BNTERNAL

## BISTRUCTURES


(Sasantasandasamy
INTERNAL

## 

 $+$



# INTERVAL ALGEBRAIC BISTRUCTURES 

W. B. Vasantha Kandasamy Florentin Smarandache

This book can be ordered from:
The Educational Publisher, Inc. 1313 Chesapeake Ave.
Columbus, Ohio 43212, USA
Toll Free: 1-866-880-5373
E-mail: info@edupublisher.com
Website: www.EduPublisher.com

Copyright 2011 by The Educational Publisher, Inc. and the Authors

Peer reviewers:
Prof. Luige Vladareanu, Institute of Solid Mechanics, Romanian Academy, Bucharest, Romania.
Dr. Ovidiu Sandru, Politechnica University, Bucharest, Romania Dr. Ion Sandru, University of Magurele, Romania Professor Paul P. Wang, Department of Electrical \& Computer Engineering Pratt School of Engineering, Duke University, Durham, NC 27708, USA.

ISBN-13: 978-1-59973-140-7
EAN: 9781599731407

Printed in the United States of America

## CONTENTS

Preface ..... 5
Chapter One
INTERVAL BISTRUCTURES ..... 7
1.1 Interval Bisemigroups ..... 7
1.2 Interval Bigroupoids ..... 27
1.3 Interval Bigroups and their Generalizations ..... 46
1.4 Interval Biloops and their Generalizations ..... 61
Chapter Two
n-INTERVAL ALGEBRAIC STRUCTURES WTH SNGLE BINARY OPERATION ..... 93
2.1 n-Interval Semigroups ..... 93
2.2 n-Interval Groupoids ..... 114
2.3 n-Interval Groups and their Properties ..... 128
2.4 n- Interval Loops ..... 135
2.5 n-Interval Mixed Algebraic Structures ..... 157
Chapter Three
APPLICATIONS OF INTERVAL BISTRUCTURES AND n-INTERVAL STRUCTURES ..... 161
Chapter Four
SUGGESTED PROBLEMS ..... 163
FURTHER READING ..... 199
INDEX ..... 201
ABOUT THE AUTHORS ..... 208

## PREFACE

Authors in this book construct interval bistructures using only interval groups, interval loops, interval semigroups and interval groupoids.

Several results enjoyed by these interval bistructures are described. By this method, we obtain interval bistructures which are associative or non associative or quasi associative. The term quasi is used mainly in the interval bistructure $\mathrm{B}=\mathrm{B}_{1}$ $\cup \mathrm{B}_{2}$ (or in n-interval structure) if one of $\mathrm{B}_{1}$ (or $\mathrm{B}_{2}$ ) enjoys an algebraic property and the other does not enjoy that property (one section of interval structure satisfies an algebraic property and the remaining section does not satisfy that particular property). The term quasi and semi are used in a synonymous way.

This book has four chapters. In the first chapter interval bistructures (biinterval structures) such as interval bisemigroup, interval bigroupoid, interval bigroup and interval biloops are introduced. Throughout this book we work only with the intervals of the form [0, a] where $\mathrm{a} \in \mathrm{Z}_{\mathrm{n}}$ or $\mathrm{Z}^{+} \cup\{0\}$ or $\mathrm{R}^{+} \cup$ $\{0\}$ or $\mathrm{Q}^{+} \cup\{0\}$ unless otherwise specified. Also interval bistructures of the form interval loop-group, interval groupgroupoid so on are introduced and studied.

In chapter two n-interval structures are introduced. ninterval groupoids, n -interval semigroups, n -interval loops and
so on are introduced and analysed. Using these notions ninterval mixed algebraic structure are defined and described.

Some probable applications are discussed. Only in due course of time several applications would be evolved by researchers as per their need.

The final chapter suggests around 295 problems of which some are simple exercises, some are difficult and some of them are research problems.

This book gives around 388 examples and 124 theorems which is an attractive feature of this book.

We thank Dr. K.Kandasamy for proof reading.
W.B.VASANTHA KANDASAMY

FLORENTIN SMARANDACHE

## Chapter One

## Interval Bistructures

This chapter has four sections. Section one is introductory. We introduce biintervals and biinterval matrices. These concepts will be used to construct bi-interval algebraic structures.

Let $\mathrm{I}\left(\mathrm{Z}_{\mathrm{n}}\right)=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{\mathrm{n}}\right\}$ be the set of modulo integer intervals.
$I\left(Z^{+} \cup\{0\}\right)=\left\{[0, a] / a \in Z^{+} \cup\{0\}\right\}$ is the integer intervals. $\mathrm{I}\left(\mathrm{Q}^{+} \cup\{0\}\right)=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Q}^{+} \cup\{0\}\right\}$ is the rational intervals. $\mathrm{I}\left(\mathrm{R}^{+} \cup\{0\}\right)=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{R}^{+} \cup\{0\}\right\}$ is the real intervals.

Section two introduces interval bigroupoids. Interval bigroups and their generalizations are given in section three. In section four interval biloops are introduced and studied.

### 1.1 Interval Bisemigroups

Now we define a biinterval. A biinterval is the union of two distinct intervals $\mathrm{I}=\mathrm{I}_{1} \cup \mathrm{I}_{2}=[0, \mathrm{a}] \cup[0, \mathrm{~b}]$ where $\mathrm{a} \neq \mathrm{b}, \mathrm{I}_{1}$ and $\mathrm{I}_{2}$ are intervals.

If $\mathrm{a}=\mathrm{b}$ the biinterval will be known as the pseudo biinterval. We do not demand $[0, \mathrm{a}] \nsubseteq[0, \mathrm{~b}]$ or $[0, \mathrm{~b}] \nsubseteq[0, \mathrm{a}]$ or $[0, \mathrm{~b}] \subseteq[0, \mathrm{a}]$.

We will illustrate this situation by some examples.
Example 1.1.1: Let $\mathrm{I}=\{[0,7]\} \cup\{[0, \sqrt{2}]\}$ be the biinterval where $7, \sqrt{2}, \in \mathrm{R}^{+} \cup\{0\}$.

Example 1.1.2: Let $\mathrm{I}=[0,9] \cup[0, \overline{2}]$ be the biinterval where 9 $\in \mathrm{Z}^{+} \cup\{0\}$ and $\overline{2} \in \mathrm{Z}_{4}$.

Example 1.1.3: Let $\mathrm{I}=\mathrm{I}_{1} \cup \mathrm{I}_{2}=[0, \overline{3}] \cup[0, \overline{7}]$ where $\overline{3} \in \mathrm{Z}_{6}$ and $\overline{7} \in \mathrm{Z}_{10}$ be the biinterval.

Example 1.1.4: Let $\mathrm{I}=\mathrm{I}_{1} \cup \mathrm{I}_{2}=[0,20] \cup[0, \sqrt{17}]$ where $20 \in$ $\mathrm{Z}^{+} \cup\{0\}$ and $\sqrt{17} \in \mathrm{R}^{+} \cup\{0\}$ be the biinterval.

Now we have seen examples of biintervals. We will define some operations on these biintervals so that they get some algebraic structures.

Further it is easy to define concepts like n-intervals; when n $=2$ we get the biinterval and when $\mathrm{n}=3$ we get the triinterval.

We will define them in the following.
Let $\mathrm{I}=\mathrm{I}_{1} \cup \mathrm{I}_{2} \cup \mathrm{I}_{3}$ be such that each interval $\mathrm{I}_{\mathrm{j}}$ is distinct 1 $\leq \mathrm{j} \leq 3$, then we define I to be a triinterval and $\mathrm{I}_{\mathrm{j}}$ can take their values from $\mathrm{Z}^{+} \cup\{0\}$ or $\mathrm{Z}_{\mathrm{n}}$ or $\mathrm{R}^{+} \cup\{0\}$ or $\mathrm{Q}^{+} \cup\{0\}$ or not used in the mutually exclusive sence, $1 \leq \mathrm{j} \leq 3$.

Suppose $\mathrm{I}=\mathrm{I}_{1} \cup \mathrm{I}_{2} \cup \ldots \cup \mathrm{I}_{\mathrm{n}},(\mathrm{n} \geq 2)$ where $\mathrm{I}_{\mathrm{j}}$ is an interval from $\mathrm{Q}^{+} \cup\{0\}$ or $\mathrm{R}^{+} \cup\{0\}$ or $\mathrm{Z}^{+} \cup\{0\}$ or $\mathrm{Z}_{\mathrm{m}} ; 1 \leq \mathrm{j} \leq \mathrm{n}, \mathrm{I}_{\mathrm{j}} \neq \mathrm{I}_{\mathrm{k}}$ if $\mathrm{k} \neq \mathrm{j} ; 1 \leq \mathrm{j}, \mathrm{k} \leq \mathrm{n}$ then we define I to be an n -interval.

We will give some examples before we proceed onto define further structures.

Example 1.1.5: Let $\mathrm{I}=\mathrm{I}_{1} \cup \mathrm{I}_{2} \cup \mathrm{I}_{3}=[0,3] \cup[0, \sqrt{7}] \cup[0, \overline{5}]$ be a triinterval where $3 \in \mathrm{Z}^{+} \cup\{0\} \sqrt{7} \in \mathrm{R}^{+} \cup\{0\}$ and $\overline{5} \in$ $\mathrm{Z}_{11}$.

