € R; 1 <1<8}

be the group of polynomials under addition whose coefficients
are 2 X 4 matrices (aj € R; 1<i<n, 1 <j<m).

18



Thus we can say

all a12 alm
> . a a a
i 21 22 2m
Vixm = Zaix a4 = . . . }
i=0 .
anl an2 anm

is the group of polynomials in the variable x with coefficients
as n X m matrices. Clearly if n # m we cannot define product on
Vn><m~

Now we can define product on V,x,, that is when n = m. We
first illustrate this by an example.

Example 2.14: Let

a, d, e ap,
> . a a a
i 21 22 ot 2n
Vi =1 ax'| = : :
i=0
a, a, .. a.

where a;j€ R; 1 <1,j<n}

be the group of polynomials under addition with n X n square
matrix coefficients. We see on V., one can define product.
Vaxa 18 only a semigroup which is non commutative.

We will illustrate this situation by examples.

Example 2.15: Let

X X

1 3

V3X3={Z:aixi ai=|X, X; X, |wherexie Q;1<i1<9}

i=0

X X

7 9

be the group of polynomials in the variable x with coefficients
from 3 X 3 matrices.

19



We will show how addition in V3 is carried out.

and

}x2+

-1 2 3
x+ -2 3 1
-3 21

}3 be in V;s.

1

1 21 1 23
{013}+[0
-6 1 2 =5 0 1

010
9 01
0 23

q(x)

|

0 3 =2 1 2 1
=1 0 O 0 1 3|+
00 4 -6 1 2
+ H ﬂ x>

pP(x) +q(x)

-1 2 3
-2 31
-3 21

210
30 2
1 23

5 -1 1 2 3

1 3|1+]0 1 5|x+
6 -5 0 1
20

-6 1




1 3 3 0o 2 2
1 3 3|xX*+|10 2 1|x.
-2 4 4 2 3 3
We see Vix; is an abelian group under addition.
Example 2.16: Let

V2><2 = {i .’rliXi

i=0

X; X,

xl X2 .
a; = ;xie Ry 114}

be the semigroup of polynomials in the variable x with
coefficients from the collection of all 2 X 2 matrices under

product.
()_12+01+122d
P% 10 4) "2 3)" 7 3 o)° ™
(01 1 0 123b'v
qx) = 5 0 + ) 3x+ 3 4x e in Vays.
Now
(1 2)(0 1 0 1\(1 0
PE)-a®=15 4112 o) T2 3/l2 o)
(1 2}(0 1}2 (1 2} (1 2}
X+ X
3 0/)l2 0 0 4/ 2 3
(0 1}(1 0}2 (1 2}(1 0J3
+ X+ X
2 3)l2 3 3 0/)l2 3
(1 2}(1 2J3 (0 1}(1 2J4
+ X + X
0 4)(3 4 2 3)(3 4

21



I 2\(1 2) 4 1 2 0
+ x>+ + X
3 0)\3 4 8 0 6 2
41y, (5 6 2 3,
+ x>+ X + X
0 3 8 12 8 9
56), (7 10, (3 4), (7 10,
+ x> + x>+ x*+ X
30 12 16 11 16 3 6
41y (7 6 6 4), (12 16),
= + X + x>+ x> +
g8 0 14 14 g8 12 15 16
3 4 7 10
X+ X’
11 16 3 6

This is the way product is defined. Thus V., is a semigroup
under multiplication.
V1o 18 @ monoid and infact V., has zero divisors.

This is a polynomial ring.

Example 2.17: Let

i
Via = {Zaix a4 =

i=0

where a; € R; 1<1,j<4}

be a group of polynomials in the variable x with 4 X 4 matrices
as coefficients.

22



Vx4 1s a group under addition and V44 is a semigroup under
product (Vaxa, +, X) is a ring which is non commutative. This
ring has zero divisors and units and all p(x) of degree greater
than or equal to one have no inverse.

Example 2.18: Let

i
V2><2 = Z a;X
i=0

a a
ai=( ! 12J;aije R;1<i,j<2)

a21 a22

be the ring of polynomials with 2x2 matrix coefficients in the
variable X. Vi, is non commutative and has zero divisors and
no p(x) €V, of degree greater than one has inverse. We
cannot have idempotent in them.

We can differentiate and integrate these polynomials with
matrix coefficients apart from finding roots in them.

Now we first illustrate this situation by some examples.

Example 2.19: Let

SR ER IR A R
O Y B RIS L Y L O
Ll
01 2 0

be a polynomial in matrix coefficients or matrix coefficient
polynomial.

To find the derivative of p(x).

23



) _ f 6}+2{7 0}(—3{3 l}xz

dx
(8 1 0 4
+4 X =5 x*
01 -2 0

We see ? is again a matrix coefficient polynomial in
X

the variable x.

We can find the second derivative of p(x).

Consider

d’px) _[14 0 _29 3X
dx |0 16 0 0

32 4|, 0 20| 4
+3 X -4 X
0 4 -10 O
14 0 18 6 9% 12| , 0 80| 4
= - X + X = X,
0 16 0 0 0 12 —40 0

2
Clearly @ also belongs to the collection of 2 x 2
X

matrix coefficient polynomials.

24



Example 2.20: Let

V2><4 = {i aixi

(xl X, X, X4J
a =
i=0 X5 Xg X7 Xy

where x; € R; 1 <1< 8}

be the 2 X 4 matrix coefficient polynomial.
1 0 2 4 31 5 2
Let p(x) = + X
0 3 05 0 405

-3 4 2 4y, (1 -1 0 2),
+ X + X
0 0 0 3 2 0 20
be a 2 X 4 matrix coefficient polynomial. To find the derivative

of p(x).

dp(x) 3 1 5 2 +3 -3 4 2 4 2
X
dx 0 4 0 5 0 0 0 3

I -1 0 2),
+4 X
2 0 20
315 2 -9 12 6 12
0 4 05 0O 0 0 9
4 -4 0 8),
+ X,
8 0 -8 0

18 in Voya.

dp(x)
Clearl
Y Tax dx

25



Consider

2 -9 12 6 12 4 -4 0 8
d p(zx) =2 X+3 x>
dx 0O 0 0 9 8 0 -8 0

(—18 24 12 24} (12 -12 0 24} )
= X + X .

0 0O 0 18 24 0 24 0
2
We see d p(zx ) € Vaou.
dx

If we consider the third derivative of p(x);

d’p(x) _ -18 24 12 24 .
dx’ 0 0 0 18

12 -12 0 24
2 X
(24 0 24 0 J

-18 24 0 24 24 24 0 48
= + X.
0 0 0 18 48 0 48 0

d’p(x)

dx

We see € Vou.

Further the forth derivative.

d4p(x) 24 24 0 48
T - € Vyu.
dx 48 0 48 0
5
However the fifth derivative ddp(sx ) 18 zero.
X

26



Example 2.21: Let

Vr= {iaixi

i=0

ai=(Xp, ..., Xe); Xi € Z; 1 i< 6}

be a row matrix coefficient polynomial.

p(x)= (2,0,1,0,1,5) + (3,2,1,0,0,0)x + (0,1,0,2,0,4)x*
+(0,-2,-3,0,0,0)x” + (8,0,7,0,1,0)x° be in V.

To find the derivative of

_ dp(x)
dx

p(x)
=0+ (3,2,1,0,0,0) + 2(0,1,0,2,0,4)x + 3(0,-2,-3,0,0,0)x> +

5(8,0,7,0,1,0)x*
= (3,2,1,0,0,00 + (0,2,0,4,0,8)x + (0,-6,-9, 0,0,0)x> +
(40,0,35,0,5,0)x".
dp(x)

dx

is in Vg.

We see

2
TP) _ 02,0408 + 2 (0. ~6.-9.0.0.0)x
X
+ 4 (40,0,35,0,5,0)x’

=(0,2,0,4,0,8) + (0,-12,~18,0,0,0)x + (160,0,140,0,20,0)x".

2
Clearly d p(zx ) € Vk.
dx

27



Example 2.22: Let

a; = where x; € Q; 1 <1<4}

Ve= {i ax'
i=0

Lo B B
w

be a 4 X 1 column matrix coefficient polynomial.

2 3 0 4

Let p(x) = 0 + 2 X+ ! X+ > x° belongs to Ve.
4 1 2 2
0 -4 3 1

3 0 [4
2 1 5
_dp(x) = +3 X>+6 X’
2 2
3 1

dx 1
-4 |
3 0 [24]
2 30, 30|
= + X"+ x’ € Ve
1 6 12
—4 9 | 6 ]
0 24|
2 3 30
d p(zx) =2 X+5 x*
dx 6 12
9 6 |

28



4
x" e V.
60 ¢

0 120

6 150
X +

30

0 120

3 6 150

d P(3X) _ +4 3
dx 12

01 [480
6 600 | |
= + X EVc.
12| 7240
18] |120
480 1440
4 600 1800
d§?)=32m X = 720 xe Ve
X
120 360

Thus we see Ve, Vixn, Vixn and Vg are such that the first
derivative and all higher derivatives are in V¢, Vixn, Vixa and
Vk.

Now we discuss about the integration of matrix coefficient
polynomials.

29



Example 2.23: Let

301 0 2 1
px)=[5 6 0|+|6 1 0]x
1 08 1 26
8 0 0 0 0 2
+10 7 0[x*+]|0 9 0|x
0 0 11 10 0 0
301 02 1
To integrate p(x) . p(x)dx={5 6 O|x+% |6 1 0|x*+
1 08 1 26
8 0 0 [0 0 2
173/0 7 0|x°+1/4|0 9 0 x*+
0 0 11 110 0 0
a, a, a,|[3 0 1 0 1 1/2
a, a; a,||5 6 O|x+| 3 1/2 0 |x+
a, a; a,||1 0 8 |1/2 1 3
8/3 0 0 0 0 1/2 a, a, a,
0 7/3 0 |[x+| 0 9/4 0 |x*+|a, a; a,
0 0 11/3 5/2 0 0 a, a, a,

Example 2.24: 1et

p(x) = (1,2,3,4,5) + (0,1,0,3-D)x + (5,0,8,1,7)x”
+(1,2,0,4,5x + (<2, 1,4,3,0x*

be a row matrix coefficient polynomial.

30



To integrate p(x), fp(x)dx

= (1,2,3,4,5x + % (0,1,0,3,-1)x* + 1/3(5,0,8,1,7)x’
+1/4 (1,2,0,4,5)x" + 1/5(-2,1,4,3,00x° + (a;,2»,a3,a4,a5)
ae Q;1<i1<5.

= (1,2,3,4,5) + (0,1/2,0,3/2, -1/2)x* + (5/3,0,8/3,1/3,7/3)x’
+ (1/4,1/2,0,1,5/4)x* + (=2/5, 1/5,4/5,3/5,0)x>

+ (a17a27a37a47a5)'

Example 2.25: Let

31 o] [-1] [7] 8]
0 1 0 8 2
1 2 -9 4
px) = + X + X + x* + X
2 0 8 10 5
4 4 7 3 5
5] 8] | 0 L7 ] |10 ]
be a column matrix polynomial.
3] [0] [—1]
0 1 0
1 2 -9
dx = | [x+ 12| |+ 14 |x
beodx =1 0 g
4 4 7
15 ] 18] | 0
- g a
2 a,
9 4
L5 |KCre] x|
10 5 a,
3 5 a,
L7 | 10 ] | a |
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[3] 0] [—1/47 [7/5] [4/3] [a, |

0 1/2 0 8/5 1/3 a,

1 1 9/4| , |9/5| 5 |2/3|  |a,
= X + X+ X + X+ X + .

2 0 2 2 5/6 a,

4 2 714 3/5 5/6 a,

5] | 4] | 0 | 17/5] 15/3] | a, |

Example 2.26: Let

0 21 4 36 29 0 2 4 4|,
px) = + X+ X
6 010 0217 201 2

2100, [01 2 0],
+ X + X,
0012 600 3

We find the integral of p(x).

021 4 3/2 3 1 9/2],
= X + X
6 01 0 0O 1 1/2 7/2
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0 2 1 17, [2/5 15 0 07,
+ X + X
1/2 0 1/4 1/2 0 0 1/5 2/5

. {0 /6 1/3 0 }X% {al a, a, a4]
1 0 0 1/2 a; a, a, a
We see V¢, Vi, Vixm and V., under integration is closed,
provided the entries of the coefficient matrices take their values
from Q or R. If they take the from Z they are not closed under
integration only closed under differentiation.

We will illustrate this situation by a few examples.
Example 2.27: Let

px)=@3,8,4,0+2,0,4,9x + (1, 2, 1, Dx*+ (1,0, 1,
l)x3 + (3, 4, 8, 9)x’ where the coefficients are 1 x 4 row
matrices with entries from Z.

We find integral of p(x).

fp(x)dx = (3,8,4,0x + 1/2(2, 0, 4, 9)x* + 1/3(1, 2, 1, Dx’

+1/4(1, 0, 1, Dx* + 1/6(3, 4, 8, 9)x°.

We see (1, 0, 2, 9/4), (1/3, 2/3, 1/3, 1/3), (1/4, 0, 1/4, 1/4),
(172, 2/3, 4/3, 3/2) ¢ Z X Z X Z. x Z. Thus we see integral of
matrix coefficient polynomials with matrix entries from Z are

not closed under intervals that is fp(x)dx ¢ Vcor ViR or Vi, or
Vo 1f the entries are in Z.

Example 2.28: Let

2 1 0 0 3 a,

3 2 0|, Iy, 0], a,
px) = + X + X"+ X+ X where

4 3 1 0 0 a,

0 4 1 4 a

4
are 4 X 1 column matrix with entries from Z; that is a; € Z;
1<i1<4.
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2 1 0
3 2 0
dx = +12 24173 3
fp(x) X 4 X 3 X ) X
0 4 1
0 3 a,
1 0
w14 s | ™
0 0 a,
3 4 a,
2 1/2 0 0
3 1|, 0 /4],
= X+ X"+ X+ X
4 3/2 1/3 0
0 2 1/3 3/4
3/5 a,
0
+ S|P
0 a,
4/5 a

Clearly these column matrices do not take their entries from
Z.

Example 2.29: Let
301 1 1 200 3001],
px) = + X+ X
6 6 00 010 2 0220
2110, |1 01 0],
+ X+ X
02 01 01 01

where the coefficient of these are 2 X 4 matrices and they take
their values from Z.
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o |2 01 [z 100,
X)ax = X X
P 0 1/2 0 1

1 0 0 /3], [12 1/4 1/4 07,
+ X+ X
0 2/3 2/3 0 0 1/2 0 1/4

/75 0 1/5 0| 5 |a a, a,
+ X+
0 1/5 0 1/5 a; a, a,

o o
E N
1

In view of this we have the following theorems.

THEOREM 2.1: Let Vi (or V¢ or Vg or V) be the matrix
coefficient polynomials with matrix entries from C or Z or R or

Q. The derivatives of every polynomial in Vi (or V¢ or V., or
‘/mxm) iS li’l VR (OI" VC or VnXm or ‘/mxm)~

The proof is simple and hence is left as an exercise to the
reader.

THEOREM 2.2: Let Vi (or Ve or Vg, or Vi) be the matrix

coefficient polynomial with matrix entries from Z. The integrals
of every matrix coefficient polynomial need not be in V.
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COROLLARY 1: If in theorem, Z is replaced by Q or R or C
then every integral of the matrix coefficient polynomial is in Vi
(or Ve or Vi or V).

Now we find or show some polynomial identities true in
case of matrix coefficient polynomials.

Consider (1, 1, 1, 1, Dx> = (4, 9, 16, 25, 81) = (0) in Vg =

i=0

a = (X, Xy, X3, X4, Xs) Withx;j€ ZorQorCorR; 1 <1

<5}.Given (1, 1, 1, 1, Dx*— (4, 9, 16, 25, 81) = (0).

(1,1, 1,1, Dx=(2,3,4,5,9) x((1, 1, 1, I, Dx + (2, 3, 4,
5,9))=(0)

Thus x = (2,3,4,5,9) or — (2,3,4,5,9).

Take the matrix coefficient polynomial
(1,1,D)x* - (27,8,125) = (0)

We can factorize (1,1,1)x3 -(27,8,125) =0 as
[(1L.1,Dx = (3,251 [(1.1,Dx* + (3,2,5)x + (9,4,25)].

Take (1,1,1,1)x* — (16,81,625,16) = (0)

We can factorize this polynomial as [(1,1,1,1))(2 +
(4,9,25.H)] [(1,1,1,1)x* - (4,9,25.4)] = (0,0,0,0)

x* =—(4,9,25,4)

and x* = (4,9,25,4), we see now x> = (4,9,25,4) can be yet
solved as x = + (2,3,5,2), we see however x> =— (4,9,25,4) gives
a imaginary value for x. If Vg is defined over R or Z or Q we
see the solution does not exist; that is the equation is not linearly
solvable over R or Z or Q but linearly solvable over Vc.
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Now we see yet another equation
p(x) = (1,1,1,1)x* + (4,4,4,4)x + (4,4,4,4) = (0) where p(x) is
a matrix coefficient polynomial in the variable x over Z.

—(4,4,4,4) %+ /(4,4,4,4) —4x(1,1,1,1)(4,4,4,4)
X ==
(29 2) 27 2)

_ — 4449+
(2,2,2,2)

— B (4’49474) —

~(22.2.2).
(23 2’ 29 2)

Thus p(x) has coincident roots.
Consider (1,1,1)x” — (6,3,9)x* + (12,3,27)x + (8,1,27)
=p(x) = (0,0,0) be a matrix coefficient polynomial.
To find the roots of p(x).
p(x) =(1,1,1)x’ —3(2,1,3)x* + 3(4,1,9)x — (8,1,27)
=((1,1,1)x - (2,1,3))".
Thus x = (2,1,3), (2,1,3) and (2,1,3).

Now p(2,1,3) = (1,1,1) (2,1,3) - 3(2,1,3) (2,1,3)° + 3(2,1,3)°
(2,1,3) - (2,1,3)°

= (0,0,0).

We can also find equation with matrix coefficient
polynomials as follows:
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Consider

o Do N[5 Deelo w0

2 1 3 7
Clearly p 0 2 =(0) and p 0 1 =(0).

We can consider any product of linear polynomial with
matrix coefficients. However we see it is difficult to solve
equations in the matrix coefficients as even solving equations in
usual polynomials is not an easy problem.

