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This work presents a critical yet previously unnoticed property of the units of some constants, able
of supporting a new, self-similar, model of the universe. This model displays a variation of scale
with invariance of dimensionless parameters, a characteristic of self-similar phenomena displayed
by cosmic data. The model is deducted from two observational results (expansion of space and
invariance of constants) and has just one parameter, the Hubble parameter. Somewhat surprisingly,
classic physical laws hold both in standard and comoving units, except for a small new term in the
angular momentum law that is beyond present possibilities of direct measurement. In spite of having
just one parameter, the model is as successful as the ΛCDM model in the classic cosmic tests, and
a value of H0 = 64 km s−1Mpc−1 is obtained from the fitting with supernovae Ia data from Union
compilation. It is shown that in standard units the model corresponds to Big Bang cosmologies,
namely to the ΛCDM model, unveiling what dark energy stands for. This scaling (dilation) model is a
one-parameter model that seems able of fitting cosmic data, that does not conflict with fundamental
physical laws and that is not dependent on hypotheses, being straightforwardly deducted from the
two observational results above mentioned.
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I. INTRODUCTION

The Lambda-Cold Dark Matter (ΛCDM) model is con-
sidered the present best solution of the modern quest to
model the whole universe pioneered by Einstein. The
problem then was to understand why the universe had
not collapsed by the action of gravity, a fundamental
and ancient problem that had been without an answer
since Ptolemy’s model was ruled out. The Big Bang cos-
mologies solution is an expanding space, the cause of the
expansion being, until 1998, the explosive event that cre-
ated the universe. The Big Bang cosmologies succeed
both in explaining why matter has not collapsed and in
explaining the cosmological redshift. An essential char-
acteristic of this explosion-driven expansion was a de-
creasing expansion rate by the action of gravity, indeed a
falsifiable test of the theory. Then, observations of type
IA supernova [1] showed that the expansion seems to have
instead a slight acceleration, leading to the introduction
of the so-called dark energy.
Dark energy has roots in concepts as Einstein’s cos-

mological constant and vacuum energy; there are sev-
eral models for dark energy, the two leading ones being
the cosmological constant and the quintessence models,
the former being the one adopted in the ΛCDM model.
However, what one can state about dark energy is only
that it is a fundamental property of the universe, of un-
known nature, that rules the cosmic expansion. This re-
minds us of the words of Hubble, who considered in 1936
that “(. . . ) the surveys to about the practical limits of
existing instruments present as alternatives a curiously
small-scale universe or a hitherto unrecognized principle
of nature.”[2].
Dark energy stands for a fundamental property of the

Universe, not for some new substance that may exist in
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some place and not in another. With dark energy, cosmic
expansion is neither the consequence of a cosmic event,
like a Big Bang (although this may contribute), nor of
some exotic substance, but of a fundamental property;
and as a fundamental property, dark energy has to be
embedded in fundamental physical laws. While intro-
ducing a parameter to account for it may be appropriate
for the mere purpose of fitting selected observations, it
is not totally satisfactory from an epistemological point
of view. Only a model that obtains the expansion of
space from fundamental laws can now be considered sat-
isfactory. To build such a model, we have to start by
identifying the observational results that can be a conse-
quence of fundamental properties, that is, the ones that
are independent of position in space and in time.

Space expands in standard units and this expansion is
a scalar variation of scale, a dilation, an isotropic and uni-
form scaling; this allows the definition of a length unit
such that the scale factor becomes constant, known as
the comoving length unit. In this unit space is invariant.
Obviously, comoving length unit is time varying in rela-
tion to the standard unit. Now, if we do not privilege
one length unit over the other, we conclude that cosmic
data displays a space expansion in the standard length
unit and displays a matter evanescence in the comoving
length unit.

Hence, interpreting cosmic data as a space expansion
arises from the kind of system of units used, not from
the data itself. How can we know whether cosmic data is
tracing a phenomenon of matter evanescence or of space
expansion? Or a mixed phenomenon with both matter
and space expanding, or evanescing, at different rates?
We know that we cannot rely on the apparent invari-
ance of bodies’ based length unit, as stressed by Einstein
[3] when he called “reference-mollusk” to the reference-
body; hence, we cannot take as absolute any description
of the universe that presumes the invariance of the stan-
dard length unit, i.e., we cannot state that space expands,
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just that it displays a relative scaling (dilation) between
comoving and standard length units.

An interpretation of cosmic data giving equal relevance
to standard and comoving length unit is only acceptable
if there is the possibility that a consistent description
of the universe is supported in a comoving system of
units. Such possibility was first investigated by Dirac,
who presented a theory, in 1937, considering that the
cosmic expansion is the consequence of a fundamental
property and not of a cosmological phenomenon, with his
Large Numbers Hypothesis (LNH)[4][5]; he introduced
the gravitational system of units in addition to the stan-
dard one, in the first attempt to consider a system of
units that is not invariant in standard units and still
able of supporting physical laws. This was the first of
the theories known as scale-covariant or scale-invariant,
which, however, have a long and unsuccessful history.
Canuto and collaborators [6] followed Dirac’s hypothe-
sis, while other authors considered other approaches, like
Hoyle and Narlikar [7], that departed from the Machian
understanding of inertia, Maeder and Bouvier [8], that
used the cosmological constant, or Wesson [9], who used
the conspiracy hypothesis stating that physics’ constants
and coordinates vary in such a way that dimensionless
combinations of them keep invariant.

In spite of these and other efforts, no scale-covariant or
scale-invariant theory has succeeded so far. Does this im-
ply that standard units are the only ones able of support-
ing a consistent description of the universe and, therefore,
we can state as a fact that space expands?

These theories have considered varying constants in
standard units, namely a varying G, as there has been
the understanding that a comoving length unit, being rel-
ative to distance between bodies instead of bodies’ size,
should be linked to gravitation; however, observations,
namely the range data (e.g. [10, 11]), do not seem to
support a varying G. This is the reason behind their fail-
ure; in standard units, it is just the space that grows, as if
there was a continuous space creation, constants holding
invariant.

Summing up, we can obtain three relevant (because of
their independence of position in space and time) results
from cosmic data: (1) There is a uniform and isotropic
relative variation of scale between space and matter. (2)
This scaling cannot be explained neither by an event, like
a Big Bang, nor by some unknown substance, therefore
is driven by an unknown fundamental property, which
has to be embedded in fundamental physical laws. (3)
Constants are time invariant in standard units.

This set of results clearly suggests a self-similar phe-
nomenon, which is characterized by a variation of scale
with invariance of dimensionless parameters. Note that
is not just a scale variation of geometry but a scale vari-
ation of all properties that constants represent.

A scaling problem is a problem of units; this reminds
us that Einstein obtained the special and the general the-
ories of relativity from the careful analysis of frames and
coordinates; now, we are facing a problem concerning

units. In a certain way, an analysis of units is missing to
complete Einstein work, because units, frames and coor-
dinates compose the measurement framework.

This paper begins with an analysis of the characteris-
tics of units, physical laws and scaling; it is found, in-
scribed in physical laws, a particular law of variation of
quantities able to support the observed scaling, i.e., the
signature of the Hubble’s “hitherto unrecognized prin-
ciple of nature” currently known as dark energy; then,
in Section III, from the invariance of all constants and
the scalar space expansion, it is deducted a self-similar
model of the universe with just one parameter, the Hub-
ble’s parameter. Most interestingly, the analyzed laws
hold in both standard and comoving units but for a new
term in angular momentum law that is within experi-
mental error margins, meaning that there is no conflict
with accepted physics while ending the privileged role of
matter-based units. In Section IV it is shown that the
model is as successful as the standard model in the clas-
sic cosmic tests, what dark energy stands for, and why
the observable universe displays no tendency to collapse.
Summary and final comments are presented in Section
V.

II. ON UNITS, PHYSICAL LAWS AND

SCALING

When scaling appears, as pointed out by Barenblatt
[12], it signals an important property of the phenomenon
under consideration: its self-similarity. Therefore, the
observed cosmic scaling can be signaling a self-similar
phenomenon. The fact that no evolution is detected in
the value of constants suggests that we are using units
that evolve with them, holding their measure; this is not
unexpected as units are defined from the properties of the
universe, therefore varying with them. To enlighten the
subject is the objective of this section, concerned with
scaling and self-similarity in physical systems. The first
step is to review relevant aspects of “quantity”, “unit”,
“physical law” and “constant”; then, the properties of
“self-similarity” and “scaling” are analyzed, being dis-
covered a previously unnoticed property able to support
the scaling displayed by cosmic data.

A problem of scaling was already analyzed, half a cen-
tury ago, by Dicke [13]; in his analysis, concerned with
gravitation, the scale factor was dependent on space co-
ordinates. Here, the scale factor is time-dependent and
the approach is different.

The formal analysis starts only in section III; the
present section provides the foundations required to fol-
low the scaling model.
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A. On quantities and units

1. Vocabulary

To describe a physical system we use a convenient set
of “quantities”, as designated in the International Vo-
cabulary of Metrologys there are more quantities than
the equations relating them, we have to choose a sub-
set of quantities, not related by the available equations,
to use as “base quantities”; all others, called “derived
quantities”, are then determined from these through the
appropriate equations.
Quantities are arranged by kinds; for instance, diame-

ter or wavelength are of the kind of quantity called length;
heat, kinetic energy or potential energy are of the kind
of quantity called energy.
Quantities have to be expressed by numbers; this oper-

ation is called measurement and consists in the compar-
ison between the quantity to be measured and a scalar
quantity of the same kind defined and adopted by conven-
tion, called measurement unit. The measurement units
of the base quantities are called “base units”.
The most widely used system of units is the Interna-

tional System of Units, or SI; it considers seven kinds
of base quantities: length, mass, time, electric current,
thermodynamic temperature, amount of substance and
luminous intensity; the respective base units are: me-
ter, kilogram, second, ampere, Kelvin, mole and candela.
In physics, it is also used a system of units known as
the Natural units, defined from physical constants and
from properties of atoms or particles; and there are also
units defined from astronomical observations, the Astro-
nomical units (AU). Note that the use of constants for
defining base units, as done in Natural units, does not fit
in the above definitions of metrology because constants
are not quantities; the Natural units are theoretical con-
structions, based on the measures of quantities as any
other units, which are then used to calculate the value of
constants from which the units are defined.

