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Abstract

In superconducting systems, Josephson junction déwiocen
as a quantum effect devices which operates by ubkag
quantum flux tunneling. Mesoscopic Josephson junction is a
guantum effect device which operates by using ithgles
Cooper-pair tunneling created byCaulomb blockade The
quantum flux and theCooper-pair is known that the duality
relation to each other. On the other handeimomagnet
system that competes with superconductigpgntaneous
magnetizationanddomain wall are known to have a dual
relationship.

As shown above, based on dual systems of two typespnsidered
competing system of two types. One type of thesepeting system
is composed of the sandwich structure ®upgercnductor-
superinsulator —supercnductor’ junction, and its dual junction is
consists of the sandwich structure Isyperinsulator -
supercnductor- superinsulator ” junction. Another one type of
these system is consists of the sandwich structufsupercnductor-
ferromagnet —supercnductor’ junction. and its dual junction is
consists of the sandwich structure bgrfomagnet -supercnductor-
ferromagnet’ junction (spin Josephson junctionk

In this paper, we consider mechanisms that lie lethia Junction
system to compete with each other, and theoret@aditions to
control these devices.

0. Introduction

Recent advances in nano-fabrication technologylesals to
confine electric charger spinin nano-structures such quantum
wires or quantum dots. In such systems, bystheng quantum
fluctuations due to confinement of particles, it cannot be ignore
the quantum effects. Thus the effects of quantuictdiations, in

the condensed matter system®final particles, topological
defectsare spontaneously generated. It can be treated@s a
particles. The duality ofspontaneous magnetizatiomnddomain
wall or the electric charge and magnetic flux be becproaounced.
Our objective is to build the theory of quantum maevices where
the freedom of a dual particle play an importangéraind it is to builg

the duality theory of competitive systems.

4




1.1. The Duality Conditions

The original particles field (order fieldy(x) and the dual
particles field (disorder field }p(x) are uhefd by the

following relations, respectively
w(x) =N, (x) exp[i6(x)] (1-1a)
@(x) =N, (x) exp[ié(x)] (1-1)

In the superconducting system,(x) N.(x) describe number
operator of vortex and number operator of Cooper pa
respectively, ancf¥) §(x)  are phase a0 pair and
phase of vortex respectively.
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Commutation relations between them:

[N (x),6(X)] =10, (1-2a)
[Nv(x),é(x')]zidxx,, (1- )

In order to study the various quantum condenseigsy8Ve
consider the following duality conditions,

v(i)=T(i), (1-2)
V(i)=1(i). (1-3)

WhereV and describe voltage and curreptigfnal
particles respectively,y and  describe voltage andeot of

dual particles respectively.
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In this case, From the conditions of eq.(1-3a) @ndb) we derived
the next two type relationship. Relationship betwiéenphase of
Cooper pairg(x) and vortex numhes(x) re as follows

N, () = -sing(¥ -

Relationship between the phase of vortex fiéitk) and Cooper
pair numberN (x) are as follows:

N, (X) =%Tsin5’(x) (1- )

1.2. SC/SI/SC Junction

1)

We propose the single quantum flux device which dpsrdoy using the singl
quantum flux tunneling, The single flux transistor sists of the sandwich

structure of the Supercnductor- superinsulator —supercnductor” junction.

SI —

|y
vt \Y,
voltage source

FIG.1 Schematic of superconductor(SC)/superinsulatgs@erconductor(SC

junction and its equivalent circuit.
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1.3. The relation of original particle (Cooper
pair) for SC/SI/SC junction

Hamiltoniari H, = 4E, NC2 +E, (1— 0039) (1-5)

Josephson coupling energye E% >0, Critical current |,
e

2
Unit Coulomb energy €

E, oo Total charge QE(Ze)NC,

Josephson's equatipn

voltage V = h dé = 4N, E., (1-6)
2e dt e -
current | =(2e) dg:“ =-l,sing. (1-e)
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1.4. SI/SC/SI Junction

We propose the single electron device which operbyessing the single electro
tunneling, The single electron transistor consists os#m&wich structure by the

“superinsulator —supercnductor- superinsulator ” junction.