Example 1.1.6: Let $\mathrm{I}=\mathrm{I}_{1} \cup \mathrm{I}_{2} \cup \mathrm{I}_{3} \cup \mathrm{I}_{4} \cup \mathrm{I}_{5} \cup \mathrm{I}_{6}=\{[0,7] \cup$ $\left.[0,5] \cup[0,2] \cup[0,7 / 3] \cup[0, \sqrt{71}] \cup\left[0, \frac{27}{31}\right]\right\}$ be a 6 -interval where the entries in each interval is from $\mathrm{R}^{+} \cup\{0\}$.

Example 1.1.7: Let $\mathrm{I}=\mathrm{I}_{1} \cup \mathrm{I}_{2} \cup \ldots \cup \mathrm{I}_{9}=\left\{\left[0, \mathrm{x}_{1}\right] \cup \ldots \cup\right.$ $\left.\left[0, x_{9}\right]\right\}$ where $\mathrm{x}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\}, 1 \leq \mathrm{i} \leq 9$, be the 9-interval.

Example 1.1.8: Let $\mathrm{I}=\mathrm{I}_{1} \cup \mathrm{I}_{2} \cup \mathrm{I}_{3} \cup \mathrm{I}_{4}=\left[0, \mathrm{x}_{1}\right] \cup\left[0, \mathrm{x}_{2}\right] \cup$ $\left[0, x_{3}\right] \cup\left[0, x_{4}\right]$ where $x_{1} \in Z_{7}, x_{2} \in Z_{12}, x_{3} \in Z_{17}$ and $x_{4} \in Z_{21}$ be the 4 -interval.

DEFINITION 1.1.1: Let $S=S_{1} \cup S_{2}$ where $S_{1}$ and $S_{2}$ are distinct interval semigroups under the operations '*' and ' $o$ ' respectively. ( $S_{1} \neq S_{2}, S_{1} \nsubseteq S_{2}$ and $S_{2} \nsubseteq S_{1}$ ) then (S, .) is defined as a interval bisemigroup or biinterval semigroup denoted by $S=S_{1} \cup S_{2}=\{[0, a], *\} \cup\{[0, b], o\}=\{[0, a] \cup[0, b] /[0, a]$ $\in S_{1}$ and $\left.[0, b] \in S_{2}\right\} . I . J=([0, a] \cup[0, b]) .([0, x] \cup[0, y])$ where '.' is defined as $I . J=\{[0, a] *[0, x] \cup[0, b] o[0, y]\}$.

We will illustrate this situation by some examples.
Example 1.1.9: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0\right.$, a$] / \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}$ be an interval semigroup under addition $\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{20}\right.$ under multiplication modulo 20 is an interval semigroup\} be the interval bisemigroup or biinterval semigroup.

Example 1.1.10: Let $S=S_{1} \cup S_{2}$ where $S_{1}=\left\{[0, a] / a \in Q^{+} \cup\right.$ $\{0\}$ under multiplication $\}$ is an interval semigroup and $S_{2}=\{[0$,
a] / $\mathrm{a} \in \mathrm{R}^{+} \cup\{0\}$ under addition $\}$ be the interval semigroup. S is an interval bisemigroup.

Now we see the examples given in 1.1.9 and 1.1.10 are biinterval semigroups of infinite order.

We see how in the example 1.1.9 the operation is carried out on the interval bisemigroup. Let $\mathrm{I}=\mathrm{I}_{1} \cup \mathrm{I}_{2}=[0,10] \cup[0,4]$ and $\mathrm{J}=[0,2] \cup[0,12]$ be in S .

$$
\begin{aligned}
\text { I. J } & =\{[0,10] \cup[0,4]\} .\{[0,2] \cup[0,12]\} \\
& =\{[0,10]+[0,2] \cup[0,4] \times[0,12]\} \\
& =\{[0,10+2] \cup[0,4 \times 12(\bmod 20)]\} \\
& =[0,12] \cup[0,8] .
\end{aligned}
$$

Thus ( S, ' $\cdot$ ') is also known as biinterval semigroup as its elements are biintervals.

Example 1.1.11: Let $S=S_{1} \cup S_{2}=\left\{[0, a] / a \in Z_{13}\right.$ under addition modulo 13$\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{16}\right.$ under multiplication modulo 16\} be a biinterval semigroup.

Clearly if $x=[0,10] \cup[0,14]$ and $y=[0,7] \cup[0,10]$ are in S, then $\mathrm{x} . \mathrm{y}=([0,10] \cup[0,14]) .([0,7] \cup[0,10])=([0,10]+$ $[0,7]) \cup([0,14] \times[0,10])=[0,17(\bmod 13)] \cup[0,140(\bmod$ $16)]=[0,4] \cup[0,12]$.

It is interesting to note that the biinterval semigroup given in example 1.1.11 is of finite order.

We say biinterval semigroup is commutative if both $S_{1}$ and $S_{2}$ are commutative interval semigroups. If only one of $S_{1}$ or $S_{2}$ is a commutative interval semigroup and the other is not commutative then we say S is a semi commutative biinterval semigroup.

All the examples of biinterval semigroups given are commutative to define biinterval semigroups which are semi commutative we have to use either matrix interval semigroups or symmetric interval semigroups. For more about these please refer [10, 14].

We will give examples of non commutative biinterval semigroups and semi commutative biinterval semigroups.

Clearly elements of these biinterval semigroups will not be biintervals so with some flaw we will call them as interval bisemigroups.

Example 1.1.12: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}$ where
$S_{1}=\left\{\left.\left[\begin{array}{ll}{[0, a]} & {[0, b]} \\ {[0, c]} & {[0, d]}\end{array}\right] \right\rvert\, a, b, c, d \in Z^{+} \cup\{0\}\right\}$ and

interval matrix semigroups under multiplication. $S=S_{1} \cup S_{2}$ is an interval bisemigroup which is non commutative.
For take

$$
x=\left[\begin{array}{cc}
{[0,9]} & {[0,2]} \\
{[0,3]} & {[0,1]}
\end{array}\right] \cup\left[\begin{array}{ccc}
{[0,1]} & 0 & 0 \\
{[0,3]} & {[0,4]} & 0 \\
{[0,2]} & 0 & {[0,6]}
\end{array}\right]
$$

and

$$
\mathrm{y}=\left[\begin{array}{cc}
{[0,1]} & {[0,10]} \\
{[0,12]} & {[0,4]}
\end{array}\right] \cup\left[\begin{array}{ccc}
{[0,2]} & {[0,1]} & {[0,3]} \\
{[0,1]} & {[0,4]} & {[0,1]} \\
0 & {[0,1]} & 0
\end{array}\right]
$$

in S.

$$
\begin{gathered}
\mathrm{x} . \mathrm{y}=\left[\begin{array}{cc}
{[0,9]} & {[0,2]} \\
{[0,3]} & {[0,1]}
\end{array}\right] \times\left[\begin{array}{cc}
{[0,1]} & {[0,10]} \\
{[0,12]} & {[0,4]}
\end{array}\right] \cup \\
{\left[\begin{array}{ccc}
{[0,1]} & 0 & 0 \\
{[0,3]} & {[0,4]} & 0 \\
{[0,2]} & 0 & {[0,6]}
\end{array}\right] \times\left[\begin{array}{cc}
{[0,2]} & {[0,1]} \\
{[0,3]} \\
{[0,1]} & {[0,4]} \\
0 & {[0,1]} \\
0 & {[0,1]}
\end{array}\right]} \\
=\left[\begin{array}{cc}
{[0,9][0,1]+[0,2][0,12]} & {[0,9][0,10]+[0,2][0,4]} \\
{[0,3][0,1]+[0,1][0,12]} & {[0,3][0,10]+[0,1][0,4]}
\end{array}\right] \cup
\end{gathered}
$$

$$
\begin{aligned}
& {\left[\begin{array}{c}
{[0,1][0,2]+0+0} \\
{[0,3][0,2]+[0,4][0,1]+0} \\
{[0,2][0,2]+0+0}
\end{array}\right.} \\
& {[0,1][0,1]+0+0} \\
& {[0,1][0,3]+0+0} \\
& {[0,3][0,1]+[0,4][0,4]+0} \\
& {[0,3][0,3]+[0,4][0,1]+0} \\
& {[0,2][0,1]+0+[0,6][0,1]} \\
& [0,2][0,3]+0+0] \\
& =\left[\begin{array}{ll}
{[0,9]+[0,24]} & {[0,90]+[0,8]} \\
{[0,3]+[0,12]} & {[0,30]+[0,4]}
\end{array}\right] \cup \\
& {\left[\begin{array}{ccc}
{[0,2]+0+0} & {[0,1]+0+0} & {[0,3]+0+0} \\
{[0,6]+[0,4]+0} & {[0,3]+[0,2]+0} & {[0,2]+[0,4]+0} \\
{[0,4]+0+0} & {[0,2]+0+[0,6]} & {[0,6]+0+0}
\end{array}\right]} \\
& =\left[\begin{array}{ll}
{[0,33]} & {[0,98]} \\
{[0,15]} & {[0,34]}
\end{array}\right] \cup\left[\begin{array}{lll}
{[0,2]} & {[0,1]} & {[0,3]} \\
{[0,3]} & {[0,5]} & {[0,6]} \\
{[0,4]} & {[0,1]} & {[0,6]}
\end{array}\right] .
\end{aligned}
$$