Now having seen the properties of matrix coefficients

polynomials we now proceed onto discuss other properties
associated with it.
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Chapter Three

ALGEBRAIC STRUCTURES USING MATRIX
COEFFICIENT POLYNOMIALS

In this chapter we introduce several types of algebraic
structures on these matrix coefficient polynomials and study
them.

Throughout this chapter Vx denotes the collection of all row

ai = .., ¥n)

matrix coefficient polynomials. Vg = {Z ax'

i=0
where yi € R (or Q or C or Z); 1 £ i < n and X an
indeterminate}.

Ve denotes the collection of all column matrix coefficient

X

. . - i X2
polynomials; that is V¢ = Zaix ai=| . [;x;e R(orQor

i=0

CorZ)1<j<m}.
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all alm
- i a21 a2m
Now Vium = Zaix a=| . . . |aj e R (or Qor
i=0 : : :
a, .. a,

Zor C); 1 £1<n;1<j<m} denotes the collection of all n X m
matrix coefficient polynomial.

all a12 aln
© a, a a
. 21 22 b 2 .
Finally V., = Zaix‘ a=| . : | with a;
i=0
a, a, .. a,

€ R(or Qor Zor C); 1 <1, j <n} denotes the collection of all
n X n matrix coefficient polynomial.

We give algebraic structures on them.

THEOREM 3.1: Vi, Vi, Vi and Vs, (m #n) are groups under
addition.

THEOREM 3.2: Vi and V,, are semigroups (monoid) under
multiplication.

THEOREM 3.3: Vi and V, ., are rings

(i) Vr is a commutative ring.
(ii) Vs IS @ non commutative ring.

The proof of all these theorems are simple and hence left as
an exercise to the reader.

THEOREM 3.4: Both Vi and V,., have zero divisors.

THEOREM 3.5: Both Vi and V,., have no idempotents which
are not constant matrix coefficient polynomials.
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We give examples of zero divisors.

a; = (X1, X2, X3, X4, X5); X; €

Example 3.1: Let Vi[x] ={Z aixi
i=0

QorRorZ,1<j<5} be a matrix coefficient polynomial ring.

Take p(x) = (3,2,0,0,0) + (6,3,0,0,0)x
+(7,0,0,0,0)x* + (8,1,0,0,0)x* and

q(x) = (0,0,1,2,3) + (0,0,0,4,2)x* + (0,0,0,1,4)x’
+(0,0,0,3,4)x* + (0,0,0,5,2)x”
be elements in Vk.

p(x) q(x) = (0,0,0,0,0).
Thus Vr has zero divisors.
Consider
a(x) =(5,0,0,0,2) + (3,0,0,0,0)x + (0,0,0,0,7))(2
+(2,0,0,0,-)x’ + (6,0,0,0,0)x’ and

b(x) =(0,1,2,3,0) + (0,0,1,2,0)x + (0,1,0,0,0)x*
+(0,1,0,7,00x” + (0,2,0,4,0)x® in V.

We see (a(x)) x (b(x)) = (0,0,0,0,0). We see if q(x) is not a
constant polynomial certainly (q(x))2 # q(x) for if deg q(x) = n
then deg ((q(x). q(x)) = n’.

We show that Vi and V., have several non trivial ideals.
Example 3.2: Let Vg be a ring. Consider the ideal generated
by p(x) = (2,3,1,5,7,8))(3 +(4,2,0,1,5,7) in Vg. Clearly I = (p(x))

is a two sided ideal. Since Vg is commutative every ideal is two
sided. Infact Vi has infinite number of ideals.
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Example 3.3: Let V,, be a ring.

3. 1), 2 1), )
Take p(x) = X+ X"+ 1 bein V.
6 2 5 7

Clearly (p(x)) generates a two sided ideal.

But p(X)Vuxn generates only one sided ideal. Similarly
(Vixn) (p(x)) is not a two sided ideal. Thus V.., has infinite
number of right ideals which are not left ideal and two sided

ideals. Further V,x, has left ideals which are not right ideals.

Example 3.4: Let

Viaaulx] = {Z aiXi
i=0

be the matrix coefficient polynomial ring. Let

xl X2 .
a; = where x; € Q; 1 <j<4}
X

3 X4

P= {i ax'
i=0

P is only a subring of Vx4 and is not an ideal of V..

xl X2 .
a; = where x; € Z; 1 <j<4} € Vi
X; X,

THEOREM 3.6: Let Vi and V,., be matrix coefficient
polynomial rings. Both Vg and V,., have subrings which are
not ideals. We see if p(x) € Vg or V,«,; degree of p(x) as in case
of usual polynomials is the highest power of x which has non
zero coefficient.

Consider
px)=(2,3.4) + (0, -1,2)x + (7,2,5)x3 + (O,I,O)X7 € V.

The degree of p(x) is even.
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31
px)=]0 1
00

The degree of p(x) is 8.

Now in case of usual polynomials if their coefficients are
from a field then every polynomial p(x) can be made monic.

However the same does not hold good in case of both Vi
and V.

Consider

p(x) = (0,3,0,0x* + (1,2,3,4)x> + (2,0,0,D)x + (1,2,0,5) in
Vr. Clearly p(x) cannot be made into a monic matrix
coefficient polynomial for (0,3,0,0) has no inverse with respect
to multiplication.

Let q(x) = (5,7,8, —4)x” + (1,2,3,00x’ + (7,0,1,5)x + (8,9,0,2)
be in Vr. Now q(x) can be made as a monic matrix coefficient
polynomial. For multiply q(x) by

t=(1/5, 1/7, 1/8, —1/4). Now tq(x) = (1,1,1,1)x> + (1/5, 2/7,

3/8, 0)x* + (7/5,0,1/8, — 5/4)x + (8/5, 9/7, 0, —2/4) is a monic
matrix coefficient polynomial of degree five.

30, (2 1), (8 1), (18 7
Letp(x)=10x+57x+05x+02x

1 2
+ (3 4} be a matrix coefficient polynomial in V,.,. We see

30
the coefficient of the highest power of p(x) is (1 OJ .
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30 . (3 0).
Clearly L o has no inverse or the matrix 1 0 is non

invertible.

Hence p(x) cannot be made into a monic matrix coefficient
polynomial in V,,. Consider

® 7 0 5+18 4

X) = X X

P 0 8 7 5
0 1), 0 1), 1 0).

+ X + X"+ in Voo
2 0 1 0 25

We see p(x) can be made into a monic polynomial.

1/7 0 ).
A= is such that
( 0 1/8}

117 0Y)(7 0y (1 0
0o 1/8)lo 8) (o 1)
Thus
/7 0 1 0) 5 (/7 0)Y(1 8,
px) = X + X
0 1/8 0 1 0 1/8) 17 5
/7 0Y(0 1y, (/7 0Y)(0 1),
+ X + X
0 1/8)\2 0 0 1/8)\1 0
177 0)(1 0
+
0 1/8)\2 5
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0 1) 5 (U7 87\, (0 U7,
= X+ X + X
1 0 7/8 5/8 1/4 0

o 17y, (U7 O
+ X+
/8 O 1/4 5/8
has been made into a monic polynomial.

We have shown only some of the matrix coefficient
polynomials can be made and not all matrix coefficient
polynomials as the collection of row matrices or collection of
nxn matrices are not field just a ring with zero divisors.

Thus we have seen some of the properties of matrix
coefficient polynomials. Unlike the number system which are
not zero divisors, we cannot extend, all the results as these
matrix coefficients can also be zero divisors.

Thus we can say a matrix coefficient polynomial p(x) € Vg
(or Vix,) divides another matrix coefficient polynomial q(x) €
Vg (or Vi) if q(x) = p(x) b(x) where deg (b(x)) < deg q(x) and
deg p(x) < deg q(x).

We illustrate this by some examples. Suppose

px)= ((3,2,1)+ (7,-1,9)x) ((1,1,2) + (1,1,1)x) ((9,2,1)
-(2,5,1)x) and

qx)= ((7,-1,9x + (3,2,1)) ((1,1,1)x + (1,1,2)) ((9,2,1)
—(2,5,1)x)) ((2,4,6)x* + (3,1,2)x + (1,3,6)) are in V.

It is easily verified p(x)/q(x) and deg (p(x)) = 3 and
deg q(x) = 5.

However it is very difficult to derive all results in case of

matrix coefficient polynomials; we have to define the concept of
prime row matrix.
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Suppose X = (ay, ay, ..., a,) is a row matrix with a; € Z, 1 <1
< n; we say X is a prime row vector or row matrix if each a; is a
prime and none of the a; is zero. Thus (3,5,11,13), (7,5,2,19,
23,31) and (11,23,29,43,41,53,59,47,7,11) are prime row
matrices.

We say or define the row matrix (ai, ..., a,) divides the row
matrix (b, by, ..., b,) if none of the a;’s are zero for i=1,2,...,n
and ay/b; for every i, 1 <i<n. That is we say (a, ..., a,) / (b1, ba,
..., by if (by/ay, ..., b/a,) = (cy, ..., cp)and ¢ €Z; 1 <i<n
(a;#0;1=1,2,...,n).

We will illustrate this situation by some examples.

Let (5,7,2,8) = x and y = (10,14,8,8) we say x/y and y/x =
(10/5, 1477, 8/2, 8/8) = (2,2,4,1).

Now if x = (0,2,3,5,7,8) and y = (5,4,6,10,21,24) then x Xy
or y/x is not defined.

So when matrix coefficient polynomials are dealt with it is
very very difficult to define division in Vg.

Clearly if x = (ay, ..., a,) with a; # 0 and a; primes for all i,
then we see there does not exist any y = (by, ..., b,) with b; # 0
and b; # 1 dividing X, (1 <1< n). Thus the only divisors of x =
(ar, ...,ay) arey = (1,1,..., 1) and y = (a;, a,, ..., a,) only. Since
we face a lot of problems in dealing with matrix multiplication
and however we only multiply the two row matrices of same
order x = (a, a, ..., a,) with y = (by, by, ..., by) as x.y = (a;, a,,
.oy ay) (by, by, ..., by) as x.y = (ajby, aby, ..., ab,) we wish to
extend this sort of multiplication for all matrices only criteria
being that they should be of same order.

We call such multiplication or product of matrices of same

order as natural multiplication of matrices. Thus we define
natural multiplication or product of two n X 1 column matrices
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a
as follows; if x=| | andy=| . | then the natural product of
aﬂ bﬂ
al bl albl
. a, b, a,b,
x withy denoted by x X, y=| " |X,| .| =
aﬂ bﬂ aﬂbﬂ

This product is defined as natural product of two nxl
column matrices and the natural product operation is denoted by
Xp.

Example 3.5: Let x = andy =

D = O NN
e I N IR, B US R

Now the natural product of x withy is X X, y =

D = O N
X
=

N D W

[7.1] 7
2.3 6
=(05|=|0
1.2 2
15.7] [35]

We see the natural product is both associative and
commutative.
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1
Now if x = | .| and y =| | be any two n x 1 column
1 a,
matrices when X X, y =y X, X =Y.
1
1 o
Thus x = | . | acts as the natural product identity. We see
1

infact any n X 1 collection of column vectors is a semigroup
under natural multiplication or natural product and is a monoid
and is a commutative monoid.

THEOREM 3.7: Let

V= llaieQ(orZorR); 1 <i<n}

be the collection of all n x I column matrices. V is a
commutative  semigroup  under natural product (or
multiplication) of column matrices.

Proof is direct and hence is left as an exercise to the reader.

Example 3.6: Let

andy =

N o= O O O O

S O O W N =

be 6 X 1 column matrices.
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We see x X,y =

N = O O O O

|
S O O o o O

S O O W N =

Thus x is a zero divisor. Inview of this we have the
following result.

THEOREM 3.8: Let
a,
a, .
V= “llaeZ(orQorR); 1 <i<n}

a

n

be the semigroup under natural multiplication x,. V has zero
divisors.

This proof is also very simple.

Example 3.7: Let
a, .
V= . a,€Z;,1<1<6}

n

be a semigroup under natural product.
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Take
W={ ?|lae3Z 1<i<6}cCV;

W is a subsemigroup of V. Infact W is an ideal of the semigroup
V. Thus we have several ideals for V.

Example 3.8: Let

V= ?|laeQ;1<i<10}

a9

be the semigroup under natural product.

Consider

a,
a, )
W= . a,€7;,1<i<10} CV;

a9

W is only a subsemigroup of V and is not an ideal of V.

Take

S=4]01aeQ;1<i<10}cV;

S is a subsemigroup of V under usual product. Also S is an
ideal of V.
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From this example we see a subsemigroup in general is not
an ideal.

Inview of this we give the following result the proof of
which is simple.

THEOREM 3.9: Let
a; € Q(orR); 1 <i<nj

be a semigroup under natural product. 'V has subsemigroups
which are not ideals. However every ideal is a subsemigroup.

Proof is left as an exercise for the reader.

Now we have the concept of Smarandache semigroups. We
will illustrate this situation by an example.

Example 3.9: Let

V=14 ?|laeQ1<i<8}
ag
be the semigroup under natural multiplication.

Consider

M=<| ?|laeQ\{0};1<i<8}cCV;
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M is a subring as well as a group under natural product. Further
we see M is not an ideal of V. Thus V is a Smarandache
semigroup.
Inview of this we can easily prove the following theorem.
THEOREM 3.10: Let
m,
m

V= 2l meQ(orR) 1<is<n}

m

n

be a semigroup under natural product. V is a Smarandache
semigroup.

Proof: For take

M= aecQ\{0}or(ae R\{0});1<i<m}CV,

a

m

M is a group under natural product as every element in M is
invertible, hence the theorem.

Now we proceed onto give an example or two.

Example 3.10: Let

ae”Z;1<1<3}

be a semigroup under natural product.
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Consider the set

is a group under product. Thus Z is a Smarandache semigroup.

1]]-1
Infact B = q|1|,| =1|; < M is also a group. Thus P is a
1|]-1

Smarandache semigroup as B ¢ P.
Now we wish to prove the following theorem.

THEOREM 3.11: Let

a,

a
M = 2l aeZ(orQorR); 1<i<n}

n

be a semigroup under natural product. If M has a
Smarandache subsemigroup then M is a Smarandache
semigroup. However even if M is a Smarandache semigroup,
every subsemigroup of M need not be a Smarandache
subsemigroup.

Proof: Suppose we have a proper subsemigroup under natural
product for M say W. W is a Smarandache subsemigroup of M;
then W has a proper subset X such that X is a group under
natural product; X < W.

Now X < W < M; that is X < M so M is a Smarandache
semigroup. Hence the claim.
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We prove the other part of the theorem by an example.

Consider

Y={ ?|xeZ 1<i<n)}

be a semigroup under natural product.
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Y is a Smarandache semigroup as

av]
1l
[ S S =
N
=~

is a group under natural multiplication. Hence Y is a S-
semigroup.

Take

a,

a
W Zlae3z;1<i<7} CY;

a,;

W is only a subsemigroup of Y and is not a Smarandache
subsemigroup of Y. Hence even if Y is a S-semigroup. Y has
subsemigroups whch are not Smarandache subsemigroup.
Hence the theorem.

Now we have seen ideals and subsemigroups and S-
subsemigroups about column matrix semigroups under natural

product.

Now we define natural product on m X n matrix semigroups
(m # n).
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DEFINITION 3.1: Let

a,;; Aap a,
a a .o a
21 22 2
M= ; : " llaj € Z(or QorR);
aml amZ amn

1 <i<m and 1 <j<n}

be the collection of all m xn (m #n) matrices. M under natural
multiplication / product X, is a semigroup.

a,; 4ap Ay b, by, In

a a a b, b b

21 22 2 21 22 2
IfX=| - : "landY=| . !
am 1 am 2 amn bm 1 bm 2 oo bmn

be any two m x n matrices in M.

ab, a,b, .. a,b,

a,b a,,b .. a,b

. 21721 22722 2n72
We define X x;,, Y = . . e
am 1 bm 1 am 2 bm 2 b amn bmn

Clearly X x,, Yisin M. (M, x,) is defined as the semigroup
under natural product.

We give examples of them.

Example 3.11: Let

21 0 51 3201 3
X=10 31 2 5|andY=(4 0 1 5 7
-1 4 3 0 1 01 205
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be any two 3 X 5 matrices. We find the natural product of X
with Y.

2 1051 3201 3
X*Y=0 3 1 2 5{%x,/4 015 7
-1 4 3 01 01 205
6 2 0 5 3
=0 0 1 10 35
046 0 5

Example 3.12: Let
ae Z;1<1<30}

be the semigroup under natural product. S is a commutative
semigroup with identity. S has infinite number of ideals and
subsemigroups which are not ideals.

Example 3.13: Let

a, a, )
S = . Jllae Q1 <112}

a;; ap

be the semigroup under natural product.
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Take

_al az_
0 O
0 O .

I= : . [|aiE Q;1<i1<4).
0 O
L35 4]

It is easily verified I is an ideal of P under natural product
Xp.

Consider the subsemigroup

_al 32_
a, a,
0 O )
S = . ;€ Q; 1516} P
0 O
185 dg

under natural product. Clearly S is an ideal of P.

Suppose
al a2
a, a, )
T= . Jllaje Z;1<i<12} P,
a;; ap

T is only a subsemigroup of P under natural product and is not
an ideal of P.

We can as in case of usual semigroups define in case of

these semigroups under natural product the concept of
Smarandache-ideals, Smarandache zero divisors and so on. By
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our natural product we are able to define some form of product
on column matrices and rectangular matrices. Now we proceed
onto define natural product on usual square matrices.

Let A = (ajj)uxn and B = (bjj)nxa be square matrices; aj;, bjj € Z
(or Qor R); 1 £1, j<n. We define the natural product

A Xn Bas A Xn B = (aij)nxn (bij)nxn
= (aij bij)nxn
= (Cij)nxn‘

We will illustrate this by few examples.
Example 3.14: Let

6 1 2 301

A=]0 3 4|andB=(2 1 O

210 01 2
be two 3 X 3 matrices. To find the natural product of A with B.

6 1 2)(3 0 1 18 0 2
Ax,B=(0 3 4|2 1 0/=10 3 0].
21 0)0 1 2 010

Now the usual matrix product of A with B is

6 1 2)(3 0 1
AB=|0 3 4||2 1 O
21 0)l0 1 2

20 3 10
=6 7 8
8 1 2
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We see A B # A X, B in general. Further we see the

operation ‘.’ the usual matrix multiplication is non commutative

where as the natural product X, is commutative.
We just consider the following examples.

