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Abstract 
 

We develop here a Higgsless model of electroweak symmetry breaking using critical 
behavior of infrared Yang-Mills theory. Gauge bosons and fermions acquire mass near 
the Wilson-Fisher point of Renormalization Group flow. The entire family structure of 
Standard Model is recovered using the technique of “epsilon expansion”. We also find 
that dimensional regularization offers a straightforward solution to the cosmological 
constant problem. A brief discussion on how our Higgsless model could preserve 
unitarity of high-energy di-boson scattering is also included.  
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1. Introduction 

The Standard Model of particle physics (SM) is a highly successful theory that has been 

in place for more than 35 years. It includes the (3) (2) (1)SU SU U⊗ ⊗ gauge model of 

strong and electroweak interactions along with the Higgs mechanism that spontaneously 

breaks the electroweak (2) (1)SU U⊗  group down to the (1)U  group of 

electromagnetism. Despite its outstanding reliability, SM is viewed as a low-energy 

framework that is likely to be amended by new phenomena occurring in the Terascale 

sector [1, 2].  
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The Higgs scalar is the last building block of SM that, at the time of writing, resists 

experimental verification. The whole theoretical and experimental consistency of SM 

hinges on the validity of the Higgs mechanism. The vacuum expectation value of the 

Higgs field breaks the electroweak symmetry, giving mass to both W and Z gauge bosons 

and fermions. The tree level exchange of the Higgs boson contributes to the scattering 

amplitude of longitudinally polarized gauge bosons in a way that makes the total 

amplitude consistent with unitarity, provided the Higgs mass is not larger than 1 TeV 

[21]. The minimal Higgs sector with one Higgs doublet is automatically consistent with 

experimental data on flavor changing neutral currents and CP violation. Finally, radiative 

corrections induced by the Higgs boson affect the electroweak precision observables, 

notably the Peskin-Takeuchi parameters, and they are consistent with experiment, 

provided the Higgs boson mass is smaller than 145 GeV at 2� confidence level [21].  

The discovery of the mechanism responsible for electroweak symmetry breaking 

(EWSB) is one of the key objectives of the Large Hadron Collider (LHC).  The minimal 

Higgs boson picture of electroweak (EW) and flavor symmetry breaking suffers from 

several drawbacks. In particular [1, 2]: 

• It does not provide a compelling dynamical explanation for EWSB. 

• It does not account for breaking of CP symmetry. 

• It appears to be highly contrived, requiring fine tuning of parameters to enormous 

precision. 

• It has a hierarchy problem of widely different energy scales. 

• It provides no insight into flavor physics. 

• It is at odds with the measured value of the cosmological constant. 
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Similar or different drawbacks persist in supersymmetric extensions of Higgs theories 

(MSSM) and alternative models of EWSB such as Technicolor [3, 4]. As the Large 

Hadron Collider collects its first inverse femtobarns of data, with no definitive signal for 

the elementary Higgs boson, we inquire herein if it is possible to build a meaningful 

Higgsless electroweak model that has explanatory power and falls in line with all 

available experimental observations. 

Surprisingly, building a satisfactory alternative to the Higgs mechanism turns out to be 

highly non-trivial, and all proposed approaches so far face more or less severe problems. 

Either new contributions to electroweak precision observables are unacceptably large, or 

one has to accept fine-tuning at least at the one-percent level (MSSM, Little Higgs, 

pseudo-Goldstone Higgs), or complicated ad-hoc theoretical structures have to be added 

to the theory. Moreover, extensions of the SM typically face flavor and CP problems, 

and/or a host of model-specific problems [22].  

Our paper is a sequel to [33] and it is organized in the following way: after a brief listing 

of main challenges raised by Yang-Mills theory in section 2, sections 3 and 4 introduce 

the basis of our approach along with its set of assumptions and conventions. The next two 

sections describe the link between Yang-Mills theory and the Landau-Ginzburg-Wilson 

(LGW) model of equilibrium phase transitions, as well as the relevance of its Wilson-

Fisher point for the physics of EWSB.  Section 6 includes a side-by-side comparison 

between predictions and experimental observations. Building on the same premises, 

section 7 develops a straightforward solution for the hierarchy problem using 

dimensional regularization and derives the numerical value of the cosmological constant.  

Section 8 contains a brief discussion on how our Higgsless model could preserve 
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unitarity of high-energy di-boson scattering.  Conclusion and a summary of open 

questions are formulated in the last section.   