Example 1.1.13: Let $S=S_{1} \cup S_{2}$ where $S_{1}=\{S(X)$ where $X=$ ( $[0,1],[0,2],[0,3])\}$ is the interval symmetric semigroup and $S_{2}=\{$ All $5 \times 5$ interval matrices with intervals of the form [0, a] where $\left.a \in Z_{12}\right\}$ be the interval matrix semigroup under multiplication. S is a interval bisemigroup, non commutative and is of finite order. The product on S is defined as follows.
Let

$$
\begin{gathered}
x=\left(\begin{array}{ccc}
{[0,1]} & {[0,2]} & {[0,3]} \\
{[0,3]} & {[0,2]} & {[0,1]}
\end{array}\right) \cup \\
\left(\begin{array}{ccccc}
0 & {[0,1]} & 0 & {[0,2]} & 0 \\
{[0,3]} & 0 & {[0,4]} & 0 & {[0,1]} \\
0 & {[0,2]} & 0 & {[0,3]} & 0 \\
{[0,5]} & 0 & {[0,1]} & 0 & {[0,2]} \\
0 & {[0,3]} & 0 & {[0,7]} & 0
\end{array}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
\mathrm{y}=\left(\begin{array}{ccc}
{[0,1]} & {[0,2]} & {[0,3]} \\
{[0,2]} & {[0,1]} & {[0,3]}
\end{array}\right) \cup \\
\left(\begin{array}{ccccc}
{[0,1]} & 0 & {[0,2]} & 0 & {[0,3]} \\
0 & {[0,4]} & 0 & {[0,5]} & 0 \\
{[0,6]} & 0 & {[0,7]} & 0 & {[0,8]} \\
0 & {[0,9]} & 0 & {[0,10]} & 0 \\
{[0,11]} & 0 & {[0,1]} & 0 & {[0,2]}
\end{array}\right)
\end{gathered}
$$

belong to S .
Now

$$
\begin{aligned}
& \mathrm{x} \cdot \mathrm{y}=\left(\begin{array}{lll}
{[0,1]} & {[0,2]} & {[0,3]} \\
{[0,3]} & {[0,2]} & {[0,1]}
\end{array}\right) \cdot\left(\begin{array}{ccc}
{[0,1]} & {[0,2]} & {[0,3]} \\
{[0,2]} & {[0,1]} & {[0,3]}
\end{array}\right) \cup \\
&\left(\begin{array}{ccccc}
0 & {[0,1]} & 0 & {[0,2]} & 0 \\
{[0,3]} & 0 & {[0,4]} & 0 & {[0,1]} \\
0 & {[0,2]} & 0 & {[0,3]} & 0 \\
{[0,5]} & 0 & {[0,1]} & 0 & {[0,2]} \\
0 & {[0,3]} & 0 & {[0,7]} & 0
\end{array}\right) \times \\
&\left(\begin{array}{cccccc}
{[0,1]} & 0 & {[0,2]} & 0 & {[0,3]} \\
0 & {[0,4]} & 0 & {[0,5]} & 0 \\
{[0,6]} & 0 & {[0,7]} & 0 & {[0,8]} \\
0 & {[0,9]} & 0 & {[0,10]} & 0 \\
{[0,11]} & 0 & {[0,1]} & 0 & {[0,2]}
\end{array}\right) \\
&=\left(\begin{array}{cccccc}
{[0,1]} & {[0,2]} & {[0,3]} \\
{[0,3]} & {[0,1]} & {[0,2]}
\end{array}\right) \cup\left(\begin{array}{ccccc}
0 & {[0,10]} & 0 & {[0,1]} & 0 \\
{[0,2]} & 0 & {[0,5]} & 0 & {[0,9]} \\
0 & {[0,5]} & 0 & {[0,4]} & 0 \\
{[0,3]} & 0 & {[0,1]} & 0 & {[0,3]} \\
0 & {[0,3]} & 0 & {[0,1]} & 0
\end{array}\right)
\end{aligned}
$$

is in S .

We can have any number of finite or infinite, commutative or non commutative interval bisemigroups. We have seen examples of them.

We can define substructures for them.

DEFINITION 1.1.2: Let $S=S_{1} \cup S_{2}$ be an interval bisemigroup. $P=P_{1} \cup P_{2} \subseteq S_{1} \cup S_{2}=S$ be a proper non empty bisubset of $S$. If each $P_{i}$ is an interval subsemigroup of $S_{i}, i=1,2$ then we call $P$ to be an interval subbisemigroup or interval bisubsemigroup of $S$.

We will illustrate this situation by some examples.
Example 1.1.14: Let $S=S_{1} \cup S_{2}$ where $S_{1}=\left\{[0, a] / a \in Z^{+} \cup\right.$ $\{0\}\}$ is the interval semigroup under multiplication and $\mathrm{S}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{24}\right\}$ is the interval semigroup under addition be a biinterval semigroup. Consider $P=P_{1} \cup P_{2}=\{[0, a] / a \in$ $\left.3 \mathrm{Z}^{+} \cup\{0\}\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\{0,2,4,6,8,10, \ldots, 20,22\} \subseteq \mathrm{Z}_{24}\right\}$ $\subseteq \mathrm{S}_{1} \cup \mathrm{~S}_{2}=\mathrm{S}$. It is easily verified P is a biinterval subsemigroup of $S$.

Example 1.1.15: Let $S=S_{1} \cup S_{2}$ where $S_{1}=\left\{[0, a] / a \in Z_{11}\right\}$ is the interval semigroup under addition modulo 11 and $\mathrm{S}_{2}=\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{17}\right\}$ be the interval semigroup under addition modulo 17. S is a biinterval semigroup. It is easily verified S has no biinterval subsemigroups.

If an interval bisemigroup has no interval subsemigroups then we call S to be a simple biinterval semigroup.

We have a class of biinterval semigroups which are simple.
THEOREM 1.1.1: Let $S=S_{1} \cup S_{2}=\left\{[0, a] / a \in Z_{p}, p\right.$ a prime, $+\} \cup\left\{[0, b] / b \in Z_{q}, q\right.$ a prime, +$\}(p \neq q)$ be a biinterval semigroup. $S$ is a simple biinterval semigroup.

The proof is direct and left as an exercise for the reader.

Example 1.1.16: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\} \cup$ $\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{43}\right\}$ be an interval bisemigroup with operation addition defined on both $\mathrm{S}_{1}$ and $\mathrm{S}_{2}$. Clearly $\mathrm{S}_{1}$ has interval subsemigroups where as $S_{2}$ has no interval subsemigroups.

We do not call $S$ as simple but we define such substructure as quasi interval bisubsemigroup and these interval semigroups are also known as quasi simple interval bisemigroups.

We will illustrate this situation by some examples.
Example 1.1.17: Let $S=S_{1} \cup S_{2}=\left\{[0, a] / a \in R^{+} \cup\{0\}\right\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{23}\right\}$ be an interval bisemigroup under interval addition. Take $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Q}^{+} \cup\{0\}\right\} \cup \mathrm{P}_{2}=$ $\left(=S_{2}\right) \subseteq S_{1} \cup S_{2}=S$; $P$ is a quasi interval bisubsemigroup of $S$.

Infact $S$ has infinitely many quasi interval bisubsemigroups.
Example 1.1.18: Let $S=S_{1} \cup S_{2}=\left\{[0, a] / a \in Z_{12}, \times\right.$, multiplication modulo 12$\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{43}\right.$, addition modulo $43\}$ be an interval bisemigroup.

Consider $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in\{0,3,6,9\} \subseteq \mathrm{Z}_{12}\right\} \cup \mathrm{P}_{2}$ $\left(=S_{2}\right) \subseteq S_{1} \cup S_{2}=S$; $P$ is a quasi interval bisubsemigroup. $S$ is a quasi simple interval bisemigroup. We see $S$ has only 4 quasi interval bisubsemigroups and S is of finite order.

Now we proceed onto give examples of interval biideals or biinterval ideals of an interval bisemigroup S.

Example 1.1.19: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{a}] /+, \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\} \cup$ $\left\{[0, \mathrm{~b}] / \times, \mathrm{b} \in \mathrm{Z}_{24}\right\}$ be an interval bisemigroup. Consider $\mathrm{J}=\mathrm{J}_{1}$ $\cup \mathrm{J}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in 5 \mathrm{Z}^{+} \cup\{0\}\right\} \cup\{[0, \mathrm{~b}] / \mathrm{b} \in\{0,3,6,9,12$, $\left.15,18,21\} \subseteq \mathrm{Z}_{24}\right\} \subseteq \mathrm{S}_{1} \cup \mathrm{~S}_{2}=\mathrm{S}$; it is easily verified J is a biideal of $S$ called the interval biideal or biinterval ideal of $S$.

Example 1.1.20: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{6}\right\} \cup\{[0, \mathrm{~b}] /$ $\left.\mathrm{b} \in \mathrm{Z}_{30}\right\}$ be a biinterval semigroup under multiplication. Consider $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in\{0,2,4\} \subseteq \mathrm{Z}_{6}\right\} \cup\{[0, \mathrm{~b}] /$ $\left.\mathrm{b} \in\{10,20,0\} \subseteq \mathrm{Z}_{30}\right\} \subseteq \mathrm{S}_{1} \cup \mathrm{~S}_{2} ; \mathrm{P}$ is a biinterval ideal of S .

Example 1.1.21: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{11}\right\} \cup\{[0, \mathrm{~b}] /$ $\left.\mathrm{b} \in \mathrm{Z}_{17}\right\}$ be an interval bisemigroup. S has no biideals.

We call those interval bisemigroups to be ideally simple interval bisemigroups if S has no biideals. Example 1.1.21 is an ideally simple interval bisemigroup. We have an infinite class of ideally simple interval bisemigroups.