SC

current source

| — |
L= |
|

\ superconductive wire

FIG.2 Schematic of superinsulator(Sl)/superconduc@y(Superinsulator(Sl)
junction and its equivalent circuit.
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1.5. The reration of dual particle(superinsulator

particle density = vortex density) for SI/SC/SI junction

2 -
Dual Hamiltonian ~ H, = 277°E;N,? +—Ec(1— 0099)

Vs (1-7)
Magneti - _ % N . 2E
agnetic energy g, = 2772EJ = Dual critical current | = —=%,
C e

Critical Inductance Lc =———,
2¢€l

C

Total magnetic flux @ = ® N, ,

Dual Josephson's equatiop

Dual Junction voltage ~ \j = _h do _ 2771 N, (1-8a)

Dual Junction current | =

" .siné (1- )

Cooper pair system

Superinsulator system

_h
Quanta 0o = 2e o, = o
Tunnel current | =1,sind I =1_sind
Phase-number . =
relations N, = -sing/ 21 N, =sind/2r
4N ~ 2]
Phase slip Vv _ 7 do_ AN E, V = _h dé _ 271 N,
2e dt e P, dt

Energy difference
for one quanta
tunneling

Coulomb blockade

8E, =2 (exQ)

Flux blockade

L2

AEV = (DO((DOi (Dj
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From the duality conditions of eq.(1-3a) and (1-3k derived the
guantum resistance by the next two ways method,

Quantum resistance

g, AN,
R:I_: Oc(jj[il = thNV' (1-9a)
| (209 @Ne  (2¢)7 BN,
dt
n dé
V _ 2e dt h A6
R:—~: 2e dt~ = 2 —=. (1_9b)
VT h a6 (ze)f 08

(I) Caseof AN, >AN, ORE> AS

In this extreme casdR — o :
it becomesuperinsulator state .

(I) Caseof AN, AN, ongOAd

In this caseR - Ry, :whérfg  dmantum resistance,
it becomeself dual state.

Re ="

(2e)?
kb < AG
In this extreme caseR - 0

it becomesuperconductorstate .

(IT) Case of AN, <« AN,

l—|‘
L=

| <— |
current source \—

superconductive wire

FIG.3 Schematic of ferromagnet(FMpsuperconductor(SC)ferromagnet(FM)
junction and its equivalent circuit.
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2. FM/SC/FM Junction (Spin Josephson Junction)
FERRO FERRO
We propose the single quantum spin device which ogerby using the : 'm,m‘,“
single quantum spin tunneling, The single spin transedosists of the | | Rt frereeenee el
sandwich structure of the ferromagnet / supercndUfgmomagnet junction. |
T A e?) T
FM SC FM
#(1) #(2) -

| FIG. 4 The superconducting layer play a role asraaio wall.
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2.1 The duality of FM/SC/FM junction

From analogy with Josephson junction, FM / SC / FMefiom can be thought
ferromagnetic junction with a superconducting thiim tarrier. In this case, th
superconducting thin film role assain capacitor. As a model for such
ferromagnetic junction systems, we consider Hamiltoofathe Heisenberg
XXZ spin models as follows:

[}

:;Jz[sz(i)]z—%Jw[sx(i)sx(j)wy(i)sy(j)} (2-1)

We introduce the Hamiltonian from an analogy ofregls Josephson
junctions as follows:

Hew = Eg Ny’ +E,, (1-cosp) , (2-2a)

S, =S’|N

4

h
oS =2 (2-20)
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The first term describe the Ising spin energy of XX¥ihsnodels, hereE‘X)y is spin

charging energy per single spin :

(2-3)

0

Y 2C,
whereC, =1/2J, is spin capacitance, The second teili@I) describe the
XY ferromagnetic spin junction energy, whee= ¢(1) — ¢(2) is phase
difference across the junction, and,, is Xi¥dmagnetic spin junction
energy per single-spin that is defined as follows:

I

Xy =J SZ =0

S,

wherel{ = SSEXy/h is critical spin current. Approxim@pbmmutation
relations betweem,, ang  as follows:

[Ny (). ¢(X)]=id, (2-4)
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, (2-3)

Spin Josephson's equation

: h dg _2N (2-5a)
Spin voltage V.= XY g0
I TR

Spin current [ _0S, _ s?dNXY =-1¢sing, (2-%)

ST gt

The dual Hamiltonian of eq.(2-1) and (2-2a) respetyiare given by:
o = L[S ()] -2 3, [80)8()+§ ()8 ()] (-9
J 1]

How = EgNp,* +E,, (1— cosq}) , (2-7)

19

Where éz ,Efy ancEXy are defined by

S =% ~XY‘ECD2W|NDW|, S =0 =4,
~ - E?
0 — = Xy -
E, =2m7°E,, Exy—2n2. (2-9)

Dual Spin Josephson's equation

Dual Spin voltage V., = h 6_¢) 152N, , (2-%)
], ot
Dual Spin current |~ q)O ONpy = sin(b. (2- )
at )
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Also, in this case, From the conditions of eq.()-&ad (1-3b)
we derived the next two type relationship.