2. Challenges of Yang-Mills theory 

In our view, there are a couple of key roadblocks that have slowed down progress on the 

theoretical side of high-energy physics for the past 35 years:  

• Because Yang-Mills field is self-interacting, it is inherently nonlinear and prone 

to undergo complex behavior [5].  

• Dynamics of Yang-Mills field is strongly coupled in the infrared (IR) where 

perturbation theory breaks down and traditional methods of quantum field theory 

(QFT) fail to apply. 

3. New tools: nonlinear dynamics and critical behavior  

To deal with these challenges, we start from a far less explored vantage point. 

Specifically, we exploit the fact that both mapping theorem [6] and the LGW model of 

critical behavior [7, 19] are able to explain the dynamics of gauge field theory using the 

principles of Renormalization Group program (RG). 

• The mapping theorem 

The electroweak group (2) (1)SU U⊗  is broken at a scale approximately given by 

1
2( )EW FO Gµ −

= , in which FG  is the Fermi constant. Yang-Mills fields associated with 

(2)SU  are vectors denoted as ( )aA xµ , in which 0,1, 2,3µ =  is the Lorentz index and 

1,2,3a =  is the group index. To manage the large number of equations derived from the 

Yang-Mills theory, it is desirable to devise a method whereby ( )aA xµ  are reduced to 

analog fields having less complex structure. The mapping theorem allows for such a 



 5

reduction. The action functional of classical scalar field theory in four-dimensional space-

time is defined as 

                                             4 2 2 41 1
[ ] [ ( ) ]

2 4!
S d x gΦ = ∂Φ − Φ∫                                          (1)       

An extremum of (1) is also an extremum of the (2)SU Yang-Mills action provided that: 

a) g  represents the coupling constant of the Yang-Mills field, 

b) some components of ( )aA xµ  are chosen to vanish and others to equal each other.  

In the most general case, the following approximate mapping between Yang-Mills fields 

and scalar ( )xΦ  holds [6]: 

                                                    
1

( ) ( ) ( )
2

a aA x x O
g

µ µη= Φ +                                            (2)        

where a
µη  are properly chosen constants. Mapping becomes exact in the Lorenz gauge 

( ) 0aA xµ
µ∂ =  and in the IR regime of strong coupling ( g→∞ ). 

• LGW theory near dimension four: a brief overview 

Consider the Euclidean space LGW action in D − dimensional space-time [7, 8, 19] 

                                                  21
[ ] [ ( ) ( )]

2
DS d x VΦ = ∂Φ + Φ∫                                         (3)         

In particular, 

                                                 
2

2 4( )
2 4!
r g

V jΦ = Φ + Φ − Φ                                               (4)      

in which j  denotes the external current coupled to Φ  and r  stands for the deviation 

from the critical temperature ( cr T T= − ). According to the RG program, rescaling the 

cutoff ' , 1b
b
Λ

Λ→Λ = >  and integrating out fast modes within ' kΛ < < Λ , turns the 
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original action into an effective action. The effective theory built with this prescription 

represents a lower-energy image of the original theory, namely 

                                                    [ ], [ ], 'effS S <Φ Λ → Φ Λ                                                 (5)      

Here, ( )x<Φ  are the slow modes of the field ( 'k < Λ ),  

                                            
'

( ) ( )exp( )
(2 )

D

Dk

d k
x k ikx

π< <Λ
Φ = Φ∫                                         (6)      

and 

                                          [ ]exp( [ ]) exp( [ ])effD S SΛ <Φ − Φ ≈ − Φ∫                                     (7)                                            

with 

                                          21
[ ] [ ( ) ( )]

2
D

eff effS d x V< < <Φ = ∂Φ + Φ∫                                      (8)       

Invoking the limit of infinitesimal scaling 1b dt= + , dt <<1 along with the local 

potential approximation leads to [7, 8, 19],  

                                 
2

2
2

[ ]
[ ] [ ] log[ ]

2
D

eff

Q V
S S d x <

< <
<

∂ Φ
Φ = Φ + Λ +

∂Φ∫                                (9)       

where 

                                                       
22

(2 ) ( )2

DD

D

dt
Q

D
π

π
Λ

=
Γ

                                                   (10)       

When applied to (4), the logarithmic correction on the right hand side of (9) may be 

expanded as  

                            
2 2 4

2 4
2log[1 ] log[1 ] ...

