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1. Introduction 

The laws of quantum physics are for the world of elementary particles what Newton’s laws of 

classical mechanics are for the macroscopic world. Almost half a century ago, Yang and Mills 

introduced a remarkable new framework to describe elementary particles by using 
geometrical structures. Since 1954, the Yang-Mills (YM) theory [1] has been the foundation 

of contemporary elementary particle theory. Although the predictions of the YM theory have 

been tested in many experiments [13], its mathematical foundations remain unclear. The 

success of the YM theory in describing the strong interactions between elementary particles 

depends on a subtle quantum-mechanical property, termed the mass gap: quantum particles 
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have positive masses even though classical waves travel at the speed of light. The mass gap 

has been discovered experimentaly and confirmed through computer simulations, but is yet to 

be understood theoretically [2], [3], [4]. The theoretical foundations of the YM theory and the 

mass gap may require the introduction of new fundamental ideas in physics and mathematics 

[1].  As explained by Arthur Jaffe and Edward Witten in the Caly Mathematical Institute 

(CMI) problem description [2], the YM theory is a generalization of Maxwell’s theory of 

electromagnetism, in which the basic dynamical variable is a connection on a G-bundle over 

four-dimensional space-time. 

The YM theory is the key ingredient in the Standard Model of elementary particles and their 

interactions. A solution to the YM problem, therefore, would both place the YM theory on a 

firm mathematical footing and demonstrate a key feature of the physics of strong interactions. 

 
The foundation of the YM theory and the mass gap problem could be formulated as follows: 

Prove that, for any compact simple gauge group G, there exists a quantum YM theory of R
4
, 

and that this theory predicts a mass gap Δ > 0. Or, more explicitly, given a simple Lie group 

G (e.g. SU (2) or SU (3)), show that 

 

A) there exists a full renormalized quantum version of YM theory on R
4
 based on this 

group; 

 

B) there is a number Δ > 0 such that every state in the theory (except the vacuum) has 

energy at least Δ. In other words, there are no massless particles predicted by the 

theory (except the vacuum state) 

 

Assuming that the quantum chromodynamics (QCD) is the valid theory [1] , the first part of 

CMI problem description, the problem of the foundation of the YM theory, is a technical 

rather than a fundamental physical problem. The goal of this paper is to investigate the 

possibility of a solution to the second part of the official (CMI) problem description, namely 

the mass gap problem, by utilizing Wu’s  formulation of QCD ([5], [6], [7], [8], [9], [10], 

[11],[12]). 

 
 

 

2. The physics of the mass gap problem  

In the standard QCD model, processes that probe the short-distance structure of hadrons 

predict that quarks inside the hadrons interact weakly [13], [14], [15]. Since coupling, g, is 

small, the classical QCD analysis is a good first approximation for these processes of 

interaction [13], [14], [15]. However, for YM theories in general, it is a general requirement 

of the renormalization group equations of the quantum field that coupling, gs increases in 

reverse law to the hadrons’ momentum transfer, until momentum transfer becomes equal to 

the vector boson. Since spontaneous symmetry-breaking via the Higgs mechanism to give the 

gluons mass is not present in QCD ([16], [17], [18], [19], [20], [21], [22], [23]), QCD 

contains no mechanism to stop the increase of coupling, gs. In consequence, quantum effects 

become more and more dominant as distances increase. Analysis of the behavior of QCD at 

long distances, which includes deriving the hadrons spectrum, requires foundation of the full 

YM quantum theory. This analysis is proving to be very difficult ([2], [3], [4]).  

  

[1] Note: Lattice QCD is a non-perturbative approach to solving the QCD theory [27], [28]. Analytic 

solutions in low-energy QCD are hard due to the nonlinear nature of the strong force. This formulation 

of QCD in discrete space-time introduces a momentum cut off at the order 1/s, where s is the lattice 

spacing [29], [30].  
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The mass gap problem can be expressed as follows:  

 

Why are nuclear forces short-range? Why there are no massless gauge particles, even though 

current experiments suggest that gluons have no mass?  

This contradiction is the physical basis of the mass gap problem. More explicitly, let us 

denote this energy minimum (vacuum energy) of YM Hamiltonian H   by mE , and let us 

denote the lowest energy state by m . By shifting original Hamiltonian H  by mE , the new 

Hamiltonian mH H E    has its minimum at 0E   (massless state) and the first state m  is 

the vacuum vector. We now notice that in space-time the spectrum of Hamiltonian is not 

supported in region  0, , with 0  . 