THEOREM 1.1.2: Let $S=S_{1} \cup S_{2}=\left\{[0, a] / a \in Z_{p}, p\right.$ a prime $\}$ $\cup\left\{[0, b] / b \in Z_{q}, q\right.$ a prime $\}(p \neq q)$ be an interval bisemigroup. $S$ is an ideally simple interval bisemigroup.

The reader is left with the task of proving this result.

Example 1.1.22: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{11}\right\} \cup\{[0, \mathrm{~b}] /$ $\left.\mathrm{b} \in \mathrm{Z}^{+} \cup\{0\}\right\}$ be an interval bisemigroup under multiplication. We see $S_{1}$ has no ideals, but $S_{2}$ has infinitely many ideals. Thus S has quasi interval ideals.

If $S$ has only quasi interval ideals then we define $S$ to be a quasi ideally simple interval bisemigroup.

We give examples of this structure.

Example 1.1.23: Let $S=S_{1} \cup S_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{R}^{+} \cup\{0\}\right\} \cup$ $\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{30}\right\}$ be a biinterval semigroup under multiplication. $\mathrm{P}=\mathrm{P}_{1}\left(=\mathrm{S}_{1}\right) \subseteq \mathrm{S}_{1} \cup \mathrm{~S}_{2} ; \mathrm{P}$ is a quasi ideal hence S is a quasi ideally simple biinterval semigroup.

Example 1.1.24: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{7}\right\} \cup\{[0, \mathrm{a}] / \mathrm{a}$ $\left.\in \mathrm{Z}_{50}\right\}$ be an interval bisemigroup. Consider $\mathrm{H}=\mathrm{H}_{1}\left(=\mathrm{S}_{1}\right) \cup \mathrm{H}_{2}$ $=\mathrm{S}_{1} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\{0,5,10,15, \ldots, 45\} \subseteq \mathrm{Z}_{50}\right\} \subseteq \mathrm{S}_{1} \cup \mathrm{~S}_{2} ; \mathrm{H}$ is a biideal and S is a quasi ideally simple biinterval semigroup.

Example 1.1.25: Let $S=S_{1} \cup S_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{R}^{+} \cup\{0\}\right\} \cup$ $\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Q}^{+} \cup\{0\}\right\}$ be a biinterval semigroup. S is an ideally simple biinterval semigroup.

We can define bizero divisors, quasi bizero divisors, biunits, quasi biunits and biidempotents and quasi biidempotents in these biinterval semigroups.

Let $S=S_{1} \cup S_{2}$ be an biinterval semigroup. Let $\alpha=\alpha_{1} \cup \alpha_{2}$ be a biinterval in $S$ if there exists a $\beta=\beta_{1} \cup \beta_{2}$ in $S$ which is a biinterval such that $\alpha . \beta=0 \cup 0$ then we say $\alpha$ is a bizero interval zero divisor in S .

We will first illustrate this situation by some examples.
Example 1.1.26: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12}\right\} \cup\{[0, \mathrm{~b}] /$ $\left.\mathrm{b} \in \mathrm{Z}_{420}\right\}$ be a biinterval semigroup.
Choose $\alpha=\alpha_{1} \cup \alpha_{2}=[0,6] \cup[0,60]$ in $S_{1} \cup S_{2} . \beta=\beta_{1} \cup \beta_{2}=$ $[0,4] \cup[0,7]$ in $S_{1} \cup S_{2}$ is such that $\alpha \beta=([0,6] \cup[0,60])[[0$, $4] \cup[0,7])=[0,0] \cup[0,0]$ thus $\alpha$ is a interval bizero divisor in S.

Let $\mathrm{x}=\mathrm{x}_{1} \cup \mathrm{x}_{2}=[0,11] \cup[0,419]$ be in $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}$.
We see $x^{2}=[0,1] \cup[0,1]$ is a biunit in $S$. Consider $y=y_{1}$ $\cup \mathrm{y}_{2}=[0,4] \cup[0,36] \in \mathrm{S}_{1} \cup \mathrm{~S}_{2}$ is such that $([0,4] \cup[0,36])^{2}$ $=[0,4] \cup[0,36]=y_{1} \cup y_{2}$ is an interval biidempotent of $S=S_{1} \cup S_{2}$.

Example 1.1.27: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\} \cup$ $\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Q}^{+} \cup\{0\}\right\}$ be an interval bisemigroup; S has no bizero divisors or biunits or biidempotents.

Example 1.1.28: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{7}\right\} \cup\{[0, \mathrm{~b}] /$ $\left.\mathrm{b} \in \mathrm{Z}_{19}\right\}$ be an interval bisemigroup of finite order. S has no non trivial biidempotents or bizero divisors but has a biunit given by $x=[0,6] \cup[0,18] \in S_{1} \cup S_{2}$ is such that $\mathrm{x}^{2}=[0,1] \cup[0,1]$.

Example 1.1.29: Suppose $S=S_{1} \cup S_{2}=\left\{[0, a] / a \in Z_{p}, p\right.$ a prime $\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{\mathrm{q}}\right.$, q a prime $\} ; \mathrm{p} \neq \mathrm{q}$ be a biinterval semigroup. Then S has only one non trivial biunit given by
$\alpha=[0, p-1] \cup[0, q-1] \in S$, is such that $\alpha^{2}=[0,1] \cup[0,1]$.
Now we have seen the special elements in the interval bisemigroup. It may so happen one of $\mathrm{S}_{\mathrm{i}}$ may have units, zero divisors and idempotents and $\mathrm{S}_{\mathrm{j}}(\mathrm{i} \neq \mathrm{j})$ may not have any of these in these situations we do define the following.
$\alpha=[0, \mathrm{x}]+0$ in S is a quasi biunit if there exists a $\beta=[0, \mathrm{y}]$ +0 in $S$ such that $\alpha \beta=[0,1]+0$.

Similarly we define quasi biidempotent and quasi bizero divisor in $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}$.

We will only illustrate these situations by some examples.
Example 1.1.30: Let $S=S_{1} \cup S_{2}=\left\{[0, a] / a \in Z^{+} \cup\{0\}\right\} \cup$ $\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{30}\right\}$ be a biinterval semigroup. We see $\mathrm{S}_{1}$ has no units or zero divisors or idempotents but $\mathrm{S}_{2}$ has zero divisors, units and idempotents, hence $S$ can have only quasi biunits, quasi biidempotents and quasi bizero divisors.

Consider $\alpha=0 \cup[0,29] \in S=S_{1} \cup S_{2}$. Clearly $\alpha^{2}=0 \cup$ $[0,1]$ is a quasi biunit.

Take $\beta=0 \cup[0,15] \in S=S_{1} \cup S_{2}$ we have $\gamma=0 \cup[0,4]$ $\in S$ such that $\beta \gamma=0 \cup 0$. Hence $\beta$ is a quasi bizero divisor in $S$.

Take $x=0 \cup[0,15] \in S$, we see $x^{2}=0 \cup[0,225]=[0,15]$ $\in S$ is a quasi biidempotent of $S$.

Thus S has only quasi biunits, quasi bizero divisors and quasi biidempotents in it.

Example 1.1.31: Let $S=S_{1} \cup S_{2}=\left\{[0, a] / a \in R^{+} \cup\{0\}\right\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{31}\right\}$ be a biinterval semigroup. We see S has only one quasi biunit and has no quasi bizero divisors or quasi biidempotents.

This is also a different situation from example 1.1.30.
Example 1.1.32: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{29}\right\} \cup\{[0, \mathrm{~b}] /$ $\left.\mathrm{b} \in \mathrm{Z}_{35}\right\}$ be a biinterval semigroup. We see S has a biunit given by $x=[0,28] \cup[0,34] \in S=S_{1} \cup S_{2}$. Clearly $x^{2}=[0,1] \cup$
[ 0,1 ]. But S has no biidempotents or bizero divisors. But S has both quasi bizero divisors and quasi biidempotents.

Take $\alpha=0 \cup[0,5] \in \mathrm{S}$, we see $\beta=0 \cup[0,7]$ is such that $\alpha \beta=0 \cup 0$. Also $\mathrm{y}=0 \cup[0,14]$ is such that $\alpha \mathrm{y}=0 \cup 0$. Thus $S$ has quasi bizero divisors. Consider $x=0 \cup[0,15] \in S$; we see $x^{2}=0 \cup[0,15]=x$. Thus $x$ is a quasi biidempotent in $S$.

Now having seen special elements in biinterval semigroups. We see some examples of special type of interval bisemigroups.

Example 1.1.33: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}$

$$
=\left\{\sum_{\mathrm{i}=0}^{\infty}[0, \mathrm{a}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{12}\right\} \cup\left\{\left.\left[\begin{array}{ll}
{[0, \mathrm{a}]} & {[0, \mathrm{~b}]} \\
{[0, \mathrm{c}]} & {[0, \mathrm{~d}]}
\end{array}\right] \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}^{+} \cup\{0\}\right\}
$$

be an interval bisemigroup. S has bizero divisors.
Take

$$
x=\left\{[0,4] x^{7}\right] \cup\left\{\left[\begin{array}{cc}
{[0, a]} & 0 \\
0 & 0
\end{array}\right]\right\} \text { in } S=S_{1} \cup S_{2} .
$$

We see

$$
y=\left\{[0,3] x^{9}\right\} \cup\left\{\left[\begin{array}{cc}
0 & 0 \\
0 & {[0, b]}
\end{array}\right]\right\}
$$

in $S$ is such that

$$
\mathrm{xy}=0 \cup\left\{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right\} .
$$

Thus S has bizero divisors. It is easily verified S has both biunits and biidempotents.

