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In superconducting systems, Josephson junction device known 
as a quantum effect devices which operates by using the 

quantum flux tunneling. Mesoscopic Josephson junction is a 
quantum effect device which operates by using the single 

Cooper-pair tunneling created by a Coulomb blockade. The 
quantum flux and the Cooper-pair is known that the duality 

relation to each other. On the other hand, in ferromagnet
system that competes with superconductivity, spontaneous 

magnetizationand domain wall are known to have a dual 
relationship. 

Abstract
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As shown above, based on dual systems of two types, we considered 
competing system of two types. One type of these competing system 
is composed of the sandwich structure by “supercnductor-
superinsulator –supercnductor” junction, and its dual junction is 
consists of the sandwich structure by “superinsulator -
supercnductor- superinsulator ” junction. Another one type of
these system is consists of the sandwich structure by “supercnductor-
ferromagnet –supercnductor” junction. and its dual junction is 
consists of the sandwich structure by “ferromagnet -supercnductor-
ferromagnet” junction (spin Josephson junctions).

In this paper, we consider mechanisms that lie behind the Junction 
system to compete with each other, and theoretical conditions to 
control these devices.

3

0. Introduction

Recent advances in nano-fabrication technology enables us to 
confine electric chargeor spinin nano-structures such quantum 
wires or quantum dots. In such systems, by the strong  quantum 
fluctuations due to confinement of particles, it cannot be ignore 
the quantum effects. Thus the effects of quantum fluctuations, in 
the condensed matter systems of original particles, topological 
defectsare spontaneously generated. It can be treated as a dual 
particles. The duality of spontaneous magnetizationand domain 
wall or the electric charge and magnetic flux be become pronounced. 
Our objective is to build the theory of quantum nano devices where 
the freedom of a dual particle play an important role, and it is to build 
the duality theory of competitive systems.
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1.1.  The Duality Conditions

The original particles field (order field)          and the dual
particles field (disorder field )           are defined by the 

following relations, respectively.

( )xψ
( )xψɶ

( ) ( ) ( )expcx N x i xψ θ≡   

( ) ( ) ( )expvx N x i xψ θ ≡  
ɶɶ

( )1 1a−

( )1 1b−

In the superconducting system,          ,          describe number 
operator of vortex and number operator of Cooper pair
respectively, and        ,          are phase of Cooper pair and 
phase of vortex respectively.

( )xNv ( )xNc

( )xθ ( )xθ~
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In order to study the various quantum condensed system,We
consider the following duality conditions, 

( ) ( ) ,V i I i= ɶ

( ) ( ).V i I i=ɶ

Where      and     describe voltage and current of original 
particles respectively,      and      describe voltage and current of 
dual particles respectively. 

Vɶ Iɶ
V I

Commutation relations between them:

( ) ( ), ,c xxN x x iθ δ ′′  = 

( ) ( ), ,v xxN x x iθ δ ′ ′ = 
ɶ

( )1 2a−

( )1 2b−

( )1 3a−

( )1 3b−
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Relationship between the phase of vortex field           and Cooper 
pair number are as follows:

( )xθ~

( )xNc

( )1 4b−

( ) ( )1
sin

2vN x xθ
π

−=

( ) ( )1
sin

2cN x xθ
π

= ɶ

( )1 4a−

In this case, From the conditions of eq.(1-3a) and (1-3b) we derived 
the next two type relationship. Relationship between the phase of 
Cooper pair          and vortex number            are as follows( )xθ ( )vN x
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We propose the single quantum flux device which operates  by using the single 
quantum flux tunneling,The single flux transistor consists of the sandwich 
structure of the “supercnductor- superinsulator –supercnductor ” junction.

FIG.1 Schematic of superconductor(SC)/superinsulator(SI)/superconductor(SC)

junction and  its equivalent circuit.
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1.2.  SC/SI/SC Junction
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( )24 1 cos ,c c c JH E N E θ= + −

,
2

2

C

e
E c ≡ ( ) ,2 cNeQ ≡

,0
2

>≡
e

I
E c

J

ℏ

1.3. The relation of original particle (Cooper 
pair)  for  SC/SI/SC junction

Hamiltonian: ( )1 5−

Josephson coupling energy ,cICritical current：

Unit Coulomb energy： Total charge

( )1 6b−

( )1 6a−voltage：

current： (2 ) sin .c
c

dN
I e I

dt
θ= = −

4
,

2
c

c

Nd
V E

e dt e

θ= =ℏ
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Josephson's equation
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1.4.  SI/SC/SI Junction

FIG.2 Schematic of superinsulator(SI)/superconductor(SC)/ superinsulator(SI)

junction and  its equivalent circuit.

superconductive wire
current source

( )θ 1ɶ ( )2θɶ

I
I

SI SI
SC

We propose the single electron device which operates  by using the single electron
tunneling,The single electron transistor consists of the sandwich structure by the 
“superinsulator –supercnductor- superinsulator ” junction. 