Example 3.15: Let

be any two 2 X 2 matrices.

L
], 32 0

We see M.N = N.M.

3 4 1 2
However M X, N = Xn
5ol 1

3 8
= and
00
1 2 3 4 3 8
Nx,M= X = .
0 1 2 0 00

Thus N x, M =M X, N.
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Example 3.16: Let

1 00O
0200

0 0 30
0 00 4

1000]

7 0 00

08 0 0(|0 2 0O
0 0 2 0|0 0 3 0
0 0 0 4|10 0 0 4

We find M.N

7 0 0 O

016 0 O

0 0 6 O

0 0 0 16

{

Also

7000]

0 16 0 O
0 0 0 16

0 0 6 O

)

S O O <
S O a O
S 0o O O

-~ O O O

S O O <
S O on O
S N o O

- o O O

Now consider M X, N
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70 0 0
o016 0 0
1o 0 6
0 0 0 16

. Wesee M.N =M X, N.

In view of this we have the following theorem.

THEOREM 3.12: Let

a 0 0 0 .. 0
0 a, 0 0 .. O
M=4<0 0 a 0 .. 0

a; € Q (or ZorRorC);

1 <i<n}

be the collection of all n x n diagonal matrices. M is a
semigroup under natural product and M is also a semigroup
under usual product of matrices and both the operations are

identical on M.

Proof: Let
[a, 0 0
0 a, O
0 0 a,
A=
0O 0 O
100 0
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0 0
0 0
a, 0
0 a, |




b 0 O
0 b, O
0 0 b,
and
0O 0 O
i 0O 0 O

Ax,B=

AB=

0

oS o O

o

N

oS o o O

be two matrices from M.

0 0 |
0 0
0 0
a,b, 0
0 . a,b, |
0 0 |
0 0
0 0
a,b, 0
0 . a,b, |

It is easily verified A.B = A X, B. Thus both the operations are

identical as diagonal matrices.

THEOREM 3.13: L

et

M = {(aj)nn | ajj € R (or Qor Zor C); 1 <i, j <n}
be the collection of all n x n matrices, M is a semigroup under
and M

natural product
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multiplication.  Both the operations on M are distinct in
general.

The proof is direct and hence left as an exercise to the
reader.

THEOREM 3.14: Let

M = {(a;j) 1 aje Z(or QorRor C); 1 <i, j <n}
be a semigroup under natural product. M is a Smarandache
semigroup.

Proof: Let P = {(a;) | aj € Z\ {0}, (R] {0} or Q] {0} or C\
{0}) 1 <i<n} c M be a group under natural multiplication.
So M is a S-semigroup.

It is pertinent to mention here that these semigroups have
ideals subsemigroups, zero divisors and idempotents and their

Smarandache analogue.

Now we proceed onto give more structures using this
product.

DEFINITION 3.2: Let

a;e Q(orZorRorC); 1 <i<m}

be the collection of all m x 1 column matrices. M is a ring
under usual matrix addition and natural product Xx,.
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Example 3.17: Let

M=1{| *|lae R(orQorZ);, 1<i<4)}

be a ring under + and X,. The reader can easily verify that
Ax,(B+C) =AXx,B + A x, C where A, Band C are n X 1
column matrices.

. aZ 2 CZ
ConsiderA=| “|,B=| “|andC=| 7 |;
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Now consider A X, B + A x, C

al bl al Cl
a a c
2 2 2 2
= . Xn + . Xn
aﬂ bﬂ aﬂ CH
ab, ac, ab, +ac,
a,b, a,c, a,b, +a,c,
= . + . = .
ab, ac, ab +ac,

Thus we see X, distributes over addition. Now consider the
collection of all m X n matrices (m # n) with entries taken from
Z or Q or C or R. We see this collection also under matrix
addition and natural product is a ring. Let

M = {(@jj)mxn | m# n; a;;€ R (or Z or Q or C);
l1<i<mand1<j<n};

M is a ring infact a commutative ring.

However M is not a ring under matrix addition and matrix
product.

Example 3.18: Let

a4, a

a, a, .
M= a,€e QorZorRorC); 1<1<8}

aS aG

a; ag

be a ring under matrix addition and natural product.
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M is a commutative ring with unit

[ G U GG w—y
[V U G w—y

M has units, zero divisors, subrings and ideals.

3 4 1/3
5 8 1/5
Take a = andb =
19
4 7 1/4
11
11
clearly ab =ba =
11
11
0 O a,
_ a, a,
Consider a = andb =
a, a, 0
0 O a,
Clearly ab =

oS O o O
oS O o O
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1/8
1/9
1/7

>

e M.

is a zero divisor in M.



Take

a, 0
a, 0 _

P= 3,€Q; 1514} M,
a, 0
a, 0

P is an ideal of M.
Consider

4 a,
a, a, )

T= a€Z;1<i<8} cM;
aS aG
a; &

clearly T is only a subring of M and is not an ideal of M. Thus
M has subrings which are not ideals. We can find several
subrings which are not ideals.

Example 3.19: Let

a, a, a
N — 1 2 3
a, a; a
be the ring under matrix addition and natural product. We see
M has no units.

ae”Z;, 1<iL6}

111
L 1 J is the identity with the natural product X, in N.

Consider

P= bl b2 b3
b, b, b,

is an ideal of N.

bie 3Z; 1<i<6} N
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Example 3.20: Let

Sllae Q 1<i<33)

a3 a3 Az

be a ring under matrix addition and natural product. M is a S-
ring.

For consider

bl b2 b3
b, b, b, _

P=14 4 7 Cllbe3zZ:1<i<33)cM;
b31 b32 b33

P is not an ideal of M. M has units, zero divisors, subrings and
ideals.

Take
_al a, a3_
0 0 O
W= Pt laeQ; 1<i<6}cM,
0 0 O
la, a5 ag |

W is an ideal of M.
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Consider

a, a, a,

0 O
S=4. .

0 0 O

is only a subring and not an ideal.

Example 3.21: Let

4, 2,

a a

3 4

M= . .
a4y ap

be a ring M is commutative ring with

aeZ 1<i<3}cM

aeQ; 1<i<22)

as unit with

11

respect to natural multiplication. M is not an integral domain.
M has zero divisors and every element M is torsion free.

al aZ

. a4

For consider x = .
aZl a22

2 2
al a2
2 2
a. a
2
=] andsoon. x"=
2 2
)

e M.
n n
a4,  a,
n n
al a
n n
a4y ap

Thus every x € M is such that x" # [1] for any positive n.
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Example 3.22: Let

al a2 a3
P= {la, a, a |laaicQ(orZorRorC); 1<i<9}
a; ag a4y

be a commutative ring with unit under natural product.

al a2 a3
M= 0 a, a,|laaeZ; 1<i<6}CPh;
0 0 a

M is a subring but M has no unit. M is not an ideal. M is of
infinite order.

Example 3.23: Let

0 a; a, a, _

M= ae”Z;, 1<i<10}
0 0 a; a,
0 0 0 a

be a ring M is a commutative ring with no identity.

a, 0 0 O
0 a, a, O _
P= ae”Z;, 1<i<4} cM;
0 0 0 a,
0O 0 0 O

P is a subring and an ideal of M.
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Example 3.24: Let

*llaje Z; 1<i<33)

be a ring P has no units. P has ideals. P has subrings which are
not ideals. P has no idempotents or nilpotents.

Every element x in P is such that for non € Z°,

111
. (111
X = .
111
THEOREM 3.15: Let
a; a,
ay; a, . .
M = : a; € Q; 1 <i<m; 1 <j<n}
aml amn
be a ring M is a S-ring.
Proof: Consider
b 0 .. 0
00 ... 0
P=<. . . . |[|beQ}eM;
00 ... 0

P is a field. So M is a S-ring.
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COROLLARY 2: Every matrix ring under natural product is a
S-ring.

If Q is replaced by Z in the theorem and corollary then the
matrix ring is not a S-ring.

Example 3.25: Let

llaez; 1<i<12)

be a ring, S is a S-ring.

Example 3.26: Let

a;

a, a, .
M= a,€ Q;1<1L8}

aS aG

a, a

be aring. M is a S-ring. For M has 8 subfields given by

a, 0
F, = 00 a; € Q} < Mis a field.
0 0
_0 0_
o al_
F, = 00 a; € Q} < Mis a field.
0 0 o
_0 0_
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0
a
F; = !
o
10
[0
— 0
““o
0
[0
0
F5=

al
K

[0
— 0
o
0

0

0
F7= 0
a;

0

i 0
*“lo
0

Thus M has only 8 fields.

o P o o c o o o ©c o .P o c o o o

oS O o O

a; € Q} < Mis a field.

a; € Q} cMis a field.

a; € Q} cMis a field.

a; € Q} cMis a field.

a; € Q} c Mis a field and

a; € Q} c Mis a field.
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_SD
oo

a, e QlcM;

(=N o]

0

N is a subring and an ideal and not a field. Thus M has only 8
fields. M is a S-ring. N also is a S-subring. However all
subrings of M are not S-subrings.

For consider

a, a,
a, a, )
S= ae”Z;, 1<i<8}cM;
a5 a4
a; ag

S is only a subring and clearly S is not a S-subring. Infact M
has infinite number of subrings which are not S-subrings.

Example 3.27: Let

al aZ a3
W= Jla, a; a ||laeQ; 1<i<9}
4; 83 4

be a ring under usual multiplication of matrices. W is a non
commutative ring. However W is also a S-ring. W is a
commutative ring under natural matrix multiplication, (W, +,
X,) 18 also a S-ring. Both have zero divisors.

It is interesting to recall that by the natural matrix
multiplication we are in a position to extend all the properties of
reals into these matrix rings, (R, +, X,); the only difference
being that these rings have zero divisors. So as blocks they do
not loose any of the properties over which they are defined.
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Further we can get compatability of natural product for both
column and rectangular matrices. Hence we see these matrices
under natural product can serve better purpose for they almost
behave like the real numbers or complex number or rationals or
integers on which they are built. Now we give more algebraic
structure on them. Consider the set of all row matrices M =
(X1, ..., x) I x;e R"U {0} (or Q" U {0} orZ" U {0}); 1 <i<
n}, M under + is a commutative semigroup with (0, 0, ..., 0) as
its additive identity.

M under X, is also semigroup. Thus (M, +, X,) is a
semiring. We see this semiring is a commutative semiring with
zero divisors.

Suppose

S={(x,....xp) I x;e R"U {0} (or Z" or Q*); 1 <i<n}.
Now {S U {(0,0, ...,0)} =T, +, X,} is a semifield.

It is easily verified T has no zero divisors and that T is a
strict semiring for a = (X;, Xz, ..., X,) and b = (y1, y2, ..., Yn) 1S
such that x+y = 0 implies a = (0) =b = (0, 0, ..., 0). Now we
will give examples of them before we proceed onto define and
describe more properties.

Example 3.28: Let

M = {(a}, a,, a3) wherea; € Z" U {0}; 1 <i<3}; (M, +, X,)
is a semiring. M is not a semifield as a = (3, 0, 4) and b = (0, 7,
0) in M are such that a.b = (3, 0, 4) (0, 7, 0) = (0, 0, 0).

However M is a strict commutative semiring which is not a
semifield.
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Example 3.29: Let

(S}

w

ae Q uU{0}; 1<i<6}

= 2N <N <~ B V)

N

be a semiring under + and X,.

0 1
3 0
We see if x = (1) andy = 2 are in T then
2 0
_5_ _0_
o] [1] [o]
3 0 0
1 0 0
XXpy= Xn = .
0 2 0
2 0 0
15 ] 10] [0}

Thus T is only a commutative strict semiring and is not a
semifield.
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Example 3.30: Let

a e R"U{0); 1<i<15)

a3 Ay A

be a semiring under + and X,. Clearly M is commutative and is
a strict semiring. However M does contain zero divisor, for if T

a, a, a, [0 0 0]
0 0 O a, a, a,
=0 0 O|andN=|a, a, a,| withae R"U{0}are
0 0 O a, ag a,
|2, a5 ag | 10 0 0]
in M then
fa, a, a,] [0 0 0] [0 0 O]
0 0 O a, a, a, 0 0O
TxX,N=10 0 O|X,|a, a; a,|=|0 0 O
0 0 O a, ag a, 0 00
|2, a5 ag | L0 0 0] |0 0 O]
Thus M is not a semifield.
Example 3.31: Let
al a2 a3
J=1la, a, a ||lae Q U{0}; 1<i<9}
a, ag a,

be a semiring under + and X,. J is a commutative strict
semiring. However J is not a semifield.

78



0 0 a b, b, 0
Fortakea=| 0 a, a,|andb=|b, 0 O]|inl,

la, a; ag| 0 0

[0 0 a/|[b b, 0 0 00
weseeab=|0 a, a,||b, O O|=(0 0 O

la, a5 a; ][0 0 O 0 00

Thus J is only a strict commutative semiring and is not a
semifield, we show how we can build semifields.

First we will illustrate this situation by some examples.
Example 3.32: Let
M = {(0,0,0,0), (X1, X2, X3, Xa) | X € Q"5 1 1< 4}5 (M, +, Xn)

be a semifield. For we see (M, +) is a commutative semigroup
with additive identity (0,0,0,0).

Further (M, X,) is a commutative semigroup with (1,1,1,1)
as its multiplicative identity.

Also M is a strict semiring for (a,b,c,d) + (X,y,z,t)

=(@+x,b+y,c+z t+d)

=(0,0,0,0) if and only if each of a,b,c,d,x,y,z and t is zero.

Also for any x = (a;, a,, a3, a4) and y = (by, by, bs, by) in M.
We see x.y = (a5, az, a3, a5) (by, ba, b, by) = (ajby, azbs,, asbs,

asby) where ajb; are in Q*; 1 <i<4 so x.y # (0,0,0,0). Thus (M,
X,) 1s a semifield. Thus we can get many semifields.
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Example 3.33: Let

al
a2
M= | wherea;e R, 1<i<10} and
ay
L 10
o
0
P=Mu {|:|t; (P, +, X,) is a semifield.
0
_0_
Example 3.34: Let
[a, a, a, a,]|
a, a, a, ag
S=4la, a, a, a,|whereaeR"1<i<20}
a13 a14 alS alG
Ld17 Qg g Ay

andP=S u ; (P, +, X,) is a semifield.

S O O O O
S O O O O
S O O O O
S O O O O
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Example 3.35: Let

aieZ,1<i<4}and

0 O]
P=Tu {{0 0 } ; (P, +, X,) is a semifield.

We see by defining natural product on matrices we get
infinite number of semifields apart from R* U {0}, Q" U {0}
and Z" U {0}. We proceed onto give examples of Smarandache
semirings. Recall a semiring S is a Smarandache semiring if S
contains a proper subset T such that T under the operations of S
is a semifield.

Example 3.36: Let
M = {(a}, a, ..., a;0) la;e Q" U {0}, 1<i< 10}
be a semiring under + and X,. Take

T ={(0,a,0,...,00lae Q" U {0}} c M;
T is a subsemiring of M. T is strict and T has no zero divisors,
so T is a semifield under + and X,. Hence M is a Smarandache
semiring.

Example 3.37: Let

where a; € Z" U {0}, 1 <1< 8}

be a semiring under + and X,.

81



Consider

P=!|:laeZ"u{0}}cT.

P is a subsemiring of T which is strict and has no zero divisors.
Thus T is a Smarandache semiring.

Example 3.38: Let

where a; € Z" U {0}, 1 <1< 12}

be a semiring under + and X,.

V is a Smarandache semiring as

acZ'u{0}}cV;

oS O O
oS o O
oS O©O O

is a semifield.
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Example 3.39: Let

I a, a, az a, 4a; |
a4, Ay a9 3
M=la, a, a; a, a;
A A; A Ay Ay
Lo @y Ay Ay Aps

where a; € R" U {0}, 1<i<25}

be a semiring under + and X,.

Consider
[0 0 0 0 0]
00 a 00
S=<0 0 0 0 O|laceZ'Uu{0}}cM
00 0 0O
00 0 0 0

is a semiring as well as a semifield under + and %,. Hence M is
a Smarandache semiring.

We can now define subsemirings and Smarandache
subsemirings. These definitions are a matter of routine and
hence left as an exercise to the reader. We however provide
some examples of them.

Example 3.40: Let

a a

4
P=<la; a, a, a,|whereajeZ"U{0},1<i<12}

be a semiring under + and X,.
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Consider

a, a, a, a,
X=4{0 0 0 0]|lae3Z'U{0};1<i<4}cP;
0 0 0 0

x under + and X, is a subsemiring of P. However x is not a
Smarandache subsemiring.

But we see P is a Smarandache semiring for

d 0 00
V=1:0 0 0 0||deZ'u{0}}cP
0 00O

is a semiring as well as a semifield under + and X,.

Example 3.41: Let

where a; € Q" U {0}, 1<i< 16}

be a semiring under + and X,.
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P is a Smarandache semiring for take

a 00 0
0000 .

W= aeZ' U0} cP
0000
0000

is a semifield under + and X,. Hence P is a Smarandache
semiring. However P has infinitely many subsemirings which
are not Smarandache subsemirings.

Consider

o

o

(S}
o

w

aenZ;1<i1<3;n>22} cPh;

oS o O
oS o O
oS o O
oS O o O

P, is a subsemiring of P but is not a Smarandache subsemiring
of P. Thus we see in general all subsemirings of a Smarandache
semiring need not be a Smarandache subsemiring. But if S be a
semiring which has a Smarandache subsemiring then S is also a
Smarandache semiring.

Inview of this we have the following theorem.

THEOREM 3.16: Let S, be a semiring of n X m matrices with
entries from R* U {0} (or Q U {0} or Z" U {0}). If S has a
subsemiring which is a Smarandache subsemiring then S is a
Smarandache semiring. However if S is a Smarandache
semiring then in general a subsemiring of S need not be a
Smarandache subsemiring.

Proof: Let S be a semiring and P < S be a proper subsemiring
of S, which is a Smarandache subsemiring of S. Since P is a
Smarandache subsemiring of S we have a proper subset X < P
(X' # ¢ and X # P) such that X is a semifield. Now we see P = S
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and X € P so X € P c S that is X is a proper subset of S and X
is a semifield, so S is a Smarandache semiring.