Example 1.1.34: Let $S=S_{1} \cup S_{2}=\{$ All $3 \times 3$ interval matrices with intervals of the form [0, a] where $\left.a \in \mathrm{Z}^{+} \cup\{0\}\right\} \cup\{$ All $2 \times 2$ interval matrices with intervals of the form [0, b], $\left.\mathrm{b} \in \mathrm{Z}_{47}\right\}$ be an interval bisemigroup. S has bizero divisors, biunits and biidemponents.

The following theorem is direct and the proof is left as an exercise for the reader.

THEOREM 1.1.3: Let $S=S_{1} \cup S_{2}$ be an interval bisemigroup (or biinterval semigroup). If $S$ has biunits or biidempotents or bizero divisors then $S$ has quasi biunits or quasi biidempotents or quasi bizero divisors. But if $S$ has quasi biunits or quasi biidemponents or quasi bizero divisors then $S$ in general need not contain biunits or bizero divisors or biidempotents.

Now we proceed onto define Smarandache interval bisemigroup and quasi Smarandache interval bisemigroups and illustrate them by examples.

DEFINITION 1.1.3: Let $S=S_{1} \cup S_{2}$ be an interval bisemigroup. Suppose $A=A_{1} \cup A_{2} \subseteq S_{1} \cup S_{2}$ is such that each $A_{i}$ is an interval group under the operations of $S_{i}(i=1,2)$ then we define $S=S_{1} \cup S_{2}$ to be a Smarandache interval bisemigroup. (S-interval bisemigroup). If only one of the $A_{i}$ 's is an interval group and other $A_{j}$ is not an interval group for any subset $A_{j}$ of $S_{j}(i \neq j)$ then we call $S=S_{1} \cup S_{2}$ to be a quasi Smarandache interval bisemigroup (quasi S-interval bisemigroup).

We will provide examples of these definitions.
Example 1.1.35: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{40}\right\} \cup\{[0, \mathrm{a}] /$ $\left.\mathrm{a} \in \mathrm{Z}_{24}\right\}$ be an interval bisemigroup. Consider $\mathrm{A}=\mathrm{A}_{1} \cup \mathrm{~A}_{2}=$ $\{[0,1],[0,39]\} \cup\{[0,1],[0,23]\} \subseteq S_{1} \cup S_{2}=S$ is an interval bigroup (as $A_{i}$ is an interval group for $\mathrm{i}=1,2$ ). Hence S is a S-interval bisemigroup of finite order.

Example 1.1.36: Let $\mathrm{S}=\{\mathrm{S}(\mathrm{X})$ where $\mathrm{X}=([0,1][0,2][0,3]$ $[0,4]$ ) be an interval symmetric semigroup $\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{19}\right\}$ be an interval bisemigroup of finite order. Consider $\mathrm{A}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}$ $=\left\{\mathrm{S}_{\mathrm{x}}\right.$, the interval symmetric group of $\left.\mathrm{S}(\mathrm{X})\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{19}\right.$ $\backslash\{0\}\} \subseteq S_{1} \cup S_{2}$ is an interval bigroup. Thus $S$ is a $S$-interval bisemigroup.

Example 1.1.37: Let $\mathrm{S}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{23}\right\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{41}\right\}$ be an interval bisemigroup. $A=A_{1} \cup A_{2}=\left\{[0, a] / Z_{23} \backslash\{0\}\right\} \cup$ $\left\{[0, \mathrm{~b}] / \mathrm{Z}_{41} \backslash\{0\}\right\} \subseteq \mathrm{S}_{1} \cup \mathrm{~S}_{2}=\mathrm{S}$ is a interval bigroup. Thus S is a S-interval bisemigroup.

We see from examples 1.1.36 and 1.1.37 that the interval bigroup which we have considered in these interval bisemigroups are the largest ones. We call such large A as Smarandache hyper bigroup of S.

THEOREM 1.1.4: Let $S=S_{1} \cup S_{2}=\left\{[0, a] / a \in Z_{p}, p\right.$ a prime $\}$ $\cup\left\{[0, b] / b \in Z_{q}, q\right.$ a prime $\}(p \neq q)$. $S$ has only one large interval bigroup and it is the S-hyper bisubgroup of $S$.

The proof is left as an exercise for the reader.
THEOREM 1.1.5: Let $S=S_{1} \cup S_{2}=\left\{S(x) / x=\left(\left[0, a_{1}\right], \ldots,[0\right.\right.$, $\left.\left.\left.a_{n}\right]\right)\right\} \cup\left\{S(y) / y=\left(\left[0, b_{1}\right], \ldots .,\left[0, b_{m}\right]\right)\right\} m \neq n$ be an interval bisemigroup. $S$ has a S-hyper subbigroup. However $S$ has several interval bigroups.

This proof is also left as an exercise to the reader. For more information refer [10, 13-4]. Now having seen examples of Sinterval bisemigroups we proceed onto give examples of quasi S-interval bisemigroups.

Example 1.1.38: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\} \cup$ $\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{6}\right\}$ be an interval bisemigroup. We see $\mathrm{S}_{1}$ has no proper interval subgroup but $\mathrm{S}_{2}$ has proper interval subgroups. Hence $S$ is only a quasi Smarandache interval bisemigroup.

Example 1.1.39: Let $S=S_{1} \cup S_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in 3 \mathrm{Z}^{+} \cup\{0\}\right\} \cup$ $\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{52}\right\}$ be an interval bisemigroup. It is easily verified $S$ is only a quasi $S$-interval bisemigroup.

Now we proceed onto define semi interval bisemigroup.

DEFINITION 1.1.4: Let $S=S_{1} \cup S_{2}$ where only one of $S_{1}$ or $S_{2}$ is an interval semigroup and the other is a semigroup. We call $S$ a semi interval bisemigroup.

Example 1.1.40 $:$ Let $S=S_{1} \cup S_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\} \cup$ $\left\{Z_{12}, \times\right\}$ be a semi interval bisemigroup of infinite order.

Example 1.1.41: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{49}\right\} \cup\left\{\mathrm{Z}_{15}, \times\right\}$ be a semi interval bisemigroup of finite order.

Example 1.1.42: Let $\mathrm{S}=\{\mathrm{S}(\mathrm{X}) \mid \mathrm{X}=\{([0,1],[0,2],[0,3][0$, 4]) $\}$ be the interval symmetric semigroup $\} \cup\left\{\mathrm{Z}_{29}, \times\right\}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}$ is the semi interval bisemigroup of finite order which is quasi commutative.

Example 1.1.43: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=$

$$
\left\{\left.\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \right\rvert\, a_{\mathrm{ij}} \in \mathrm{Z}^{+} \cup\{0\}\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Q}^{+} \cup\{0\}\right\}
$$

be a semi interval bisemigroup of infinite order which is quasi commutative.

Now as in case of usual biinterval semigroup we can define substructures and special elements, this task is assigned to the reader.

We will however illustrate these by some examples.

Example 1.1.44: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left(\mathrm{Z}^{+} \cup\{0\}\right) \cup\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Q}^{+}\right.$ $\cup\{0\}\}$ be a semi interval bisemigroup of infinite order. $\mathrm{T}=\mathrm{T}_{1}$ $\cup \mathrm{T}_{2}=\left\{5 \mathrm{Z}^{+} \cup\{0\}\right\} \cup\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\} \subseteq \mathrm{S}_{1} \cup \mathrm{~S}_{2}$ is a semi interval bisubsemigroup of S . Clearly T is not an ideal of S .

Example 1.1.45: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{\left(\left[0, \mathrm{a}_{1}\right],\left[0, \mathrm{a}_{2}\right],\left[0, \mathrm{a}_{3}\right]\right.\right.$, $\left.\left[0, \mathrm{a}_{4}\right],\left[0, \mathrm{a}_{5}\right]\right) \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{20}$ under multiplication modulo 20$\} \cup$
$S(6)$ be a semi interval bisemigroup of finite order. $T=T_{1} \cup T_{2}$

$$
=\left\{\left(\left[0, \mathrm{a}_{1}\right],\left[0, \mathrm{a}_{2}\right], 0,0,\left[0, \mathrm{a}_{3}\right],\left[0, \mathrm{a}_{4}\right]\right) / \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{20}, 1 \leq \mathrm{i} \leq 4\right\}
$$

$$
\left\{\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 1 & 3 & 4 & 5 & 6
\end{array}\right),\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 2 & 3 & 4 & 5 & 6
\end{array}\right)\right.
$$

$$
\left.\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 1 & 3 & 4 & 5 & 6
\end{array}\right),\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 2 & 3 & 4 & 5 & 6
\end{array}\right)\right\}
$$

$\subseteq \mathrm{S}_{1} \cup \mathrm{~S}_{2}$ be a semi interval bisubsemigroup of finite order. Clearly T is not an ideal of S.