2. Base units are not independent

One must not confuse quantity with its measure, i.e.,
the number we attribute to the quantity; this number
depends both on the measuring method and on the char-
acteristics of the units. A common confusion is the one
between the quantity “speed of the light” and its mea-
sure. To understand how the measure may depend on
the method and on the units is of the utmost impor-
tance. Einstein focused his attention on the measuring
method, having analyzed the determination of time and
length coordinates, where the method has critical impor-
tance; he also made relevant considerations on time and
length measuring devices (clocks and rods).
Base quantities, as concepts, are independent one an-

other, but the respective base units are not. To clarify
this point it is necessary to choose the base quantities for

this analysis. The classical approach is to choose length,
time, mass and charge. Theoretically, these four quanti-
ties are enough; however, physical laws are expressed as a
function of temperature as if it was another independent
quantity; to consider it a base quantity greatly simplifies
the description of physical systems.

Let us begin by the quantities length and time; length
is a geometrical, static, concept; time is a concept linked
to the flow of occurrences, the contrary of static; they
are, clearly, distinct concepts. Now, let us look at the
SI units of time and length. The unit of time, the sec-
ond, is defined as the duration of a number of periods
of the radiation produced in a transition between two
specific energy levels of an atom; the length unit, the
meter, is defined as the length of the path traveled by
light in the vacuum in a certain time interval. As it is
obvious, if by some reason the time unit changes, the
length unit will also change, as long as the speed of light
does not changes accordingly; or, in another scenario, if
the speed of light would change but not the time unit,
the length unit would change while keeping the measure
of the speed of light invariant. Time and length units are
linked through the speed of light. Therefore, while the
concepts of length and time are independent, their units
are not. This has consequences in the description of the
universe; for instance, relativistic space-time is a prop-
erty of the description of the universe using such units
and a reference frame calibrated by the method described
by Einstein.

Consider now mass and charge. The SI unit of mass
is the mass of the international prototype of kilogram,
which is proportional to the mass of elementary parti-
cles; if their mass varies, so will the mass unit; but if
that happens, one can expect that the reference atomic
energy levels of the time unit will vary as well, and the
time unit with them; consequently, the length unit will
also vary. In relation to charge, the SI system uses in-
stead a unit of electric current, but we can refer to the
unit of charge of atomic units, which uses the elementary
charge as unit; by the reasoning above, a variation of the
charge unit, implying the variation of electron and pro-
ton charge, would also imply variations in the units of
time and length.

The last base quantity is temperature; its SI unit, the
Kelvin, is defined as 1/273.16 of the thermodynamic tem-
perature of the triple point of the water. There is no
relation between measures of temperature and measures
of other quantities: these ones may change, but the tem-
perature of the triple point of water is always 273.16 K.

Therefore, length, time, mass and charge units are
deeply linked through the properties of atoms and speed
of light. Note also that, because the atomic structure de-
pends on fields, which propagate at the speed of light and
with characteristics defined by field constants, the atomic
properties will vary in case of a variation of the speed of
light or field constants, implying a change in units. That
is to say, not only units are linked one another but they
are also linked with field constants.
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From the above considerations one can conclude that
to consider by hypothesis the variation of some base
quantity or physical constant without considering their
interdependences, as has been done in scale-covariant
theories, will hardly lead to successful models.

3. All accepted systems are equivalent

All the differently defined base units of the different
accepted systems have shown so far to be invariant in
SI units, being not known any system of units able of
supporting physical laws that is not invariant in SI units.
This indicates that all these units may be just propor-
tional and that no different description of the universe
arises from using one system or another. Here, two sys-
tems of units are considered of the same kind if they
support the same description of the universe, being of
different kind only if they lead to different descriptions
of the universe. Therefore, all accepted systems of units
are, as far as we know, of the same kind.
On the other hand, we have seen that accepted units

are deeply related with atomic properties, even when de-
fined from non-atomic constants because the values of
these are calculated from the measures of quantities de-
pendent on atomic properties. For the objectives of this
analysis, the different systems appear as different prac-
tical or theoretically convenient realizations of just one
kind of system, based on atomic properties. Therefore,
in this paper, to stress the dependence on matter proper-
ties, all these units are generically designated by “atomic
units”. There are already specific systems of units with
this name but we are not referring to them; the designa-
tion “atomic units” stands here for all presently accepted
systems of units.
Cosmic data allows the definition of a special length

unit, known as the comoving length unit, which increases
with time in relation to the atomic unit. There is no
system of units based on the comoving length unit as it
is not known how physical laws could hold in a system of
units whose length unit is not invariant in atomic units.

4. Atomic measures are number counts

We will now see that the measures of bodies’ properties
using atomic units are independent of the base quantities
and dependent on the number of particles or atoms.
An atomic unit of mass is the mass of a certain num-

ber of baryons; the measure of the mass of a body us-
ing atomic units is therefore a number proportional to
the number of baryons of the body (this is not an ex-
act statement but it serves the needs of this work). If
the mass of baryons changes, so will the mass unit and
the mass of the body; the measure holds invariant be-
cause the number of baryons did not change. Therefore,
a measure of the mass of a body using atomic units is
basically a baryon count, holding invariant as long as

the number of baryons does not change, independently
of the eventual change of baryons’ mass. The same kind
of reasoning applies to charge measures. In what con-
cerns length measures, the length unit is such that the
measures of length of isolated bodies hold invariant; this
is not the way length unit is formally defined, but this
is a condition it has to obey to be acceptable, in order
to fit Einstein’s measuring rod or reference-body, trans-
lated in the time invariance of Bohr radius. So, we can
say that the atomic length unit is a fixed multiple of the
Bohr radius; if the latter varies, so will bodies’ length
and the unit of length, holding invariant the measures
of bodies’ length. Therefore, length measures are a way
of counting atoms, the measures of the length of bodies
holding invariant as long as the number of atoms does
so, for bodies and measuring devices subject to the same
conditions.
The above reasoning shows that the measures of mass,

charge and length of bodies are independent of the mass
and charge of elementary particles and of atoms’ radii,
tracing only the number of particles or atoms.
In what concerns atomic time unit, it is such that holds

invariant the measure of the average speed of light in
a closed path in vacuum, the length of the path being
measured with the atomic length unit. Such a path can
be the path between proton and electron in the hydrogen
atom, so we can say that the atomic time unit is linked
with the proton-electron interaction time in atoms. If
this interaction time changes, so will the speed of matter-
related phenomena, but their measures can hold invariant
because the time unit can vary accordingly.
Summing up, as long as the number of particles does

not change, the measures of properties of bodies using
atomic units can hold invariant in spite of eventual vari-
ations in the properties of elementary particles.

B. Dimensional Analysis

To describe physical systems one uses several quanti-
ties, like Energy, Momentum, Force, Pressure, Volume,
Velocity, Density, etc. The units of all those quantities
are a function of the base units. The most basic problem
in the analysis of units is to know how the unit of some
quantity changes with a change on base units. This is a
simple problem when measuring base quantities; for in-
stance, when measuring the mass of a body, if we change
from the mass unit “g” to the mass unit “kg” the value
of the measurement becomes a thousand times lower, the
inverse of the relation between the units.
In order to analyse the not so trivial case of derived

quantities, it is usual to represent the factors by which
base units change by M for Mass, Q for Charge, L for
Length, T for Time and θ for Temperature; the units of
the derived quantities are represented by the symbol of
the quantity between brackets (for instance, velocity by
[v ]). When base units change, the derived units change
by a factor that is given by the so-called dimension func-
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tion, obtained from the definition of the quantity or from
a physical law. For instance, the dimension function of
velocity is [v] = LT−1 because, by definition, a velocity
is the ratio between a distance and a time; this func-
tion shows that if, for instance, the length unit doubles
and the time unit keeps invariant, the velocity unit dou-
bles and, therefore, the measure of velocity drops to half.
The second member of the dimension function is called
the dimension of the first member entity; for instance, M
is the dimension of mass and LT−1 is the dimension of
velocity. Dimension functions are power-law monomials
(Barenblatt [14]).

C. On physical laws and constants

We can understand physical laws as invariant relations
between the measures of certain quantities, referred to
the same time moment, that are verified at a certain time
scale and a certain space scale. They are expressed by
equations that use coefficients called physical constants
or, simply, constants.
A physical constant cannot be measured, in the sense

that its value is not the result of a comparison with a
standard quantity of the same kind; its value is estab-
lished through the physical law from the measures of
the relevant quantities. Naturally, the value of a con-
stant depends on the units used for measuring quantities
but, differently from quantities, constants cannot have
any value. Constants are not merely an artifact to make
physical laws independent of the chosen units; the arti-
fact is the measuring unit of constants, which, differently
of the units of quantities, do not represent an amount
of the quantity they measure but are established from
physical laws, ensuring in this way their homogeneity.
For instance, from Newton’s gravitation law, the gravi-
tational constant unit is related with base units by the
dimension function [G] = M−1L3T−2.
In this paper, it is considered that a physical law holds

invariant when its form, the equation, holds invariant,
independently of the values of the constants holding in-
variant or not.
Physical laws and constants are relative to phenomena

of different kinds, being relevant for this work to classify
them accordingly with their dependence on distance and
time, as shown in the following.