2(1 ) 8(1 )
V g g

r
r r< <

<

∂
+ = + + Φ − Φ +
∂Φ + +

                      (11)        

in which Λ  has been normalized to unity ( 1Λ = ). On account of (11), sufficiently small 

deviations from criticality ( r <<1) produce the following approximations  
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                                         [ ]effS <Φ ~ [ ]S Φ ,        [ ]effV <Φ  ~ [ ]V Φ                                   (12) 

4. Assumptions and conventions  

4.1) As previously stated, the mapping theorem applies when comparing Yang-Mills 

fields with classical scalar fields. We extend this ansatz and assume that the theorem 

holds sufficiently well for quantum scalar field theory. This assumption may be 

motivated by considering the close analogy between quantum field theory (QFT) and 

statistical systems near criticality [9]. On this basis, we assume that the Yang-Mills 

model is reasonably well approximated by the LGW theory of equilibrium critical 

behavior. 

4.2) From (4.1) it follows that the dimensional parameter of LGW theory and 

dimensional regulator of Yang-Mills theory 4 Dε = −  are identical entities. This identity 

is made explicit in the first row of Tab. 1 below. 

4.3)  We analyze on the IR regime of Yang-Mills theory in which EWµ  stands for the EW 

scale, µ  for the running scale and the ultraviolet (UV) scale UV EWµ µΛ = Λ > >  for the 

cutoff. The dimensional parameter is then given by [10, 13, 24],  

                                                         2

2

1
0

log( )UV

ε

µ

≈ >
Λ

                                                   (13) 

Moreover, to streamline the derivation and make it more transparent, it is convenient to 

take advantage of the large numerical disparity between the two scales entering the 

logarithm and substitute (13) with  

                                                              ε ~
2

2
UV

µ
Λ

                                                           (14a) 
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Here, the reduced UV scale ( UVΛ ) and the reduced running scale ( µ ) are defined 

through 

                                                       
2

2
2log( ) ( )UV UV

µ µ
Λ Λ

=                                                 (14b)                                         

It is seen from (14a) that, 

• maximal deviation from 4D =  occurs near the limit  UVµ→Λ  . This finding is 

consistent with quantum gravity theories asserting that space-time turns 2+1 

dimensional at very large energy scales [11, 25].  

• minimal deviation from 4D =  ( 0ε → ) occurs as µ  approaches the reduced EW 

scale, that is, when EWµ µ→ .   

4.4) The reduced UV cutoff is not uniquely determined but smeared out by high-energy 

noise [12]. It spans a range of values  

                                                            UV UVδΛ ∈ Λ                                                         (15)       

(15) implies that, at any given µ  and UVΛ , dimensional parameter ε  falls in the range 

                                                          2 UV

UV

δ
δε µ

Λ
=

Λ
                                                      (16)       

5. Dynamics of RG flow equations 

Elaborating from these premises leads to the following side-by-side comparison between 

parameters of LGW and the reduced parameters of Yang-Mills theory: 

Landau –Ginzburg -Wilson theory Yang-Mills theory 

Dimensional parameter ( 4 Dε = − ) Dimensional regulator ( 4 Dε = − ) 

Momentum cutoff (Λ ) Ultraviolet cutoff  ( UVΛ ) 
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Temperature (T ) Energy scale ( EW UVµ µ< < Λ ) 

Critical temperature ( cT ) EW scale ( EWµ ) 

Temperature parameter ( r ) 
Deviation from the EW scale 

( EWδµ µ µ= − ) 

Coupling parameter (u ) Coupling constant ( 2g ) 

External field (h ) Fermion current ( j ) 

            
Tab. 1: Comparison between LGW and Yang-Mills theories 

Under these circumstances, RG flow equations for r δµ= , 2u g=  and fermion current 

fj j=  read, respectively [13] 

 2 2( )
( )(2 )bg ag

t
δ µ

δ µ
∂

= + +
∂

      

                                                      
2

2 2 23 ( )
g

g b g
t

ε∂
= −

∂
                                                 (17)       

(3 )
2

f
f

j
j

t
ε∂

= −
∂

 

Here, 

                                   
2

43 UVa K= Λ ,      43b K= ,      2 1
4 (8 )K π −=                                 (18)       

On account of (12), the Wilson-Fisher (WF) fixed point of (17) is defined by the pair 

                                             ( )* ,
6
a
b

δµ ε= −       2( )*
3

g
b
ε

=                                           (19)      

(19) acts as a non-trivial attractor of the RG flow. Since it resides on the critical 

line EWµ µ= , it describes by definition a massless field theory ( 0r δµ= = ) [19]. The 

non-vanishing vacuum of Φ  at the WF point results from minimization of (4), that is,  
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1
2

42

6(- )
v = 3( )

( ) UVK
g
δµ ∗

∗
∗± = ± Λ                                          (20)       

(19) and (20) show how massive gauge bosons develop at the WF point from critical 

behavior near 4D = . Let v M∗ =  denote the mass acquired by the gauge boson. 