 

3.  The mass gap in the framework of Wu’s QCD   

As we have seen, the Higgs mechanism ([16], [17], [18], [19], [20], [21], [22], [23]) is 

excluded in the QCD theory (gluons are massless because the QCD Lagrangian has no 

spinless fields and, therefore, no obvious possibility for spontaneous symmetry-breaking). It 

follows that the only possible mechanism that can introduce the mass term in the gluon field 

while remaining consistent with the occurrence of mass gap is the Wu mass generator 

mechanism ([5-12],[41-46]). The Wu mass generator mechanism introduces mass terms 

without violating the SU (3) gauge symmetry.  

The quark field is denoted as 

( ),( 1,2,3)a x a           (1) 

where a is color index and the flavor index is omitted.  

 

Ψ is defined as follows: 
 

1

2

3





 
 
 
 

          (2) 

 

All ψα form the fundamental representative space of SU (3) c.  

 

In this version of the Wu gauge model, the gauge fields 1
aA   and 2

aA    are introduced .Gauge 

field 2
aA   is introduced to ensure the local gauge invariance of the theory. The generation of 

gauge field 1
aA   is a purely quantum phenomenon: 1

aA   is generated through non-smoothness 

of the scalar phase of the fundamental spinor fields [42], [47]. 



4 
 

From the viewpoint of the gauge field  1
aA    generation described here, the gauge principle is 

an “automatic” consequence of the non-smoothness of the field trajectory in the Feynman 

path integral [42], [47]. The Lagrangian of the model is: 

5
1 11

2

2 1 22 1 2

1
[ ( ) ] ( )

4

1
( ) [(cos sin )(cos sin )]

4 2

igA m Tr A A
K

m
Tr A A Tr aA aA aA aA

K K


  

  
  

       

  

   (3) 

 

where  

 

1 1 1 1 1[ , ]A A A ig A A          , 2 2 2 2 2[ , ]A A A igta A A            (4) 

 

This Lagrangian can be proved to have strict SU (3) c gauge symmetry.  Since A  and 
2

A   

are not eigenvectors of mass matrix, we can apply the following transformations: 

 

1 1 2

2 1 2

cos sin

sin cos

G aA aA

G aA aA

  

  

 

  
        (5) 

 

After these, the Lagrangian given by equation (3) changes into 
 

5
1 2 1010

2

20 120 1

1
[ ( cos sin ) ]

4

1

4 2

i

i i i
gI

ig aG ig aG m G G

m
G G G G


   

 
 

        

   

    (6) 

 

Where   0 ,( 1,2)i i
m m mG G G m        , / 2i

m m iG G      (7) 

 

The Lagrangian gI  only contains interaction terms of gauge fields.  gI  includes a massive 

gluon field, 1G , with mass m ,and a massless gluon field, 2G .  

Since there exist two sets of gluons, there may exist three sets of glueballs in mass spectrum, 

(g1g1), (g1g2) and (g2g2), with the same spin-parity but different masses (see [12]). 

 

Transformation (5) is pure algebraic operations which do not affect the gauge symmetry of 

the Lagrangian [5-12]. They can, therefore, be regarded as redefinitions of gauge fields. The 

local gauge symmetry of the Lagrangian is still strictly preserved after field transformations. 

In other words, the symmetry of the Lagrangian before transformations is absolutely the same 

with the symmetry of the Lagrangian after transformations. We do not introduce any kind of 

symmetry breaking in this paper. 

In Quantum Field Theory (QFT) the number of particles is not constant, due to the particles’ 

creation and annihilation. Therefore, while we can define the mass-state of the system as the 

mass-state of all particles or equivalent, we cannot define the mass-state of a specific particle. 

In Wu’s version of QCD, nevertheless, the mass-state of the system has non-zero mass. A 

possible interpretation of the existence of both massive and massless gluon states is that Wu’s 

mass generator mechanism introduces the phenomenon of mass gap. This is achieved in the 

following steps: First, in the Wu QCD version the non-zero gluon mass corresponds to the 

massive vector propagator [24] and the zero gluon mass corresponds to the massless vector 
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propagator of the short-distance QCD [13], [14], [15]. For the given wave vectors 

1k and 2k the propagators of massless and massive gluons are given by: 

2
22 2

2

( )
g

k i
k i

 
 



 
      

        (8) 

1 1
1 11 2 2 2

1

( )
k ki

k g
k M i M


 







 
   

   
      (9) 

 

where [2]  1 2 ,1 2     ,
                  (10a) 

 

1 1 1( , )g e e   , 2 2 2( , )g e e  
,                 

(10b) 

11
,e

x





  
22

e
x






                               (10c) 

1g  , 2g   are metrics of the space-time regions and  2 ,e  2e   are vectors of the basis 

induced by the selection of local coordinates 
1x 

,
2x 

on the neighborhood of the given 

points.  

