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Abstract: 

With super-luminal neutrinos being observed in 2011 then refuted in 2012 we present an argument, based on 

Jensen’s inequality, that they might still exist only with a smaller excess speed than initially thought.  

Specifically, the quantity measured by OPERA and ICARUS is the average of the length of the displacement 

over time which is greater than the length of the average velocities - which determines and does not break 

Lorenz invariance.  We examine quantum diffusion to explain the physics behind the particle’s variance 

resulting in an excess average velocity of     (   )⁄ , where   is the baseline and   is the coherence time.  

We examine the experimental setup at OPERA to estimate the excess velocity and show it is within the error 

as observed in the tighter re-run.  We also show consistency with Fermilab 1979 and supernova 1987A.  In 

conclusion we comment on arguments refuting superluminal neutrinos and note a similar consequence of 

quantum mechanics that conservation of energy can be violated, if only for a short time. 

INTRODUCTION: 

While the findings from OPERA [1] where neutrinos 

were clocked traveling faster than light (and seemingly 

break the laws of special relativity) seems to have been 

refuted by ICARUS [2], it behooves one to revisit those 

laws [3]. I argue that special relativity is secure in its 

postulates and conclusions if there is no variance in the 

particle’s velocity.  However we know from Quantum 

Mechanics and the Heisenberg Uncertainty Principle 

that this is not possible without the variance in position 

being infinite [4].  I argue that if a particle moves from 

location (0,0,0) to position (x,y,z) in time t, (where x, y, 

and z are random variables drawn from the squared 

magnitude of their corresponding wavefunction, then 

the quantity    √ ̅   ̅   ̅  ⁄  is what special 

relativity postulates is always less than or equal to the 

speed of light [5], c.  However on the contrary, the 

quantity measured by OPERA was 

 ̅  √        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 ⁄  which can be greater than the 

speed of light, when   is close to   and the variance on 

x, y, or z is large enough.  This difference between    

and  ̅ is well known in Information Theory as Jenson’s 

Inequality [6]; namely that the average of a function is 

not the same as the function of the average. 

1.0 GEOMETERTY: 

A way to visualize what is happening in special 

relativity is by using right triangles and Pythagoras’s 

theorem.   

With    , we begin by decomposing unity into four 

orthogonal dimensions with magnitude,   ,      , and  

√(    ) where      
    

    
 . 

This decomposition remains valid for the four 

orthogonal dimensions with real magnitudes when 

       ), or       .  We can now apply this 

decomposition into the energy domain by multiplying 

by the energy  .  We can see that for a given particle 

with a rest mass    and momentum,   ,   ,    we have 

the relationship,      
     where      

    
  

  
 ,          and   

  (    )     

In the absence of a force and with  ( )    we have 

     .  Re-writing the right triangle again we have 

         where    (  )           and 

   (    )     

This decomposition of unity forms the basis for the 

Lorentz transformation and special relativity.  We can 

see that if the non zero rest mass    and momentum, 

  ,       are all real (i.e. no imaginary component) the 
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velocity obeys         as guaranteed by 

orthogonality [7]. 

We assum the reader is familiar with the OPERA and 

ICARUS results relating to super luminal neutrinos 

[1,2].  Since the particle has a wavefunction and x y and 

z are no longer eigenstates, but rather random variables 

with a variance, the ensemble average no longer obeys 

this decomposition.  We still have  ̅    ̅̅ ̅  where the 

average is over the ensemble, but  ̅  ( ̅ )  

√        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 is no longer equal to        

√ ̅   ̅   ̅ .  By Jensen’s inequality we have 

 ̅    .  In this respect special relativity no longer 

applies because the length function in an orthogonal 

basis is convex and thus taking the ensemble average 

ruins the equality by Jensen’s inequality.   