Combining (14), (18), (19) and (20) yields   

2 2( )g M∗ ~
2

EW constµ =  
                                                                                                                                         (21)                                                          

* 2( )g ~ fm∗ ~ε  

in which * ( )f fm O j=  stands for the normalized fermion mass defined in [13]. On 

account of assumptions 4.3), 4.4) and (21), the WF attractor (20) changes from a single 

isolated point to a distribution of points.  Our next step is to explore the link between the 

structure of the WF attractor and the parameters of SM. 

6. Wilson-Fisher point as source of particle masses and gauge charges 

We are now ready to analyze the dynamics of (17) using the standard methods employed 

in the study of nonlinear systems [14]. To this end, we first note that the last equation in 

(17) is uncoupled to the first two. This enables us to reduce (17) to a planar system of 

differential equations. We next cast (17) in the form of a two-dimensional map, namely 

                                  2 2 2
1( ) (1 )( ) 3 ( )n n ng t g b t gε+ = + ∆ − ∆                                             (22a)  

                               2 2
1( ) ( ) [1 2 ( ) ] ( )n n n nt b t g a t gδµ δ µ+ = + ∆ + ∆ + ∆                             (22b)                                                        

where t∆  represents the increment of the sliding scale. Linearizing (22) and computing 

its Jacobian J gives 

                                                       1 (2 ) 1J tε= + + ∆ >                                                  (23)                                    
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Thus map (23) is dissipative for 0ε ≠  and asymptotically conservative in the limit 

0tε = ∆ = . Invoking universality arguments [14, 18] we conclude that, near criticality, 

(22) shares the same universality class with the quadratic map. Furthermore, in the 

neighborhood of Feigenbaum’s attractor, ε  approaches 0ε∞ =  according to:  

                                                       
n

n naε ε δ
−

∞− ≈ ⋅                                                       (24)  

Here, 1n >>  is the index counting the number of cycles generated through the period 

doubling cascade, δ  is the rate of convergence (in general, different from Feigenbaum’s 

constant for the quadratic map) and na  is a coefficient which becomes asymptotically 

independent of n , that is, a a∞ =  [15]. Substituting (24) in (21) yields 

                             2 2( ) ( ) ( )
n

j n n f nP n M g m δ
−− ∗ ∗ = ∝     if   1n >>                              (25) 

in which 1, 2,3j =  indexes the three entries of (25). Period-doubling cycles are 

characterized by 2 pn = , with 1p >> . The ratio of two consecutive terms in (25) is then 

given by 

                                                  
( 2 )( 1)

[ ]
( )

p
j

j

P p
O

P p
δ

−+
=                                                     (26) 

Numerical results derived from (26) are displayed in Tab. 3. This table contains a side-

by-side comparison of estimated versus actual mass ratios for charged leptons and quarks 

and a similar comparison of coupling strength ratios. Tab. 2 contains the set of known 

quark and gauge boson masses as well as the SM coupling strengths. All quark masses 

are reported at the energy scale given by the top quark mass and are averaged using 

reports issued by the Particle Data Group [16]. Gauge boson masses are evaluated at the 

EW scale and the coupling strengths at the scale set by the mass of the Z  boson. The 
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best-fit rate of convergence is 3.9δ =  which falls close to the numerical value of the 

Feigenbaum constant corresponding to hydrodynamic flows [13, 15, 17].  