Furthermore, due to equation (10a), the wave vectors 1k  and 2k   lie in different regions in 

the momentum space in their own right. Here, we express the meet of the propagators 

11 ( )k
  and 22 ( )k

 in the momentum space, in terms of its hypersurface of the present 

([25]) at the origin of the propagators paths as follows 

1 2

1 2
1 2 1 1 2 21 2

( , ) 0
( ) ( ) liminf {min( ( ), ( )}

k k S i
k k k k   

   


 
 

     

              (11a) 

where 

 

1
1 1 11 2 2

1

1
( ) ( ) ,k k

k m i

 
 


   

                   (11b) 

2
2 2 22 2

2

1
( ) ( )k k

k i

 
 


   

                  (11c) 

are functions in the momentum space.  The subset 1\S S r   of the hypersurface of the 

present is disconnected, since it is the disjoint union of the two propagator’s half-planes of the 

present that corresponds to the different 1  and 2  indices. 

[2]
Note: In Wu’s version of QCD, the letters 1 ,1  and 2 ,2   denote the different space-time indices 

of the massive and massless propagators 
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1 2U U    and 1 1 2\ ( , ) \{0}S S r U U       ,              (11d)

  

2
1 11 12 11 12{ {( , ) : 0} (0, ),U S k k R ak bk c       

              (11e) 

2
1 21 22 21 22{ {( , ) : 0} ( ,0)U S k k R ak bk c       

              (11f) 

the 1 : 0x yr ak bk c  
 

is line such that the points 11 12( , )k k and 21 22( , )k k  of S lie on 

different sides of 1r  and  1 2,U U  are the propagator’s  half-planes of the present. 

Substituting equations (11d), (11c), (11d) to equation (11a), we calculate the meet of the 

11 ( )k
  and 22 ( )k

  propagator in the momentum space  

1 2
1 21 2( ) ( ) 0k k   

       

                      (11g) 

Equation (11g) shows that the meet of the propagators 11 ( )k
  and 22 ( )k

  is zero, 

because the propagator’s half-planes of the present are disjoint in the momentum space. After 

some calculations, the Fourier transformation to the position space of equation (11g) is given 

by 

(4) 1 (4) 2
2 2 1 1 1 1 2 21 2( ) ( ) ( ) ( ) 0x y x y x y x y   

             
   (12) 

where 

 

1 1 1

4
( )(4) 1

1 1 4
( )

(2 )

ik x yd k
x y e








   , 
2 2 2

4
( )(4) 2

2 2 4
( )

(2 )

ik x yd k
x y e








     (13) 

 

and 

 

, 

                                                (14) 

 

1 1 14 ( )
1 11

1 1 11 4 2 2 2
0

1

( ) lim ( )
(2 )

ik x y k kd k e
x y i g

k M i M

  





 

 




 
     

   
    (15) 

 
(4)

1 1( )x y  , (4)
2 2( )x y   are the Dirac delta functions and 1 11 ( )x y

   , 2 22 ( )x y
   

are the two gluon propagators in the position space.  

 

 

 

The integral of equation (12) over 4
1d x  , 4

2d x  
is given as follows: 

(16) 

 
(4) 1 4 4 (4) 2 4 4

2 2 1 1 2 1 1 1 2 2 1 21 2( ) ( ) ( ) ( ) 0x y x y d x d x x y x y d x d x   
                

 

2 2 24 ( )
2

2 2 22 4 2
0

2

( ) lim ( )
(2 )

ik x yd k e
x y g i

k i
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Here, we integrate equation (16) in the following steps. First, by fixed 1 2,y y , the equation 

(16) becomes 

 
1 4 2 4

1 1 1 2 2 21 2( ) ( ) 0x b d x x b d x   
                (17) 

 

Next, by considering an insulating color source, in Feynman gauge, the propagators 

magnitudes are constant in the position space. Therefore the integral of the equation (12) 

over 4
1d x , 4

2d x , gives 

 
(1) (2)1 2

1 1 2 21 4 2 4( ) ( ) 0x b V x b V   
         

     (18) 

 

where 

 
(1) 3
4 1

1V d x dt    , 
(2) 3
4 2

1V d x dt          (19) 
 

 
(1)
4V  , (2)

4V  are the space-time volumes.   