To show every subsemiring of a Smarandache semiring
need not be a Smarandache subsemiring, we give an example.

Consider

a a a a
P={l S 4}whereaiez+u{0},13138}

be a semiring under + and X,.

If is easily verified P is a Smarandache semiring as

a 000
X =
{0000}

is a semifield under + and X,; so P is a Smarandache semiring.

ae Z"U{0}} cP;

Consider a subsemiring

4, a, a; a, + .
T= where a; € 527U {0}, 1 <1<8} CP;

a; a5 a; A

clearly T is a subsemiring of P; however T is not a Smarandache
subsemiring of P, but we know P is a Smarandache semiring.
Hence the result.

We will show the existence of zero divisors in semirings.
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Example 3.42: Let

a, a, a,
a, a5 a,
P=1<la, a, a, | whereaeZ"U{0},1<i<15}
Qo Ay Ay
|33 Ay A5

be a semiring and + and X,.

To show M has zero divisors.

0 0 O a, a, a,
a, a, a, 0 0
Considerx=|{0 O O |andy=|a, a; ag|inM.
a, ay; a, 0 0 O
10 0 0] la; a2 |

We see x X,y =

S O O O O
S O O O O
S O O O O

Thus M has zero divisors. Infact M has infinitely many
zero divisors.

o

o

(S}

For take a = where a,, a, € 10Z" and

oS O o O
oS O o O
S O O O O
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where by, b, € 3Z"in M,

o
1l

S o © & o

o o o F o

o o o o o

we see a.b =

S O O O O
S O O O O
S O O O O

Thus we can get any number of zero divisors in M.

M has no idempotents other than elements of the form

111
0 0O
x={1 1 1 eM,weseex2=x0r
0 0O
10 0 0]
[0 0 0]
1 00
y=|0 1 0| e Mis suchthaty’=y and so on.
0 01
011
Inview of ;hjs we héve the following nice theorem.

THEOREM 3.17: Let S = {(ay)nsn | a;j € Z" U {0} (or Q7 U {0}
or R" U{0}); 1 <i <m; 1 <j <n} be a semiring under + and
Xp. All elements in S of the form T = {(aj)m | a; € {0, 1}} =S
are collection of idempotents.
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The proof is direct hence left as an exercise to the reader.

We call all these idempotents only as trivial or {1, 0}
generated idempotents; apart from this these matrix semiring
with natural product do not contain any other idempotents.

Example 3.43: Let M = {(a,b) la,be Z" U {0}} be a semiring
under + and X,. The only trivial idempotents of M are (0, 0), (0,
1), (1, 0) and (1, 1).

b
Example 3.44: Let P = {a d} a,b,c,de Z"U {0}} bea
C

semiring under + and X,

The trivial idempotents of P are
0 o|[1 o][o 1][0o o][o oO][1 O][1 1
0 070 oo of|1 o]0 1][1 o]0 Of
0 ol[o 1][1 1][1 O]
1 1o 1]t 1)t 1)
o 1]t 1]t 1][1 o][0 1]
) s s N =IQP
L 1“1 0}_0 1}_0 1“1 0_}

we see I under natural product X, is a semigroup. However I is
not closed under +.

—- O

THEOREM 3.18: Let
M={(ay) | a; € Z" U{0}; ] <i <m; 1 <j<n}
be the collection of m x n matrices. The collection of all trivial

idempotents forms a semigroup under X, and the number of
such trivial idempotents is 2™,
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The proof involves only simple number theoretic
techniques, hence left as an exercise to the reader.

Example 3.45: Let

a a a a
M={l S 4}whereaiez+u{0},1SiS8}

a; a5 a; ag

be a semiring under + and X,.

f[oo0 0 0][t 00 0][0 100
“1lo o o olo o o ollo 00 oOf

0 0 0 0l[o oo o][o o o0 0][00 0O
1 00 0f o o o 1/

110001 olfo o 1 1][1t 0 0 0O
00 0 0/l00 0 0/l0O0OO0O|lT OO0O0O"

111 1|1 111

cM;
11101111
is the collection of all trivial idempotents. Clearly they form a

semigroup under product. However I is not closed under
addition. Further the number of elements in I is 2°.

1111
Further the semigroup I has zero divisors and L 11 J

acts as the multiplicative identity.
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1100 0011},
X= andy = is such that
1 111

1111

Each element in I\ {L L1 J} can generate in ideal of

the semigroup.

) 1 1 11
For consider x = e I;
00 0 O

(x)=

1 1 0 olfo 1 1 o][1 O 1 O][1 0 O
00 0 0/l0 0O 0[]0 OO O0/lOOO0OO

1110‘0111‘1101‘1011I
9 9 9 g
0 00 0//0O0O0O0//O0O0O0]OO0O0O

is an ideal of the semigroup and order of the ideal generated by

(x) is 16.
< {1 11 OD
J=(x=
1110
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_[fo 0o 0 o|[1 0 0 0][0 0 0 O]f0 O 1 0
“1lo o o olo 0 0 o/T 0 0 0/l0 0 0 O

0 00 0[[0O 1 0 0][0 0 0 O]

000 0]t 00 0]f0 1 0O0][00T10
1 01 0]t oo0o0fj0o1O0O0][00T1O0]
0 010[[t0ooOO][01 0O0][O1O00O0
001001001 O0O0O0]0O0T1O0][

1 00 0l[0o 01 0][0O 010
001 0’1t 00O0/l01 00O
and so on}.

We see order J is 2°. Thus every singleton other than {0}
and identity generate an ideal in the trivial idempotent
semigroup.

Infact {0} generates {0} the trivial zero ideal and

1111
L L1 J generates the totality of the semigroup.

Now having seen the collection of trivial idempotents we
proceed onto define other properties. Using the semifields we
can build semivector spaces. More properties like zero divisors
and Smarandache zero divisors are left as an exercise to the
reader.
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Chapter Four

NATURAL PRODUCT ON MATRICES

In this chapter we construct semivector space over
semifields and vector spaces over fields using these collection
of matrices under natural product.

DEFINITION 4.1: Let V be the collection of all n x m matrices
with entries from Q (or R) or C. (V, +) is an abelian group. V
is a vector space over Q (or R) according as V takes its entries
from Q (or R). If V takes its entries from Q; V is not a vector
space over R however if V takes its entries from R, V is a vector
space over Q as well as vector spaces over R. We see all vector
spaces V (m #n) are also linear algebras for using the natural
product we get the linear algebra.

We first illustrate this situation by some examples.
Example 4.1: Let V={(Xy, ..., Xs5) I x,€ Q;1<i<5}bea
vector space over Q. Infact V is a linear algebra over Q.

Clearly dimension of V is five and a basis for V is

{(1,0,0,0,0) (0,1,0,0,0) (0,0,1,0,0), (0,0,0,0,1), (0,0,0,1,0)}.
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Example 4.2: Let

fa, a,]
a, a,

M= q{la; a, ||aeR;1<i<10}
a, ag
_a9 al()_

be a vector space over Q. Clearly M is of infinite dimension.
Example 4.3: Let

P:{{al az}
a, a,

be a vector space over R. Clearly dimension of P over R is four.

a,e R;1<1<4}

Example 4.4: Let

a,
a, )
M= . ae Q; 15120}

ay

be a vector space over R. Clearly M is not a vector space over
R. Clearly dimension of M over Q is 20.

Example 4.5: Let

al a2 a3
T=4la, a; a;|laeQ; 1<i<9}
4; 83 4

be a vector space of dimension nine over Q. We see T is a
linear algebra over Q under natural product as well as under the
usual matrix product.
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The concept of subspace is a matter of routine and hence is
left as an exercise to the reader.

However we give examples of them.

Example 4.6: Let

al a2
M=qla; a,|laeQ;1<i<6}
a5 Ag

be a vector space over Q.

Consider
a, 0
T=4<0 a,|laac Q1<i1<3}cM;
a, 0

it is easily verified T is a subspace of M over Q.

Consider
a, 0
P=4la, O|laae Q;1<i<3}cM;
a, 0

P is also a subspace of M over Q. Now we consider P N T (the
intersection) of these two subspaces,

a, 0
PNnT=40 0flaeQ;i=l,3} cM;
a, 0

P N T is also a subspace of M over Q.
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Example 4.7: Let

al a2 a3
P=4la, a, a |laeQ;1<i<9}
a, ag a
be a vector space Q.
Consider
a a, 0
M;=43/0 0 0]|aeQ;1<i<3}cP,
0 0 a,

M, is a subspace of P over Q.

Consider
0 0 a
M;=40 a, O]la,aeQ}cP
0 0 O

is also a subspace of P over Q.

0 0 0
However wesee M, " M,=({0 0 O
0 0 0
Consider
0 O
M;=<la, 0 a,||aeQ;1<i<3} cCP,

0 a; O
Mj is a subspace of P over Q.
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Take

0 0O
Ms=40 0 Of|aie Q} cP
a, 0 0
is also a subspace of P over Q.
0 0O
WeseeP=M,+ My + M3+ Myand MinM;=|0 0 O
0 0O

if i #j. Thus we can write P as a direct sum of subspaces of P.

Example 4.8: Let

a, .
P= S llae Q;1<51L12}

a,

be a vector space over Q.

Consider

X,

Il
=]

a;, A € Q} gP’

X is a subspace of P over Q.

97



X,={|a, [a€ Q:1<i<3}cP

is again a subspace of P over Q.

Take

X3=4q|a, [|laie Q;1<i<4} cP

is again a subspace of P over Q.
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Consider

X, = ae Q1<i<5)cP

is a subspace of P over Q.

Wesee Xin Xj# | . |ifi#].

0
0

Thus P is not a direct sum. However we see

Pc X+ X, + X5+ Xy, thus we say P is only a pseudo
direct sum of subspaces of P over Q.

Thus we have seen examples of direct sum and pseudo
direct sum of subspaces. Interested reader can supply with more
examples of them. Our main motivation is to define
Smarandache strong vector spaces.

It is important to mention that usual matrix vector space
over the fields Q or R are not that interesting except for the fact
if Vis set of n X 1 column matrices then V is a vector space
over Q or R but V is never a linear algebra under matrix
multiplication, however V is a linear algebra under the natural
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matrix product X,. This is the vital difference and importance of
defining natural product X, of matrices of same order.

Now we define special strong Smarandache vector space.

DEFINITION 4.2: Let

a,
M=<|: ||lae Q; 1 <i<nj.

n

We define M as a natural Smarandache special field of
characteristic zero under usual addition of matrices and the
natural product x,. Thus {M, +, x,} is natural Smarandache
special field.

We give an example or two.

Example 4.9: Let

V=l ?|lae Q1<i<7)

a,;

is a natural Smarandache special field of characteristic zero.

Consider
o _ ; 1]
1
1
7 1/7 1
-9 9 -1/9 9
X = € Vthenx = e Vandx.x =|1].

2 1/2 1
-7 -1/7 1
4 1/4

L - L - _1_
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Thus acts as the multiplicative identity.

— = = e e e

Example 4.10: Consider the collection of 7 X 1 column
matrices V with entries from Q.

Wesee <| . || a€ Q} =P is a proper subset of V which is a

0

field hence natural S-special field.

Example 4.11: Let

M=|a, || ac Q1<i<5}

be a natural S-special field of characteristic zero. M is a column
matrix of natural Smarandache special field.

Now if we consider
S={(X, X2, ..., Xp) I x;€ Q(or R) 1 £1<n}.
S under usual addition of row matrices and natural matrix
product X, is a natural Smarandache special field called the
special rational natural Smarandache special field of
characteristic zero.
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Example 4.12: Let V = {(X1, X2, X3, X4, X5) | X, € R, 1 <1 <4}
be the special real natural Smarandache special field of column
matrices of characteristic zero.

Example 4.13: Let V = {(x;, Xp) | x; € R, 1 <1 <2} be special
row matrix natural Smarandache special field of characteristic
ZEero.

All these fields are non prime natural Smarandache special
fields for they have several natural S-special subfields.

Now we can define the natural Smarandache special field of
m X n matrices (m # n).

Let
.‘:111 .‘:112 aln
a a e a

v=4| * = llaje R, 1<i<m, 1<j<n}
.‘:lm1 am2 amn

V is the special m X n matrix of natural Smarandache
special field of characteristic zero.

Example 4.14: Let

M=4la, a, a, a,||laeR, 1<i1<51<)j<4})

be the special 5 X 4 matrix of natural Smarandache special field
of characteristic zero.
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Example 4.15: Let

4, 2,
a3 a4 .

M= ; ) a,€ R, 1<i<22}
a4y ap

be the 11 X 2 matrix of natural Smarandache special field of
characteristic zero.

Example 4.16: Let

a a a
PI 1 2 o 16
|: i|
ad; dig ... Az

be the 2 X 16 matrix of natural Smarandache special field.

aeR, 1<i<32)

Now having seen natural S-special fields of m X n matrices
(m # n). We now proceed onto define the notion of natural
special Smarandache field of square matrices.

Let
all a12 In
a, a a
21 22 2 ..
P= : : " llaje R, 1<4,j<n}
a, a, .. a,

be a square matrix natural Smarandache special field of
characteristic zero.

We give examples of them.
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Example 4.17: Let

al a2 a3
M= 4la, a; a;||ae R, 1<i<9}
a; 83 4

be the 3 X 3 square matrix of natural special Smarandache field.

Example 4.18: Let

a, e R, 1<i<25}
A1 Ay Ay Ay Ay

be the 5 X 5 square matrix of natural special Smarandache field
of characteristic zero.

Now having seen and defined the concept of matrix natural
special Smarandache field we are in a position to define natural
Smarandache special strong matrix vector spaces.

DEFINITION 4.3: Let

V= {(x5, x3, ..., x,) | x; € Q (or R), I <i <n}
be an additive abelian group.

FR = {(Cl], ceey Cln) [ a;, € Q, 1<i _<I’l}
be the natural special row matrix Smarandache special field.
We see for every x = (ay, ..., a,) € Frand v = (x;, ..., x,) € V.
xv = vx € V; Further (x+y)v = xv + yv and x (v+u) = xv + xu
forallx,y € Frandv,u V.

Finally (1, 1, ..., I)v=v e Vfor (1, 1, ..., 1) multiplicative

identity under the natural product x,. Thus V is a Smarandache
vector space over Fr known as the Smarandache special strong
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row vector space over the natural row matrix Smarandache
special field Fp.

First we proceed onto give a few examples of them.

Example 4.19: Let M = {(X1, X2, X3, X4) [ X;€ Q; 1 <i<4} bea
Smarandache special strong row vector space over the natural
Smarandache special row matrix field

Fr={(x1, X2, X3, X4) I X;€ Q; 1 £1<4}.
Example 4.20: Let P = {(x1, X2, X3, ..., X10) | X; € R; 1 £1< 10}

be a Smarandache special strong row vector space over the
natural special row matrix Smarandache field

Fr={(x1, X5, ..., X10) | Xx,€ Q; 1 <1< 10}.
Example 4.21: Let T = {(X}, X2, X3, ..., X7) | Xj€ R; 1 <1 <10}

be a Smarandache special strong row vector space over the
natural special row matrix Smarandache field

Fr={(x1, X2, ..., x7) I x; € Q; 1 <1< 10}.
Now we proceed onto define natural S-special strong
column matrix vector space over the special column matrix

natural S-special field Fe.

DEFINITION 4.4: Let
X
Xy .
V= llxieQ(orR), 1 <i<n}

X

n

be an addition abelian group. Let
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a; € Q(orR), 1 <i <n}

be the special column matrix natural S-field. Clearly V is a S-
vector space over the natural Smarandache special field Fc, we
define V as a S-special strong column matrix vector space over
the special column matrix natural S-field F.

We will illustrate this situation by some examples.

Example 4.22: Let
V=4 ?|lxeQ 1<i<10}

is a S-special strong column matrix vector space over the
special column matrix natural S-field

X
X, .
Fc= J11xie Q(orR), 1 i< 10}.

X9
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Example 4.23: Let

V=4la, || aeR;1<i<5}

be a S-special strong column matrix vector space over the
special column matrix natural S-field

Fe=49]x; || xie Ry 1 <1<5}.

Example 4.24: Let

v 2]

be a S-special strong column matrix vector space over the
special column matrix natural S-field

rer 2]

Now we proceed onto define the notion of Smarandache
special strong m X n (m # n) matrix vector space over the
special m X n matrix natural Smarandache special field Fpx,
(m # n).

x€ R;1 <12}

X1, X2 € Q}.
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Let

a, a,, e Ay
a a a
21 22 oo 2n
M= . . . ajj € Q (OI' R),
d Ay .o Ann

1<i<m,1<j<n;m#n}

be a group under matrix addition. Define

all alZ aln

a a a
21 22 2n

Foxn (m#n) = . . .
a,, a,, .. a,

aj€ Q(orR), 1<i<m,1<j<n}

to be special m X n matrix natural S-special field. Now we see
M is a vector space over Fy., called the S-special strong m X n
matrix vector space over the special m X n matrix natural S-
special field Fp.

We will illustrate this situation by an example or two.

Example 4.25: Let
1

7

a
a4
a 0 )

a,€ Q;1<iL18}
a

I CR
W
® o o
(=)}

10
a3 Ay A

| A7 A |

be a S-special strong 6 X 3 matrix vector space over the special
6 X 3 matrix natural special S-field
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ae Q;1<1<18}.

1<i<24)

be a S-special strong 3 X 8 matrix vector space over the special
3 x 8 natural special matrix S-field

a, a, a,
Fys=14la, a, .. a,||aecQ 1<i<24}.
a7 Qg .. Ay
Example 4.27: Let
a, a,
a; a, )
V= ae R 1<i<8}

a5  ag
a; ag

be a S-special strong 4 X 2 matrix vector space over the special
4 x 2 matrix natural special S-field
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33 34 .

Fuxo = a,€ R; 1 <1<8}.
5 dg
a; ag

Now finally we define the S-special strong square matrix
vector space over the special square matrix natural special S-
field Fyn.

all In
_ a21 aZn . <i i<
Fon = . . aj; € R(Or Q)’ l_l,j_n}.
anl ann

a, a, .. a,
21 a22 a2n ..
LetM = . ' llaje Q(orR), 1<1i,j<n}
a, a, .. a,

Let
all a12 1n
a, a a
21 22 A 2 ..
Fosn = : : " llaje R, 1<4,j<n}
a, a, .. a,

be the S-special square matrix field M is a vector space over
Fux. M is defined as the S-strong special square nxn matrix
vector space over the special square matrix natural special S-
field Fyn.
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We will illustrate this situation by some simple examples.