(21) and (25) imply that there is a series of terms containing massive gauge bosons, 

namely  

                    2 2 2
1 1( ) ( ) .... ( ) ... .n n n n n q n qM g M g M g const∗ ∗ ∗
+ + + += = = = =                              (27)                                                  

For the first two terms of this series we obtain 

                                                   
2 2 2

2
2 2

2 2

1Z EM

W

M g e
M g

α
α

+
= = +                                               (28) 

in which 
2

4EM
eα π=  is the fine-structure constant and 

2
2

2 4
gα π=  the strength of the 

weak interaction. The rationale for (28) lies in the fact that the charged gauge boson W ±  

carries a superposition of weak and electromagnetic charges, whereas the neutral gauge 

boson 0Z  carries only the weak isospin charge. Inverting (28) and taking into account the 

last rows of Table 3, leads to 

                               
2

2
2

2

1 1 1
1 cos

1
1 1

W
W

EMZ

M
M

θ
α δ
α δ

= = ≈ − =
+ +

                                         (29)   

(29) suggests a natural explanation for the Weinberg angle Wθ . Likewise, we may write 

(27) as 

                                                 
2 2 2
2 2
2 2
W Z

g g e
const

M M
+

= =                                                  (30a) 

This relation offers a straightforward interpretation for both Fermi constant and the mass 

of the hypothetical Higgs boson. Indeed, in SM we have [13] 
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2
2
2 4 2 F
W

g
G

M
=                                                       (30b) 

and 

                                             0 1
v ( ) 246.22

2F

GeV
G

ϕ ∝ ≈                                       (30c)         

where 0v( )ϕ  denotes the vacuum expectation value for the neutral component of the 

“would-be” Higgs doublet.  

 

Parameter Value Units 

um  2.12 MeV 

dm  4.22 MeV 

sm  80.90 MeV 

cm  630 MeV 

bm  2847 MeV 

tm  170,800 MeV 

W
M ±  80.46 GeV 

0Z
M  91.19 GeV 

EMα  1/128 - 

Wα  0.0338 - 

QCDα  0.123 - 

                                            
Tab. 2: Actual values of selected SM parameters. 
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Tab 3: Actual versus predicted ratios of SM parameters (except neutrinos) 

A similar comparison may be drawn on neutrinos. Since neutrino oscillation experiments 

are only sensitive to neutrino mass squared differences and not to the absolute neutrino 

mass scale ( 0mν ), they can only supply lower limits for two of the neutrino masses, that is, 

 
 

Parameter 
ratio 

 

 
 

Behavior 

 
 

Actual 

 
 

Predicted 

u

c

m
m  

 

4−
δ  33.365 10−×  34.323 10−×  

c

t

m
m  4−

δ  33.689 10−×  34.323 10−×  

d

s

m
m  2−

δ  0.052  0.066 

s

b

m
m  2−

δ  0.028  0.066 

em
mµ

 4−
δ  34.745 10−×  34.323 10−×  

m
m

µ

τ
 2−

δ  0.061  0.066 

W

Z

M
M  

1
21

(1 )−
δ  

0.8823 0.8623 

2EM

W
( )α

α  2−
δ  0.053  0.066 

2EM

QCD
( )α

α  4−
δ  34.034 10−×  34.323 10−×  
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12 22( ) 5 10ATMm −≈ ×  eV and 
12 22( ) 1 10SOLm −≈ × eV [27]. As a result, it is more relevant to 

consider experimentally constrained bounds on 0mν  reported from beta decay, 

neutrinoless double beta decay as well as from cosmological observations [26]: 

• Beta decay: electron neutrino mass is 0.2
e

mν <  to 2 eV. 

• Neutrinoless double beta decay: effective electron neutrino mass is 0.1eem <  eV. 

• Cosmological measurements: sum of neutrino masses is 0.17
i

i

mν <∑ eV at 95% 

confidence level. 

Based on these inputs, it makes sense to set the upper (U) and lower (L) limit values for 

the absolute neutrino mass scale as 0( ) 2Umν =  eV and 0( ) 0.1Lmν =  eV. According to Tab. 

3, ratios of charged lepton masses scale as 
2

δ
−
 and 

4
δ
−
, which suggests that 0mν  should 

naturally follow a 
8

δ
−
 or 

16
δ
−

pattern . Table 4 displays a side-by-side comparison on the 

mass ratio 
0

e

m
m

ν for 0( )Umν and 0( )Lmν , respectively, and shows that numerical predictions 

line up fairly well with current observations. 

 

 
 

Parameter 
ratio 

 

 
 

Behavior 

 
 

Actual 

 
 

Predicted 

0

e

m
m

ν  

 

8−
δ  

72 10 [...]−< ×  

64 10 [...]−< ×  

51.87 10−×  
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0

e

m
m

ν  16−
δ  

72 10 [...]−< ×  

64 10 [...]−< ×  

103.5 10−×  

 
Tab. 4: Actual vs. predicted ratios of neutrino mass scales. 