1. Physical laws: classification and validity

One can distinguish between two different kinds of
laws: local and non-local laws. “Local laws”, like
Planck’s law, are not a function of distance or time. Non-
local laws can be a function of distance — “field laws”—
or of time — “conservation laws”.
Since the space expansion was established, we became

aware that current non-local laws might not hold be-
cause they presume matter/space invariance. Namely,

it is not known how to solve the two bodies problem on
an expanding space. This difficulty is being surpassed
because the two bodies problem does not exist at a scale
where matter distribution can be considered uniform and
isotropic and, at a smaller scale, it has been considered
that the eventual effects of space expansion are overruled
by gravitation.
Therefore, in what concerns physical laws validity, lo-

cal laws still apply in a varying matter/space scenario,
as they do not depend neither in space or time, while
non-local laws have to be analyzed case by case.

2. Constants: Local, Field, Time and other

Some physical constants are relative to local phenom-
ena, like Planck constant, and others are relative to ac-
tion at distance, or fields. We will call the former “local
constants” and the latter “field constants”. These ones
are G (gravitational constant), ε (electric constant) and
µ (magnetic constant); instead of µ, it is common to use
the constant c of electromagnetic laws, which is the av-
erage speed of light in a closed path in free space, being
c = 1

/√
εµ.

Fundamental conservation laws do not have fundamen-
tal time constants because they presume time invariance
of matter and space properties. If the observed space
expansion traces a fundamental characteristic of the uni-
verse, one must expect that a fundamental time constant
shall appear in some conservation law.

Also called “constants” are the relations built with
quantities and physical constants in such a way that the
dependence on base quantities is mutually canceled; it is
the case of the fine structure constant. These constants
are dimensionless, therefore independent of the system of
units and invariant in case of varying units.

D. Self-similarity and scaling

The geometrical concept of similarity is very easy to
understand: two geometrical objects are similar if they
have the same shape. If they have also the same size, they
are equal, or congruent; if they have not the same size,
they can be made congruent by an operation of scaling,
which is a linear transformation by a scale factor. This
is the simplest case, the uniform and isotropic scaling,
where the scale factor is just a number. As it is obvi-
ous, two similar polygons have sides in the same propor-
tion and the correspondent angles have the same value.
Angles are dimensionless and the invariance of dimen-
sionless parameters is the definition of similarity between
two physical systems (Barenblatt [15]). The dimension-
less parameters are obtained combining conveniently the
dimension parameters used to describe the physical sys-
tem. The invariance of dimensionless constants, as the
fine structure constant, may signal the self-similar nature
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of the phenomenon that is perceived as a space expan-
sion.

The above definition is adequate for formal analyses
but, at this point, a more intuitive definition is prefer-
able. Consider two similar polygons; we can describe
them by listing the length of sides and the values of an-
gles. These descriptions are different if the polygons are
not congruent and if we use the same length unit for mea-
suring sides, as usual. Now imagine that we use as length
unit the length of one specific side in each polygon; in this
case, the two descriptions are identical. To units defined
this way one can call “internal units”. Now, this can be
generalized to physical systems, stating that two physi-
cal systems are similar if their descriptions using internal
units can be identical.

One can note that measuring with internal units is
just a way of defining dimensionless relations between
quantities of the system; for instance, the measure of
the side of a polygon using as length unit other side is
just the ratio between two sides, which is a dimensionless
parameter of the polygon in an external system of units.

Physical systems can be changing, evolving; consider
an ideal balloon being inflated and consider that the mea-
sure of its size is made using a length unit drawn on the
surface of the balloon; the description of the balloon us-
ing such unit is invariant but obviously the balloon is not.
What we can state about the inflating balloon is that it
is suffering a uniform and isotropic scaling because its
description using a length unit external to the balloon’s
surface can be made invariant by multiplying such unit
by a time dependent scale factor.

From this example we can suspect that the observed
invariance of matter properties is a consequence of using
units that are internal to matter, not of some absolute
invariance. This is not at all surprising, as any idea of ab-
solute invariance implies an absolute reference and that
does not fit with scientific methodology.

We can take the example of the ideal balloon a step
further and consider now that we let the ideal balloon
to deflate; as an ideal balloon, its expansion is propor-
tional to the pressure, i.e., physical properties scale as
the geometry. In this case, the physical description of
the balloon can be made independent of the time mo-
ment using a system of units defined from the balloon
properties in whatever time moment during its deflation.
This self-similar transformation has a scale factor that
is an exponential function of time. When inflating, the
scale factor can be whatever function of time, it depends
on the external source of air; the deflating process, on the
contrary, depends only on the properties of the balloon
and the scale factor is an exponential function of time
because the scale transformation has constant rate, i.e.,
the transformation is independent of the moment.

We can easily understand time-independent self-
similar phenomena like the deflation of the balloon or
the discharge of a capacitor because we can consider two
different kinds of units, one internal to the particular
system under analysis and the other external to it. In

the case of the universe, to consider an unit external to
it would be speculative but we can split it in two sys-
tems, the system of bodies and the one of space; now,
for each one of these systems we have an internal and
an external length unit because atomic unit is internal
to bodies and comoving unit to space. Analysing each
of these systems, we see that space geometry is invariant
in the comoving unit and is scaling in the atomic unit,
while bodies geometry is invariant in atomic unit and is
scaling in the comoving unit. Therefore, there is a dou-
ble scaling, which is not surprising as there is no absolute
reference.
The relative scaling of the geometries of space and mat-

ter is clear; however, geometry is not enough to describe
the universe; we need units besides length and time,
and we need constants, some being relative to atomic
phenomena—the local constants—and others relative to
space properties—the field constants. The system of bod-
ies is associated with local constants, and the system of
space with field constants. We will have now two sys-
tems of units, not just length units, one system internal
to bodies and the other internal to space. The former we
know, it is the atomic system of units; the later, a space
system of units, is unknown. A system of units internal
to space is such that, in it, all space properties, i.e., both
geometry and field constants, are invariant. The comov-
ing length unit belongs to it; the other units have yet to
be defined. In spite of this limitation, we can reach the
conclusion next presented, which is critical.
As we have seen, we can expect that bodies’ geometry

and properties, namely local constants, hold invariant in
atomic units and vary in space units, while space geom-
etry and field constants hold invariant in space units but
vary in atomic units, which are external to space. There-
fore, we should expect to detect varying field constants in
atomic units, as we detect varying space geometry. How-
ever, observations do not seem to support varying field
constants. Why?

E. How the universe can be scaling

We have seen that if space expansion traces a scaling
phenomenon, we should expect to detect varying field
constants; we have now to find out why that is not ob-
served. The first thing to do is to look up to the dimen-
sion functions of field and some other constants:

[G] = M−1L3T−2

[ε] = M−1Q2L−3T 2

[c] = LT−1

[h] = ML2T−1

[σ] = M−3L−8T 5.

The equations of field constants (G, ε and c) display
a peculiar characteristic: the summation of exponents
of the dimension function of each field constant is zero!
This is unexpected and does not happen with the other
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constants. It means that if all the four base units con-
cerned change by the same factor,

M = Q = L = T ,

then the measuring units of field constants hold invari-
ant, [G] = [ε] = [c] = 1. To see the relevance of this, let
us consider that the atomic units of mass, charge, length
and time change all at the same rate in relation to the
space units. In that case, because of the property shown
above, the atomic units of the field constants hold in-
variant in relation to the space ones and, therefore, the
field constants are invariant in both systems (they are
invariant in space units by definition of these ones). The
geometry of space would be scaling in atomic units while
the value of field constants would hold invariant—which
is exactly what cosmic data seems to display.
The fact that the dimensions of field constants display

null summation of exponents can just be a coincidence,
but it is also the kind of indication we were looking for,
a property embedded in physical laws. This is the only
way we can consider a previously unknown fundamental
property without conflicting with established physics.
We have now the fundamental understanding that can

support a scaling (dilation) model of the universe and
we will now proceed to the formal development of that
model.

III. A MODEL FOR A SELF-SIMILAR

UNIVERSE

In this Section, a model of a self-similar universe is de-
ducted solely from two observational results, the invari-
ance of constants and space expansion in atomic units.

A. Entities, units and postulates

1. Four physical entities

A model is not a representation of the whole universe;
it considers a limited set of physical entities, which must
be clearly defined. This model has four physical entities,
designated by Matter, Space, Field and Radiation, with
the following description.
“Space” is the entity where matter, field and radia-

tion are inscribed, possessing in the standard cosmologi-
cal theory the ability to drag them. Field constants be-
long to this entity. This “space” is a physical entity,
commonly referred as “quantum vacuum”, not just the
geometric concept of space. We will use the designation
“physical space” in the situations prone to confusion.
“Matter”, here, means bodies, the minimum body be-

ing one atom; local constants belong to this entity.
“Field” is, unless stated, the gravitational field, the one

field that is relevant for the data that displays the space
expansion; field propagates at light speed in relation to
space.

“Radiation” designates electromagnetic waves / pho-
tons.
We consider that the properties of both field and ra-

diation are defined in relation to physical space; namely,
the wavelength of an electromagnetic wave holds invari-
ant using a length unit, known as the comoving length
unit, such that the average distance between unbounded
bodies is invariant.
Note that this is just a first model established on a

specific dataset, intended to support, in the future, the
development of a general theory.