Relationship between the phase of XY-ferromagwgt)
and number density of domain wall,(x)  are as follows;

-1 .
Now (X) ===sing(x) (2-109)
o (9= SLsing(
Relationship between the phase of domain wé) and
number density of XY-ferromagneN,,(x)  are as follows
(2-1m)

1 . -
Ny (X) = ZTSHW(X) :
Approximate commutation relations betweey, and (Np
as follows: [NDW (x)[o(x’)] ~-id,,. (2-1

Ferromagnetic system

Domain wall system

Quanta S) =n/2 5, =4m
Tunnel current I =-IZsing I~S = I~Sc sin&
::;?ce):r-gumber Now (X) = ;—;sindx) Ny () = %Tsinqﬁ(x)
Phase slip ] E%%—?=22—?E;}y Vi E%:_f 15277y,

Energy difference
for one quanta
tunneling

2
4
AEg, = 23255(52 + %}

21
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From the duality conditions of eq.(1-3a) and (1-3lE derived the
guantum spin resistanceby the next two ways method,

Quantum spin resistance

- _(Dg aNDW
" —
RS:I_S: ot = SHANDW, (2—123)
| g0 ANxy o ANy
fodt
h og
\Y; S? ot _8mAg
"TV.TTh 06 hobg (2-12)
s (4% Ag
ol ot

(I) Case ofANp,, > ANy,

In this extreme caseR, - ©
it becomesuper spin insulator state .

(II) Case of ANy, OAN,,

ong> Ap

In this caseR, - R?

where R?  isquantum spin resistance,

it becomesself dual state.

(IT) Case of ANy, < AN,

In this extreme caseR; - 0
it becomesuper spin conductor state .
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3. The quantum spin transistor

Now, using the following assumptiongp 01 § ~ ang-6 ,

Spin voltage = 2_”| = 2nfs, (3_1"")
e
Spin current | = € vV, (3—]b)

2
Where, fs is the single-electron-tunneling osaeilk frequency.

In FIG.6 as a application of FM / SC/FM junctiave have devised a spin
transistor, wherel.  is inductance of FM / SC / fiMction defined by
217

L N 2
J e (3-2

L, and L, areinductance of each junctionl andtiom2 respectively,

I 4 is current of gate current sourds, is inductarigate current source.
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Ewm
* 3,[s,F
Second band )
EXy = JXyS
Forbiddenband """~ % // I‘)
First band
7 7 J o/ - S,
-0 —SZ/Z 0 82/2 S,

FIG.5. The energy band to the ferromagnetic sysdem
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., L, junction2 |g Lg
e
—l l—— —((O—
@
L1 junctionl

FIG.6 Schematic of quantum spin transisfor
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In each junctionl and junction2, forbidden conditaf one quantum
spin tunneling is given by the following equation respety,

1 —
g s ) ()

1
:Ii[irsg—Zlﬁg(Nl—Nz)—eLglg]. (3-)

The above conditions, FIG.7 shows the operating chexiastics of FM
/ SC/FM junction .

Area inside the diamond, spin tunneling is blocked.

This means the real ” spin blockade.
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FIG.7 (a) Current  asfainctionof I,

(b) Resistan® as a functibg  of for quantum spin transisto
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4. The Superconductor — superinsulator(or ferromagnet)
network systems of compete with each other

Until the previous chapter, we had been dealt witkl@®

of single junctionsin order to simplify the problem. In this
chapter, we had extended the theory from singletijoins to
periodic quantum dot network systems Such a system, we
consideredour type competing systems.

Two of those systems are superconducting dotsragsias
shown in FIG.8(a) )in superinsulator (or ferromagg)dtost.

The remaining two systems are ferromagnetic(or snpelator)
dots systems (as shown in FIG.8(b) )in supercomugy ttost.
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FIG.8(a) Superconducting FIG.8(b) Ferromagnetic
dots in superinsulator (or (or superinsulator) dots in
ferromagnetic) host. superconducting host
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4.1 The Josephson network systems

The Hamiltonian(space 2d+imaginary time) of Josephson
network systems (lattice systems) by superinsubits in
superconducting host is written as,

H.(6,N,)= Ze;V (x,7)N,(x,7) +4EDZX:[NC (x ’T):Iz
+EJXZ[1— cos(D.H—qa- )(x I)]+i§[£ijkijak (x I)T (4_1)

q——[C] (x,7)[Wb] = =iA (x,7)Ax;

Dje(x,r) =9(x+ j.7)-6(xr1),

where A‘ is vector potentialg;  is vectotgmtial in he phase,
M 1s magnetic permeability;[wﬂ is inverse volume paeters
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4.2 The dual Josephson network systemd

\*2J

The Hamiltonian(space 2d+imaginary time) of dual pbsen

network systems (lattice systems) by superconduyictats in
superinsulator host is written as,