Example 4.28: Let

al a2 a3
M= qla, a; a;||aeQ;1<i1<9}
a; dg @

be a special strong square 3 X 3 matrix S-vector space over the
special 3 X 3 square matrix natural special S-field.

al a2 a3
Fiys=4<la, a5 a,||laec Q;1<1<9}.
a, ag a

a
6 7 8 9 10 .
V=4l 7 . . ) . llaie R, 1<i<25)
1 Ay Ay Ay Ay

be a S-special strong 5 X 5 square matrix vector space over the
special 5 X 5 natural special Smarandache field.

a, a, a, a, as

a

a
6
F5><5 = .

a
’ 2 P llae R, 1<i<25).

A1 Ay Ay Ay Ay
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Example 4.30: Let

a, a, .
A= ae R;1<1<4}

be a S-special strong 2x2 square matrix vector space over the
special 2x2 square matrix natural special S-field

a, a, .
F2X2= a; € Q,1S1S4}

a, a,

Now seen various types of S-special vector spaces; we now
proceed onto define S-subspaces over natural special S-fields.

DEFINITION 4.5: Let V be a S-strong special row matrix (or
column matrix or m X n matrix (m#n) or square matrix) vector
space over the special row matrix natural S-field Fr (or F¢ or
Fuxu (n #Zm) or Fox).

Consider W < V (W a proper subset of V), if W itself is a S-
strong special row matrix (or column matrix or m X n matrix (m
#n) or square matrix) S-vector space over Fr (or F¢ or F,, or
F..) then we define W to be a S-special strong row matrix

(column matrix or m X n matrix or square matrix) vector space
of V over Fg (or Fc or F,, or F,x).

We will illustrate this situation by some simple examples.

Example 4.31: Let V = {(a, a5, a3) la; € Q; 1<i<3}beasS-
special row matrix vector space over

Fr = {(x1, X2, X3) | X; € Q, 1 £1 < 3} the natural special S-

row field. Consider M = {(a;, 0, 0) la; € Q} c V; M is a S-
special strong row matrix vector subspace of V over Fr.
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Example 4.32: Let

V= Zllae R;1<i<6)

ag

be a S-special strong vector space over the S-field;

a,
a, )
Fc = Jllaje Q;1<iL6]}.

ag

Consider

&

o

<
I

ae R;1<1<3} CV;

o

a,

0

M is a Smarandache special strong vector subspace of V over
the S-field Fc.

Take

o
] —_

a, € R} CV;

oS o o O
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P is a Smarandache special strong vector subspace of V over the
S-field Fc.

Example 4.33: Let

, Ay ||lae Q;1<1<12}

be a S-special strong vector space over the S-field

a a a a

1 2 3 4
Fau=<la; a, a, a,|lacQ;1<i<12}cM,
ay A a Ap
P is a S-special strong vector subspace of M over the S-field
I::3><4~

Example 4.34: LetV ={(a;, ay, ...,a9)la;e R; 1<i<9} bea
Smarandache special strong vector space over the S-field,
Fr={(a;, ay, ..., a9) la;e Q; 1 <i<9}.

Consider M; = {(a}, 0, a5, 0, ...,0)la;,ae R} cV,M;isa
S-special strong vector subspace of V over the S-field Fg.

Consider

M, =1{(0,a;,0,a,0,...,0)la;e R; 1 <i<2} CV,
M, is a again a S-special strong vector subspace of V over Fg.

M3 = {(07 07 07 07 ap, dap, 07 07 0) | a;, Ay € R} c V7 M3 isa
again a S-special strong vector subspace of V over Fr.

M4= {(07 07 07 07 07 07 ap, az, a3)|aie R’ 1 S1S3} gV7M4
is again a S-special strong vector subspace of V over Fg.

114



It is easily verified Mi " M; = (0, 0,0, ..., 0)if1#j, 1 <1,
j<4and V=M, + M, + M; + My. Thus V is the direct sum of
S-strong vector subspaces.

Example 4.35: Let

M= i [laeQ1<i<12)

Fc= o llaie Q;1<1<12).

Clearly dimension of M is also 12. Consider the following S-
special strong vector subspaces.

Pi={ i |laeQ1<i<2lcMm,
0

a,

a S-strong vector subspace of M.
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P, = Cllae Q;1<i<2} e M,

a S-strong vector subspace of M over Fc.

JaeQl<i<d4)cM,

is a S-strong special vector subspace of V over Fc.
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P4=

is again a S-strong special

S O O O O o o o

o 0
] —_

(=]

is again a S-strong special

S O O o o O

aeQ 1<i<2lcM,

SIS
(3] —

oS o O

0

vector subspace of V over F¢ and

aeQ1<i<2}cM

vector subspace of V over Fc.
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Wesee P, N P; =

V=P, +P,+P;+P,s+Ps.

Thus V is a direct sum of S-special strong vector subspaces.

Example 4.36: Let

4, a4,
a a
4 5
M=
a; dag
ap 4y

4, a4,
a a
4 5
I::4><3 =
a; dg
dp 4y
a4, a,
0 0
Let B1 =
0O 0
0 a,

ifi#j;1<ij<Sand

llae R;1<i<12)

a,
a, )
ae R; 15112},

4,

o O

aeR; 1<i<4)cM

a,

be a S-strong special subvector space of M over Fa; .
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a, 0 a,
0 a, a, .
B, = a3e R; 1514} M
0 0 O
0 0 O

be a S-strong special vector subspace of M over Fas.

o < o
(i8]

o o O

o o O

aeR; 1<i<3)cM

0 00

is a S-strong special vector subspace of M over Fas.

Finally
a, 0 O
0 0 O _
B, = a3e R; 1514} M
0 a, a,
a, 0 O

is again a S-strong special vector subspace of V over Fuys.

We see Bi N B # ;evenifi#j, 1<4,j<4.

oS O o O
oS O o O
oS O o O

But V ¢ B; + B, + B; + By; so we define V to be the pseudo
direct sum of the S-special strong vector subspaces of V. Now
we have seen examples of direct sum and pseudo direct sum of
S-special strong vector subspaces of a S-special strong vector
space over a S-field.

The main use of this structure will be found as and when
this sort of study becomes familiar and in due course of time
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they may find applications in all places where the result is not a
real number (or a rational number) but an array of numbers.

We can define orthogonal vectors of S-special strong matrix
vector spaces also.

First we see how orthogonal vector matrices are defined
when they are defined over R or Q or C.

Let Vk = {(a}, ..., ay) | a; € Q; 1 £1i < n} be a row matrix
vector space defined over the field Q.

We define for any x = (aj, ..., a,) and y = (by, ..., b,) in Vg,
x is perpendicular to y if x X, y = (0).

Thus if Vg = {(x1, X2, X3, X4, X5) | X; € R; 1 £1< 5} be a row
matrix vector space defined over Q and if x = (0, 4, -5, 0, 7) and
y=(1,0,0, 8, 0) are in Vg. We see x X, y = (0) so x is
orthogonal with y.

Ve = : |la; € Q, (or R); 1 <1i<n} be the vector space

a

n

of column matrices over Q (or R) respectively.

X ¥
W _ |1 %2 Y2
e say two elements x = | “ | andy = |"." | in V¢ are

Xy Ya

X ¥

X

orthogonal if X X, y = | *.* | X, y,2 =(0).
Xy Ya
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2 0
-1 0
. . 0 1
For instance if x = andy = then
0 2
0 3
- 7 - _0_
[ 2] 0] [0]
-1 0 0
0 1 0
XXpy= Xn = .
0 2 0
0 3 0
L7 10] [0}

Now we can define, unlike in other matrix vector space in
case of these vector spaces Vpx, (m # n) and V,., the
orthogonality under natural product. This is a special feature
enjoyed only by vector spaces on which natural product can be
defined.

We just illustrate this situation by some examples.

Example 4.37: Let

Vsa=4la;, a;, a,||laeR;1<i1<15}

be a 5 x 3 matrix linear algebra (vector space) over Q.
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Now let

andy = be in Vs,

>

1l
O = O W
—_ o = = N
© N o v o
A O o 0 o
© o o o o
o o v o =

we see X X, Yy = thus we say x is orthogonal to y

oS O©O o O
oS O o O
oS ©O o O

0 0O

under natural product in Vsys.

It is pertinent to mention here that we can have several y’s
in Vs,3 such that for a given X in Vsyx3. X X, y = (0).

Now we see all elements in Vs.; are orthogonal under
d 0]

natural product to the zero 5 X 3 matrix

S O O O O
S O O O O

oS O o O

Example 4.38: Let

a, a, a, a, a; a
1 2 3 4 5 6
Ve = |: }
a7 aS a9 alO all a12
be a vector space over Q. Under natural product defined on
Ve We can get orthogonal elements.

aeQ 1<i<12)
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a, a; a;, 0 0 O
Take x = and
a, a, a, 0 0 O

000 a 0 a
y:

in Voge. 3, € Q; 1 <i<6.
000a20aj o€ Q

{0 0 00O 0}
We see x X,y = .

0 00O0O00O

Thus x is orthogonal with y. Infact we have several such
y’s which are orthogonal with x.

Example 4.39: Let

V={|:al az:|
a, a,

be a 2 X 2 matrix vector space over the field R. X, be the natural
product on V.

ae R;1<1<4}

We define two matrices in V to be orthogonal if

00 a, O
XXy = fory,xe V. Weseex = ,
00 0

a,

0 b
theny = {0 01} is orthogonal with x.

0 0
Also L) 0} = a is such that x x, a = (0).

1
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0 b
Further L) 01} = b, is orthogonal with X under natural
2

00
product as x X, b = .
00

n 0 0)(O b )(0 b, 0 0
Now x™ = , , , . Clearly
0 0){b, 0){0 O0){b O

x" is additively closed and also X, product also is closed; infact
x" is a proper subspace of V defined as a subspace
perpendicular with x.

a
Consider x = L) 0} in V; now the elements perpendicular

ST I I

We see this is also a subspace of V.

Infact if

0 Ojjt O[]0 Of|lx O
B = s s s c AV
0 0/{0 O]|0 u||l0 ¥y
0 0[|0 a||0 O0]||0 a
C = b b b g V
0 0/|0 O]|b O]|b O
are such that they are orthogonal subspaces under product.

s

and
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Example 4.40: Let

] a,€ Q;1<1<L9}

a
aG
a

be a 3 X 3 vector space over the field Q. Consider an element,

c
0| in M.
d

o o O

a
0
0

The elements perpendicular to x be denoted by

X

x'=B

0

0

b

0,

b

b|,/]0 a b],

0

c 0 O0[|0O ¢ O

S o O

S O O

S o O

S o O

S o O

b 0 0]|0 b O

cl,Ja b O0,la

b

al,Ja 0 Ol,Ja O O[O0 a O],

0

a b 0]|0 0 O

0 0 0/j]0O O O||O O O]|O O O]|O0 O O

0 0 0,0 O Of,;ja b 0], a

d 0 0/|0 e 0|0 O 0]|O O 0|0 O O

0 0 0//0O O O{|O O Of{O O Of|O O O

al,l0

0
b 0 0|0 b O

0 0 0(|0O O O0||0O O Oj|O0O O Of|O O O

0 a 0[,J]0 0 Of,ja

0 b oO
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0O 0 0|0 O O[O0 O
0 bi,ja 0 b, b 0 cM
c O||d ¢ Ofld ¢ O

is again a subspace orthogonal with x.
Inview of this we have the following theorem.

THEOREM 4.1: Let V be a matrix vector space over a field F.
Let 0 #x € V. The elements orthogonal to x under natural
product X, is a subspace of V over F.

Proof: Let0#x e V. Supposex' =B={ye VIyx,x=0},
to show B is a subspace of V.

Clearly B ¢ V, by the very definition of orthogonal element
of x. Further (0) € V is such that x X, (0) = (0) so (0) is
orthogonal with x. Now let z, y € B be orthogonal with x under
X,. To show y + z is orthogonal to x. Given x X, y = (0) and
X X, z = (0). Now consider

XX, (y+Z) =X X, y+X X, Z

=(0) +(0)
=(0);
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soy +ze B. Alsoify € B is such that x X, y = 0 then x X, (-y)
=0soifye Bthen-ye B. Finallyletae Fandy € B to
show ay € B. Consider x X, ay =a (X X, y) =a.0=0.

Thus B < V is a vector subspace of V.
Now we can define orthogonality of two elements in matrix
vector spaces under natural product, we now derive various

properties associated with orthogonal natural product.

Example 4.41: Let

a b c
W=4/d e f|la,b,cdef ghieQ}
g h i

be a vector space over Q.

Consider x* =B =

0 0 0[|O O O]|O O O]|O O O
0 0 0,0 0 0,0 O 0,0 O O},
0 0 Of|la O O]|O0 b 0|0 O c
0 0/]0 0|1(0 O 0 0O
0 01,]0 0,0 O JO 0 0|y cW
a O|la b||0 blla b ¢

is a subspace of V. Consider the complementary space of B.
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o O o

S o O

S o O

S o O

o o O

S O O

S o O

S o O

01,

0,

) ) o o o o o o o o o o o o o o 8 0 O
o o o o o o 8 0o O o o o o o o o o o o o o
SO o © 8O0 00O SO0 85O0 88850 OO0 O
L ]

- I - 1 I - 1 I - 1 I - 1 I - 1 I - 1
o w o o o o o o o s o o o o o o o o 8 o O
o o o o o o == o o o o o o o o o o o o
cCoco © 8O © 00 00O ®MSOO SO0 © 0O
c oo ococo oo socooc ococoo oo o oo
o o o o o o o o o o o o o o o o o o 8 o o
oC oo SLO SO0 OO0 0O 80O O 0O
I 1 I 1 I 1 I 1 I 1 I 1 I 1
== o o o o o o 8 o o o o o o 0 o o o o
o o o c o o o o o o o o o o o o o o s o o
©oOTOo S0O0 SO0 ©0L8O0 OO SO0 O OO O
I 1 I 1 I 1 I 1 I 1 I 1 I 1
o o o o o o o o o = o o o o o o ==
o o o 8 o o o = o 8 o o = o o o s 0 O
o o o c o o o o o o o o o = o 8 0 O o o o
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0O a b||la b O||a O bjja b ¢
c d el,Jc d el,/d e c|,|]d e f
0O 0 0|0 O O]|O0 O Of|O0O O O

Wesee B-® B =W.
Thus we have the following theorem.

THEOREM 4.2: Let V be a matrix vector space over a field F.
Suppose 0 # x € V and let W be the subspace of V
perpendicular to V then the complement of W denoted by W is
such that for everya € Wand b € Wt ax, b= (0). FurtherV
=W @W.

The proof is simple hence left as an exercise to the reader.
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COROLLARY 4.1: Let V be a matrix vector space over the field
F. {0} € V; the space perpendicular to V under natural product
X, is V, that is {0} = V.

COROLLARY 4.2: Let V be a matrix vector space over the field
F. The space perpendicular to V under natural product is {0}
that is {V}* = {0).

Example 4.42: Let

a, a, a
1 2 3
a, a; ag

be a vector space over Q.

a,€ Q;1<i1L6}

0 a a,

Now consider x = { } be the element of V. The

a a

3 4

vectors perpendicular or orthogonal to x are given by
a 0 0{|{0 O Oj|a O O[]0 O O _B
00 0[la 0 0[b o0 of0oo0 0]
{a 00
Now take y =

b 0O
yareyi=
0 0 0|/[0 a 0][0 0 a ][0 O O][0 O O
00 0/[0 0 0[O0 0 0[]0 a, 0[O 0 a,]

0 a, a,][0 0 0][0 a, 0][0 0 x]|[0 0 a
0 0 0[]0 a a,]|0 a, 0][0 0 y|[|0 b c]

} € B, the vectors perpendicular to
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0 a 0|0 O ¢c||0 a b|[|0 a b||0O a 0|0 a b
0 0 b0 d 0[]0 ¢ 00 0 b0 b c||0 ¢ d
We see x € yiunder natural product. Now (xH) = {ye VI

xxny=(0)}and(yi>={xelexny={0}}aren0t0nly

subspaces of V but are such that (xH U (yl Y=V and (x5 N (yl )
={(0)}.

b

0
Further x =
oo

} is in (yi).

00
Suppose 7= B 0 0} € B is taken

zl={me Vimx,z=(0)}.

_[[o 0 o][o a o][0 0 b][0 O O][0 O O
“Jlo o oflo o 0o 0 0[x 0 0][0 y O]
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0 0 0][0 a b|][0 a b|[0O a b][0 0 a
a b c|]0 ¢ dl'lc 0 dllc d 0|b ¢ d|
0 a 0||0 a b
, =T.
{bcd}{dcx}}

We see though z € B still (zl> * (yi).

Further every element in T is not perpendicular to x under
the natural product X,.

0
b

0O a b 0 a O
X X, M= Xp
0 ¢ d b ¢ d

10 x, 0 L 0 0O
10y, oz 00 0]
Thus we can say for any x € V we have one and only one y

in V such that x is the complement of y with respect to natural
product X,

0
For consider m = { a d} in T and
C

We say complement, if x" generates the space B and y*
generates another space say C.

0 a b m 0 0
Thus for x = we say, y =
0 c d n 00

to be the main complement; a, b, c,d, m,ne Q\ {0}. Wesayy
is also the main complement of x with respect to natural product
Xy
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THEOREM 4.3: Let V be a matrix vector space over the field O
(or R). Let x, be the natural product defined on V. If forxin'V,
y is the main complement of V and vice versa, then o)+ ) =
Vand (') N ) = (0).

(1) However for no other element t in (y*) t will be the
main complement of x.

(2) Also no element in () will be the main
complement of y only x will be the main
complement of y.

The proof is left as an exercise. However we illustrate this

situation by some example.