2. Two systems of units

As measures are made by an observer considered at
rest and neglecting gravitational field, there is no partic-
ular considerations to make on calibration and measuring
methods. On the other hand, two systems of units will be
considered, one internal to matter and the other internal
to space. The former corresponds to the standard system
of units and is designate it by “atomic” to stress its con-
nection with atomic properties, as explained in Sec. II;
the later uses as its length unit the usual comoving one
and is designated by “space” system. Note that in this
model both length units are comoving, one with matter
and one with space.
While the atomic system is fully defined, the space

system is not, with the only known unit being the length
unit; so, the conditions that the remaining space units
must satisfy have to be defined.
Hence, one of the systems of units is defined from mat-

ter properties, designated here by atomic system and
identified by A (“A” from “atomic”) and the other is the
space system of units, identified by S (“S” from “space”);
the later is such that space properties (geometry and field
constants) remain invariant in it, which is required to
qualify the S system as internally defined in relation to
space. Thus, the conditions that define the S system are
the following:

1. The units of S are such that the S measures of field
constants hold invariant;

2. The length unit of S is such that the wavelength of a
propagating radiation in vacuum is time invariant.

The base quantities are Mass (M ), Charge (Q), Time
(T ), Length (L) and Temperature (θ), and the ra-
tio between A and S base units is denoted by
MAS, QAS , TAS, LAS , θAS . Note that the ratio between
the A and S units of any quantity or constant is there-
fore expressed by the respective dimension function; for
instance, for velocity,

[v]A
[v]S

=
LA T−1

A

LS T−1
S

= LAST
−1
AS = [v]AS ;

note also that the ratio of measures is the inverse of
the ratio of the measuring units, e.g., vA/vS = [v]

−1
AS ;
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hence, the S measure is the A measure multiplied by
the value obtained from the dimension function, e.g.,
vS = vA [v]AS .
At the moment tA = tS = 0, which we choose to be

the present moment, identified by the suffix 0, the units
of the two systems are equal.
For explanation purposes we will also consider atomic

and space observers, which are conceptual observers that
use the atomic or the space system of units.

3. Postulates

The model will be deducted not from hypotheses but
from relevant observational results, which are stated as
postulates:

1. In atomic units (A), all local and field constants are
time-independent.

2. LAS decreases with time.

The first postulate is not fully supported in experience,
as we cannot state it with the required error margin;
however, we have also no sound indication from observa-
tions that it might be otherwise. The second postulate
represents the observed phenomenon of space expansion
in atomic units, stated in this unusual way because it is
presented as a function of LAS , i.e., of the ratio between
atomic and space length units and not the inverse, as
usual.

B. Space units, scaling law and Hubble parameter

1. Space units

The conditions S units must satisfy were defined in
subsec. III A 2; we will now find the relation between S
and A units.
S units, by definition, are such that

dGS

dtS
=

dεS
dtS

=
dcS
dtS

= 0 . (1)

Since the field constants are time-invariant also in
atomic units, as stated by postulate 1, and since the two
systems of units are identical at t = 0, then the values
of these constants are the same in the two systems at
whatever time moment:

GA = GS = G
εA = εS = ε
cA = cS = c .

(2)

The relation between the S and A values of each con-
stant is the one between the respective A units and S

units, which is given by the dimension function, as ex-
plained in subsec. III A 2; therefore

GS

GA
= [G]AS = M−1

ASL
3
AST

−2
AS = 1

εS
εA

= [ε]AS = M−1
ASQ

2
ASL

−3
AST

2
AS = 1

cS
cA

= [c]AS = LAST
−1
AS = 1 .

(3)

This set of equations implies MAS = QAS = TAS =
LAS. By postulate 2, LAS is a time function, therefore
the solution can be presented as:

MAS(t) = QAS(t) = TAS(t) = LAS(t) . (4)

Note that temperature is independent of this result.
The next step is to define this time function, which

is the space scale factor law. As all the above four base
quantities follow this function, it is convenient to identify
it by a specific designation; in this work this scaling law
is identified by the symbol α:

α(t) = LAS(t) . (5)

The symbol α represents also the fine structure con-
stant but the danger of confusion seems negligible.

2. The scaling law

To make no hypothesis on the cause of the expansion
is to consider that expansion is due to a fundamental
property; to consider otherwise would imply a specific
hypothesis on a particular phenomenon driving the ex-
pansion. Therefore, for this model, the space expansion
is due to a fundamental property, tracing a self-similar
phenomenon. Likewise, as no hypothesis is made on how
fundamental properties may vary with position on space
and time, it is assumed that they do not depend on it.
This implies that the scaling has a constant time rate in
some physically relevant system of units, i.e., that the
scaling law is exponential in such system of units. There
are only two possibilities in the framework established
for this model: either space expansion is exponential in
A units (LSA(tA) = α−1(tA) is exponential) or matter
evanesces exponentially in S units (LAS(tS) = α(tS) is
exponential). The former case does not fit observations;
only the later case is possible.
The general expression for a scaling law exponential in

S units is

α(tS) = k1e
k2·ts ; (6)

at the moment tA = tS = 0 it is α(0) = LAS(0) = 1, so
k1 = 1; note now that

dtS
dtA

= TAS = α , (7)
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which shows that the variation of the measure of time is
inversely proportional to the time unit; and that

rA = rSL
−1
AS = rS · α−1, (8)

where r is the distance to some point, or its length co-
ordinate; as the rate of space expansion at t=0 is, by
definition, the value of Hubble constant, represented by
H0, then

H0 =

(

1

rA

drA
dtA

)

0

= −k2 , (9)

therefore

α(tS) = e−H0·tS . (10)

Hubble constant is the present space expansion rate for
an atomic observer and is the matter evanescence rate
(negative) for a space observer.

3. Time constant

Hubble constant is the present value of Hubble pa-
rameter H. The dimension function of this one is, from
Eq. (9),

[H ] = T−1, (11)

hence,

HA = HS · α . (12)

For the scale law to be exponential in S, the Hubble pa-
rameter must be constant in S; so

HS = H0 . (13)

In this case, Hubble parameter is constant in S but not
in A; or, in other words, Hubble constant H0 is truly a
constant in S, but it is not constant in A, with its value in
A being given by the Hubble parameter. This behavior is
unique in these systems of units, being the only constant
that is known to vary in A; and is the only known time
constant.

Hubble constant allows the definition of a matter half-
life τS in S units, being

τS =
ln 2

H0
. (14)

This concept is alternative to the Hubble constant; it is
not used in this paper in order to keep to the concepts
already in use but the fact that we can define it has
physical relevance.

Figure 1. Atomic and space units vary one another; therefore
A and S clocks measure time differently. The solid line is
the relation between S time and A time in units of H−1

0
.

Whatever the age of the matter in S, for an A observer matter
can be no older than H−1

0
, this limit being represented by the

dotted line.

C. Space and time

Space and time properties are the properties of length
and time coordinates. As there are two systems of units,
there are also two coordinates systems, which differ only
in the units they use.
From Eq. (7), Eq. (8), Eq. (10) and considering

Eq. (13), one obtains time and length coordinates trans-
formations:
{

tA = H−1
0 (eH0tS − 1)

rA = rS · (1 +H0tA)

{

tS = H−1
0 ln(1 +H0tA)

rS = rAe
−H0tS .

(15)
The time transformations imply a peculiar result: an

atomic observer, based on the analysis of atomic phe-
nomena, will conclude that the universe has an age of
H−1

0 , because

tS → −∞ ⇒ tA → −H0
−1 ;

for instance, calculations of the age of oldest stars based
in the atomic processes typical of stars will tend to H−1

0

and cannot be older than that, as shown in Fig. 1. This
establishes, in A, an absolute time origin, which is rather
odd because the concept of time has no origin or end, and
the A observer is led to wonder what was the universe
like before that moment. As we will see, this strange
situation has a simple explanation in S.
Other interesting aspect is that an atomic clock will be

increasingly fast in relation to a space clock, the atomic
age increasing exponentially in relation to the space age
of the universe.
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The length transformations show that, in A, space ex-
pands linearly; the scale factor a of space expansion mod-
els is given by the ratio between S and A length units,
which is the inverse of the scaling law:

a/a0 = α−1(tA) = 1 +H0tA . (16)

The linear expansion implies an age in A for the uni-
verse limited to H−1

0 , in accordance with what we have
concluded from the time transformation; therefore, it
suggests a creation point at tA = H−1

0 ; at that moment,
scale factor is null, implying that space is null in A. As
matter is invariant in atomic units, the initial point had
all the matter in null geometric space, implying an in-
finite matter density. This is much alike Big Bang de-
scription but for a critical aspect: in Big Bang theory,
expansion is counteracted by gravitation and should be
slowing down, requiring the introduction of dark energy
to explain why it is not, while here the expansion is in-
dependent of matter density.
In S, there is no origin for time, the universe can be

indefinitely old; how can the universe be age limited in
A? The reason is that the ratio between A and S time
units, given by the scaling law, tends to infinite when
tS → −∞. In the moment tA = −H−1

0 the A time unit
is infinite in S, that is why there is no time before that
moment, because it is a “moment” of infinite duration in
S.
In S, the size of matter, i.e., of bodies and atoms, de-

creases exponentially; there is no need to consider a cre-
ation moment for matter if we accept that matter density
can increase indefinitely, as in the A description and in
the Big Bang; if we do not accept that, then we must
consider the occurrence of a creation process of matter.
Instead of a moment where the whole universe was origi-
nated, we have now a time point or a time interval where
matter was originated in pre-existing space.

D. Quantities and constants in S

Postulate 1 defines the time dependence in A of quan-
tities and of local and field constants in this evolving
universe: they are all time-independent, which implies
that they all have always the value they have today, for
instance, hA = h0. We will now define their time depen-
dence in S.
Atomic units vary in S; in order to the A measures

hold invariant, quantities and constants have to vary
in S exactly as their A units do. The relation be-
tween A and S units is given by the respective dimen-
sion function, therefore we just have to obtain the de-
pendence of the dimension function on time, i.e., on α,
because the relation of α with time is known; for instance,
hS = [h]AS hA =

(

MASL
2
AST

−1
AS

)

hA = α2h0, so Planck
constant varies in S with the square of the scaling law.
This relation can be called the scale dimension of the
constant.

In Table I, the relation with the scaling law in S of
common quantities and constants is presented.