2
2 02 ,   

2v J
c

E E
L

π Φ
≡ =

0  ,vNΦ ≡ Φ,
2c

c

L
eI

≡ ℏ

1.5. The reration of dual particle(superinsulator
particle density = vortex density) for  SI/SC/SI junction

Dual Hamiltonian: ( )1 7−

Magnetic energy：

Critical Inductance： Total magnetic flux：

0

2 ,c v
d

V I N
dt

θ π= =
Φ

ɶℏ
ɶ

0 sinv
c

dN
I I

dt
θ= Φ = ɶɶ ɶ

Dual Josephson's equation 

( )1 8b−

( )1 8a−

Dual Junction current：

Dual Junction voltage：

( )2 2
2

2
2 1 cos ,c

v J v

E
H E Nπ θ

π
= + − ɶ

Dual critical current：
2

,c
c

E
I

eπ
=ɶ
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eq 20 =

Cooper pair system

e

h

20 =Φ

Superinsulator system

Quanta

Tunnel current sincI I θ= sincI I θ= ɶɶ ɶ

Phase-number
relations sin 2vN θ π= −

Phase slip
4

2
c

c

Nd
V E

e dt e

θ= =ℏ

0

2 c v
d

V I N
dt

θ π= =
Φ

ɶℏ
ɶ

Energy difference 
for one quanta 
tunneling ( )Qe

C

e
c ±=∆Ε 2 0 0

2v L

Φ Φ ∆Ε = ± Φ 
 

Coulomb blockade Flux  blockade

sin 2cN θ π= ɶ
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From the duality conditions of eq.(1-3a) and (1-3b) , we derived the 
quantum resistance by the next two ways method,
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( )2

0

2 .
2

d
V he dtR
V d e

dt

θ
θ

θ θ
∆= = =
∆

Φ

ℏ

ɶ ɶ ɶℏ

0

2
,

(2 )(2 )

v

v

c c

dN
NI hdtR

dNI Nee
dt

Φ ∆= = =
∆

ɶ

( )1 9a−

( )1 9b−

Quantum resistance

(Ⅰ) Case of                       orv cN N∆ ∆≫ θ θ∆ ∆ ɶ≫

14

In this extreme case                :
it becomes superinsulator state .

(Ⅱ) Case of                       orv cN N∆ ≅ ∆ θ θ∆ ≅ ∆ ɶ

2(2 )
Q

h
R

e
≡

R → ∞

(Ⅲ) Case of                         or

In this extreme case                :
it becomes superconductorstate .

0R →

In this case                : where      is  quantum resistance,
it becomes self dualstate.

v cN N∆ ∆≪ θ θ∆ ∆ ɶ≪

QR R→ QR

We propose the single quantum spin device which operates  by using the 
single quantum spin tunneling,The single spin transistor consists of the 

sandwich structure of the ferromagnet / supercnductor/ ferromagnet junction.

I
I

FIG.3 Schematic of ferromagnet(FM)－superconductor(SC)－ferromagnet(FM) 

junction and  its equivalent circuit.

2. FM/SC/FM Junction (Spin Josephson Junction)

15

FIG. 4  The superconducting layer  play a role as a domain wall.

(1) (2)φ φ φ≡ −

16



From analogy with Josephson junction, FM / SC / FM junction can be thought  
ferromagnetic junction with a superconducting thin film barrier. In this case, the 
superconducting thin film role as a spin capacitor. As a model for such 
ferromagnetic junction systems, we consider Hamiltonian of the Heisenberg 
XXZ  spin models as follows:

( ) ( ) ( ) ( ) ( )2

,

.FM z z xy x x y y
j i j

H J S j J S i S j S i S j   = − +   ∑ ∑ ( )2 1−

( )2 2a−

We introduce the Hamiltonian from an analogy of a single Josephson
junctions as follows:

2.1 The duality of  FM/SC/FM junction

( )0 2 1 cos ,FM xy XY xyH E N E φ= + −

0 ,z z XYS S N≡ 0 .
2zS ≡ ℏ ( )2 2b−
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( )2 3a−

The first term describe the Ising spin energy of  XXZ spin models, here is spin 
charging energy per single spin :

2
0

,
c
s

xy xy
Z

I
E J S

S
≡ ≡ ℏ ( )2 3b−

0
xyE

where        is spin capacitance, The second term in (2-1) describe the 
XY ferromagnetic spin junction energy, where is phase 
difference across the junction, and           is XY ferromagnetic spin junction 
energy per single-spin that is defined as follows:

( )20

0 ,
2

z

xy
s

S
E

C
≡

1 2s zC J≡

xyE

where         is critical  spin current.  Approximate commutation 
relations between          and       as follows:

0c
s z xyI S E≡ ℏ

(1) (2)φ φ φ≡ −

( ) ( ), ,XY xxN x x iφ δ ′′  ≈ 

φXYN

( )2 4−
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( )2 7−

Spin Josephson's equation 

( )2 5b−

( )2 5a−

0 sin ,z
cz XY

s s
dS dN

I S I
dt dt

φ≡ = = −

Spin voltage

Spin current

0
0 0

2
,XY

s xy
z z

N
V E

tS S

φ∂≡ =
∂

ℏ

The dual Hamiltonian of eq.(2-1) and (2-2a) respectively are given by:

( )0 2 1 cos ,DW xy DW xyH E N E φ= + − ɶɶ ɶ

( ) ( ) ( ) ( ) ( )2

,

.DW z z xy x x y y
j i j

H J S j J S i S j S i S j   = − +   ∑ ∑ɶ ɶ ɶ ɶ ɶɶ ɶ ( )2 6−
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0 22 ,xy xyE Eπ≡ɶ
0

2
.

2
xy

xy

E
E

π
≡ɶ ( )2 8−

0
2 ,c

s s DW
dw

V I N
t

φ π∂≡ =
∂Φ

ɶℏ
ɶ

0 sin .cDW
s dw s

N
I I

t
φ∂

≡ −Φ =
∂

ɶɶ ɶ

Dual Spin Josephson's equation 

Dual Spin voltage

Dual Spin current

( )2 9a−

( )2 9b−

0 0 ,z z XY dw DWS S N N≡ ≡ Φɶ ɶ ɶ 0 0 4 ,z dwS π≡ Φ =ɶ
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Where       ,          and          are  defined by
zSɶ 0

xyEɶ xyEɶ



Relationship between the phase of domain wall and  
number density of XY-ferromagnet are as follows:( )xNXY

( )2 10b−

Relationship between the phase of  XY-ferromagnet
and number density of domain wall are as follows:

( )xφ
( )xNDW

( )2 10a−

( ) ( ), .DW xxN x x iφ δ ′ ′ ≈ − 
ɶ

( )xφɶ

( ) ( )1
sin ,

2DWN x xφ
π

−=

( ) ( )1
sin ,

2XYN x xφ
π

= ɶ

Approximate commutation relations between          and       
as follows: ( )2 11−

Also, in this case, From the conditions of eq.(1-3a) and (1-3b) 
we derived the next two type relationship.

DWN φɶ
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20
ℏ=zS

Ferromagnetic system

0 4dw πΦ =

Domain wall system

Quanta

Tunnel current

Phase-number 
relations

Phase slip

Energy difference 
for one quanta 
tunneling

2

2
2

0

0 












±=∆

z
zz

zFM

S
SSJE

20
01

2 2
dw

xy dw dws
c

E
L

 Φ∆ = Φ Φ ± 
 

ɶ

( ) ( )1
sin

2DWN x xφ
π

−= ( ) ( )1
sin

2XYN x xφ
π

= ɶ

sinc
s sI I φ= −

0
0 0

2 XY
s xy

z z

N
V E

tS S

φ∂≡ =
∂

ℏ

sinc
s sI I φ= ɶɶ ɶ

0
2c

s s DW
dw

V I N
t

φ π∂≡ =
∂Φ

ɶℏ
ɶ
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From the duality conditions of eq.(1-3a) and (1-3b) , we derived the 
quantum spin resistanceby the next two ways method,
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0

0

8
.s z

s
s

dw

tV S
R

V

t

φ
π φ

φ φ

∂
∂ ∆= = =
∂ ∆
∂Φ

ℏ

ɶ ɶ ɶℏℏ

0

0

8
,

z

DW
dw

s DW
s

XYs XY

N
I NtR

dNI NS
dt

π
∂−Φ ∆−∂= = =

∆

ɶ

ℏ
( )2 12a−

( )2 12b−

Quantum spin resistance

(Ⅰ) Case of                        orDW XYN N∆ ∆≫ φ φ∆ ∆ ɶ≫

24

In this extreme case                :
it becomes superspin insulator state .