7. A natural solution for the hierarchy problem 

It is known that the technique of renormalization in QFT is conceived as a two-step 

program: regularization and subtraction. One first controls the divergence present in 

momentum integrals by inserting a suitable “regulator”, and then brings in a set of 

“counter-terms” to cancel out the divergence.  Momentum integrals in QFT have the 

generic form 

                                                           4

0
( )I d qF q

∞
= ∫                                                      (31)        

Two regularization techniques are frequently employed to manage (31), namely 

“momentum cutoff” and “dimensional regularization”. When the momentum cutoff 

scheme is applied for regularization in the UV region, the upper limit of (31) is replaced 

by a finite cutoff Λ , 

                                                   4

0
( )I I d qF q

Λ

Λ→ = ∫                                                   (32)      

Explicit calculation of the convergent integral (32) amounts to a sum of three polynomial 

terms  

                                                 1( ) ( )I A B CΛ = Λ + + Λ                                                   (33)  

Dimensional regularization proceeds instead by shifting the momentum integral (33) 

from a four-dimensional space to a continuousD - dimensional space 

                                                    
0

( )D
DI I d qF q

∞
→ = ∫                                                   (34) 
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Introducing the dimensional parameter 4 Dε = −  leads to 

                                            1'( ) ' '( )DI I A B Cε ε ε→ = + +                                             (35)     

In general, Λ  and ε  are not independent regulators and relate to each other via the 

approximate connection (13) 

                                                    2

2
0

1
4

log( )
Dε

µ

= − =
Λ

                                               (36)                                                       

where 0µ < Λ  stands for an arbitrary but non-vanishing reference scale.  

A similar technique can be used to regularize field theory in the IR limit whereby Γ  is 

taken to represent the lowest bound scale. A strictly positive ε  on less than four 

dimensions ( 4D < ) requires taking the reciprocal of the logarithm in (36) to comply with 

0µ > Γ . The infrared version of (36) accordingly reads: 

                                                   2
0

2

1
' 4

log( )
Dε

µ
= − =

Γ

                                               (37)                                        

We next proceed with the following assumptions 

7.1) The deep IR cutoff of field theory is set by the cosmological constant scale  

                                                            
1
4( )ccΓ = Λ                                                          (38)      

where ccΛ  represents the cosmological constant. 

7.2) The deep UV cutoff of field theory is set by the Planck scale:    

                                                            UV PlΛ = Λ                                                             (39)                                                      

Combining 7.1) and 7.2) implies that, as the EW scale is approached from above or 

below, (36) and (37) naturally converge to a common value. Taking 0 EWµ µ=  and 

replacing in (36) and (37) yields 
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21

4( )EW Pl EW
cc

EW Pl

µ µ
µ
Λ

= → Λ =
Γ Λ

                                               (40) 

Direct substitution of Planck’s mass 1910PlΛ ≈  GeV and 
1
2( ) 300EW FO Gµ −

= ≈  GeV 

leads to 

                                                         
1 54( ) 10cc

−Λ ≈ eV                                                    (41)                                                          

This result falls in line with the upper limit set by the cosmological value of vacuum 

energy density, that is,  

                                                
1
4

v( ) ( )cc O ρΛ = < 310−  eV                                             (42)         

Several conclusions may be drawn from (40), namely,       

a) Asymptotic approach to four-dimensional space-time explains the existence of the 

deep IR cutoff ( ccΛ ) and deep UV cutoff ( PlΛ ). Stated differently, fractal space-time 

description supplied by the condition 0ε >  and ' 0ε >  appears to be linked to these 

natural bounds [20].   

b) Fixing two out of the three scales involved in (40) automatically determines the third 

one.  

c) The gauge hierarchy problem, cosmological constant problem and EWSB appear to be 

deeply interconnected. 

d) The derivation presented here stands in sharp contrast with sophisticated approaches to 

the hierarchy problem based on supersymmetry, Technicolor, extra-dimensions, 

anthropic arguments, fine-tuning or gauge unification near the Planck scale.  
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8. Preserving unitarity in di-boson scattering without the Higgs 

As it is known, unitarity provides a strong argument for the existence of the Higgs boson 