Example 4.43: Let

e ]

be the vector space of 4 x 4 matrices over the field F = Q.

a,b,c,de Q}

x O
Take p = { 0} € M, now the complements of p under
y

_ 0 0/|0 a||0 a
natural product in M are , , ,
0 0/|0 bj|0O O
0 0
0 b

The main complement of p under natural product X, is

0 a T
= (S .
0 b

a,be Q) =T.
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Now the complements of q under natural product X, in
0 Ojja O]|a O0||0 O

M are , ) ,
0 Oj|b 0]|0 O]|a O

00
WeseeV+T=MandeT=L) 0]

a,be Q}.

0 a
Now x = L) 0} is in T. We find the elements orthogonal

to X in M under the natural product X,.

I 0 a .
w={o 3]
0 0|[a 0][0 O][0 O
0 070 o][b 0]|0 ¢
a 0l[a 0][0 O][a ©
b 010 c¢|[b c||b c]|

a 0
The main complement of x in M is { } others are just
c

complements.

Consider

R s e e R

) a 0| . 0 a
The main complement of is ; other
b 0 0 b

elements being just complements.
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Example 4.44: Let
V=4 ?|lae Q;1<i<8)}

be a vector space of column matrices over the field Q.

&

o
(S}

Consider the element a = in V.

S O O O O

To find complements or elements orthogonal to

0] 0((0]]10]]0 0

[0] 0 ojlol|o][O|]oO

00 0 0[[0]]|0f]a,|]a

() O||a 0[{0|Of|a,|]|O
a = . 9 9 a 9 9 9 9 9 9

110 0 al|0f{(0]]O a,

of|t|[.]|o|]a]|Of]O|]|O

0] (‘) o[|0]lal|O|]|O
--|o]lo]|o][o]]o0]
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a, 0
a, 0
0 a,
) 0. |a,
The main complement of is
0 a,
0 a,
0 as
L& [0

Certainly this type of study will be a boon to algebraic
coding theory as in case of algebraic coding theory we mainly
use only matrices which are m X n (m # n) as parity check
matrix and generator matrix.

Now we define other related properties of these matrices
with natural product on them. Suppose S is a subset of a matrix
vector space defined on R or Q we can define

St={xe VIxXx,s=(0)foreverys e S}.

We will illustrate this situation by some simple example.

Example 4.45: Let

a, a,

33 a4 .
V= a,€ Q;1<1L8}

a5 a4

a; ag

be a vector space of 4 X 2 matrices defined over the field V. V is
a linear algebra under the natural product.
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a,b,c,de Q} c V.

S ° O O

138

Consider

-~ -~ \|\J

I LI | LI | 1

c o o o o o o o o o o o o © v o
N |

— O s O O O O = O O 8 o O

0000 L — | | — I L — ]

I LI | T T 1

c 8 o o o o o o o =8 0 O o s 0 O
N — |

— o O & O o o o o o o o o

Obeo L — | I | ~ I L — ]

I LI | T T 1

c < T o o o W o o o o o © o0 o o
L ]

— o o o o SO s o O O 8 O O

0000 L — | | ~ I L — ]

I LI | LI | 1

c o o o o o o o o o o o © o o o
L ]

o © o o o 8 © O o s 0 O

To find S*. St = &

is the orthogonal complement S™.



1 -
We see S is

a subspace of V. Further the main
a b 0 0
00 00 ol
complement of x = and =y are not in S~ for the
0 0 0 0
0 0 b ¢
0 0 a b
) ~la b o le d
main complement of x is and that of y is but
c d e f
e f 0 0

the main complement of x is not orthogonal with y; for y x, x".

0 0|0 O 0 O 00
{0 Ofja b|] |0 O L 00
|0 of|c d| [0 o] |0 O
b c|le f be cf 00
0 0 a b
. . 0 0 ~|lc d
Similarly the main complement of , that is
0 0 e f
a b 0 0
a b
. .. 10 0
is not orthogonal with 00 under natural product as
0 0
a b a, b aa bb, 00
00 c d 0 0 00
X, = #
00 e f 0 0 00
0 0 0 O 0 0 00
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We can define as in case of usual vector spaces define linear
transformation for matrix vector spaces. However it is meaning
less to define linear transformation in case of S-special strong
vector spaces defined over the S-field. However in that case
only linear operators can be defined. The definition properties
etc in case of the former vector space is a matter of routine and
we see no difference with usual spaces. However in case of
latter S-special strong vector spaces over a S-field we can define
only linear operators.

We just illustrate this situation by an example.

Example 4.46: Let

a, a,

33 a4 .
V= a,e R;1<1<8}

a5 a4

a; ag

be a S-special super vector space over the S-field.

F4><2= a5 b5 C’ d’ e’ f’ g7he Q}‘

= e T

gmQ o o 9 ®

Now we defineamapmn : V— Vas

a, a, a, O

a; a, || |0 a,
" - 0

a; a a,

a, a 0 a,
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It is easily verified 1 is a linear operator on V.

a b a b
) c d c d
We can find kernel 1 = eVin =(0)

e f e f
g h g h
[0 a
b 0

= a,b,c,de Q}
0
d 0

is a subspace of V. Now interested reader can work with linear
operators on S-special strong vector spaces over the S-field.

Thus all matrix vector spaces are linear algebras under the
natural product. Now as in case of usual vector spaces we can
for the case of matrix vector spaces also define the notion of
linear functional. But in case of S-strong special matrix vector
spaces we can not define only Smarandache linear functional as
matter of routine as it needs more modifications and changes.

Now we have discussed some of properties about vector
spaces. We now define n - row matrix vector space over a field

F.

DEFINITION 4.6: Let

V=A{(a ..., an) | a;i = (x}, ..., X,); x;€ O;
1<i<m, 1 <j<nj;

V is a vector space over Q defined as the n-row matrix
structured vector space over Q.

We will illustrate this situation by some examples.
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Example 4.47: Let V = {(ai, a,, a3, a4) | aj = (X4, Xo, X3, X4, X5)
where x; € Q, 1 <i<5and 1 £j <4} be a 5-row matrix
structured vector space over Q.

We will just show how addition and scalar multiplication is
performed on V.

Suppose x =((3, 0, 2, 4,5),(0,0,0, 1, 2), (1,1, 1, 3, 0), (2,
0,1,0,5)) € Vanda=7then 7x = (21, 0, 14, 28, 35), (0, 0, 0,
7,14),(7,7,7, 21, 0), (14,0,7, 0, 35)) € V.

Lety=(4,0,1,1,1),(0,1,0,1,2),(,0,1, 1, 1), (2, 0, 0,
0,1))e Vthenx +y=1((7,0,3,5,6),(0,1,0,2,4),(2, 1,2, 4,
1), 4,0,1,0,6) € V. Wesee V is arow matrix structured
vector space over Q.

Example 4.48: Let

P= {(ah az, a3) | aiz(Xh X2y vues X15) Xj € Q’
1<£i<3;1<5<15}

a row matrix structured vector space over Q. We can define
row matrix structured subvector space as in case of usual vector
space. On P we can always define the natural product hence P
is always a row matrix structured linear algebra under the
natural product X,

Example 4.49: Let

V=A{(a, ...,a0) lai=(X;, X2, X3); Xj€ Q; 1 <j<3;1<1<10}
be a row matrix structured vector space over Q. Consider H =
{(a1, a, a3, 0,0,0,0,0,0,0) I a; = (x4, X2, X3); X; € Q; 1 <1< 3}
c V; H is a row matrix structured vector subspace of V over Q.

Also

P=1{(a;, a, ..., aj0) | a; = (x4, 0, X»)
withx;,x,€ Q; 1 <i<10} cV
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is a row matrix structured vector subspace of V over Q. The
reader can see the difference between the subspaces P and H.

Let V={(x, ... X)) | x; € R"U {0}, 1 <i<n} bea
semigroup under addition. V is a semivector space over the
semifield R" U {0} or Q" U {0} or Z* L {0}.

X

X
Likewise M ={| "’ [[x; e Q" U {0}, 1 <i<m) bea
X

m

semigroup under addition. M is a semivector space over the
semifield Z* U {0} or Q" U {0}. M is not a semivector space
over R* U {0}.

a, a,, e Ay
a a a
21 22 b 2n +
P= : R K aj € VARV {0},
ad Ay .o Ann

1<i€<m,1<j<n}

is a semivector space over the semifield Z* U {0}.

all a12 aln
a a a
21 22 b 2n + o
T= : : : aje QU {0},1<1ij<n}
a, a, .. a,

is a semivector space over the semifield Q" U {0}. M, P T and
V are also semilinear algebras over the respective semifields
under the natural product X,

We will illustrate these situations by some examples.
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Example 4.50: Let
V = {(X1, X2, X3, X4, Xs, X¢) | X; € 32" U {0}; 1 i< 6}

be the semivector space over the semifield S = Z*" U {0}.

V is also a semilinear algebra over the semifield S.

Example 4.51: Let
Vi = {(X1, X2, X3, X4, Xs, X¢) Where x; € R U {0}; 1 <i<6}

be the semivector space over the semifield S = Z*" U {0}.

It is interesting to compare V and V; for V; is finite
dimensional where as V, is of infinite dimension.

Example 4.52: Let

Xy + .
V= x;€e Z7uU{0},1<1<8}

be a semivector space over the semifield S = Z" U {0}. Visa
semilinear algebra over S.

Dimension of V over S is eight.
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Example 4.53: Let

M = “llxie QP U {0},1<i<8)

be a semivector space over the semifield S = Z" U {0}. Clearly
dimension of M over S is infinite.

Example 4.54: Let

A 3 Ay A
a; Ay A5 A
a a a a
17 Qg A9 Qg .
M= ae Z'U {0},1<i<40})
Ay Ay Ay Ay
Ays Ay Ay Ay

be a semivector space over the semifield S = Z" U {0}. Clearly
V is not defined over the semifield T = Q* U {0} or R* U {0}.
Dimension of V over S in 40.
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Example 4.55: Let

al a2 a3
M=1la, a, a,||laeQ U{0},1<i<9}
a; ag a4y

be a semivector space over the semifield S = Z* U {0} = S.

Take
a, a, a,
P=1<la, 0 a,|laeQ uU{0},1<i<9},
a, 0 O

P is a semivector subspace of V over S = Z" U {0}.

Example 4.56: Let

1

4

W

a
a
a7 9 + .

2,€ QU {0},1<i<18}
a

10
a3 Ay A

a16 17

be a semivector space over the semifield S = Q" U {0}.

al a2 a3
0 0 0 . _

M =<l. . .|llaeQ uU{0},1<i<3}cM
0O 0 O

is a semivector subspace of M over S = Q" U {0}, the
semivector space.
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M2=

is a semivector subspace of M over S = Q" U {0}.

is a semivector subspace of M over S = Q" U {0} and

M4=

is the semivector subspace of M over S.

WeseeM =M, + M, + Mz +Myand M " M; =

ifi#j, 1<1,j<4.

o

& o
~ —

o O

0

o o O

&

a,

1 0

oS O© o O

a,

a

4

oo

o
W

o O

0

o o O

o
(S}

as

0

oS O o O

a,

as

S o

oo
=

o O

0

oS o O

o
w

ag

0

oS O o O

a,

ag

S O O o o O

ae QTU(0},1<i<6)cM

ae QTU(0},1<i<6}cM

ae QTU(0},1<i<6}cM

S O O o o O

S O O o o O




Thus M is the direct sum of semivector subspaces of M

over S.

Example 4.57: Let

a a a a a

! 2 3 4 5
" )
V=4la, a, a; a, a,|laeZ U{0},1<i<15}
a; ap a3 Ay A

be a semivector space over the semifield S = Z* U {0}.

Consider
a, 0 00O

Pi=4a, 0 0 0 O aeZ'uU{0},1<i<3}cV
a, 0 0 0O

be a semivector subspace of V over S.

Let
a, a, a, 0 0

P,=:0 0 a, 0 OflaeZ U{0},1<i<4}cV
0 0 0 0O

be a semivector subspace of V over S.

Consider

a, 0 a, 0O
P;=:/0 a, a, 0 O|laaeZ'U{0},1<i<4}CV,
0 0 0 0O

a semivector subspace of V over S.
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Further

a, 0 a, 0O
P,=<5/0 0 0 0 Of|laeZ'u{0},1<i<4}CV,
a, 0 a, 0 O

is a semivector subspace of V over S.

a, 0 0 a; a,
Ps=</0 0 0 a, 0||laeZ u{0},1<i<5}cV
0 a, 0 0 O
is a semivector subspace of V over S.
a, 0 0 0 O
Ps=</0 0 0 0 a,|laeZ'u{0},1<i<5}CV,
0 0 a, a; a,

is a semivector subspace of V over S.

000 O0O0
WeseePinP;j#|0 0 0 0 O|ifi#j 1<i,j<6.
00 0O0O

We see V < P; + P, + P; + Py + Ps + Pg; thus V is a pseudo
direct sum of semivector subspaces.

Now we have seen examples of direct sum and pseudo
direct sum of semivector subspaces over the semifield S = Z" U
{0}. Now we can as in case of other semivector spaces define
linear transformation and linear operator.

We give examples of semivector space with polynomial
matrix coefficient elements.
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Example 4.58: Let

V= {Zaixi a; = (X1, X2, X3, Xa) | X € Z" U {0}; 1 <j< 4}

i=0

be a semivector space of infinite dimension over S = Z" U {0}.

Clearly V is also a semilinear algebra over S under the
natural product X,

Example 4.59: Let

M= {i ax'
i=0

ai=| x, | wherex;€ Z" U {0}; 1 <j< 10}

be a semivector space of infinite dimension over S = Z" U {0}.

Example 4.60: Let

a, a, a,
s a; a, a

7 8

o & o

di=

P= {Zpixi

9 alO all alZ
a, a5 a

o

13

14 15 16
where a; € Q" U {0}; 1 <i< 16}

be a semivector space of infinite dimension over S = Q" U {0}.

Example 4.61: Let

" d d, d,
M= {Zaixi ai=|d, d, d,,
=0 d, d d

21 22

where die Z" U {0}; 1 <i<30}

30
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be a semivector space of infinite dimension over S = Z" U {0}.

Example 4.62: Let

dl d2

o ) d

s:{zaix' am | B O
i=0

d d

81 82

withdi e Z" U {0}; 1 <i<9)

be a semivector space of infinite dimension over S = Z" U {0}.

Example 4.63: Let

d, d
0o n+l n+2
_ i o
T= {Z a;x'| aj=|d,,,; dy
i=0 . .

L~ 7n+l1

withd; € Z" U {0}; 1 <i<8n}

be a semivector space over the semifield of infinite dimension

over Z" U {0}.

Now having seen such examples we now proceed onto

d d7n+2

define other properties of these semivector spaces.

All these are also semilinear algebras over the semifields.

Now if the natural product is defined we can speak of

complements of the semivector subspaces (semilinear algebras).

We will illustrate this situation by some simple examples.
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Example 4.64: Let

V=1|a, | witha;e Z" U {0}, 1 <i<5}

be a semivector space over the semifield S = Z* U {0}.

Consider
0]
0
M, =<|a, | withase Z"U {0},1<i<2} cV
a2
_0_

be a semivector subspace of V over S.

a

a

(S}

M, = ae Z'U{0},1<i<3}cV,

o O

o
w

be a semivector subspace of V over S. Clearly every x €
M, and y € M, are such that x X, y = (0).

Wesee V=M; ® M,; M; " M, = (0).

Example 4.65: Let V= {(a, ay, ..., a0) laje Z" U {0}, 1<i<
10} be a semivector space over the semifield S = Z" U {0}.
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Consider P, = {(0, 0, 0, a;, 0,0, 0,0, 0, a;) | a; € Z" U {0},
1<1<7} <V be a semivector subspace of V over S.

P, = {(aj, a5, 0,0, ..., 0) laj,a, € Z" U {0}, 1<i<7} cV
be a semivector subspace of V over S.

P;={(0, 0, a;, 0, a5, a3, 0,0,0,0) la;e Z" U {0},1<i<3}cV
be a semivector subspace of V over S.

P,={(0,0,0,0,0,0,a;,a a3, 0)laje Z'U {0}, 1<i<3}cV
is again a semivector subspace of V over S.

We see every vector in P; is orthogonal with every other
vectorinPifi#j; 1 <1,j<4.

Further V=P, + P, + P; + P,and P, " P; = (0) if i # .

Example 4.66: Let

. a, ||laeZ U0}, 1<i<15)

L <13 14 15

be a semivector space over the semifield S = Z" U {0}.

Take
[0 0 O]
a, a, a,
P=<0 0 O0|laeZ u{0},1<i<6}cM,
a, as a
10 0 0]

is a semivector subspace of M over S =Z" U {0}.
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_al a, 33_
0 0 O
P,=14la, a, a,|laeZ U{0},1<i<9}cM,
0 0 O
|a, ag a |

is a semivector subspace of M over S =Z" U {0}.

We see for every x € P, we have x X, y = (0) for every y €
P..

Thus M = M; + M; and P; n P, = (0). We say the space P,
is orthogonal with the space P, of M.

However if
[0 0 0]
0 0 O
P;=4/0 0 O0||laeZ"u{0},1<i<3}cM,
0 0 O
|8, a, a;|

we see Py and P; are such that for every x € P; we have x X, y =
(0) for every y € P;; however we do not call P; the
complementary space of P, as M # P, + Ps.

Example 4.67: Let

ae Q uU{0},1<i<16}

be a semivector space over the semifield Z* U {0} = S.
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Consider

a, a, 0 O

M= B A OO o U0 1<i<a) P
0 0 00 =
0 0 00

M, is a semivector subspace of P over S.

0 0 a a,

My= 1|0 0 & Al o) 1<i<4) P
00 0 0 =
000 0]

M, is a semivector subspace of P over S.

Consider
0O 0 0O
0O 0 0O N )
M; = 2,€e QQuU{0},1<iL4} cP;
a, a, 0 O
a;, a, 0 0

Mj; is a semivector subspace of P over S.

Now
00 0 O
00 0 O N :
M, = € QU {0},1<i<4}cP
0 0 a a,
0 0 a; a,

is a semivector subspace of P over S.

We see P = M, + My + My + My, Mi 0 M; = (0) if i # j;
1<i,j<4.
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Example 4.68: Let

V=4la, a, a,|laeQ uU{0},1<i<15}

13 14 15

be a semivector space over the semifield S = {0} U Z".

So we can define as in case of other spaces complements in
case of semivector space of polynomials with matrix
coefficients also. We will only illustrate this situation by some
examples.