2.0 DIFFUSION: 

First consider the diffusion of a free particle in its rest 

frame.  We know that the variance of a free particle’s 

wavefunction will diffuse due to quantum effects.  With 

no force,  (    )   (  )   (  )  ⁄  and we have, 

   ( )   〈  (  )〉  〈  (  )  (  )] 〉   ⁄
 〈  (  )〉 

   ⁄  

Balancing the terms and relating them through the 

Heisenberg uncertainty principle we have 〈  (  )〉  
    ⁄  and 〈  (  )〉   ⁄      ⁄ .  We also have 

〈  (  )  (  )] 〉   , leading to    ( )     ⁄  [8].   

The Langevin equation confirms this when the time is 

greater than the coherence time        ⁄ .  If 

  ̈     ̇  ⁄     where    is the noisy driving force 

(uncorrelated with x), the variance of x as a function of 

time is [9] 

   ( )     (   (      ⁄ )) 

where        ⁄  from Einstein’s relation [9].  

Beyond the coherence time    (   )      
   ⁄ .  Used later we also have    (   )  
(    ⁄ )    , or the thermal velocity,    

  
(    ⁄ ) , which is also derivable from the 

equipartition theorem [4].  

The particle at rest has width         , however 

in a reference frame moving with velocity      the 

width of the x dimension will shrink by the factor 

  ⁄  √    , such that      (    )    , which 

we consider as zero when    is close to one (the speed 

of light).  Yet in the other two dimensions transverse to 

the motion, there is no shrinkage [3].   

If the particle starts at (     ) and moves for t seconds 

in the x direction we will have two effects.  First the 

displacement of the y and z dimensions will be 

according diffusion of the position.  Second the 

effective velocity along the line of sight will also be 

slightly greater due to the momentum diffusing.  When 

the average velocity in the x direction is just under the 

speed of light the following equation holds, as 

visualized in the figure for one of the two transverse 

dimensions. 
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Thus the velocity     ⁄  √         ⁄  is a 

random variable with probability 

 ( )   
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Where    ( )     
   ⁄     

   ⁄     
   ⁄  

   
   ⁄ .  Taking the first moment and assuming 

     we have,  ̅    (  )  ⁄   

However before we further reduce this answer, we must 

consider that the width of the neutrino beam is finite 

and non-zero. 

4.0 ANGULAR LIMIT: 

One complication we find is that the width of the 

neutrino beam in the OPERA and ICARUS 

experiments are finite as the beam is not radially 

distributed.  Thus 〈  (  )〉 and 〈  (  )〉 as seen at the 

detector are reduced.  While the neutrinos still diffuse, 

the initial spread of the beam is such that the ones that 

diffuse greater than     end up past the detector.  

Considering only the spatial effects (and not the 

momentum effects) we have  
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If t is the baseline and y is a Gaussian random variable 

with zero mean and variance 〈  (  )〉 and if     ( ) 

is the probability the neutrino starts out at an angle   

away from the x direction with variance (  ) 
 , we 

have with    ( )     ( )    

    (      ( ))      (     
 ) 

Where    
   (   (  ) 

 ⁄   〈  (  )〉⁄ )⁄ .   

For the width occurring from the momentum space we 

find the same result but for a different reason.  Here the 

width is limited because the initial beam width is not 

zero as it has a finite variance in velocity and thus 

momentum.  〈  ( )〉        
 ⁄          

 ⁄ .  

From the Heisenberg uncertainty principle we have 

   
  

   ⁄

〈  ( )〉  〈  (  )〉
 

Since we can re-write (  ) 
  as    

  (given the 

geometry of velocity right after the neutrino is 

generated as below), one can show that    
   ⁄  

   
   ⁄  

 

Lastly if we associate the temperature along the 

transverse direction equal to the variance in the velocity 

times the mass,         
  [10], we end up with our 

primary result, where        ⁄ . 