Example 1.1.46: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=$

$$
\left\{\left.\left[\begin{array}{c}
{\left[0, a_{1}\right]} \\
{\left[0, a_{2}\right]} \\
\vdots \\
{\left[0, a_{10}\right]}
\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Q}^{+} \cup\{0\} ; 1 \leq \mathrm{i} \leq 10\right\}
$$

$\cup\left\{\right.$ All $10 \times 10$ matrices with entries from $\mathrm{Z}_{6}$ \}, $\left(\mathrm{S}_{1}\right.$ under interval matrix multiplication) is a semi interval bisemigroup of infinite order. Take $\mathrm{I}=\mathrm{I}_{1} \cup \mathrm{I}_{2}$

$$
=\left\{\left.\left[\begin{array}{c}
{[0, \mathrm{a}]} \\
{[0, \mathrm{a}]} \\
\vdots \\
{[0, \mathrm{a}]}
\end{array}\right] \right\rvert\, \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\}
$$

$\cup\left\{\right.$ All $10 \times 10$ upper triangular matrices with entries from $\left.\mathrm{Z}_{6}\right\}$ $\subseteq \mathrm{S}_{1} \cup \mathrm{~S}_{2}$ is a semi interval subbisemigroup of S and I is not an ideal of $S$.

Now we will give examples of ideals in a semi interval bisemigroups.

Example 1.1.47: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\} \cup$ $\left\{\right.$ All $5 \times 5$ matrices with entries from $\left.\mathrm{Z}^{+} \cup\{0\}\right\}$ be a semi interval bisemigroup of infinite order. $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\{[0, \mathrm{a}] / \mathrm{a}$
$\left.\in 3 \mathrm{Z}^{+} \cup\{0\}\right\} \cup\left\{\right.$ All $5 \times 5$ matrices with entries from $5 \mathrm{Z}^{+} \cup$ $\{0\}\} \subseteq S_{1} \cup S_{2}$, is an ideal of $S$.

Example 1.1.48: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{\left(\left[0, \mathrm{a}_{1}\right],\left[0, \mathrm{a}_{2}\right], \ldots,\left[0, \mathrm{a}_{7}\right]\right) /\right.$ $\left.a_{i} \in Z_{24} ; 1 \leq i \leq 7\right\} \cup\left\{Z_{30}, \times\right\}$ be a semi interval bisemigroup of finite order. Consider I $=\mathrm{I}_{1} \cup \mathrm{I}_{2}=\left\{\left(\left[0, \mathrm{a}_{1}\right],\left[0, \mathrm{a}_{2}\right], \ldots\right.\right.$, $\left.\left.\left[0, a_{7}\right]\right) / a_{i} \in\{0,2,4,6, \ldots, 22\} \subseteq \mathrm{Z}_{24} ; 1 \leq \mathrm{i} \leq 7\right\} \cup\{\{0,10$, $20\} . x\} \subseteq S_{1} \cup S_{2} ; I$ is an ideal of $S$.

Example 1.1.49: Let $S=S_{1} \cup S_{2}=\{$ All $6 \times 6$ matrices with entries from $\left.\mathrm{Z}^{+} \cup\{0\}\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Q}^{+} \cup\{0\}\right\}$ be a semi interval bisemigroup. We see S has semi interval sub bisemigroups but no ideals. However $\mathrm{S}_{1}$ contains ideals and $\mathrm{S}_{2}$ has no ideals. We call $\mathrm{I}=\mathrm{I}_{1} \cup\{0\}$ where $\mathrm{I}_{1}$ is an ideal of $\mathrm{S}_{1}$ as quasi semi interval biideal of $S$.

We will first illustrate this situation by some examples.

Example 1.1.50: Let $S=S_{1} \cup S_{2}=\left(Q^{+} \cup\{0\}\right) \cup\{[0, a] / a \in$ $\left.\mathrm{Z}^{+} \cup\{0\}\right\}$ be a semi interval bisemigroup. Consider $\mathrm{J}=\mathrm{J}_{1} \cup \mathrm{~J}_{2}$ $=\{0\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in 7 \mathrm{Z}^{+} \cup\{0\}\right\} \subseteq \mathrm{S}_{1} \cup \mathrm{~S}_{2} ; \mathrm{J}$ is a quasi semi interval biideal of $S$.

Example 1.1.51: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{7}\right\} \cup\{$ all $12 \times$ 12 matrices with entries from $\left.\mathrm{Z}_{12}\right\}$ be a semi interval bisemigroup. $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\{0\} \cup\{12 \times 12$ matrices with entries from $\left.\{0,2,4,6,8,10\} \subseteq \mathrm{Z}_{12}\right\} \subseteq \mathrm{S}_{1} \cup \mathrm{~S}_{2}$; T is a quasi semi interval biideal of $S$.

Example 1.1.52: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{\mathrm{Z}_{11}\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}^{+} \cup\right.$ $\{0\}\}$ be a semi interval bisemigroup. $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\{0\} \cup$ $\left\{[0, \mathrm{a}] \mid \mathrm{a} \in 3 \mathrm{Z}^{+} \cup\{0\}\right\} \subseteq \mathrm{S}_{1} \cup \mathrm{~S}_{2}$ is a quasi semi interval biideal of $S$.

Example 1.1.53: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\mathrm{Q}^{+} \cup\{0\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\mathrm{Z}_{13}\right\}$ be a semi interval bisemigroup, S has no ideals.

In view of this we can as in case of interval bisemigroups define simple semi interval bisemigroups and ideally simple semi interval bisemigroup; we only give examples of this.

Example 1.1.54: Let $S=S_{1} \cup S_{2}=\left(\mathrm{Z}_{7}, x\right) \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{13}\right\}$ be a semi interval bisemigroup. Clearly S is an ideally simple interval bisemigroup. However $P=P_{1} \cup P_{2}=\{0,1,6\} \cup$ $\{[0,1], 0,[0,12]\} \subseteq S_{1} \cup S_{2}$ is a semi interval bisubsemigroup of $S$ which is not an ideal of $S$.

Example 1.1.55: Let $S=S_{1} \cup S_{2}=\left\{\left.\begin{array}{c}{\left.\left[\begin{array}{c}{[0, a]} \\ {[0, a]} \\ \vdots \\ {[0, a]}\end{array}\right] \right\rvert\,}\end{array} \right\rvert\, a \in Z_{13}\right\} \cup$ $\left\{([0, \mathrm{a}][0, \mathrm{a}][0, \mathrm{a}]) / \mathrm{a} \in \mathrm{Z}_{43}\right\}$ be a semi interval bisemigroup. Clearly S is a simple as well as ideally simple semi interval bisemigroup.

We can define bizero divisors, biidempotents and biunits in semi interval bisemigroups. We also can define quasi bizero divisors, quasi biunits and quasi biidempotents for semi interval bisemigroups as in case of interval bisemigroups. This task is a matter of routine and the reader is expected to do this job.

We will only give examples of these.
Example 1.1.56: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{\mathrm{Z}_{12}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{24}\right\}$ be a semi interval bisemigroup. $\mathrm{X}=\{6\} \cup\{[0,12]\}$ is a zero divisor for $\mathrm{Y}=\{4\} \cup\{[0,2]\}$ in S is such that $\mathrm{XY}=0 \cup 0$. Consider $\mathrm{x}=\{4\} \cup\{0,16]\} \in \mathrm{S}$ is such that $\mathrm{x}^{2}=\mathrm{x}=\{4\} \cup$ $\{[0,16]\}$, thus x is a biidempotent.

Consider $\mathrm{m}=\{11\} \cup\{[0,23]\} \in \mathrm{S}$ is such that $\mathrm{m}^{2}=\{1\} \cup$ $[0,1]$, hence $m$ is a biunit in $S$.

Example 1.1.57: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{18}\right\} \cup\left\{\mathrm{Z}^{+} \cup\right.$ $\{0\}\}$ be a semi interval bisemigroup. Consider $x=[0,17] \cup 0$ is
a quasi biunit. $\mathrm{Y}=[0,9] \cup\{0\}$ is a quasi biidempotent in S . Consider $\alpha=[0,6] \cup\{0\} \in S$; we have $\beta=[0,3] \cup\{0\} \in S$ is such that $\alpha . \beta=0 \cup 0$.

We call a semi interval bisemigroup $S=S_{1} \cup S_{2}$ to be Ssemi interval bisemigroup (Smarandache semi interval bisemigroup) if both $\mathrm{S}_{1}$ and $\mathrm{S}_{2}$ are Smarandache semigroups.

We will give examples of them.

Example 1.1.58: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{\left[0\right.\right.$, a] $\left./ \mathrm{a} \in \mathrm{Z}_{17}\right\} \cup\{2 \times 2$ matrices with entries from $\left.\mathrm{Q}^{+} \cup\{0\}\right\}$ be a semi interval bisemigroup. Consider

$$
\mathrm{A}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{17} \backslash\{0\}\right\} \cup\left\{\left.\left[\begin{array}{cc}
\mathrm{a} & 0 \\
0 & \mathrm{~b}
\end{array}\right] \right\rvert\, \mathrm{b}, \mathrm{a} \in \mathrm{Q}^{+}\right\} \subseteq \mathrm{S}_{1} \cup \mathrm{~S}_{2},
$$

is a semi interval bigroup.

Hence $S$ is a S -semi interval bisemigroup.
Example 1.1.59: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\mathrm{Z}^{+} \cup\{0\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Q}^{+}\right.$ $\cup\{0\}\}$ be a semi interval bisemigroup. S is not a S -semi interval bisemigroup as $\mathrm{S}_{1}$ is not a S-semigroup.

In view of this we have the following definition. If a semi interval bisemigroup $S$ has only one of $S_{1}$ or $S_{2}$ to be a $S$ semigroup then we define $S$ to be a quasi Smarandache semi interval bisemigroup.