H,(6.N,) :CDO;I (x7) Nv(x,r)+2772EJZj:[NV(X,T)]2

+% Ec%:[l— COS(Djé—qﬁj )(X I)J+%§[5ijkﬁjﬁk (x T)Jz (4_ 2)
2

qEZ_Z[Wb]’ dj(x,r)[C]E—iAj(X,T)AXj,

where | is electric curren#\ [C/m|  digl vector potential,
a; is dual vector potential in the phase,  is peivity .
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4.3 The spin Josephson network systems

The Hamiltonian of spin Josephson network systems by
superconducting dots in ferromagnetic host is writs,

Hey (0N ) = Sf;Vs (%,7) Ny, (x,7) +4E°Zx:[Nxv (X,T)]Z
+Exy§[l— cos(ngo— asm, )(x I):|+2i#s§|:gijkijm( (x I)T (4-9

_2mr_1 ]
qs_ﬁ_i’ m (x,7)=-iM, (x,7)Ax,

where V,[s?] is spin voltage!;[m™] is spin vector potential
M, is vector potential in the phasefs*tm™|  sps permeability
o[m™] is inverse volume parameters .
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4.4 The dual spin Josephson network system

[72)

The Hamiltonian of dual spin Josephson network systey
ferromagnetic dots in superconducting host is writis,

o (6 Now ) = @6, 321 (7) Now (x.7) + 278, 3 Now ()

i Xlieodapmam)(x) |+ 2 S am ()] (49

s X,T

. M (x7)=-IM, (x,7)Ax,

where 1[J] is spin currem,[J¥ n] is dual spin vector
potential, ™[I is vector potential etphase,
£, [ I Om'] is spin permittivity.
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5 The dual transformations

Between of eq.(4-1) and eq.(4-1) or eq.(4-3) and4eB)) (respectively, the Villain
approximation to the XY model can be mutually dual tfarmsation. Here, as an

example the dual transformation from eq.(4-1) to eg)(#troduce our algorithm.

5.1 The anisotropic space- time XY mode

We rewrote the Hamiltonian of eq.(4-1) , we have dsdi\Lagrangian of the
anisotropic space-time XY model. as follows:

Loy (H,O'j ) :;—ZX% j%aj (x,r)[—djmilﬂl +0,0 Jam (x.7)

~E72[1- cod(0,6-qa0)(x 7)] - EJZZZ‘,[ * cof0,6-qa;)(xz)|  (5-1)

X j=1

E

o R 2V
e (ary AT=T w=2rf==m, (5-2)

where f; iS Josephson frequency.
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5.2 The order field (GL) theory by mean
field approximation

LGL(t//,z//D,a)D—ZZa( 7)[-6,,0,0, +0,0; Ja, (x.7)

XX =1

" { gl o+ - ftna g |

(5-3)
where D; and D, are covariant diffieeedefined by
Dj(,//(x,r)Et//(x+ej,r)exp[—iqaj (x,r)}—z//(x r). =012
whered’ 4, and, are defingd b
= 0 = EJd = E? _
d'=d+E’/E,, Kl_Ef+EJd' Kz_w, (5-4)

where d=2 is space dimension.
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5.3 The dual anisotropic space- time XY modell

Applying the Villain approximation to the partitidanction of
eq .(5-1),then, by applying the dual transformation, wewkd
the dual anisotropic space-time XY model.

Lo (002 2] S (xrv u—ma(nﬂ
_yolecos[moe X[r)- qao(x,r] yzz CO%D 6(x 7)-da, (x r)] (5-5)

x j=1
_ 2(ar)’ -1
Vo (x=x) =[-4,00; +m, ] VDnthVm(o)&' " eV (0)

In eq. (5-5), if you ignore the massive gauge fielyl, (@-2)
and eq. (5-5) are approximately matched.
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5.4 The disorder field theory by mean field
approximation

Disorder field theory by the disorder parameter , We adeas/ed the dual
representation for eq(5-5).

Lo 0070 5 ] S (v (x-x)a, ()

B e +Y oo+ Z o)

~ ~ 5-6
whereD; andD, are covariant diffeesdefined by ( )
D (x1) E.I,D(x+ej ,r)exp[—iqﬁj (x,r)}—w(x 7). j=0,12
where d' K, and, are defingd b
yd /? = yO
= = s = . 5_ 7
d—d+y0/y, Kl y0+yd 2 y0+yd ( )

39

6. Summary and Conclusion

1. We considered competing dual junction systents/of
types, One of them is S/I/S (or I/S/1) junction,diner one
is S/IF/S (or F/IS/F) junction.

2. On competing dual junction systems of two typesderived
four types Josephson equations each system.

3. In analogy of coulomb blockade, we devised quargpin
transistor consists of parallel connection of F/S/F junctlon

4. On the quantum spin transistor, we have dehigéotbidden
condition of single spin tunneling.

5. We derived Ginzburg-Land&eld theory and dual Ginzburg-
Landaufield theory in quantum competing system T
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