E. Physical laws

1. Local laws

Existing local laws are valid in A because they do not
depend in space or time; as the two systems are coin-
cident at t = 0, the same applies to S at that moment
and also at any moment because there is nothing par-
ticular about the moment t = 0. Therefore, local laws
are valid in A and S. However, A and S observers make
different quantitative descriptions of local phenomena be-
cause their units are different (for t <> 0). What makes
possible that two different descriptions fit the same local
laws is that the value of local constants varies between
the two systems exactly as their respective units. This
is not surprising: this is what makes possible to use one
or another atomic unit, for instance, meter or millimeter
or light year. In Appendix A we exemplify with Planck’s
law, which has critical importance for the analysis of cos-
mic data. In this case, A and S observers at some mo-
ment other than t = 0 measure the same temperature
for a Planck radiator but different wavelengths for the
peak radiation, in accordance with the different values of
Planck constant (see Table I); and, as time goes by, the
S observer will see that the temperature of the radiator
does not change but the wavelength of the peak radiation
decreases, while in A it holds invariant. This is due to the
different length units but both observations fit Planck’s
formula because Planck constant varies in S.

Table I. Dimension functions and dependence with α in S
(scale dimension) of some quantities and constants; for in-
stance hS = α2h0. Field constants are independent of scale
and they are not included in this table.

Constant or Quantity Dimension Scale dimension

Fine-Structure Constant 1 1
Planck Constant h ML2T−1 α2

Stefan Constant σ MT−3θ−4 α−2

Boltzmann Constant k ML2T−2θ−1 α
Temperature θ θ 1
Energy ML2T−2 α
Force MLT−2 1
Pressure ML−1T−2 α−2

Luminosity MT−3 α−2

Power ML2T−3 1
Velocity LT−1 1
Electron charge Q α
Proton mass M α
Bohr radius L α
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2. Field laws

The only field included in this model is the gravita-
tional field, as stated in section III A 1. In A, we do
not know what are the effects of the expanding space on
gravitational field, but in S we have a known problem,
the field of a varying mass; therefore, the analysis in best
done in S. The method will be to consider the law of
the field in the absence of the scaling and then apply the
scaling.
For the law of the field in the absence of scaling we

shall stick to the most elementary property of the field
that may hold valid in our case; we will consider that
gravitational field follows Gauss’s law in the absence of
scaling, i.e., the field flux through a closed surface is pro-
portional to the amount of field source enclosed; in the
Euclidean geometry of our S space and for a point source,
a convenient formulation is given by Newton’s law and
that is what we will use. Note that this does not mean
that General Relativity does not applies, simply that we
have to find that out, starting from the very beginning.
In what concerns the consequences of the scaling, we

have to account for the scaling of the field source, i.e., the
evanescence in S of the mass of the body that originates
the field, and for the possibility that the field itself may
be scaling. The scaling of the field can be represented
by αn (rS/c), where n is a unknown parameter and rS is
the path length. Putting all together, at a moment tS ,
the field at distance rS from the source was originated
by the mass of the source at a moment (tS − rS/c) and
has suffered a scaling of αn(rS/c), being given by

dvS
dtS

= G
m0 · α(tS − rS/c)

r2S
αn(rS/c) . (17)

Observations within the solar system, since the range
data to the Viking landers on Mars [9, 10], display no
time dependence of G, which would be the case if there
was a time dependent term in Eq. (17); such time depen-
dence disappears for n = 1, being then, from Eq. (7) and
Eq. (8):

dvS
dtS

= G
MS

r2S
⇔ dvA

dtA
= G

MA

r2A
⇔ dv

dt
= G

M

r2
. (18)

There is something remarkable in this result: the grav-
itation law has the simplest form both in A and S units,
the Gauss’s law holding in both systems of units.
This value n = 1 means that field evanesces as the

matter, which is not unexpected, on the contrary: in this
model the field of a particle is null beyond a distance
equal to its horizon and is expanding at the speed of light,
what cannot be presumed to be at no cost. In S units,
matter and field evanesce while field expands. To the
S observer, matter and field appear as if they were two
aspects of the same entity, which decreases in intensity
while expanding at the speed of light.
Because field, represented by Eq. (18), displays no

trace of attenuation or of scale change, an atomic ob-
server can conclude, by the analysis at each moment of

the gravitational field of, for instance, the Sun, that the
space expands at large but not locally, as it is assumed by
the standard space expansion model; however, it is pre-
cisely because the space expands locally, in atomic units,
that an atomic observer is led to such conclusion, the
evanescence of the field hiding the trace of the expansion
in the field law.

3. Conservation laws

The conservation laws of interest by now are the ones
relative to bodies’ motion, namely the conservation of lin-
ear momentum, of kinetic energy and of angular momen-
tum. They are function of velocity, mass and distance.
Velocity is scale independent, having the same value in
A and S, but that is not the case of mass and distance.
The invariance of velocity measure in A and S makes

Newton’s first law independent of the system of units:

dvS
dtS

= 0 ⇔ dvA
dtA

= 0 ⇔ dv

dt
= 0 . (19)

In what concerns mass, the measure of mass in S
changes with time, so the conservation of linear momen-
tum or of kinetic energy of an isolated body would imply
a change of velocity in S; however, as the measure of
velocity is scale-invariant, the A measure would change
also and the conservation law would not hold in A. Hence,
the usual formulation of a conservation law depending on
mass cannot hold in both systems. This difficulty is eas-
ily removed by noting that, as shown in sec. II A 4, the
measure of mass in atomic units is, in fact, proportional
to the number of baryons. Current conservation laws are
not physically dependent on mass but on the amount of
baryons, which is scale-invariant. Therefore, expressing
conservation laws as a function the number of particles
will keep the laws in both systems of units. The number
of particles is proportional to the A measure of mass, so,
conservation laws hold if expressed as a function of mA

or m0.
In what concerns distance, we have the same kind of

problem, the measure of distance is different in A and
S; however, the solution cannot be the same, we cannot
replace “distance” by some property with a value inde-
pendent of the system of units. Therefore, what we have
to do is to find out whether a distance, for instance, the
radius of a circular motion, shall be measured in A or in
S for the conservation law to hold. We know that the
motion of a free moving body is independent of its mass,
suggesting that the motion does not depend on the prop-
erties of matter. Also, both radiation and matter seem
to move along paths fully determined by space and field
characteristics. Furthermore, the propagation of radia-
tion is relative to space in the standard space expansion
model (and in this model), which is traced by the drag of
light by the expanding space. All this suggests that it is
the S measure of distance that is relevant for conservation
laws, being found no reason to consider otherwise.
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Therefore, it seems from the above considerations that
fundamental conservation laws must be a function of the
number of particles (baryons), of S distance and of ve-
locity. As the number of particles is proportional to the
atomic measure of mass, conservation laws hold if ex-
pressed as a function of velocity, A mass and S distance.
The laws of conservation of linear momentum, of ki-

netic energy and of angular momentum become then:

d(mAv)

dt
= 0

d(mAv
2/2)

dt
= 0 (20)

d(rS ×mAv)

dt
= 0 .

Hence, in atomic units, the usual expressions hold for
the linear momentum and kinetic energy but not for the
angular momentum, where the A measure of distance is
replaced by the S one. Expressing this law as a function
of A angular momentum,LA = rA×mAv, we obtain, for
an isolated rotating body with no applied action,

dLA

dtA
= HALA . (21)

For t = 0, it is

(

dLA

dtA

)

0

= H0LA . (22)

This result is the sole theoretical conflicting point
found until now between this model and classic physics;
remarkably, all other analyzed physical laws hold the
same.
Representing now the angular rotation velocity by ω,

it is, from Eq. (22), for an isolated body:

wA = w0 α
−1

wS = w0 α
−2 .

(23)

Therefore, a rotating body displays in A and S an ac-
celerating component due to scaling of

(ẇA)0 = H0 ωA

(ẇS)0 = 2H0 ωS .
(24)

This result is not unexpected because it was consid-
ered that conservation laws must depend on S distance,
which is here the radius of the rotating body; this one
decreases in S, implying that the linear surface velocity
will increase. In A, the rotation of the body will increase
also because the measure of linear velocity is the same.
The S explanation for this result is clear; however, how

can an A observer understand it? This is unexplainable
for an A observer not aware that space expands locally
in A; if he is aware of it, he will consider that, in the
same way that space expansion drags light and distant
cosmic bodies, it also tends to drag matter locally; but

the matter in a body is bounded and the dragging pres-
sure on the body’s particles imprint this acceleration on
a rotation body.
This result is not in conflict with observations because

there is currently no observation with the required pre-
cision to directly detect it; on the other hand, it allows
the future direct identification in A of the scale change,
or of the local expansion of space, much in the same way
as the Foucault pendulum in relation to Earth rotation.
On the other hand, although the very small value of this
acceleration may be difficult to measure directly, its long-
term consequences can be analyzed, either locally or in
cosmic data.

F. The evanescence of radiation

We have seen that both matter and gravitational field
are scaling, evanescing, in S; this suggests that all kinds
of field shall also evanesce with α in S, namely the elec-
tromagnetic field. This implies that radiation evanesces
with α2 in S because, from electromagnetic theory, radi-
ation energy is proportional to the square of the electro-
magnetic field. We have no reason to consider otherwise.
In A, because the energy unit varies with α, the energy
of a photon evanesces with α, as in standard space ex-
pansion model.
This evanescence of the photon has a known important

consequence: a photon locally produced and a photon
that arrives from a distant source are identical. S and
A observers describe differently the phenomenon: for S,
because wavelength does not change during propagation
and Planck constant varies with α2, a photon from the
past was emitted with the same wavelength and an en-
ergy α2 higher than today, then evanesced with α2 in
the path, arriving identical to a local photon; for A, be-
cause wavelength increases with α−1 during propagation
and Planck constant is invariant, the photon was emitted
with a wavelength α times shorter and, therefore, with
an energy α times higher; the evanescence and the wave-
length increase during the path make the past photon
identical to a local one. This A explanation is, of course,
the one of the standard model.