Example 4.69: Let

i
V= {Zaix a4 = (Xh X2, X3, X4, X5, X6) |

i=0

xje Z"U {0}; 1<j<6}
be a semivector space over the semifield S = Z* U {0}.

Consider

a; = (07 07 07 X1, X2, X3)

M= {i ax'
i=0

withxje Z" U {0}; 1 <j<3} CV,

M is a semivector subspace of V over S.
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Take

a; = (Xh X2, X3, 0707070)

N = {i ax'
i=0

withxje Z" U {0}; 1 <j<3} CV,
N is a semivector subspace of V over S. We see M+N =V and
infact M is the orthogonal complement of N and vice versa.

That is M™ = N and N" =M and M N N = (0).

Example 4.70: Let

d d, d,
3 d, d, d,
V={Zaixi ai=|d, dy d,|;djeZ U{0};1<j<15)
0 dl() dll d12
_d13 d14 d15_

be a semivector space define over the semifield S = Z" U {0}.

Now
1 X2 x3
0 O
- |

Wl—{Zaix Xi=|X, X5 X4

i=0
' 0 0 O
X; Xy X

where x;e Z"U {0};1<j<9}cV
is a semivector subspace of V over S.

We see the complement of W;
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[0 0 0]

- Yio Y2 ¥

W= {Z:aixi a=[0 0 0
- Yo Vs Y

0o 0 O

where y;e Z"U {0}; 1<j<6} V.

We see Wll +W; = Vand W, n Wll = (0).

Suppose
[0 0 0]
. 0 0 O
M, = {Zaixi xi=| 0 0 0 |with x;e Z" U {0};
= X, X, X,
10 0 0]
1<j<3}cV

be another semivector subspace of V; we see M; is not the
orthogonal complement of W; but however W; N M, = (0). But
W; + M; < V. Hence we can have orthogonal semivector
subspaces but they do not serve as the orthogonal complement
of W].

Example 4.71: Let

d d, d,
V:{Z:aixi a; = d4 d5 dG ;djEZ+U{0};1SjS9}
= d. d. d

7 8 9

be a semivector space over the semifield S = Z* U {0}.
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Consider

3 d d, 0

P1={Zaixi ai=|d, 0 O|withd e Z"U{0};
= 0 0 0
1<j<3}cV

a semivector subspace of V over S. We see the complement of

i 0 0 d
PlisP2={Zaixi a=[0 d, d,|withdeZ U{0};
i=0
d, d, d,
1<j<6} V.

We see P + P, = V and Py n P, = {0}. We call P, the
orthogonal complement of P, and vice versa.

However if

1

a = 5

o o O
o O O
o o o

N = {i ax'
i=0

3
withdje Z"U {0};1<j<3} cV;

N is also a semivector subspace of V over S and N is orthogonal
with P; however N is not the orthogonal complement of P; as P,
+ N # V only properly contained in V.

Thus a given semivector subspace can have more than one

orthogonal semivector subspace but only one orthogonal
complement.
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For

) 0 0 0
T={Zaixi =0 d 0
=0 d, d. 0

2 3

withdje Z"U {0};1<j<3}cV

is such that T is a semivector subspace of V and T is also
orthogonal with P; but is not the orthogonal complement of P,
as T + P; < V. Thus we see there is a difference between a
semivector subspace orthogonal with a semivector subspace and
an orthogonal complement of a semivector subspace.

Now having seen examples of complement semivector
subspace and orthogonal complement of a semivector subspace
we now proceed onto give one or two examples of pseudo direct
sum of semivector subspaces.

Example 4.72: Let

a; = (X1, X2, ..., Xg)
i=0

V = {iaixi

where x; € Z" U {0}; 1 <j <8}
be a semivector space over the semifield S = Z" U {0}.

Take

a; = (07 07 X1, X2, X3, 07070)

i=0

W1 = {iaixi

where x;€ Z" U {0}; 1 <j<3}cV

be a semivector subspace of V over S.
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Consider

a; = (Xh X2, X3, 070707070)

i=0

W, = {iaixi

withxje Z" U {0}; 1<j<3} cV;
another semivector subspace of V.

Take

a; = (07 07 d17 07 07 d27 070)

W; = {iaixi

i=0

withdje Z"U {0};1<j<2}cV
another semivector subspace of V over S.

Finally let

a; = (Xh 07 07 X2, 0707 X3, X4)

W, = {i aixi
i=0

withxje Z" U {0}; 1 <j<4} cV,
a semivector subspace of V over S. Wesee VcC W+ W, +W;

+ W, and W; " W; # (0) if 1 # j. Thus V is a pseudo direct sum
of semivector subspace of V over the semifields.
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Example 4.73: Let

aj=| ‘| wherexje Q" U {0}; 1<j<8}

V= {i ax'
i=0

be a semivector space over the semifield S = Q" U {0}.

Take
]
X,
. X
W, = {Zaix‘ a; = 03 where x;e Q" U {0}; 1<j<3}cV
i=0
0_

be a semivector subspace of V over S.

Consider
0]
0
xl
W, = {iaixi a; = zz where x;€ Q" U {0}; 1 <j<3}cV
i=0 3
0
0
_0_

be a semivector subspace of V over S.
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oS O o O

W; = {Z:aixi a; = where x;€ Q" U {0}; 1 <j<3}cV
i=0 X,
X2
X3
0

be a semivector subspace of V over S and

0

0

0

W, = {iaixi a; = g where x;e Q" U {0}; 1 <j<3}cV
i=0

xl

x2
RN

be a semivector subspace of V over S, the semifield.

Wesee WiNW;=(0);i#]. But VW, + Wy + W3+ Wy
1 <1, j<4. Thus V is the pseudo direct sum of semivector
subspaces of V over S.

Example 4.74: Let

d d, d, d,

. i d5 d6 d7 d8

' {Zaix “Tla, d, d, d
i=0 9 10 11 12

dy d, d d

W

where dje Z" U {0}; 1 <j< 16}
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be a semivector space over the semifield S = Z* U {0}.

Take

o
o

N
o

w

a =

M, = {i aixi
i=0

oS O O
o O O
oS o O
oS O o O

where d;, d», dis e Z" U {0} }c V,

0 0 d, d,
) . d, 0 0 O
M, = ax'| a= ’
{; 0O 0 0 O
0O 0 0 O

where d;, d», dse Z" U {0}} C V,
0
d

a =

M; = {i aixi
i=0

o o &~ o
o o & o
(98]

o o o o

0
0

where d;, d», dse Z" U {0} }c V,

0 0 0 O

ad : 0 0 d d

MF{Za‘Xl ““la, 0 0 0
i=0 3

0 0 0 O

where d;, d», dise Z" U {0} }c V,
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a =

M; = {i aixi
i=0

o & o o
o & o o
o & o o
o o o o

where d;, d», dise Z" U {0} }c V,

oS O o O

a;

Mg = {i aixi
i=0

o &~ o o
o & o o
o~ o o

where d;, d», dse Z" U {0}} C V,

a;

o o O
o o O

M7 = {i .‘:Iixi
i=0

o
o o o o
o & o o

(S}

o

w

where d;, d», dse Z" U {0}} C V,

and
0O 0 O O
> . 0O 0 O O
Mg = x! a =
; {;a'x 00 0 0
0 d d, d,
where d;, d», dse Z" U {0}} <V

be semivector subspaces of V over the semifield S.

Clearly V. My + My + ... + Mg, M; 0 M; # (0) if i # ],
1<j,i<s.
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Example 4.75: Let

e a

7
a =

1

w

V= {i aixi
i=0

e o

19

e o

0. o

1

2

S

o

=

0

e o
w

©

15

e A

21

o

N

(=1

1

=N

[N oV o

22

o

[P =T o}

where dje Z" U {0}; 1 <j <24}
be a semivector space over the semifield S = Z" U {0}.

Consider

a =

P, = {i aixi
i=0

where d; , d, d3, dye Z" U {0}} CV,

a =

P, = {i aixi
i=0

o

oS O O

o o &~ o

o

0

oS O©O O

oS O o O

o

w

oS O o O

o o O

o

N

(o

oS o O

o o O

oS O o O

o,
N

oS O O

WIthdl 5 d27 d37 d4e Z+U {0}} gV,

a =

P;= {i aixi
i=0

o o &~ o

o o & o

o o & o

o o &~ o

oS O o O

WIthdl 5 d27 d37 d4e Z+U {0}} gV,
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=
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w

oS o O

oS O o O
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and

a =

Ps= {i aixi
i=0

o~ o o
o o o o
o o o o
o o &~ o
o o & o
o o B o

WIthdl 5 d27 d37 d4e Z+U {0}} gV,

a =

Ps= {i aixi
i=0

o &~ o o
o & o o
o~ o o
o & o o
o o o o
o o o o

WIthdl 5 d27 d37 d4e Z+U {0}} gV,

0O 00 0 O O
o . 0O 00 0 O O
P6={Zaix‘ a; =
— 0 00 d d, d
d, 00 0 0 0
d17d27d37d4€Z+U{0}}gV7
0O 0 0 0 0 O0
) . 0O 0 0 O 0O
P; = Zaix‘ a; =
a 00 0 0 00
d d, d, d, 0 O

N
w
N

withd;, dy, d3,dy e Z" U {0}} <V
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0O 0 0 0 0 O
oo . 0O 0 0 0 0 O
Pg = ax'| a=
{;; 0O 0 0 0 0 O
0 d d, d, d, d

N
w
N
w

WIthdl 5 d27 d37 d47 d5 € Z+U {0}} gV

be semivector subspaces of V over S =Z" U {0}. Wesee V
Pi+P,+P;+P,+Ps+Ps+P;+Pg;and PPy # {0} ifi#], 1
<1, jJ <8. Thus V is only a pseudo direct sum of semivector
subspaces.
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Chapter Five

NATURAL PRODUCT ON SUPERMATRICES

In this chapter we define the new notion of natural product
in supermatrices. Products in supermatrices are very different
from usual product on matrices and product on super matrices.

Throughout this chapter

Fg‘ ={(ajayazlagasl...la,; a,)la;e QorR orZ} that is
collection of 1 X n super row matrices with same type of
partition in it.

FE=14a,||laeZorQorR;1<i<m)

169



denotes the collection of all m X 1 super column matrices with
same type of partition on it.

a;  ap A,
a, a a
S _ 21 22 2n .
E., (m#n)= : : . aje€ QorRorZ;
a, A, || A,

1<i<m;1<j<n}

denotes the collection of all m X n super matrices with same
type of partition on it.

a, a, |..|a,
a, a a
s 21 22 | e 2n .
F.. : : aje QorZorR;
anl an2 ann
1<1i,j<n}

denotes the collection of n X n super matrices with same type of
partition on it.

We will first illustrate this situation before we proceed onto
give any form of algebraic structure on them.

Example 5.1: Let
M={(x X 1X31X4X%X5) wherex;€ Z or QorR; 1 <i<5}

be the collection of 1 X 5 row super matrices with same type of

partition on it M = E; .
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Example 5.2: Let

S .
E, = {(Xi 1%, X31X4X5X6| X7 X3 X0 X190 X11 X12) | Xi € R
1<i<10}

be again a collection of 1 X 10 super row matrices with same
type of partition on it.

Example 5.3: Let
P={(x; X2 1x3X4X5) wherex;e QorRorZ; 1 <i<5}

be again a collection of 1 X 5 super row super matrices of same
type.

Now we will see examples of column super matrices of
same type.

Example 5.4: Let

Fg‘ X, || x,€e Rj1<i<7}

be the 7 x 1 column super matrices of same type.
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Example 5.5: Let

Fg‘ X; || xie R;1 <19}

be the 9 X 1 column super matrix of same type.

Example 5.6: Let

o
w

£

F a€ Q;1<1<8}

Il
o o ®
~ (=)} w

be the 8 X 1 column super matrix of same type.

Now we proceed onto give examples of F°_ (m # n).

Xn

172



Example 5.7: Let

a, a, |a,|a, ag
S _ . . .
Es=19la, a, |[ag |a, a,||aeQ 1<i<15}
all alZ | al3 | a14 alS

be the 3 X 5 super matrix of same type.

Example 5.8: Let

E,=1 .. | ||aez1<i<28}

a25 a26 a27 a28

be a 7 X 4 super matrix of same type.

Example 5.9: Let

B = : : : : : : ae Q;1<i<42)

6x7

be a 6 X 7 super matrix of same type.

Now we proceed onto give examples of F°_ square super

nxn

matrices of same type.
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Example 5.10: Let

a a a a .
F,=M=3| " | °| 7 *llaeQ1<i<l6)}

be a square super matrix of same type.

Example 5.11: Let

a, a, |a, a,
a a a a
S 5 6 7 8 )
E., = a,e Q;1<iL16}
a9 3 [ A A
a3 Ay | 45 A

be a square super matrix of same type.

Example 5.12: Let

a
B, = e e Q;1<i<16)}

be a square super matrix of same type.

Example 5.13: Let

al aZ a3
S _ . . :
E,=<a, a; a;||aeZ 1<i<9}
a, ag a,

be a square super matrix of same order.
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Now we can define F2,E;,F, (m# n) and F the usual

mxn nxn

matrix addition and natural product X,

Under usual matrix addition E,F;,F’ ~(m # n) and F

mxn nxn

are abelian (commutative) groups.

How under natural product E,F;,F>  (m#n)and F are

mxn nxn

semigroups with unit.

Suppose

X=(X1 X2 X3l XsaXs|1X¢X7) and y = (y1 ¥2 y3|yays|ysy7)
be two super row matrices of same type

X+y=(X+Y1, X2+ Y2, X3+ V3| Xg+ Y4, X5 + Y5 | X
+ Y6 X7 + y7). Thus Fg‘ is closed under ‘+’.

X M
X3 Y;
Likewise if x = X andy = Y are two super column
X6 Y6
Xq ¥s
L Xs | LYs |
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x1+Y1_
X, tYy,
X3 +Y;
X, ty,
Xs+Ys
Xet ¥
X, +y,
| Xs + Y5 |

matrices of same type then X +y =

>

We see E is closed under ‘+” and infact a group under ‘+’.

Consider x = | @;5 a5 | ;; |5 8,y @, |a, | and

S
=2
)
=2
N
=
w
S
>N
=
<

S o
)
o o
©
=

W
=N
)

ol o
3
ol o
8
c|o oo
R
ol o|o
5
ol oo
(]
(=)}
ol oo
[iS]
~
ol o| o
&

be two 5 X 7 super matrices in E,, .
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Nowx +y=

a,+b, a,+b,
ag+by, a,+b,

a,+b,
al() +b10

a,+b,
all +b11

as +b,
a12 + b12

a, + by
a13 + b13

a,+b, i
a14 + b14

a5+bs a,+by
8y + by 8y by

a; +by,
a,, +b,y,

a+by
8,5+ by

a,+b,

8,5 + Dy

ay +by
ay +by

a, +by,
a5 +byg

_a29 + b29 a30 + b30

. . S
isin E ;.

a31 +b31

a32 + b32

a33 + b33

a34 + b34

a35 + b35

Thus addition can be performed on F_ (m # n) and infact

F°  is a group under addition.

mXn

Now we give examples of addition of square super matrices

E.

I 4 3, | a3 A, | a5

ag 4, | a3 Ay | A
Letx=1|a; a,]|2a; a,|a;
A Ay | Qg A | Ay

[ 321 8y |83 Ay | 8y

I b, b, | by b, | bs

by, b, | by by | by
andy=|b, b, |b; b,|Db;
b by | by by | by

_b21 by, | by by, | by
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[a,+b, a,+b, | a,+b, a,+b, | aj+b, |
a,+b, a,+b, a, +b, a,+b, |a,+b,

X+y=|a;+ b11 a, + b12 a;+ b13 a,+ b14 a;+ b15
a+by a;+by; [ ag+by  a,+by | a, +by

a21 +b21 a22 +b22 a23 +b23 a24 +b24 a25 +b25_

S
€ F5><5‘

Infact B

L 1s a group under addition.

Now we proceed onto define natural product X, on
EL,E.,F  (n#m)and F

nxm nxn *

Consider x = (a; ay a3 | a4 a5 | ag a7 ag ag) and y = (b; b, b3 | by
b5 |b6b7bgb9) € Fs

X Xn y= (albl a2b2 a3b3 | a4b4 ajbj | a6b6 a7b7 agbg agbg) € Fs .
F; under product is a semigroup infact F; has zero divisors

under natural product X,.

Suppose x=(000121019213)andy=(3901007100
[ 0) be in Fg‘. XX, y=(00000010010). Thus we see Fg‘
has zero divisors.

Consider x = andy = in E;

Nlh OO O NI= W O N
IO Wi — Ol © — O
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we see under the natural product X X,y =

IO IO © Ol © © O

Take E),, E under natural product, they have zero

divisors. Infact E ¢ under natural product X, is a semigroup.

Consider x =

we see X X, y =

Now FHSXH also has zero divisors.
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718 09 4 2
0|1 2[5 7 8
Consider x = 112 3]0 10 and
5(7 0/9 2 0
112 3(0 2 3
108 7|0 5 4]
[0]0 9]0 0 O]
710 0[O0 0 0
_000608EFS
=100 6|0 0 2| e
00 0|6 0 0
15/0 0[7 0 0]
[0]0 0|0 0 O]
00 0/0 0 0
. _000000EFS
"V T 10]0 o]0 0 o = =
00 0/0 0 0
10/0 0/0 0 0

Thus F°_ is a semigroup under X, and has zero divisors and

nxn

ideals. We will now give the following theorems the proofs of
which are simple.

THEOREM 5.1:
FRS ={(x;x;|...1x,) 1 x;e QorR; 1 <i <n}

is a group under ‘+’.
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THEOREM 5.2:

F T
Xy
X
F! = : lx;e QorRorCorZ; 1 <i <mj
X1
_x’n -

’

is the group under ‘+°.

THEOREM 5.3 :

a;; ap a,
a a .|l a
K _ 21 22 2n .
F,, (m#n)= : : — |laje QorRor CorZ
am 1 am 2 A amn

1<i<m; 1<j<n}
is a group under ‘+°.

THEOREM 5.4: (F?

nxn’

+) is a group.

THEOREM 5.5: (F;, x,) is a semigroup and has zero divisors,
ideals and subsemigroups which are not ideals.

THEOREM 5.6: ( FCS , X,) is a semigroup with unit and has zero
divisors, units, ideals, and subsemigroups.

