A note on Khan's 'Equation of Trickery'.
Jeremy Dunning-Davies,
Department of Physics,
Hull University,
Hull HU6 7RX,
England.
j.dunning-davies@hull.ac.uk

Abstract

. The full derivation of a crucial equation in Einstein's 1905 article, On the Electrodynamics of Moving Bodies is presented to aid clarification and to correct a misapprehension that some trickery is employed by Einstein at this particular point in his paper.

In one of his famous articles of 1905[1], On the Electrodynamics of Moving Bodies, Einstein concerns himself in section 3 with the theory of the transformation of co-ordinates and times from a stationary system to another system in uniform motion of translation relatively to the former. Fairly early on in this discussion, he considers a light ray emitted from the origin of a system k at the time τ_{0} along the X-axis to x, and at the time τ_{1} be reflected to the origin of the coordinates, arriving there at time τ_{2}. He then asserts that

$$
\frac{1}{2}\left(\tau_{0}+\tau_{2}\right)=\tau_{1} .
$$

Then, assuming the speed of light to be constant and inserting the arguments of the function results in the above equation taking the form

$$
\frac{1}{2}\left[\tau(0,0,0, t)+\tau\left(0,0,0, t+\frac{x}{c-v}+\frac{x}{c+v}\right)\right]=\tau\left(x, 0,0, t+\frac{x}{c-v}\right)
$$

It is at this point that Khan [2] appears to take issue with Einstein and refer to his following equation as the Equation of Trickery. But is it? On subtracting $\tau(0,0,0, t)$ from both sides the above equation may be written

$$
\begin{equation*}
\frac{1}{2}\left[\tau\left(0,0,0, t+\frac{x}{c-v}+\frac{x}{c+v}\right)-\tau(0,0,0, t)\right]=\tau\left(x, 0,0, \frac{x}{c-v}\right)-\tau(0,0,0, t) \tag{1}
\end{equation*}
$$

and the right-hand side of this equation may be replaced by

$$
\tau\left(x, 0,0, \frac{x}{c-v}\right)-\tau\left(0,0,0, \frac{x}{c-v}\right)+\tau\left(0,0,0, \frac{x}{c-v}\right)-\tau(0,0,0, t)
$$

Following Einstein, if x is taken to be infinitesimally small, then $\frac{x}{c-v}$ and $\frac{x}{c-v}+\frac{x}{c+v}$ will be infinitesimally small also. Consequently, in the limit as $x \rightarrow 0$, the right-hand side of (1) is seen to take the form

$$
-\frac{1}{2}\left[\frac{x}{c-v}+\frac{x}{c+v}\right] \frac{\partial \tau}{\partial t},
$$

the first two terms of the expanded right-hand side give

$$
-x \frac{\partial \tau}{\partial x},
$$

and the final two terms give

$$
-\frac{x}{c-v} \frac{\partial \tau}{\partial t} .
$$

Hence, combining these latter three expressions gives the equation

$$
\frac{1}{2}\left[\frac{1}{c-v}+\frac{1}{c+v}\right] \frac{\partial \tau}{\partial t}=\frac{\partial \tau}{\partial x}+\frac{1}{c-v} \frac{\partial \tau}{\partial t}
$$

It follows that there is no trickery involved in deducing this equation, just simple straightforward differential calculus.

References.

[1] A. Einstein, 1905, Ann. der Physik, 17
[2] M. S. Khan, 2012, viXra:1202.0004