 ̅      (   )⁄  

4.0 BEAM WIDTH: 

Relating this to the measurements of the CERN 

neutrino beam we have the following: 

Assuming the angular variance of the muon neutrino 

beam is equal to the angular variance of muons we have 

  (  )  
  (     ) , where the baseline is   

     .  This is calculated from the FWHM of       

[11] and distribution similar to the triangle distribution. 

However we should also expect the subsequent 

diffusion of the neutrinos to spread the beam.  If    is 

is the width of the neutrino beam at the detector we 

have     (  )  
     〈  (  )〉 .  Note that the 

variance in momentum does not impact the spread of 

the neutrinos since it only impacts the velocity. 

We can find    by looking at the expected number of 

neutrinos that pass through the detector.  We have 

       
       

                 
 
                 

        

 
        

   
     

From [1] we have CC events = 15223, and from [12] 

pot=2.8e19 and 1 neutrino for 2.2 pots.   Averaging the 

cross section 6.7            ⁄  [13] over the flux as 

a distribution of energy [14], we have probability of an 

event given the neutrino passed through the detector is, 

     ⁄ , where                ,   (    )  

is the area of the detector and N  is the mass of the 

detector over the mass of a proton;            .   

The fraction of neutrinos that pass through the detector 

is area integral over the squared radial distribution of 

the neutrino beam.  Analysis on the published radial 

distribution [11] shows, the fraction of neutrinos that 

pass through the detector is   (  ) ⁄ .   

Putting this all together we have (  )  (      )  

5.0 NEUTRINO MASS: 

We should be able to calculate the mass of the neutrino 

with a measurement  ̅  assuming there is not a 

complication of flavor eigenstates and mass eigenstates 

which would make the effective mass different than the 

mass eigentstate.  Putting this possible complication 

aside we have the following: 

With a measurement of (  )  and   (  )  
  we can 

determine 〈  (  )〉  (      ) .  From here we can 

estimate      (   (  )  
 ⁄   〈  (  )〉⁄ )⁄  

(      ) .  Since we found that  ̅     (   )   ⁄  

we have  ̅             as the excess average 

velocity that should have been measured by OPERA.  

Resulting in           , less than the main refuted 

results from OPERA[1] and ICARUS [2]. 

From here we should be able to calculate the 1
st
 mass 

eigenstate which would dominate the other mass 

eigenstates in determining the width of the wavepacket 

since it relates to the inverse of the mass.  We have 

〈  (  )〉       ⁄ , or               ; a very 

small mass indeed. 

How if we were to consider an effective mass we would 

look at the transition matrix between flavor and mass 

eigenstates, but for now that effect is less than an order 

of magnitude. 

6.0 FERMILAB 1979: 

  ~1 

   

  



A review of another experiment from Fermilab 1979 

gives us a second measurement of the average excess 

speed of muon neutrinos with a baseline of 550m[15].   

Assuming the physics of the beam from Femilab and 

OPERA are similar we can use the same (  )  
  we just 

calculated.  Also using    we just calculated we see 

that,     (  )  
     and thus the excess average 

velocity is         as the paper finds.   

6.1 SN1987A: 

In the case of SN1987A (where neutrinos were found to 

arrive 3 hours before the photons over a baseline of 

168,000 light years [16]), we see the opposite thing 

happen to limit    .  Since the supernova produced a 

circularly uniform distribution of neutrinos we have 

    〈  (  )〉 .  Using the first mass eignestate as 

calculated above we have  ̅         .  From this it 

appears likely that the original explanation of early 

arrival time of the neutrinos remains as the delay of the 

visual light coming from the dense core. 

7.0 CONCLUSION: 

We find that OPERA should have measured super 

luminal neutrinos, but only at   ̅            .  There 

are a number of rough estimates in this number like the 

width of the beam but this analysis should give us the 

correct mass of the neutrino within an order of 

magnitude. 