Example 1.1.60: Let $S=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{3 \mathrm{Z}^{+} \cup\{0\}\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\mathrm{Z}_{48}\right\}$ be a semi interval bisemigroup. Clearly S is only a quasi $\mathrm{S}-$ semi interval bisemigroup as $S_{1}$ is not a S -semigroup. $\mathrm{S}_{2}$ contains $\mathrm{A}_{2}=\{[0,1],[0,47]\} \subseteq \mathrm{S}_{2}$ is an interval group.

Example 1.1.61: Let $S=S_{1} \cup S_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in 5 \mathrm{Z}^{+} \cup\{0\}\right\} \cup$ $\left\{\mathrm{Z}_{30}\right\}$ be a semi interval bisemigroup. S is only a quasi S -semi interval bisemigroup as $S_{1}$ has no proper interval subgroup
where as in $S_{2}, A_{2}=\{1,29\}$ to be a subset which is a group. That is $\mathrm{A}_{2}=\{1,29\} \subseteq \mathrm{S}_{2}$. Hence S is only a quasi S -semi interval bisemigroup. Now we can define ideals and subsemigroups for semi interval bisemigroups also. This task is left as an exercise for the reader.

In the next section we proceed onto define the notion of interval bigroupoids and discuss the properties associated with them.

### 1.2 Interval Bigroupoids

In this section we define interval bigroupoids and quasi interval bigroupoids. We also discuss the properties associated with them and analyse their substructures.

DEFINITION 1.2.1: Let $G=G_{1} \cup G_{2}$ where both $G_{1}$ and $G_{2}$ are interval groupoids; then we define $G$ to be a interval bigroupoid or biinterval groupoid under the operation ' $\cdot$ ' inherited from $G_{1}$ and $G_{2}$.

For more about interval groupoids please refer [7, 11, 14]. We will illustrate this situation by some examples.

Example 1.2.1: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}],{ }^{*},(2,3), \mathrm{a} \in \mathrm{Z}_{7}\right\} \cup$ $\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}^{+} \cup\{0\}\right.$, *, $\left.(7,10)\right\}$ be an interval bigroupoid or biinterval groupoid under the operation '. '; we see $G$ is of infinite biorder. Further if $x=[0,3] \cup[0,20]$ and $y=[0,2] \cup$

$$
\begin{aligned}
{[0,1] } & \in G=G_{1} \cup G_{2} ; \\
x \cdot y & =([0,3] \cup[0,20]) \cdot([0,2] \cup[0,1]) \\
& =[0,3] *[0,2] \cup[0,20] *[0,1] \\
& =[0,6+6(\bmod 7)] \cup[0,20 \times 7+1 \times 10] \\
& =[0,5] \cup[0,150] \in G .
\end{aligned}
$$

Example 1.2.2: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] /^{*},(3,9), \mathrm{a} \in \mathrm{Z}_{20}\right\} \cup$ $\left.[0, \mathrm{~b}] /^{*},(2,11), \mathrm{b} \in \mathrm{Z}_{14}\right\}$ be an interval bigroupoid with an
operation '. ' on G . Let $\mathrm{x}=[0,3] \cup[0,7]$ and $\mathrm{y}=[0,1] \cup[0$, 13] be in G .

$$
\begin{aligned}
\text { x.y } & =([0,3] \cup[0,7]) \cdot([0,1] \cup[0,13]) \\
& =[0,3] *[0,1] \cup[0,7] *[0,13] \\
& =[0,9+9(\bmod 20)] \cup[0,14+13 \times 11(\bmod 14)] \\
& =[0,18] \cup[0,3]
\end{aligned}
$$

(G, .) is an biinterval groupoid of finite order. Clearly G is non associative and non commutative.

Example 1.2.3: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right.$, *, (7, $2)\} \cup\left\{[0, \mathrm{~b}] \mid \mathrm{b} \in \mathrm{Q}^{+} \cup\{0\}\right.$, , $\left.(17,5)\right\}$ be a biinterval groupoid of infinite order. $G$ is both non associative and non commutative.

Example 1.2.4: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right.$, *, $(4,7)\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}^{+} \cup\{0\},{ }^{*}\right.$, $\left.(21,17)\right\}$ be a interval bigroupoid of infinite order.

Example 1.2.5: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{14},{ }^{*},(10,0)\right\}$ $\cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{14},{ }^{*},(2,5)\right\}$ be an interval bigroupoid of finite order. G is non commutative.

Example 1.2.6: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{11}\right.$, ,,$\left.(3,7)\right\} \cup$ $\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{13}\right.$, *, (3, 7)\} be an interval bigroupoid of finite order.

Now we have seen examples of interval bigroupoids.
We proceed onto give examples of substructures in them. It is important and interesting to note that it is not very easy to find substructures for the operation '*' defined on them is in a complicated way to make the binary operation non associative.

Example 1.2.7: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right.$, *, $(8,12)\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right.$, $\left.{ }^{*},(2,6)\right\}$ be an interval bigroupoid. Consider $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in 2 \mathrm{Z}^{+} \cup\{0\}\right\} \cup$
$\left\{[0, \mathrm{~b}] / \mathrm{b} \in 2 \mathrm{Z}^{+} \cup\{0\},{ }^{*},(2,6)\right\} \subseteq \mathrm{G}_{1} \cup \mathrm{G}_{2} ; \mathrm{H}$ is an interval subgroupoid of G .

Suppose we have $\mathrm{G}_{1}=\left\{[0, \mathrm{a}] / \mathrm{a} \in 3 \mathrm{Z}^{+} \cup\{0\}\right.$, , $^{(3 / 2,9)\}}$ is not a groupoid for if we consider $[0,3],[0,4]$ in $\mathrm{G}_{1}$

$$
\begin{aligned}
{[0,3] *[0,4] } & =[0,3.3 / 2+4.3] \\
& =[0,9 / 2+12] \\
& =[0,33 / 2] \notin \mathrm{G}_{1} .
\end{aligned}
$$

So while choosing the pair which operates on $G_{1}$ we need them to be present in $\mathrm{G}_{1}$. For if this point is not taken into account we will have problem about the closure of the operation defined on $\mathrm{G}_{1}$.

Example 1.2.8: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{6},{ }^{*},(2,4)\right\} \cup$ $\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{8}, *,(2,6)\right\}$ be an interval bigroupoid. Take $\mathrm{P}=\mathrm{P}_{1}$ $\cup \mathrm{P}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in\{0,2,4\} \subseteq \mathrm{Z}_{6},{ }^{*},(2,4)\right\} \cup\{[0, \mathrm{~b}] \mid \mathrm{b} \in\{0$, $\left.2,4,6\} \subseteq \mathrm{Z}_{8}, *,(2,6)\right\} \subseteq \mathrm{G}_{1} \cup \mathrm{G}_{2}, \mathrm{P}$ is an interval bigroupoid of G .

Example 1.2.9: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12},{ }^{*},(2,10)\right\}$ $\cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{12},{ }^{*},(10,8)\right\}$ be an interval bigroupoid. $\mathrm{P}=\mathrm{P}_{1}$ $\cup \mathrm{P}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in\{0,2,4,6,8,10\} \subseteq \mathrm{Z}_{12}, *(2,10)\right\} \cup\{[0, \mathrm{~b}]$ $\left./ \mathrm{b} \in\{0,4,8\} \subseteq \mathrm{Z}_{12},(10,8)\right\} \subseteq \mathrm{G}_{1} \cup \mathrm{G}_{2}$ is such that P is an interval subbigroupoid.

Now we can define on an interval bigroupoid $G=G_{1} \cup G_{2}$ the notion of P -interval bigroupoid, alternative interval bigroupoid and so on.

We say an interval bigroupoid $G=G_{1} \cup \mathrm{G}_{2}$ to be a P-interval bigroupoid if both $\mathrm{G}_{1}$ and $\mathrm{G}_{2}$ are P -interval groupoids.

If only one of $G_{1}$ or $G_{2}$ is a P-interval groupoid and the other is not a P-interval groupoid then we define $G=G_{1} \cup G_{2}$ to be a quasi P-interval bigroupoid.

We will give examples of both the situations.

Example 1.2.10: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{45}\right.$, $\left.{ }^{*},(7,7)\right\}$ $\cup\left\{[0, \mathrm{~b}] / \mathrm{a} \in \mathrm{Z}_{15},{ }^{*},(4,4)\right\}$ is an interval bigroupoid which is a P -interval bigroupoid.

Example 1.2.11: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{19}\right.$, ${ }^{*}$, (3, 3) $\}$ $\cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{21},{ }^{*},(5,5)\right\}$ be an interval bigroupoid. G is an interval P-bigroupoid.

We have the following theorem the proof of which is left as an exercise to the reader.

Theorem 1.2.1: Let $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{n},{ }^{*},(t, t)\right\} \cup$ $\left\{[0, b] / b \in Z_{m}, *,(u, u)\right\}(m \neq n)$ be an interval bigroupoid. $G$ is a $P$-interval bigroupoid.

Example 1.2.12: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{25},{ }^{*},(2,2)\right\}$ $\cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{19},{ }^{*},(3,0)\right\}$ be an interval bigroupoid. Clearly G is not a P-interval bigroupoid. It is only a quasi interval Pbigroupoid.

Example 1.2.13: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{23}\right.$, $\left.{ }^{*},(4,4)\right\}$ $\cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{17},{ }^{*},(8,0)\right\}$ be an interval bigroupoid. Clearly G is a quasi P -interval bigroupoid.

Now we have some results the proofs which are direct.