(Ⅱ) Case of                          orDW XYN N∆ ≅ ∆ φ φ∆ ≅ ∆ ɶ

8Q
sR

π≡
ℏ

sR → ∞

(Ⅲ) Case of                         or

In this extreme case                :
it becomes superspin conductor state .

0sR →

In this case                  : 
where        is  quantum spin resistance,
it becomes self dualstate.

DW cN N∆ ∆≪ φ φ∆ ∆ ɶ≪

Q
s sR R→

Q
sR



3. The quantum spin transistor

2

2

2
,

z

L
J e

π≡

In FIG.6 as a application of  FM / SC / FM  junction, we have devised a spin 
transistor, where      is inductance of  FM / SC / FM  junction defined by L

( )3 2−

and       are inductance of each junction1 and junction2 respectively,

is current of gate current source,       is inductanceof gate current source.

2L1L

25
gI

gL

Now, using the following assumptions and                ,φ θ∝ ɶ φ θ∝ −ɶ

Spin voltage：

Spin current：

2
2 ,s sV I f

e

π π= =

 ,
2s

e
I V

π
=

( )3 1a−

( )3 1b−

Where,       is  the single-electron-tunneling oscilltions frequency.sf

ME

zS0
zS20

zS20
zS−0

zS−

First band

Forbidden band

Second band

[ ]2zz SJ

FIG.5.  The energy band to the ferromagnetic system.

2SJE xyxy =
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FIG.6 Schematic of quantum spin transistor

I

1I

2I 2L

1L

gLgIjunction2

junction1
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The above conditions, FIG.7 shows the operating characteristics of FM 
/ SC / FM  junction .

In each junction1 and junction2, forbidden condition of one quantum 
spin tunneling is given by the following equation respectively,

( )[ ],)(2
1

21
00

2
ggzzs

g
s

IeLNNSS
LLe

I +−+±
+

= ππ ( )3 3a−

[ ]. )(2
1

21
00

1
ggzzs

IeLNNSS
eL

I −−−±= ππ ( )3 3b−

Area inside the diamond, spin tunneling is blocked.

This means the  ” real ” spin blockade.
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FIG.7 (a) Current     as a functionof        .  

(b) Resistans as a function of  for quantum spin transistor . 

gI

gI

I

R

I

R gI
gI

0

0

1=n 2=n1−=n2−=n

03
z

g

S
eL

π0
z

g

S
eL

π0
z

g

S
eL

π−03
z

g

S
eL

π−

( )
0

2
z

g

S
LLe +

π 0

1
zS

eL

π
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(b)

(a)

4. The Superconductor – superinsulator(or ferromagnetic)
network systems of compete with each other

30

Until the previous chapter, we had been dealt with models 
of single junctionsin order to simplify the problem. In this 
chapter, we had extended the theory from single junctions to 
periodic quantum dot network systems. Such a system, we 
considered four type competing systems. 

Two of those systems are superconducting dots systems (as 
shown in FIG.8(a) )in superinsulator (or ferromagnetic) host.

The remaining two systems are ferromagnetic(or superinsulator) 
dots systems (as shown in FIG.8(b) )in superconducting host.

FIG.8(a) Superconducting 
dots in superinsulator (or 
ferromagnetic) host.

FIG.8(b) Ferromagnetic 
(or superinsulator) dots in 
superconducting host
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( ) ( ) ( ) ( ) 2

,

, 2 , , 4 ,c c c c c
x x

H N e V x N x E N x
τ

θ τ τ τ= +   ∑ ∑

( )( ) ( ) 2

, ,

1 cos , , ,
2

ijk
J j j j k

x j x

E q x x
τ

σθ α τ ε α τ
µ

   + − ∇ − + ∇  ∑ ∑ ( )4 1−

The Hamiltonian(space 2d+imaginary time) of Josephson
network systems (lattice systems) by superinsulatordots in 
superconducting host is written as,

