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I. INTRODUCTION 

 
The analogy between gravitation (G) and electromagnetism has a long history [1]. The conjecture that 
mass currents should generate a field called, by analogy with electromagnetism, the gravitomagnetic 
field, goes back to the beginnings of general relativity. Indeed, according to general relativity, moving 
or rotating matter should produce a contribution to the gravitational field that is the analogue of the 
magnetic field of a moving charge or magnetic dipole [2]. The term “gravitomagnetism” (GM) 
commonly indicates the collection of those gravitational phenomena regarding orbiting test particles, 
precession of gyroscopes, moving clocks and atoms and propagating electromagnetic waves which, in 
the framework of the General Theory of Relativity (GTR), arise from non-static distributions of matter 
and energy. In the weak-field and slow motion approximation, the Einstein field equations of GTR, 
which is a highly non-linear Lorentz-covariant tensor theory of G, get linearized, thus looking like the 
Maxwellian equations of electromagnetism [3].  
 

II. THE FOUR-VECTOR FIELD OF VELOCITY 

 
Why does the scalar potential of a G field ϕ(r , t) have the dimension of the square of the velocity 
[m2/s2]? Why does the vectorial potential of the GM field Ag(r , t) have the dimension of the velocity 
[m/s]? Are these important questions? Or only a consequence of our perception of reality? We will try 
to answer for these questions.  
 
Let's replace the scalar potential of a G field, ϕ(r , t), by Vg

2(r , t), where Vg
2(r , t) = - ϕ(r , t). Let’s name 

the Vg
2(r , t) as the scalar field of the square of the velocity. Let's replace the vectorial potential of the 

GM field Ag(r , t) by the Vgm(r , t), where Vgm(r , t) = Ag(r , t). Let’s name the Ag(r , t) as the vectorial 
field of the velocity.  
 
Let's replace of the G and GM four-potential Aµ = (ϕ/c, Ag) by the four-vector field of the velocity 
(Vg)

µ, which we will define in the form  

                                                 
1 Paper has been accepted for publication in the Journal of Vectorial Relativity, September 2011 issue, (JVR 6 
(2011) 3  1-8). Now all publications of the journal were hung on the undefined time because of the breakdown of 
the server. 
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where: cg – speed of propagation of field (equal to, by GTR, the speed of light c). The (Vg)

µ has 
dimension [m/s], from here the name - the four-vector field of the velocity.   
 
 

III. THE LAGRANGIAN 
 
The entire system of bodies and fields consists of a mechanical part, an interaction part and a field 
part. We therefore assume that the total Lagrange density Ltot for this system can be expressed as  
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is the mechanical Lagrange density,   
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is the interaction Lagrange density for the body interacting with the (Vg)

µ field, and  
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is the field Lagrange density. Because field energy difference expressed in the tensor field of the 
velocity (see Appendix A I), i.e. the difference between the G and GM field energy densities, has the 
form  
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and equation (5) becomes  
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where: v – velocity of the body, g – is the intensity of the G field or the field of the acceleration, ωωωωgm – 
is the intensity of GM field or field of the rotation, ρ – mass density, G – gravitational constant.   
 

IV. THE LAGRANGE’S EQUATION OF MOTION 

 
The equation of motion for the body moving in the (Vg)

µ field can be calculated from the Lagrange’s 
equation 

rv ∂
∂=

∂
∂ LL

dt

d
 

 
 

 



3 

and for the lagrangian L = Lmech + Lint we get   
 

( ) gmωvgv ×+= m2mm
dt

d
 

 
(6) 

 
where: ωωωωgm = (∇ × Vgm/2), g = grad (Vg)

2 - (∂/∂t)(Vgm), 2mv × ωωωωgm is the Coriolis force, m – mass of 
the body. 
 

V. THE LAGRANGE’S FIELD EQUATIONS 
 
Field equations for g and for the ωωωωgm have a form (see Apendix A II ) 
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These equations are similar to the field equations in Lorentz-invariant theory of gravitation in the weak 
gravitational field according to the Einstein field equations for GTR [4].  
 

VI. THE WAVE EQUATIONS 
 
If we apply the curl operator (∇ ×) to both sides of the equations (7a) and (7b), then we obtain 
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Further calculations give the wave equations for the vectors g and ωωωωgm in the form  
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The wave equations for the vector field of Vgm and scalar field of  (Vg)

2, have the forms 
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if Lorenz gauge condition for the Vgm and (Vg)

2  is fulfilled, then  
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In this sense, the following wave equations: 

• (8a) and (8b) are the gravitational and GM analogous to wave equations for electromagnetism.  
• (8c) and (8d) describes how the vectorial waves of the Vgm and the scalar waves of the (Vg)

2 
propagate through the space.  

 

VII. PHYSICAL INTERPRETATION OF  (Vg)
2   

 
Let’s consider equation (8d). For the stationary field this equation becomes the Poisson’s field 
equation  
 

ρπ−=∇ G4V 2
g

2  
 

(9) 

 
In particular, solving equation (9) for the spherical symmetry we obtain well-known equation  
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where: M is the mass of the star, r – distance from the star. If we substitute the mass of the Sun and the 
average radius of the orbit for each planet into the equation (9a), then we obtain average of the Vg(r) 
for planets in the Solar System (see the Table 1).  
 
Table 1. Calculated (within the model) average of the Vg(r) and observed average velocity v(r) 
for the planets in the Solar System. 
 

 Average radius  
of the orbit  

[AU *] 

Calculated average  
of the Vg(r) 

[kms-1] 

Observed average  
orbital velocity v(r) 

[kms-1] 
Mercury   0.39 47.70 47.87 
Venus  0.72 35.11 35.02 
Earth  1.00 29.79 29.78 
Mars  1.52 24.16 24.08 
Jupiter  5.20 13.06 13.07 
Saturn  9.58   9.64   9.69 
Uranus 19.23   6.79   6.81 
Neptune 30.10   5.43   5.43 
Pluto 39.48   4.74   4.67 
* 1AU = 149.6 . 106 km 
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In our model the G is the scalar the field of the square of the velocity. The star with the ρ density 
generates the scalar field of the square of the velocity – equation (8d). In particular (equation (9a)), the 
orbital velocity of the planets v(r) = Vg(r).  
 
 

VIII. CONCLUSION 
 
Simple replacement of the four-potential Aµ = (ϕ/c, Ag) by the four-vector field of the velocity (Vg)

µ = 
(-(Vg)

2/cg, Vgm) gives a new perception for gravitation and the gravitomagnetism. In our model the G is 
the scalar field of the square of the velocity and the gravitomagnetism is the vectorial field of the 
velocity.  
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APPENDIX 
 

A I. The Field of the Velocity Tensor 
 
In Section II we defined the four-vector field of the velocity in the contravariant form 
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(A I. 1) 

 
Now we define the field of the velocity tensor in the contravariant form  
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Matrix representation of the field of the velocity contravariant tensor has form   
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(A I. 3) 

 
Matrix representation of the field of the velocity covariant tensor has form   
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(A I. 4) 

 

A II. The Field Equations 
 
The field equations we can calculate from the Euler-Lagrange equations of motion for the field [5], 
which were adopted for our consideration  
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(A II.2) 

 
For the Lagrange function L = Ltot (see equation (2)) calculations gives field equations (7a), (7b), (7c) 
and (7d).    