IV. COSMIC OBSERVATIONS

Although this self-similar model is not a cosmologi-
cal model, it has, in atomic units, the same properties
of space expansion models: physical laws and constants
are invariant, space expands and photons attenuate with
space scale. What formally distinguishes the models is
the line element. As expectable, the equations of the
classic cosmic tests are the same in the scaling model and
space expansion models when expressed as a function of
distance. Therefore, to compare how the different models
fit data relative to cosmic sources is to compare the equa-
tions of distance. The comparison here presented shows
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that they are closely related; this means that the scaling
model is as able of fitting cosmic observations as space
expansion models, what is somewhat unexpected given
that scaling distance is established disregarding gravita-
tion. Analysing this result, it is found a simple explana-
tion for why no tendency for a gravitational collapse is
observed.
From supernovae compilation Union, a first value

for H0 in the scaling framework is obtained: H0 =
64 km s−1Mpc−1.

A. Notation

The notation is simplified, making the subscript repre-
sent not only the system of units but also the time mo-
ment whenever possible; for instance, hS is the value of
Planck constant in S at the moment tS , i.e., hS ≡ hS (tS);
h0 is its value at t = 0, when units are the same in the
two systems; and hA ≡ hA (tA) = h0 because constants
are invariant in A; when a quantity is invariant in both
systems we will use no subscript; and we also use no
subscript in equations that hold the same form in both
systems of units.
The scaling model (in this section, as we will be deal-

ing with three models, this model will be identified by
the word “scaling” for convenience of explanation) will
be compared with space expansion models with dark en-
ergy, the ΛCDM models, and without it, the Friedmann-
Robertson-Walker models with Λ = 0, hereafter des-
ignated by FRW models. The ΛCDM models are the
classic ΛCDM models, as presented in the book “Cos-
mology”, by S. Weinberg, which have the parameters
H0, w,ΩΛ,ΩM ,ΩR and ΩK ; these parameters have typi-
cally the values w = −1,ΩΛ = 0.7,ΩM +ΩΛ = 1,ΩR = 0
and ΩK = 1 and we will refer to this case as “typical
ΛCDM”.

B. Parameters and distances

1. The line element

The general line element that represents the space-
time of a universe that appears spherically symmetric
and isotropic to a random set of freely falling observers
is the Robertson-Walker one [16]; in spherical coordinates
it can be written as

dσ2 = c · dt2 − a2 (t)

[

dr2

1− kr2
+ r2

(

dθ2 + sin2 θ dϕ2
)

]

,

where a(t) is the scale factor and k is a constant that
defines the kind of curvature of space, being k = 0 for
Euclidean space. In S, the scale factor is constant, as
space does not expands in S units, while in A it is a linear
function of A time, as showed by Eq. (16); therefore:

aS (tS) = a0
aA (tA) = a0 · α−1 (tA) = a0 · (1 +H0tA) .

(25)

The purpose of this analysis is to find out how the
scaling of space/matter affects cosmic observations in the
absence of any cosmological considerations; this implies
considering Euclidean space. Nevertheless, the analy-
sis could consider the general case of curved spacetime,
which would enable us to account later for eventual cos-
mological properties of space; however, observations seem
to support a flat spacetime (e.g. [17]) so, for now, there
is no reason to do so — we can consider k = 0. Thus,
in S, where scale factor is constant and curvature null,
the line element reduces to the Minkowski one while in
A the line element has the scale factor aA (tA) given in
Eq. (25).

2. The shift of Plank’s radiation

The spectral radiance I of a Planck radiator, i.e., the
radiation power per unit area per unit solid angle per
unit wavelength at temperature θ, can be expressed as:

I(λ, θ) = 2c2hλ−5

[

exp

(

c h

λ k θ

)

− 1

]−1

. (26)

Consider a source of radiation at some past moment t,
obeying Plank’s formula; in S, the radiation wavelength
during its path to us holds invariant (λS = λ0), the only
change in the radiation being its evanescence (in S) with
α2 (see sec. III F). Therefore, the received radiation at
t = 0 is

I0 = α−2IS (λS , θ) . (27)

In S, both Planck constant and Boltzmann constant
vary; a Planck radiator at invariant temperature pro-
duces a radiation that in S has a wavelength distribution
that varies with the moment of emission, as we have al-
ready seen (sec. III E 1); therefore, a received past radia-
tion is different from a local one for the same kind of radi-
ator. To find the characteristics of the received radiation,
we just have to express Eq. (27) in function of the value of
constants and quantities at t = 0 (hS = h0α

2, kS = k0α
and λS = λ0):

I0 = α−2IS(λS , θ)

= α−22c2hSλ
−5
S

[

exp

(

chS

λSkSθ

)

− 1

]−1

= 2c2h0λ
−5
0

[

exp

(

ch0α
2

λ0k0θα

)

− 1

]−1

= I0
(

λ0, θα
−1

)

. (28)

The received radiation fits the Planck formula for a
temperature that is α times lower than today’s temper-
ature of the same phenomenon. This is the same conclu-
sion obtained in the framework of Big Bang cosmologies;
the explanation of the process in A is the one of those
cosmologies.
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3. Redshift and coordinates

The received wavelength of past radiation is, for the
same phenomenon, larger than the one produced today.
In S, the wavelength does not change during propaga-
tion, but the same phenomenon produced a larger wave-
length in the past; in A, the same phenomenon produces
always the same wavelength, which enlarges during the
path. Analysing in S, the wavelength of a specific radia-
tion produced at t = tS is λS (and is received today with
this same wavelength); the wavelength of the radiation
produced today by the same phenomenon is λ0; hence,
the redshift z is given by z = (λS − λ0) /λ0. As phenom-
ena are invariant in A, it is λS = λAα = λ0α; therefore,
from this relation and redshift definition,

α = z + 1 . (29)

This is the same that in the ΛCDM model, considering
the relation expressed by Eq. (25) between scale factor
and α. We can now, from Eq. (15) and Eq. (29), express
time coordinates as a function of z :

tA = −H−1
0

z

z + 1

tS = −H−1
0 ln(z + 1) .

(30)

The first of the equations (30) shows that the universe
cannot be older than H−1

0 in A; an atomic observer will
consider that a star with z = 1 shined at half the age
of the universe, which is H−1

0 ; a star with z = 5 shined

at 5/6 H−1
0 ago, therefore its radiation is almost as old

as the universe for A. In S, as the second of the equa-
tions (30) shows, these stars are older, the first dating
from −0.7H−1

0 and the second from −1.8 H−1
0 ; however,

the important difference is that in S there is no limit
for how old matter can be; those stars, which belong to
the universe’s early times in A, can be very recent stars
compared with the age of matter in S. This is extremely
relevant for understanding the Large Scale Structure of
the universe.

Length coordinates of a source received with redshift z
are the S and A distances to that source at the moment
when the radiation was emitted. In S, the distance to a
source is the path traveled by a radiation from the source:

rS = c (t0 − tS) = cH−1
0 ln(z + 1) ; (31)

this corresponds to the usual comoving distance. In
A, the length coordinate, or proper distance, is, from
Eq. (15) or from the A line element,

rA = rS · α−1 = cH−1
0

ln (z + 1)

z + 1
. (32)

The relation between proper and comoving distances is
the same as in space expansion models.

Figure 2. (Color online); Comoving distances in units of c/H0

for FRW (dashed lines), ΛCDM typical case (solid black line)
and scaling (solid thicker red line), in the range z < 15.

4. Distances comparison

Figure 2 displays comoving distances in units of c/H0

for the FRW models with q0 =0, 0.1 and 0.2, for the
ΛCDM typical case (w = −1,ΩΛ = 0.7, ΩM + ΩΛ =
1, ΩR = 0, ΩK = 1), and for the scaling model in the
range 0 < z < 15. Their correspondence can be drasti-
cally improved in the range of magnitude measurements,
roughly 0 < z < 2, by choosing the appropriate values for
q0 and H0, as shown in Fig. 3; this figure displays the S
distance (scaling model) for the value of H0 that we will
determine later, H0 = 64 km s−1Mpc−1, and the comov-
ing distances for FRW and typical ΛCDM that maximize
the correlation and minimize the average absolute differ-
ence in the range 0 < z < 2. The Pearson correlation of
scaling with FRW is over 0.99999 and with ΛCDM is over
0.9999. The deceleration parameter of FRW is q0 = 0.19

and the Hubble constants are H0 = 62 km s−1Mpc
−1

for
FRW and H0 = 71 km s−1Mpc−1 for typical ΛCDM. One
difference between the models is apparent: the value of
H0 is higher for ΛCDM, while its values for scaling and
FRW are similar. The small differences between the three
distances will be analyzed in detail later.

5. Cosmological parameters

Cosmological models use four parameters to character-
ize space expansion: scale factor, space curvature, decel-
eration parameter and Hubble parameter; in the scaling
model, from Eq. (25), Eq. (29), Eq. (12), Eq. (31) and
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Figure 3. Comoving distances in Mpc for scaling, FRW and
ΛCDM. Scaling: h0 = 0.64; FRW: q0 = 0.19 and h0 = 0.62;
ΛCDM (typical case): h0 = 0.71. The three lines are inde-
scernible, the correlations being over 0.9999.

respective definitions, their relations with z and α are:

aA/a0 = (z + 1)−1 = α−1

k = 0
q (z) = 0
HA (z) = H0 (z + 1) = αH0

H = −α̇/α .

(33)

Note that the deceleration parameter is null; in FRW
models, k = 0 implies q(z) = 1/2. Observations indi-
cate a flat universe with q0 << 0.5, ruling out this model
and leading to the introduction of dark energy. The re-
lation between Hubble parameter and z is the same of
space expansion models.

6. Luminosity distance

The power L radiated by a star with a radius R is
independent of the scaling:

LS = 4πR2
SσSθ

4 = 4πR2
Aα

2σAα−2θ4

= 4πR2
AσA θ4 = LA = L .