4.1  The  Josephson network systems

[ ]
0

2
C ,q

π≡
Φ

32

( )[ ] ( ), Wb , ,j j jx iA x xα τ τ≡ − ∆

where       is vector potential,        is vector potential in the phase,         
is magnetic permeability,       is inverse volume parameters 

jA jα
µ

( ) ( ) ( ), , , ,j x x j xθ τ θ τ θ τ∇ ≡ + −

3mσ − 
 



( ) ( ) ( ) ( ) 22
0

,

, , , 2 ,v v v J v
x j

H N I x N x E N x
τ

θ τ τ π τ = Φ +  ∑ ∑ɶ

( )( ) ( ) 2

2
, ,

2
1 cos , , ,

2
ijk

c j j j k
x j x

E q x x
τ

σθ α τ ε α τ
επ

   + − ∇ − + ∇  ∑ ∑ɶ ɶ ɶɶ ( )4 2−

The Hamiltonian(space 2d+imaginary time) of dual Josephson
network systems (lattice systems) by superconducting dots in 
superinsulator host is written as,

4.2  The dual  Josephson network systems

[ ]2
Wb ,

2
q

e

π≡ɶ

33

( )[ ] ( ), C , ,j j jx iA x xα τ τ≡ − ∆ɶɶ

where      is electric current,                 is dual vector potential,           
is dual vector potential in the phase,      is permittivity .       

[ ]jA C mɶ

jαɶ ε
I

( ) ( ) ( ) ( ) 20

,

, , , 4 ,FM XY z s XY c XY
x x

H N S V x N x E N x
τ

φ τ τ τ= +   ∑ ∑

( )( ) ( ) 2

, ,

1 cos , , ,
2

ijk
xy j s j j k

x j xs

E q m x m x
τ

σφ τ ε τ
µ

   + − ∇ − + ∇  ∑ ∑ ( )4 3−

The Hamiltonian of spin Josephson network systems by 
superconducting dots in ferromagnetic host is written as,

4.3  The spin Josephson network systems

0

2 1
= ,

2s
dw

q
π≡

Φ

34

( ) ( ), , ,j j jm x iM x xτ τ≡ − ∆

where               is  spin voltage,                  is spin vector potential,          
is vector potential in the phase,                is spin permeability,        

is inverse volume parameters .

1mjM −  

jm 1 1J msµ − − ⋅ 
3mσ − 

 

1
sV s−  

( ) ( ) ( ) ( ) 20 2

,

, , , 2 ,DW DW dw s DW xy DW
x x

H N I x N x E N x
τ

φ τ τ π τ= Φ +   ∑ ∑ɶ

( )( ) ( ) 2

2
, ,

1 cos , , ,
22

ijkZ
j s j j k

x j xs

E
q m x m x

τ

σφ τ ε τ
επ

   + − ∇ − + ∇  ∑ ∑ɶ ɶ ɶ ɶ ( )4 4−

The Hamiltonian of dual spin Josephson network systems by 
ferromagnetic dots in superconducting host is written as,

4.4  The dual spin Josephson network systems

0

2 4
= ,s

z

q
S

π π≡ɶ
ℏ

35

( ) ( ), , ,j j jm x iM x xτ τ≡ − ∆ɶɶ

where            is  spin current,                  is dual spin vector 
potential,                 is vector potential in the phase,    

is spin permittivity.

[ ]J s mjM ⋅ɶ

[ ]J sjm ⋅ɶ

2 1J s msε − ⋅ ⋅ 

[ ]JsI

Between of eq.(4-1) and eq.(4-1) or eq.(4-3) and eq.(4-3) respectively, the Villain
approximation to the XY model can be mutually dual transformation. Here, as an 

example the dual transformation from eq.(4-1) to eq.(4-2) introduce our algorithm. 

5  The  dual transformations

36

5.1 The anisotropic space- time XY model 

( ) ( ) ( )
3

, 1
, , ,

2AXY j j jm l l m j m
x x j

L x x
σθ α α τ δ α τ
µ ′ =

−
 = − ∇ ∇ + ∇ ∇∑ ∑  

( )5 1−( )( ) ( )( )
2

0
0

1

1 cos , 1 cos , ,J J j j
x x j

E q x E q xτθ α τ θ α τ
=

 − − ∇ − − − ∇ −    ∑ ∑∑

We rewrote the Hamiltonian of eq.(4-1) , we have derived Lagrangian of the

anisotropic space-time XY model. as follows:

( )
2

0
2

,
8

J

c

E
E τ

≡
∆
ℏ 2

2 ,J J

eV
fω π= =

ℏ

1,Jfτ −∆ ≡

where is Josephson frequency. Jf

( )5 2−



37

5.2 The order field (GL) theory  by mean 
field approximation  

( ) ( ) ( )
3

, 1
, , , ,

2GL j j jm l l m j m
x x j

L x x
σψ ψ α α τ δ α τ
µ

∗

′ =

−
 ≅ − ∇ ∇ + ∇ ∇∑ ∑  

( )5 3−

( ) ( ) ( ) ( )2 2 2 41 2
0

1 1 1
, , 1 , , ,

8 8 4 64j
x J

D x D x x x
d d E

κ κψ τ ψ τ ψ τ ψ τ
  + + + − +  ′   

∑

( )5 4−

( ) ( ) ( ) ( ), , exp , , ,j j jD x x iq x xψ τ ψ τ α τ ψ τ ≡ + − − e

where          and            are covariant difference defined byjD 0D
0, 1, 2j =

where         ,         and          are  defined byd ′ 1κ 2κ
0 ,J Jd d E E′ ≡ + 1 0

,J

J J

E d

E E d
κ ≡

+

0

2 0
,J

J J

E

E E d
κ ≡

+

where d=2 is space dimension.
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( )5 5−

5.3 The dual anisotropic space- time XY model 

Applying the Villain approximation to the partition function of 
eq .(5-1),then, by applying the dual transformation, we derived 
the dual anisotropic space-time XY model. 

( ) ( ) ( ) ( )
2

1

,

1
, , ,

2 2DAXY j i m j
x x

q
L x x x xθ α α τ α τ

π
−

′

−   ′ ′ ′ ′≅ − 
 

∑ V
ɶ

ɶ ɶ ɶ ɶ

( ) ( ) ( ) ( )
2

0 0 0
1

cos , , cos , , ,j j
x x j

x q x x q xγ θ τ α τ γ θ τ α τ
=

   − ∇ − − ∇ −   ∑ ∑∑ɶ ɶɶ ɶɶ ɶ

( )1 ,m ij l l ijx x mδ− ′ ′ ′ − ≡ − ∇ ∇ + V
( )

( )

2

2 2
m

2
,

0
cE

τ
γ

π
∆≅
Vℏ ( ) ( )0 2

m

1
,

2 0JE
γ

π V
≃

In eq. (5-5), if you ignore the massive gauge field, eq. (4-2)
and eq. (5-5) are approximately matched.
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5.4 The disorder field theory  by mean field 
approximation  

Disorder field theory by the disorder parameter , We was derived the dual 
representation for eq(5-5).

( ) ( ) ( ) ( )
2

1

,

1
, ,

2 2DAXY j i m j
x x

q
L x x x xψ ψ α α α

π
∗ −

′

−   ′ ′ ′≅ − 
 

∑ V
ɶ

ɶ ɶ ɶ ɶ ɶ

( ) ( ) ( ) ( )2 2 2 41 2
0

1 1 1
, , 1 , , ,

8 8 4 64j
x

D x D x x x
d d

κ κψ τ ψ τ ψ τ ψ τ
γ

 + + + − +  ′   
∑

ɺɺ ɶ
ɶ ɶɶ ɶ ɶ ɶ

( )5 6−

( )5 7−

( ) ( ) ( ) ( ), , exp , , ,j j jD x x iq x xψ τ ψ τ α τ ψ τ ≡ + − − eɶ ɶ ɶ ɶ ɶɶ

where          and            are covariant difference defined byjDɶ 0Dɶ

0, 1, 2j =

where         ,         and          are  defined byd ′ 1κɶ 2κɶ

0 ,d d γ γ′ ≡ + 1
0

,
d

d

γκ
γ γ

≡
+

ɶ
0

2
0

.
d

γκ
γ γ

≡
+

ɶ

6. Summary and Conclusion 

1. We considered competing dual junction systems of two 
types, One of them is S/I/S (or I/S/I) junction, Another one 
is S/F/S (or F/S/F) junction.

2. On competing dual junction systems of two types, we derived 
four types Josephson equationsin each system. 

3. In analogy of coulomb blockade, we devised quantum spin
transistor consists of parallel connection of  F/S/F  junction.

4. On the quantum spin transistor, we have derive the forbidden 
condition of single spin tunneling.

5. We derived Ginzburg-Landau field theory and dual Ginzburg-
Landau field theory in quantum competing system
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