THEOREM 5.7: (F> (m #n), x,) is a semigroup with zero

mxn

divisors and units.
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THEOREM 5.8: (F?

nxn’

X;,) is a commutative semigroup and has
zero divisors units and ideals.

We will now give examples of zero divisors units and ideals
of F°_ (m#n), Fg‘,Fg‘,FS (n#m) and F

mxn nxm nxn *

Example 5.14: Let
F;: {(x11x,x31x4) Where x;€ Z; 1 <1< 4}

be a commutative semigroup under natural product. (111 111)
is the unit of F; under X,.

P={(xi1x0x31x4) 1Xi€ 3Z;1<1<4} C Fg‘ is an ideal of

S
K.
Infact F; has infinite number of ideals under the natural

product X,. Further F has zero divisors.

Consider x = (x; 100 1xy) € Fs,y=(0ly1y2I0)in Fg‘ 1S
such that x X, y=(010010). AlsoP=(x;1001xy) 1x€ Z, 1
<i<2} c E is also an ideal.

Example 5.15: Let
Fg‘ ={(X; X2 X31X4X5Xg) Where x; € Q; 1 <1< 6}
be a semigroup under X,.

S={(ajlayazlasasag)lae Z,lSiSG}gFﬁ‘;Sisa

subsemigroup of F; under X,. Clearly S is not an ideal of F; .

Consider P={(a;la,a31000)la; € Q,1<i1<3} Fg‘,is
an ideal of F; . If Q in P is replaced by Z that is
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T={(ajlaya;1000)laeZ 1<i<3} Fg,thenTis
only a subsemigroup of F; and is not an ideal of F;. Thus E
has subsemigroups which are not ideals.

Take M={(albcl000)la,b,ce Q}gFg‘ and
N={(0I00labc)la,b,ce Q} c E.

Mx,N=@01001000)orMNN=(01001000).

F, =M+ N.

Suppose M; = {(alb01000)la,be Q} c Fg‘ and
N;={(0I100lab0)la,be Q}ng‘,wesee

M X, Ny ={01001000)l. AlsoM;nN;={0I100100
0)} but N; + M; Fg‘; and N, + M; # Fg‘. We see that some

special properties are enjoyed by M and N that are not true in
case M, and N,.

Now we give an example in case of (E, X,).

Example 5.16: Let

FS

1l
=~

aeQ 1<i<7)

be a semigroup under natural product X,
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Consider

B

o
w

aie Q 1<i<4} cF

o|lo ol

is a subsemigroup of E> and is not an ideal of E:.

Take

aeZ 1<i<3}c E,

M is a subsemigroup of E:.

Clearly if x € P and y € M then

XXpy=

IO Ol o © oOIo
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Now take

S=14l2,||aeZ 1<i<7)c F,

S is a subsemigroup of E but is not an ideal of E:.

Suppose

aeQ, 1<i<4}cE,

—y
[
Ll Plo o o|®

J is a subsemigroup as well as an ideal of F:.

Now we give yet another example.
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Example 5.17: Let

E={la,||laeQ 1<i<T}

be a semigroup under natural product X,.

Take

o|®|o

aeQ,1<i<3}cE

o8

a,

0

is a subsemigroup as well as an ideal of ..

Take

a€3Z 1<i<3}c F

is a subsemigroup of E> and is not an ideal of F:. M c P;
M is a subsemigroup of P also.
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Now take

aeQ 1<i<4}cE,

T is a subsemigroup of E® also an ideal of F>. We see for

every x € Pand foreveryy € T, x X, y = (0).

Now we give examples of zero divisors and ideals in F>_

(n# m).

Example 5.18: Let

FS

5x3 ag

a;,

be a semigroup
multiplication.

1
9
0

. S .
arein E ;;
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0 2|6 12|25

thenx x,y=(81 0|7 18|20].
0 2|16 7|2
a e
Now consider P = <[ 0 O|| a,b,c,d,ee Q}
0 0

E,; Pis anideal of F,.

0 0 | 00 | 0
Weseefora=|x y|a bz |eE,issuchthat
0 Olc d|m

ax,x=

0
0| forevery x € P.
0

Take

a,b, C, d, c, f, g7he Z} c FSS><3;

clearly M is only a subring of E,; and is not an ideal of E ;.

Further if

e B,. Weseeyx,m=(0)

for every me M.
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Example 5.19: Let

s :
Eoa =110 an 35| ae€Q 15121}

be a 7 X 3 super matrix semigroup under natural product.

Consider

[0 0 0]

0 0 O

al a2 a3

P=:0 0 O0flaeZI<i<6)cE,;

0 0 O

0 0 O

a, a; ag

P is a subsemigroup under natural product, how ever P is not an
ideal of E, .
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Now take

7x3 *

Clearly x X, p = (0) for every p € P.

Thus we have a collection of zero divisors in the semigroup
under natural product.

Now consider the set

[a, a, a,|
0 0 O
a, a; ag
T=12a, a a |laeQ 1<i<12}cE,;
0 0 O
0 0 O
_al() all a12_

T is an ideal of F>

7x3 *
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Further

0 0 O

a, a, a,

0 0 O
m=|0 0 0|eE,

a, a, a,

a, ag a,

0 0 O

is such that m %, t = (0) for every t € T. Thus F7SX3 has several
zero divisors and has ideals.

Example 5.20: Let

a a a

2 3 4

s _
E, =492 |a, a,|a

9
A5 | A A7 [ Ay Qg Ay | Ay

aeQ 1<i<21)

10 11

be 3 x 7 matrix semigroup under natural product.

Take

P=40]a, O|a; 0 a, |0l aecQ1<i<9cE,;

a, |0 a, |0 a, O0]a,
Xx=|a, |0 a; |0 a; O0la, € F3Sx7
a, |0 a, |0 a, O

P.

is such that x X, p = (0) for every p in

a
a
a

12
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Thus F3SX7 has several zero divisors.

Take
a, |a, ay|a, a; a,|a,
Y=1la; |a, a,|a, a, a,|a,|l aecQ 1<i<21}

A5 | A A7 [ Ay Ag Ay | Ay

cE,, Y is only a subsemigroup and not an ideal of E, .

Example 5.21: Let

M= a€ Q, 1<i<16}

be a semigroup under natural product X,.

Consider
0la a |0
a, | 0 0 [a, _ s

P= a, |0 0]a, ae”Z 1<i<8}cE,6=M;
0la, a, |0

P is a subsemigroup under X,. However P is not an ideal of F;_,.
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Let

a, |0 0 |a,

0 |a; a5, |0 _ s
X = 0la, a |0 aie Q 1<i<8} cF ,;

a;, | 0 0 |a,

X is an ideal of F, ,. Further every x € Pandme X. x X, m=

(0). Thus F;, has zero divisors and subsemigroups which are

not ideals.
Now consider another example.

Example 5.22: Let

al aZ a3
S _ . :
E,=1la, a; a,||aeZ 1<i<9}
a, a; a

be a 3 X 3 super matrix semigroup under natural product. It is
important to observe E, is not compatible with usual matrix
product. Also no type of product on square super matrices can
be defined on elements in F, .

Take
0 0 O
X= a, a, a,||aeZ 1<i<3}c E,,
0 0 O

X is a subsemigroup as well as an ideal of E, .
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Take

a, a, a,
M={{0 0 O0|laecZl1<i<6}cE,.
a a a

4 5 6
M is a subsemigroup as well as an ideal of E,. We see for

everyx € Xandme M, x X, m=(0).

Now we describe the unit element of ES,E,F> ~ (m # n)

mxn
and F

nxn *

1
1
1
In E, | 1| acts as the supercolumn unit under the natural
1
product X,
For F}f; AT1T1111...111)acts as the super row unit

element under the natural product X,
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[EE—
[EEE—
[EEE—

—
—
—_—

For B

g acts as the super 7 X 3 unit under the

[ U
[ U —
[V

—
—
—_—

natural product X,

I 1|11
I 1|11
For F,,, L1l acts as the 4 X 3 super unit under
11 1
product.

Takex =(11111111111)(7132157-1)120)
=(7132157-1120).

Likewise for x = act as the multiplicative super

N O 9= w o L ow
e T e e e e S
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1
N — > O A
]

1
Aam! e el el

X

3

1
— |~ © A
]

8 x 1 identity for,

}

1

-1 710 8

317 2 511 0

{

01 2 345 6 7|89

03 4 01 0 7 0]1

For x

410 2 1{0 2 0 4|0 O

}

1fr11j1 11111
1fr11j1 11111
1fr11j1 11111
1fr11j1 11111

acts as the super identity under X,. For x X, I

I

Ix,x=x.

Consider

3

-1

2 0

-2 6

-1

—4

-1

11 1|11
11 1|11

11 1|11
1/1 1|1 1

I=|1(1 1|1 1|andy=|-1

=y.

y X, 1

are such that I X, y
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Now having seen how the units look like we now proceed
onto see how inverse of an element look under natural product

Xpe

Let
7 3|-1
1 219
X = ,
8 511
4 7| 2

if x takes its entries either from Q or from R and if no entry in x
is zero then alone inverse exists otherwise inverse of x does not
exist.

Takey = then we see

111
(1
Y=
111
Let
0 0|1
3 415
*Zls o1
1 01

clearly for this x we do not have a y such that
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XXpy=

[ U R GG —y
[URE U [ G —
[URE U [ G —

Consider x = (1/8 1 7513 2 4 —1) then the inverse for x is y
=@I1/71/511/3121/4-1)wexx,y=(111111111).

Consider
K [1/8 1 ]
3 5 /73 1/5
-1 1/7 -1 7
X = theny= | ——
-8 4 -1/8 1/4
-1 1 -1
|3 2] | /3 —1/2]
is such that
S
11
11
XX,y = 1
11
_1 1_

Now having seen inverse and unit we just give the statement
of a theorem, the proof is left as an exercise to the reader.

THEOREM 5.9: Let F (or F; or F> (m #n)or F. ) be the

mxn nxn
super matrix semigroup under natural product. No super

matrix other than those super matrices with entries from {1, —1}
have inverse if FCS (or F} or FS (m #n)or F> )take its

mxn nxn

entries from Z.
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THEOREM 5.10: Let FCS (or FRS or F5_ (m #n) or F$ ) be

mxn nxn
the super matrix semigroup under natural product, with entries
from Q or R. Every super matrix M in which no element of M
takes 0 has inverse.

The proof of this theorem is also left as an exercise to the
reader.

Considerx=(1-1111-11-1-1)€ Fg‘ ={(a; aylaz as as |
aar) laeZ 1<i<T};clearlyx=(1-1111-11-1-1) acts
asitsinversethatisx X, x=(1 111 11111).

Consider

oy a

1 a,

-1 a,

T a,

y=|-1|e E =1|a, | wherea; € Z; 1 <i<9}.

1 a,

-1 a,

1 ag
1] L3 ]
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Now

<
[ )
1l
I e S S T e S S S S S ST O BN

all y whose entries are from Z \ {1, -1} does not have inverse
under natural product.
Take

we see y© =

—_— = | =
—_— = = = =
[ S = ST
[ S = ST
[ S = ST

0|1 2
Consider x = |3 |0 =3 | we see x' does not exist.
411 2

Takex=(1015721157-12), x" does not exist.
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Consider y =

2= v|lo w9 Llw v oL

clearly y"' does not exist.

Consider
7 -110(2 3 40 3 -1|0
X = .
0O 21|1(0 7 0|1 0 5|1

Clearly x™' does not exist.

Now we have seen inverse of a super matrix under natural
product and the condition under which the inverse exists.

Now we proceed onto discuss the operation ‘+” on . or F;

or . (m # n) or F¥

mxn nxn

which is stated as the following
theorems.

THEOREM 5.11: (FCS, +) is an additive abelian group of super
column matrices.

THEOREM 5.12: ( F}, +) is an additive abelian group of super
row matrices.

THEOREM 5.13: ( F°

mxn

(m #n), +) is an additive abelian group

of super m X n (m #n) matrices.

201



THEOREM 5.14: ( F> | +) is an additive abelian group of super

nxn’

square matrices.

We can define subgroups. All subgroups are normal as
these groups are abelian. We will just give some examples.

Example 5.23: Let
Fg:{(al ayazaslasaglasaglag)laje Q;1<i<9}
be an abelian group of super row matrices under addition.

Example 5.24: Let

B ={al o ﬂwhereae Q;1<i<6)}
2X3 a 1 ’ - =

a4 aS 6

be an additive abelian group of 2 X 3 super matrices.

Example 5.25: Let

6 || aeQ 1<i<11}

be an abelian group of column super matrices.
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Example 5.26: Let

S a .
F.,= 3,e R, 1<i<16}

be an additive abelian group of 4 X 4 super matrices.

Now we can define {Fg‘, +, X,} as the ring of super row
matrices, (Fg‘, +, X,) as the ring of super column matrices,
{ F:lxn (m # n), X,, +} is the ring of super m X n matrices and

{F,

nxn ?

Xy, +} be the ring of super n X n matrices.

We describe properties associated with them.

Example 5.27: Let

E — ||l aeQ,1<i<8)

be the 8 X 1 super column matrix ring under ‘4’ and ‘x,’.

Example 5.28: Let
Fg‘ ={(ajlayazlasas) whereaje Q, 1 <i<5, +, X,}

be the ring of super row matrices.
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Example 5.29: Let

a, | a, a, | a4
S _
E. =92, a; a; [a,
a; | g a9 | 3y

ae Q 1<i<I2, + %,

be the ring of 3 x 4 supermatrices.

Example 5.30: Let

a, |a, a,|a,
a a a a
5 6 7 8 .
E, = aeZ 1<i<4)
a9 | Aay | Ay
A3 | Ay A5 | A

be the ring of square supermatrices.

Example 5.31: Let

)

N
(&)

be a ring of column supervectors.

[}
(=1

&)
w

)

ae Q 1<i<27, + %}
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Example 5.32: Let

S _
F3><10 - all a12 a13 a14 alS a16 a17 a18 al9 a20

a e Q,1<1<30, +, X,}
be a ring of super row vectors.
All these rings are commutative have zero divisor and have
unit. However we will give examples of ring of super matrices

which have no unit.

Example 5.33: Let

Fg‘ ={(X X2 X3 X4 | X5 X6 | X7 Xg X9 X19) | X; € 3Z ;
1<i<10, +, X,}

be the ring of super row matrices. Clearly F; does not contain
theunit (111111111111 1).

Example 5.34: Let

M= a e 7Z,1<1<10, +, X,}
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be the ring of super column matrices. Clearly this ring has no
super identity.

Example 5.35: Let

a, a, a,|a,
a a a a
5 6 7 8 .
F3SX4 = aje 10Z;1<1<16, +, X,}
a9 ) Ay | Ay
a3 Ay A5 | A

be a ring of 4 X 4 super matrices.

11

11

Clearly the super unit 1
11

Example 5.36: Let B, =

xl X2 x3 X4 XS XG X7 x8 x9 xlO xll X12

x13 x14 x15 x16 X17 x18 x19 x20 X21 X22 x23 X24

Xos | Xp6 X7 | Xog Xp9 X3g | X531 X3 X33 X3y | X35 | X6

X, € 57;1<1<36, +, X}

be a ring of super row vector. Clearly P does not contain the
super identity

{1 111 1(1 11 1|1|1
I=j1|1 11 1 1|1 1 1 1|1(1].
1j1r 111 1)1 11 1]1|1
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Example 5.37: Let

V= aje 157;1<j<32}

)
N
S}
&)
w

[~
=

be a ring of super column vectors which has no unit.

Now we proceed onto study super matrix structure using R*
U {0} or Q" U {0} or Z" U {0}.

Let S; = {(Xi X2 X3 X4 ... | Xp1 Xp) I Xi € R"U {0} or Q" U
{0} or Z" U {0}} denotes the collection of all super row
matrices of same type from R* U {0} or Q" U {0} or Z*" U {0}.
This notation will be used throughout this book.

o
a2
St =1| a ||aje Z" U {0} or R" U {0}
a_

m

orQ" U {0};1<i<m]}

denotes the collection of all column super matrices of same type
with entries from R* U {0} or Q" U {0} or Z" U {0}.
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a“ .‘:112 am
a, | Ay .. a,

S mzn)= 4| . . "llaje Q U {0}
.‘clm1 am2 amn

orZ"U{0}orR"U{0};1<i<m,1<j<n}

denotes the collection of all m X n super matrices of same type
with entries from Q" U {0} or Z" U {0} or R* U {0}.

a; adp .| Ay
a a a
v 21 22 | 9on .
Sn><n = . . ajj € VARV {0}
A | A, | A

or Q"uU {0} or R* U {0}; 1 <1i,j<n}

denotes the collection of all n X n super matrices of same type
with entries from R* U {0} or Q" U {0} or Z* U {0}.

We will first illustrate these situations by some examples.

Example 5.38: Let
S; ={(X; X2 1 X3X4 X5|X6X71xg) I Xie Q" U {0},1<i<8}

be the super row matrices of same type with entries from Q" U

{0}.
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Example 5.39: Let S; =

a, |a, a, a, |a; a|a, a |a

al3 alS a16 al7 al8

ae Z'U {0} 1<i<27)

be the set of all super row vectors of same type with entries
from Z* U {0}.

Example 5.40: Let

&

o m|m ml
W W N

ae QU0 1<i<ll)

wn
0+
1l
m|m
(=)}

2

o
oo

DJ_DJ o
S

denote the collection of super column matrices of same type
with entries from Q* U {0}.
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Example 5.41: Let

1

4

W

a
a
a7
a

1

(=1

N d A Ay " .
St = a e R"U{0); 1 <i<36)
a19 a20 a21
a22 a23 a24
a a a

denote the collection of all super column vectors of same type
with entries from R* U {0}.

Example 5.42: Let

a, |[a, a, a,
+ + . .
Sie =9las | a, a, ag|laeR U{0});1<i<12}
a9 alO all alZ

be the collection of all 3 X 4 super matrices of same type with
entries from R* U {0}.
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Example 5.43: Let

a, |a, a, a,|a
ag | a; Ay Ay | Ay
+ + . .
Sis =9/ @ | a4 a3 4y | a5 ||laae RTU{0};1<1<25}

be the collection of 5 X 5 super matrices of same type with
entries from R* U {0}.

Now we proceed onto give all possible algebraic structures
on E. , E; or F/  (m#