(34)

We can easily understand this result: for an S observer,
as time goes by, the star radius decreases but the number
of atoms is the same; each atom emits photons of decreas-
ing energy but at an increasing rate, therefore the power
radiated is constant.
The flux F0 received from a galaxy with a redshift z

and luminosity L is, considering the evanescence of light
with α² :

F0 =
L

α24πr2S
=

L
4π(z + 1)

2(
cH−1

0 ln (z + 1)
)2 . (35)

The calculation is made in S. From the above, photomet-
ric or luminosity distance dL is

dL = cH−1
0 (z + 1) ln (z + 1) (36)

and

dL = rS (z + 1) , (37)

as in space expansion models.
Using a Taylor expansion to analyse the luminosity

distance at low z, we obtain the Hubble law:

dL =
c

H0

[

z +
z2

2
+ (−1)n

zn

n (n− 1)

]

≈ c

H0
z
(

1 +
z

2

)

≈ c

H0
z (z << 1). (38)

C. Classic cosmic tests

As mentioned, the difference between models lays only
in the distance-redshift relation, the equations of the clas-
sic cosmic tests being the same when expressed as a func-
tion of the distance. They are here obtained reasoning in
S.

1. Magnitude

The distance modulus, defined as

µ = m−M = 5 log dL + 25 , (39)

is

µ = 5 log [(z + 1) ln (z + 1)]− 5 logh0 + 42.38 (40)

for H0 = 100 h0 km s−1Mpc−1. As we will use this clas-
sic notation, the reader must not confound this h0 with
Planck constant.
Naturally, this distance modulus corresponds to the

ones of space expansion models in the same way of lumi-
nosity distances. As it corresponds to the Hubble law at
low redshift, it fits low z sources in the same way as any
space expansion model.

2. Angular size

In S, in a past moment tS , the diameter âS(tS) of
bounded groups of atoms, namely compact sources, was
α times greater then today, i.e., âS = â0α. There-
fore, from Eq. (31), the angular diameter D0 = âS/rS
of sources of the same kind (same size in A) varies with
z as:

D0 = â0H0c
−1 z + 1

ln (z + 1)
. (41)
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The above expression can be written as

D0 = â0
(z + 1)2

dL
, (42)

which is the expression of space expansion models, the

angular distance being dang (z) = dL

/

(1 + z)2.

The scaling angular size has a minimum for z = e −1.
The angular size test is relevant because it can be done at
large redshifts. A recent one in the framework of FRW,
by Gurvits, Kellermann and Frey [18], obtained a decel-
eration parameter of q0 = 0.21 ± 0.30 disregarding evo-
lutionary or selection effects, in line with the correspon-
dence above found between FRW and scaling distances.

3. Surface brightness

Surface brightness B obeys the negative fourth power
law of (z+1):

B0 =
F0

π(D0/2)
2 =

L
π2â0

2(z + 1)
4 . (43)

This is characteristic of space expansion models.

4. Source counts

The total number of sources, N, until a redshift z is:

N = n · 4
3
πr3S = n · 4

3
π

(

c

H0

)3

ln3 (z + 1) , (44)

where n is the average number of sources per unit volume
in S (comoving unit volume), presumed independent of
z. The basic relation dN /dz is

dN = 4π

(

c

H0

)3
ln2 (z + 1)

z + 1
ndz . (45)

Expressing it as a function of dL , one obtains

dN =
4πcd2L

HA (z) · (z + 1)
2ndz , (46)

which is the expression of the standard model.

5. Time dilation

The invariance of phenomena in A implies that their
duration in S varies with α = z + 1. The same con-
clusion is, naturally, also obtained reasoning in A, the
dilation being due to the space expansion in A. In space
expansion models, the same observational time delay is
predicted. There is however a difference: in the scaling
model the time dilation applies at all distances, including
to Cepheids’ periods.

D. Supernovae data fitting and a first estimate of

Hubble constant

A first estimate of Hubble constant in the scaling
framework is here obtained from the type Ia supernova
compilation Union (Kowalsky et al [19]). The value de-
termined for h0 may depend on the redshift distribution
of SNe, which is heavily skewed to the low redshift end;
one way to minimize the influence of data distribution is
to discretize it into classes, or bins. The minimum bin
size that generates no empty bin is ∆z = 0.1, this being
the value here used. The z value of each bin is the aver-
age redshift of the SNe contained in the bin. Two SNe
were excluded from the binned test because they exceed
a 4σ criterion for outlier rejection; a 3σ criterion could
be advisable for this binned data but the objective was
to minimize data manipulation.

Fitting the raw data, without outliers rejection, or the
binned data, rejecting outliers over 4σ, with the zero av-
erage error criterion, a value of h0 = 0.64 is obtained in
both cases. An error margin is not offered because it will
be misleading; to begin with, data needs to be verified in
the scaling framework. This is just a first estimate of h0,
necessary to the development of this work.

The fitting with the raw data is presented in the two
upper panels of Fig. 4; in the lower panel, are shown
the binned residuals of the scaling model and also of the
ΛCDMmodel for the values ΩΛ = 0.713 and w = −0.969,
which are the Kowalsky et al best fit, considering h0 =
0.703, the value that annuls the average of binned residu-
als. The ΛCDM’s fit is better at very low redshift but the
scaling fit is still within 1σ of data distribution in each
bin. The ΛCDM value for H0 is about 10% higher than
the scaling one, as already verified in subsec. IVB 4.

The values here obtained for h0 are in line with other
determinations, considering that its value in scaling and
FRW is similar; for instance, previously to the introduc-
tion of dark energy, in 1996, Riess, Press and Kirsnher
[20] obtained, using supernovae data, h0 = 0.64 ± 0.03;
also Riess et al [1], in 1998, obtained h0 = 0.652± 0.013
and h0 = 0.638±0.013 with two different methods; later,
in 1999, Riess et al [21] found h0 = 0.742±0.036. A 2011
value, from WMAP data [22], is h0 = 0.704± 0.025.

E. Big Bang cosmologies trace a scaling universe

The introduction of dark energy has become necessary
to adjust predictions to observations; dark energy is not
an inherent characteristic of Big Bang cosmologies but a
later addition due to their mismatch with observations.
We will now see, by comparing the equations of distance,
that such mismatch traces the properties of a scaling uni-
verse, which, in the framework of Big Bang cosmologies,
configure the existence of an increasing repulsive force.
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Figure 4. (Color online); Fitting with Union compilation
of type Ia supernovae; the upper panel presents the whole
dataset and scaling magnitude for h0 = 0.64; the mid panel,
the correspondent residuals and its 4σ limits; the lower
panel presents the binned residuals of the dataset with the
two 4σ outliers excluded, for the scaling with h0 = 0.64
(circles and thick red line) and also for the ΛCDM model
(boxes and thin black line) for Kowalsky et al fitting values
(ΩΛ = 0.713, w = −0.969,ΩM = 1− ΩΛ) with h0 = 0.703;
the error bars are the 1σ of the scaling residuals distribution
within each bin, the one on the right having no bar because
there is only one SNe in this bin.

1. Comparing distances with FRW models—dark energy

signature

In subsec. IVB4 we have seen that there is a close
correspondence between scaling and FRW distances for
q0 < 0.2. Hence, at very low redshift, magnitude obser-
vations follow the Hubble law [Eq. (38)], and for higher z
approach a FRW model with q0 ≈ 0.2. The same result
holds for the angular distance test, which is proportional
to distance, while for number counts (dN/dz) the corre-
spondence is for q0 ≈ 0.1 .

One can detail the analysis by calculating the value of
q0 that equals the FRW and scaling distances at each z,
i.e., the q0 curve that intersect the scaling one at each z,
presented in Fig. 5. This function, represented by q0(z),
is zero at z = 0, displays a fast increase until z ≈ 2, has a
maximum q0(9.8) = 0.18, and then decreases asymptoti-
cally to zero as z further increases. Therefore, in a scal-

Figure 5. In a scaling universe, the value obtained for q0 in
FRW magnitude analyses will depend on the redshift range
of the sources considered, increasing with z (within the ob-
servational range) and will always be lower than 0.2. The
function q0(z) gives the q0 value that equals FRW comoving
and S distances at each z.

ing universe, analyses of cosmic data in the framework
of FRW models can conclude that: (1) The value of the
deceleration parameter is low, near zero, not q0 ≈ 0.5,
which is the expected value in flat FRW. (2) The decel-
eration parameter is not constant, but decreasing. Both
conclusions together support the idea of an expansion
force of unknown origin and with increasing magnitude.

2. Comparing distances with standard model

In a flat universe, neglecting the radiation density pa-
rameter as usual (ΩR = 0), the expression for ΛCDM co-
moving distance rc is

rc (z) = cH−1
0

ˆ 1

1
1+z

dx

x2
√

ΩΛx(1+w)3 +ΩMx−3
, (47)

where w is the ratio between pressure and density, with
a value that is being considered to be around −1. If we
consider, as usual, that ΩΛ+ΩM = 1, we have only three
parameters: w, ΩΛ and H0.
A first thing one can note is that Eq. (47) reduces to

the S distance, Eq. (31), for w = −5/3 and ΩΛ = 1:

c

H0

ˆ 1

1
1+z

dx

x2
√
x(1−5/3)3

=
c

H0

ˆ 1

1
1+z

dx

x
=

c

H0
ln(1 + z) .

(48)
However, w = −5/3 is not considered to be a plausible

value in the theoretical framework of the model; we have
to compare the distances considering the values that are
being used, w ≈ −1, which are the ones that are not
incompatible with the theoretical framework of ΛCDM
model.
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Figure 6. Difference, in Mpc, to the empty case, for
scaling (thick line) and typical ΛCDM (dashed line) lu-
minosity distances; h0 = 0.64 for scaling, h0 = 0.71
for typical ΛCDM (ΩΛ = 0.7, w = −1,ΩM = 1−ΩΛ) and
h0 = 0.71,ΩK = 1,ΩΛ = ΩM = ΩR = 0 for the empty
case. The behavior, which is interpreted in ΛCDM frame-
work as tracing the transition from a matter-dominated to a
vacuum energy-dominated expansion, is the same.