[30]. Without it, elastic scattering of longitudinally polarized W  bosons diverges at the 

tree level and violates unitarity. In what follows we briefly review this argument. Let P  

denote the magnitude of the three-momentum in the center-of-mass frame and let “c” 

represent the cosine of the angle between the initial and final boson states. The scattering 

amplitudes describing the high energy limit P  >> WM  are represented by [30] 

2 4 2 2
2 0

1 4 2(1 )(3 ) (9 7 4 ) ( )
2s

W W

g P g P
M c c c c O P

M M
= − + + + − +  

2 4 2 2
0

1 4 24 9 ( )t
W W

g P g P
M c c O P

M M
= − − +  

                                                                                                                                         (43) 
2 4 2 2

2 2 0
1 4 2(3 6 ) 2 (2 3 ) ( )u

W W

g P g P
M c c c c O P

M M
= − − − − − − +  

2 2
0

1 2 (1 ) ( )
2 W

g P
M c O P

M
= + +∑  

Here, , ,s t u  denote Mandelstam variables of the scattering process and 0P  is the total 

energy measured in the center-of-mass frame. It is apparent that the amplitude diverges as 

P→∞  and unitarity is violated. Similar argument holds for amplitudes computed in the 

(2) (1)SU U×  theory where the mediating gauge boson is either a Z  boson or a photon. 

A natural question is then: How can unitarity be restored in our Higgsless model? 

To properly answer this question, we recall that the LGW program infers the desired IR 

behavior of Φ  from a systematic study of its scaling behavior in the UV regime 

corresponding to µ→Λ . In constructing the LGW model we had tacitly taken the IR 
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limit t→∞ , where t  parameterizes continuous scaling of cutoff Λ . Stated differently, 

the limit of infinitesimal scaling is described by 

                                            ' ,
b
Λ

Λ→Λ =    1b dt= +   (dt <<1)                                    (44)        

and both scale-invariant regime and the WF fixed point of RG flow (17) are approached 

as t→∞ [19]. It is apparent that (17) is formally equivalent to differential equations 

describing temporal behavior of generic dynamical systems from an initial time 

corresponding to the UV limit to a final time that defines the IR limit. 

Next, we recall that a basic hypothesis of equilibrium critical behavior is that the outcome 

of (17) is independent of initial conditions corresponding to dt << 1. However, in the 

early stages of scaling regime the evolution of the flow is not yet stationary and 

correlation functions cannot be considered translational invariant. In particular, since 

initial conditions break translation invariance with respect to the choice of t , the two-

point correlation functions will explicitly depend on two independent variables namely t  

and 't t≠  [27]. This situation is a hallmark of non-equilibrium dynamics and leads to the 

concept on non-locality.  Moreover, non-equilibrium field theory restores unitarity of 

scattering processes and blurs the distinction between locality and non-locality. As 

explained in [28], these arguments imply that a correct treatment of Higgsless models in 

the high-energy limit WP M�  can no longer be formulated using perturbative QFT and 

requires instead the framework of fractional dynamics. An attractive feature of this 

framework is that it supplies a natural mechanism for breaking of discrete symmetries (P 

and CP), as well as a plausible source for anomalous behavior near or beyond the EW 

scale [28, 29, 32].  
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9. Conclusions and open questions 

Our analysis suggests that RG provides a natural framework for understanding the 

mechanism of EWSB without invoking the Higgs mechanism. The key observation is 

that mapping theorem enables one to reduce the infrared limit of Yang-Mills model to 

scalar field theory. As a result, methods pertaining to LGW theory become directly 

applicable. In particular, one retrieves the entire structure of SM from combining the 

technique of “epsilon expansion” with nonlinear analysis of RG equations. Moreover, we 

find that regularization in terms of dimensional parameter 4 Dε = −  offers a 

straightforward solution to the cosmological constant problem. 

Here is a preliminary list of open questions that need to be answered in future extensions 

of our model:   

- Are there additional generations of gauge bosons and fermions or is there a stability 

limit of RG trajectories constraining the number of these flavors? [31]. 

- Can flavor mixing and the absence of flavor changing neutral currents be explained 

using mixing of RG trajectories near transition to chaos?  

- Can all electroweak precision observables (including Peskin-Takeuchi parameters) be 

correctly recovered?. 

- Can all decay channels of particle physics be understood as the result of chaotic mixing 

and diffusion of RG trajectories on strange attractors?. 
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