 
 

Equation (18) is written in style of (11g) as follows 

1 2

1 2
1 2 1 1 2 21 2

( , )
( ) ( ) liminf {min( ( ), ( )} 0

x x S
x x x x   

    


      
                 (20a)

 

where  

1
1

1 1 11
1

( ) ( ) ,
mxe

x x
x

 
 



   

                             (20b)

 

2
2 2 22

2

1
( ) ( )x x

x

 
     

                             (20c)

 

are functions in the position space.  The subset 2\S S r   of the hypersurface of the present is 

disconnected, since it is the disjoint union of the two propagator’s half-planes of the present 

that corresponds to the different 1  and 2 indices. 

1 2U U    and 2 1 2\ ( , ) \{0}S S r U U                     (20d) 

2
1 11 12 11 12{ {( , ) : 0} (0, ),U S x x R ax bx c                      (20e)

 

2
1 21 22 21 22{ {( , ) : 0} ( ,0)U S x x R ax bx c                       (20f)

 

the 2 : 0r ax by c  
 
is line such that the points 11 12( , )x x and 21 22( , )x x of S  lie on different 

sides of 2r  and  1 2,U U   are the propagator’s  half-planes of the present. 



8 
 

Equation (20a) shows that the propagator’s half-planes of the present are disjoint in the 

position space, because the meet of  11 ( )x
  and 22 ( )x

  is zero.
 1 11 ( )x b

   and 

2 22 ( )x b
   lie outside each other’s light cone [25]; these propagators, therefore, are not 

casually connected [26]. Propagators 1 11 ( )x b
   and 2 22 ( )x b

   are separated from 

each other in a (space-like) direction of distance 

 
2 1 1 2 2

1 2| |S x x x x   
                     (20g) 

where 1  ,
 

2  are the 
 
metrics of the disjoint space-time regions.  The arbitrary space-

like region 2S corresponds to an arbitrary energy scale ( 2 4 2 2/m c S ).   m is the mass of 

the particle that is constrained to the above space-like portion of space-time [37], [38]. This 

particle of mass m  either travels forward in time with imaginary mass or travels backward in 

time with real mass [37],[38]. 

Next, a basic principle in nuclear physics which states that the combined operations of charge 

conjugation (C), time reversal (T), space inversion (P) in any order is an exact symmetry of 

the strong force [31], [32].  The CPT symmetry is conserved only if our theory respects the 

Lorentz invariant and the microcasuality principle [33], [34]. 

Here, the observations of particles that are constrained to the space-like portion of space-time, 

without violating the microcasuality principle are allowed by the following postulate: 

 

The particle with space-like four-momentum that travels backward in time is equivalent to the 

mass gap (Δ) that is observed at the rest frame. 

The gap in the particle’s space-like four-momentum that travels backward in time is 

equivalent to the superluminal particle that travels forward in time and is observed at the 

laboratory frame. 

 

The postulate predicts the observations of either superluminal particles that travel forward in 

time [39], [40] or a mass gap (Δ) at the rest frame [1], [2]. 

From the above, equations (11g) and (20a) predict that the Wu Hamiltonian is not supported 

in an arbitrary space-like region 2S  that corresponds to an arbitrary energy scale 

( 2 4 2 2/c S  ). Therefore, the Wu Hamiltonian in space-time is bounded by Δ.  

Finally, in Wu’s version of QCD, the vacuum state has zero energy (E=0), corresponding to 

G2 (massless gluon). The excitation state above the vacuum energy has non-zero energy Em, 

corresponding to G1 (massive gluon). The latter predicts that the Wu Hamiltonian is not 

supported in the region  0,  with 0  and is bounded below by   close to the gluon mass. 
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4. Renormalization of the Model 

In order to quantize the suggested gauge field theory of nuclear forces in the path integral 

formulation, we first have to select gauge conditions [9], [42]. To fix the degree of freedom of 

the gauge transformation, we must select two gauge conditions simultaneously: one for the 

massive gluons 1G   and another for the massless gluons 2G  [9], [42] For instance, if we 

select temporal gauge condition for massless gluons 2G  , 

2 0,G             (21) 

there still exists a remainder gauge transformation degree of freedom, because the temporal 

gauge condition is unchanged under the following local gauge transformation: 

 1 1
2 2 1/ sin ,G UG U ig U U   

       
(22) 

where 

0,tU   ( ).U U x         
(23) 

In order to make this remainder gauge transformation degree of freedom completely fixed, we 

have to select another gauge condition for gluons 1G  . For instance, we can select the 

following gauge condition for gluons 1G  , 
 

1 0.G  
          

(24) 

If we select two gauge conditions simultaneously, when we quantize the theory in path 

integral formulation there will be two gauge fixing terms in the effective Lagrangian. The 

effective Lagrangian can then be written as: 