We have seen that typical ΛCDM distance corresponds
closely to the scaling one for the respective values of H0;
expectably, properties that have been presented as evi-
dence of some characteristics of the ΛCDMmodel are also
verified by the scaling model, e.g., the transition from an
expansion that is matter-dominated to one dominated by
vacuum energy, displayed by the difference to the empty
case (see [23]), where ΩK = 1 and ΩΛ = ΩM = ΩR = 0.
Figure 6 shows that the differences to the empty case
display the same behavior for the scaling model and for
the typical ΛCDM, i.e., in both cases the luminosity dis-
tances change from greater to smaller than the empty
model for z≈1.25, considering the values of H0 of the
scaling and of the ΛCDM models.

3. The accelerated expansion is an artifact of the standard

model

The statement that space expansion is accelerating is
not the result of some direct measurement more or less
independent of the cosmological model but, on the con-
trary, it is a consequence of the theoretical framework of
the standard model. The deceleration parameter at the
present moment, q0, in the ΛCDM model, for flat space
and ΩR = 0, is given by

q0 =
1

2
(ΩM − 2ΩΛ) , (49)

therefore, for ΩM + ΩΛ = 1, the value of q0 is negative
for ΩΛ > 1/3; a value of ΩΛ lower than 1/3 leads to a

comoving distance largely in disagreement with observa-
tions, hence, in the framework of ΛCDM model it has to
be ΩΛ > 1/3 and, so, q0 < 0.

F. Why the observed expansion is independent of

matter density

The tendency for matter to collapse by the ac-
tion of gravity is a fundamental cosmological problem.
Ptolemy’s model provided an answer to this problem and
this was a main reason for the difficulty to supplant it.
Newton’s theory has no answer to this problem. The
introduction of a creation moment by the Big Bang cos-
mologies easily explained why matter is not yet collapsed
but not why matter shows no tendency to collapse, this
being an intriguing result of current cosmic data. The
standard model explains this by introducing a force of
unknown nature able to compensate the presumed ac-
tion of gravity, the so-called dark energy.
This self-similar model of the universe does not give,

by itself, an answer to the question of knowing why the
observed universe is not collapsing; yet, we will see in
the following that the different understanding that arises
from this model almost necessarily implies that we cannot
observe any gravitational collapsing.

1. Space is older than Matter

In A, the universe expands linearly and this suggests
to an atomic observer that the universe originated from
one point. Therefore, a likely description of the initial
moments for this A observer is the one of Big Bang
cosmologies, that matter and space started in a point,
space expanded, the initial plasma cooled with the ex-
pansion, allowing the recombination of protons and elec-
trons and decoupling photons, which compose the cosmic
microwave background radiation (CMB).
In S, the space is not expanding, therefore there is no

creation point for space; and the particles were much
larger than today, decreasing in size with time. The S
equivalent to the A initial point for the origin of the
universe would be to consider a creation moment with
initial particles as large as the universe. Such a scenario
does not seem acceptable. Instead, we have two possible
scenarios: in pre-existing space, particles appeared con-
densed in one point, or particles appeared scattered in a
region of space (or in the whole space). The former case
implies a singularity. The later case can, however, be an-
alyzed by current physics, so is much more interesting.
We can consider that initial particles were so large that
the initial state was plasma, which cooled as the particles
evanesced, decoupling photons as in standard model, but
we can also consider other scenarios, depending on the
initial size of particles.
In short, the idea that the whole universe started from

a Big Bang is compatible with the understanding of an
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A observer not aware of the scaling but not with the
understanding of an S observer; for the later, matter and
space did not appear at the same time, and a process of
matter creation in an already existing space is required.
As this scenario holds also for an atomic observer, and
in order to have a scenario that holds for both observers,
we must drop the idea that matter and space appeared
in the same moment.

2. The signature of inflation

In the scaling model it is therefore clear that matter
appeared in an already existing space and the most likely
scenario is that it appeared scattered in space, either over
the entire space or just in a limited region. While we do
not know how this appearance of matter could happen,
at least the scattered state is not incompatible with our
knowledge.
Now, let us consider the simplest case one can imag-

ine: matter appeared distributed with constant density,
simultaneously, all over space. At the moment matter ap-
peared, the average gravitational field is null everywhere,
because field starts propagating at that moment. As time
goes by, the field in each point of space is the field origi-
nated in a sphere centered in the point and with a radius
equal to the age of the matter in light years, therefore,
a null field (we are reasoning in S). That is to say, the
field of an unlimited, uniform and isotropic distribution
of matter is null everywhere and as long as matter distri-
bution holds constant density (other causes but gravita-
tion can modify matter distribution, originating locally
non-null field, but that is not relevant here).
One can also consider that matter appeared not all over

space but just in a limited region; the above reasoning
holds for all points away from the limits of matter dis-
tribution more than the age of the matter in light years.
This distance, the age of matter in light years, is the
matter horizon.
Hence, the fact that we do not observe any collaps-

ing phenomenon can be simply explained in the scaling
framework by considering that the initial distribution of
matter (with constant density and simultaneous appear-
ance) is larger than our present horizon. And, of course,
this is what we must presume, that matter distribution
must be larger than older because while we know that
matter has a limited age (assuming that particles cannot
be indefinitely large), we do not even know whether space
is limited. In Fig. 7 this situation is exemplified. Note
that this is simply an example, an elementary situation
used to obtain a condition that implies that we cannot
observe matter collapsing, the condition being that even-
tual limits of matter distribution are farther than our
horizon.
Note now that, somehow, this corresponds to the de-

scription by the standard model of the state created by
cosmological inflation. The Big Bang plus inflation is just
a way to generate a uniform, isotropic and simultane-

Figure 7. Consider, in S, an initial uniform distribution of
matter contained in a sphere (outer dashed circle); the little
cross represents us. Our present horizon (inner dashed cir-
cle) is a sphere with a radius equal to the light path since
the creation of matter, i.e., the age of matter in S (in light
years). The field is null within the sphere represent by the
dotted circle, which has the radius of the original sphere mi-
nus the horizon radius. The present density of matter (the
intensity of shading) is constant within the dotted circle and
has increasing density between it and present matter limits
(solid circle). Matter collapsing is observable from outside the
dotted circle but not from inside it. Note that the spherical
distribution of matter has just the purpose of illustrating the
problem, it is not an hypothesis on the initial distribution of
matter.

ous large initial distribution of matter. This is truly the
first state that is observed – what the cosmic microwave
background traces is this state, not a Big Bang. If one
considers that gravitational field starts propagating af-
ter cosmological inflation, then the average gravitational
field is null within our horizon. Expansion (in A) is inde-
pendent of matter density and space is flat because the
average gravitational field is null everywhere within our
horizon.

V. SUMMARY AND CONCLUSIONS

Henry Poincaré [24] analyzed how we acquire informa-
tion, stressing the relative nature of our data and that
our choice of units serves the convenience of obtaining
the simplest form for physical laws; Einstein analyzed
how we calibrate reference frames, how we attribute co-
ordinates to occurrences, what is the kind of time and
length units we use; here, the reflection on this subject is
extended to the properties of the units, which enabled us
to understand that the invariance of particles in standard
units is a property of these units and not of the particles;
it become also clear how the space expansion may trace
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a self-similar phenomenon and an important yet previ-
ously unnoticed property of the units of field constants
was found, which is able of supporting the observed space
dilation.
From two accepted observational results, the invari-

ance of constants and the scalar space expansion, and
considering that the observed space expansion is con-
sequence of a self-similar phenomenon, it is deducted a
model that verifies the classic cosmic tests as well as the
ΛCDM model in spite of having just one parameter, the
Hubble parameter. This model has surprising features,
namely: (1) There is no theoretical conflict with funda-
mental physical laws but for a new term in one conser-
vation law, which is beyond present possibilities of direct
measurement. (2) The standard systems of units lose
their privileged role, physical laws being valid also in a
space, comoving, system of units. (3) In standard units,
this model supports the same description of the universe
of the ΛCDM model.
Despite this scaling model not being a cosmological

model, it gives some contributions to cosmology, namely:
(1) Space is older than matter. (2) Matter, field and ra-
diation evanesce in space units. (3) A simple explanation
arises for the lack of tendency for gravitational collapse.
(4) The roles of dark energy and of cosmological inflation
are made clear.
This paper is just the first of a set of three; the sec-

ond paper analyses the consequences of this model at the
solar system scale and the third analyses the large-scale
structure of the universe.
Until now, the knowledge of the universe was estab-

lished in units where atomic properties are invariant;
these units are very convenient for describing systems
of bodies but, when used to describe space properties,
the result is puzzling. To have surpassed this limitation
is a major achievement of this work.
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Appendix: Planck law in A and S

Planck law I(λ, θ) (emitted power per unit area per
unit solid angle per unit wavelength at temperature θ, or
spectral radiance) can be expressed as:

I (λ, θ) = 2c2hλ−5

[

exp

(

ch

λkθ

)

− 1

]−1

. (A.1)

The dimension function of I(λ, θ) is

[I (λA, θ)] = ML−1T−3 ≡ α3 ; (A.2)

this means that the A measuring unit of spectral
radiance I(λ, θ) is α−3 the S one; therefore, A and S
measures of spectral radiance are related by:

IA (λA, θA) = α3IS (λS , θS) . (A.3)

We can now verify that Planck formula holds both in
A and S by replacing the A measures and constants by
the S ones: the A measures verify (A1), being

IA(λA, θA) = 2c2hAλ
−5
A

[

exp

(

chA

λAkAθA

)

− 1

]−1

;

replacing by the S values obtained from dimension func-
tions [see Table I and Eq. (A.3)], one obtains

α3IS(λS , θS) = 2c2hSα
−2λS

−5α5

[

exp

(

chSα
−2

λSα−1kSθSα−1

)

− 1

]−1

and, simplifying, one obtains Eq. (A.1) in S units,

IS(λS , θS) = 2c2hSλ
−5
S

[

exp

(

chS

λSkSθS

)

− 1

]−1

.

The holding of Planck’s law in A and S does not mean
that both observers make the same description, only that
their different measures verify the same formula for the
respective value of Planck constant.
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