It would make sense to redo an experiment with a wider 

beam to rule out the beam limiting the effect of the 

diffusion.  Of course a short baseline experiment would 

give better fidelity in calculating the first mass 

eigenstate and would allow a direct comparison to a 

photon beam for timing. 

Other refuting arguments of super luminal neutrinos 

include the requirement that a super luminal neutrino 

will radiate energy and thus the neutrinos would have a 

different energy distribution at collection than at 

creation [17,18,19].  However I claim the quantity 

which determines the validity of Lorenz invariance and 

any subsequent radiation is √  ̅̅ ̅    ̅̅ ̅    ̅
  

√  ̅̅ ̅    ̅̅ ̅  which is always less than the speed of light.  

Thus the assumption in these refuting arguments is 

invalid. 

One might think of a similar consequence of quantum 

mechanics where a violation of the conservation of 

energy is permitted if only for a short amount of time 

(giving rise to virtual particles for example) [4]. In this 

case we have a situation where information could travel 

faster than the speed of light, but only by one part in 

hbar divided the action of the path. 

REFERENCES: 

1. arXiv:1109.4897v4  

2. arXiv:1203.3433v3 

3. Einstein, The Meaning of Relativity, Princeton 

Univ. Press, Princeton NJ, 1956 

4. Feynman, Lectures on Physics, Addison-Wesley 

Publishing, Reading Massachusetts, 1965 

5. Schutz, A first course in general relativity, 

Cambridge University Press, Cambridge, 1999 

6. Cover & Thomas, Elements of Information Theory, 

John Wiley & Sons, New York, NY, 1991 

7. Apostol, Calculus, John Wiley & Sons, New York, 

NY, 1969 

8. Gardiner & Zoller, Quantum Noise, Springer, 

Berlin, 2004 

9. Kubo, R., “The fluctuation-dissipation theorem,” 

Rep. Prog. Phys. 1966, 29 255 

10. Bittencourt, Fundamentals of Plasma Physics, Sao 

Jose Dos Campos, SP, 1995 

11. http://proj-cngs.web.cern.ch/proj-

cngs/Beam%20Performance/NeutrinoRadial.htm 

12. E. Gschwendtner et al., Performance and 

Operational Experience of the CNGS Facility, 

Contribution to IPAC10, First International Particle 

Accelerator Conference, Kyoto, Japan, 23-28 May 

2010, CERN-ATS-2010-153 

13. K. Hagiwara et al. (Particle Data Group), “Review 

of Particle Properties”, Phys Rev D  Vol 66-1, 2002 

14. http://www.mi.infn.it/~psala/Icarus/nugsweb2005/n

ugs2005numu.flu 

15. http://lss.fnal.gov/archive/1979/pub/fermilab-pub-

79-118-e.pdf 

16. Nomoto & Shigeyama, "Supernova 1987A: 

Constraints on the Theoretical Model;” in Minas 

Kafatos. Supernova 1987a in the Large Magellanic 

Cloud. Cambridge University Press. 1987 section 

3.2 

17. arXiv:1109.6562v1 

18. arXiv:1110.3763v1 

19. arXiv:hep-ph/9812418v3

 

http://arxiv.org/abs/1203.3433v3
http://proj-cngs.web.cern.ch/proj-cngs/Beam%20Performance/NeutrinoRadial.htm
http://proj-cngs.web.cern.ch/proj-cngs/Beam%20Performance/NeutrinoRadial.htm
http://www.mi.infn.it/~psala/Icarus/nugsweb2005/nugs2005numu.flu
http://www.mi.infn.it/~psala/Icarus/nugsweb2005/nugs2005numu.flu
http://lss.fnal.gov/archive/1979/pub/fermilab-pub-79-118-e.pdf
http://lss.fnal.gov/archive/1979/pub/fermilab-pub-79-118-e.pdf
http://arxiv.org/abs/1109.6562v1
http://arxiv.org/abs/1110.3763v1
http://arxiv.org/abs/hep-ph/9812418v3