1 21 1 2 21 1 2 2
1 2

1 1
,

2 2

a a a a
eff f ff f f f M M

a a
        

    

(25) 

where 

21 1
( ),a af f G   12 2

( ).a af f G 
      

(26) 

If we select 

2 1
,af G 

 
          

(27) 

then the propagator for massive gluons 1G   is: 

2 2 2 2
1 2( ) / ( ) (1 ) / ( ) .g gFi k i k m i g a k k k a m

 
               

       
(28) 

If we let k  approach infinity, then 
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2

1
( ) .F k

k


 

         

(29) 

In this case, and according to the power-counting law, the gauge field theory of nuclear forces 

with massive gluons suggested in this paper is a kind of renormalizable theory [9], [42]. A 

strict proof on the renormalizability of the gauge field theory can be found in [9]. 

 

5. Discussion  

Hadron colliders, such as the Tevatron, can place the strongest limits on the new colored 

particles (squarks and gluinos in supersymmetry or KK excitations of quarks and gluons in 

models with universal extra dimensions [35–36]. Typically, limits of∼ 200 GeV are obtained 

for new colored particles.  Here, the predicted gluon mass is close to the mass gap state Δ, 

thus gluon mass is not subject to the Hadron collider’s limits [35-36]. 

In the Lorentz gauge, the free Lagrangian of Wu’s QCD field theory (equation (6), 

with 0gI  ) yields to the following field equations:
     

 
 

2
1 2

1 12 2 2

2
2 2

22 2

1 1
( ) ( ),

1
( )

G
G r G r

c t L

G
G r

c t


 





  




 



       (30) 

L  the length of the system given by 

L
mc

           (31) 

Where the Planck constant, c is the speed of light, m  the mass of the system.  If the source 

is a point color at the origin, only the time-components 02 2C  , 01 1C   are nonvanishing. 

The short-distance solution of the eq (30) that corresponds to the massless gluons is given as 

follows: 

 20 ( )
4 | |

sa
G r

r
          (32) 

where sa  is the quark-gluon coupling. 

 

Gluons that respect the solution (32) are mediators of the long-range nuclear force at high 

energy scale.  The long-distance solution of the eq (30) corresponds to the massive gluons and 

is given as follows: 

 

| |/
10 ( )

4 | |

r Lsa
G r e

r

          (33) 
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Gluons that respect the solution (33) are mediators of the short-range nuclear force at low 

energy scale.  Here, the massive and massless gluons lie outside each other’s light cone, 

because of eq (20a). The term (31) in the eq (30) and (33) reveals as a mass gap. Supposing 

that the range of the strong force is about the radius of the proton, equation (31) predicts mass 

gap of about 1GeV.  

 

We find that, in Wu’s version of QCD, free system’s energies are indeed bounded in space-

time. Consequently, in space-time, the Wu-YM Hamiltonian wuH  has spectrum bounded 

below.  Let us denote this energy minimum of the Wu-YM Hamiltonian wuH  by mE , and let 

us denote the lowest energy state by m . By shifting the original Hamiltonian H  by mE , the 

new Hamiltonian wu mH H E   has its minimum at 0E  . Τhe first state m is the vacuum 

vector. We now notice that, in space-time, the spectrum of the Wu-YM Hamiltonian is not 

supported in region  0, , with 0  .  

 

According to the Wu-YM theory, therefore, over compact gauge groups SU (3) there is 

always a vacuum vector m and a mass gap Δ. Wu’s mass generator mechanism can always be 

applied to any YM type of action.  Thus, any YM theory accounts for a mass gap. 

 

The proposed model is a massive theory without a symmetry breaking mechanism and is 

therefore a model with a quantum mass gap. Thus, the massless YM theory is altered with a 

quantum massive model and the original problem could be solved. 

 

 

 

6. Conclusion 
 

We have shown that the Wu gauge model can introduce mass terms while being consistent 

with the existing mass gap Δ. In this model the mass gap is introduced by Wu’s mass 

generator mechanism. 

Since the gluon field 1G  is massive, whereas the gluon field 2G  is massless, we conclude that 

system’s free energies in Wu’s version of QCD are bounded in space-time.  

We also notice that, in space-time, the spectrum of the Wu-YM Hamiltonian is not supported 

in region  0,  with 0  .  Wu’s mass generator mechanism can always be applied to any 

YM type of action.  Therefore any YM theory accounts for a mass gap.  

The proposed model is a massive theory without a symmetry breaking mechanism and is 

therefore a model with a quantum mass gap. Thus, the massless YM theory is altered with a 

quantum massive model and the original problem could be solved. 
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