THEOREM 1.2.2: Let $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{n},{ }^{*}\right.$, $(0, t)\} \cup\left\{[0, b] / b \in Z_{m},{ }^{*},(u, 0)\right\}$ be an interval bigroupoid. $G$ is a $P$-interval groupoid if and only if $t^{2}=t \bmod n$ and $u^{2}=u$ mod $m$.

THEOREM 1.2.3: Let $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{p}\right.$, $\left.{ }^{*},(t, 0)\right\}$; $p$ a prime $\} \cup\left\{[0, b] / b \in Z_{n},{ }^{*},(r, 0)\right\}$ be an interval bigroupoid. $G$ is a quasi interval P-bigroupoid if and only if $r^{2} \equiv r \bmod n$.

THEOREM 1.2.4: Let $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{n},(t, t)\right.$, * $\}$ $\left\{[0, b] / b \in Z_{p}\right.$, *, (u, 0), $p$ a prime\} be an interval bigroupoid. $G$ is a quasi interval $P$-bigroupoid.

Example 1.2.14: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{11}\right.$, $\left.{ }^{*},(8,0)\right\}$ $\cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{43},{ }^{*},(10,0)\right\}$ be an interval bigroupoid. G is not an interval P-bigroupoid or quasi interval P-bigroupoid.

We define an interval bigroupoid $G=G_{1} \cup G_{2}$ to be an alternative interval bigroupoid if both $\mathrm{G}_{1}$ and $\mathrm{G}_{2}$ are interval alternative groupoid. If only one of $\mathrm{G}_{1}$ or $\mathrm{G}_{2}$ is an interval alternative groupoid then we define G to be a quasi alternative interval bigroupoid.

We will give examples of this situation.

Example 1.2.15: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{24}\right.$, ,,$\left.(9,9)\right\}$ $\cup\left\{[0, a] / a \in Z_{12}, *,(4,4)\right\}$ be an alternative interval bigroupoid.

Example 1.2.16: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{24},{ }^{*},(9,0)\right\}$ $\cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{36},{ }^{*}\right.$, $\left.(9,9)\right\}$ be an alternative interval bigroupoid.

We have the following results which are direct.
THEOREM 1.2.5: Let $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{n}\right.$, *, $\left.(t, t)\right\} \cup$ $\left\{[0, b] / b \in Z_{m}, *,(u, u)\right\}$ be an interval bigroupoid. $G$ is an alternative interval bigroupoid if and only if $t^{2}=t \bmod n$ and $u^{2}=u \bmod m$.

Theorem 1.2.6: Let $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{n}\right.$, *, $\left.(t, 0)\right\}$ $\cup\left\{[0, b] / b \in Z_{m},{ }^{*},(u, 0)\right\}$ be an interval bigroupoid $G$ is an alternative interval bigroupoid if and only if $t^{2}=t \bmod n$ and $u^{2}=u \bmod m$.

THEOREM 1.2.7: Let $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{n},{ }^{*},(0, t)\right\}$ $\cup\left\{[0, b] / b \in Z_{m}, *,(u, u)\right\}$ be an interval bigroupoid. $G$ is an alternative interval bigroupoid if and only if $t^{2}=t \bmod n$ and $u^{2}=u \bmod m$.

We also have a class of interval bigroupoids which are not alternative interval bigroupoids, which is given by the following theorem.

THEOREM 1.2.8: Let $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{p},{ }^{*}\right.$, $(t, t) ; p$ a prime $\} \cup\left\{[0, b] / b \in Z_{p},{ }^{*},(u, u) ; q\right.$ a prime $\}$ be an interval bigroupoid. $G$ is not an alternative interval bigroupoid.

Now we will proceed onto give examples and results related with quasi interval alternative bigroupoids.

Example 1.2.17: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{19},{ }^{*},(9,0)\right\}$ $\cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{24},{ }^{*},(9,9)\right\}$ be an interval bigroupoid. Clearly $G$ is not an alternative interval bigroupoid but $G$ is a quasi alternative interval bigroupoid.

Example 1.2.18: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{47},{ }^{*},(8,8)\right\}$ $\cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12},{ }^{*},(4,4)\right\}$ be an interval bigroupoid. Clearly G is a quasi alternative interval bigroupoid.

THEOREM 1.2.9: $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{p},{ }^{*},(t, t), p a\right.$ prime $\} \cup\left\{[0, b] / a \in Z_{n}, *,(u, u)\right\}$ is a quasi interval alternative bigroupoid if and only if $u^{2}=u \bmod n$.

THEOREM 1.2.10: $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{p},{ }^{*}\right.$, $(t, 0), p$ a prime $\} \cup\left\{[0, b] / b \in Z_{n},(u, 0)\right\}$ is a quasi alternative interval bigroupoid if and only if $u^{2}=u(\bmod n)$.

We call an interval bigroupoid $G=G_{1} \cup G_{2}$ to be an idempotent interval bigroupoid if both $G_{1}$ and $G_{2}$ are idempotent interval groupoids. If only one of $G_{1}$ or $G_{2}$ is an idempotent
interval groupoid then we define $G$ to be a quasi idempotent interval bigroupoid.

We will first give examples of this situation.
Example 1.2.19: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12}\right.$, $\left.{ }^{*},(7,6)\right\}$ $\cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{15}\right.$, *, (9, 6) \} be an interval bigroupoid. Clearly G is an idempotent interval bigroupoid.

Example 1.2.20: $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{19},{ }^{*},(16,4)\right\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{13},(8,6)\right\}$ is an idempotent interval bigroupoid.

Example 1.2.21: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{15}\right.$, ${ }^{*}$, $\left.(2,3)\right\}$ $\cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{11},{ }^{*},(3,5)\right\}$ be an quasi idempotent interval bigroupoid.

We state a few theorems the proofs of which are direct.

THEOREM 1.2.11: $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{n},{ }^{*}\right.$, $(t, u)\} \cup\left\{[0, b] / b \in Z_{m},{ }^{*},(r, s)\right\}$ is an idempotent interval bigroupoid if and only if $t+u=1 \bmod n$ and $r+s=1 \bmod m$.

THEOREM 1.2.12: $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{n},{ }^{*}\right.$, $(t, u) ; t+u \neq 1 \bmod n\} \cup\left\{[0, b] / b \in Z_{m}, *,(r, s)\right\}$ is a quasi interval idempotent bigroupoid if and only if $r+s=1$ mod $m$.

We say an interval bigroupoid is bisimple if and only if both $\mathrm{G}_{1}$ and $G_{2}$ are simple.

We say quasi bisimple only one of $\mathrm{G}_{1}$ or $\mathrm{G}_{2}$ is simple.
Example 1.2.22: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12}\right.$, ${ }^{*}$, (5, 7) $\}$ $\cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{20},{ }^{*},(7,13)\right\}$ be an interval bigroupoid. G is a bisimple interval bigroupoid.

Example 1.2.23: Let $G=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{19},(2,17)\right\} \cup$ $\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{12}\right.$, $\left.{ }^{*},(11,2)\right\}$ be an interval bigroupoid. Clearly G is an interval bisimple bigroupoid.

Example 1.2.24: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{14},{ }^{*},(2,3)\right\}$ $\cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{20},{ }^{*},(17,3)\right\}$ be a quasi bisimple interval bigroupoid.

Example 1.2.25: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{13}\right.$, $\left.{ }^{*},(9,4)\right\}$ $\cup\left\{[0, \mathrm{~b}] / \mathrm{a} \in \mathrm{Z}_{36},{ }^{*},(31,5)\right\}$ be a quasi bisimple interval bigroupoid.

We give a few results and expect the reader to supply the proof.

THEOREM 1.2.13: Let $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{n},{ }^{*}\right.$, $(t$, $u)\} \cup\left\{[0, b] / b \in Z_{m},{ }^{*},(r, s)\right\}$ be an interval bigroupoid. If $n=$ $t+u$ and $m=r+s$ and $t, u, r$ and $s$ are primes then $G$ is a bisimple interval bigroupoid.

TheOrem 1.2.14: Let $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{n}, *\right.$, $(t, u) ;(t, u)=d ; d \neq 1\} \cup\left\{[0, a] / a \in Z_{m},{ }^{*},(r, s)\right\}$ be an interval bigroupoid. If $r+s=m$ and $r$ and $s$ are primes then $G$ is a quasi bisimple interval bigroupoid.

THEOREM 1.2.15: Let $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{n},{ }^{*}\right.$, $(t, u)\} \cup\left\{[0, b] / b \in Z_{m},{ }^{*},(r, s)\right\}$ be an interval bigroupoid. $G$ is an interval bisemigroupoid if and only if $(t, u)=1$ and $t^{2} \equiv t$ $\bmod n$ and $u^{2} \equiv u \bmod n$ and $(r, s)=1$ with $r^{2}=r \bmod m$ and $s^{2}=s \bmod m(t \neq 0, u \neq 0, r \neq 0$ and $s \neq 0)$.

Now we proceed onto define Smarandache interval bigroupoid $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}$. We say G is a Smarandache interval bigroupoid (S-interval bigroupoid) if each $\mathrm{G}_{\mathrm{i}}$ is a S-interval groupoid; $\mathrm{i}=1,2$.

We say quasi Smarandache interval bigroupoid if only one if one of $\mathrm{G}_{1}$ or $\mathrm{G}_{2}$ is a S-interval groupoid.

Example 1.2.26: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{8},{ }^{*},(2,6)\right\}$ $\cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{5},{ }^{*},(3,3)\right\}$ be a S-interval bigroupoid. For $\mathrm{A}=$
$\left\{[0, \mathrm{a}] / \mathrm{a} \in\{0,4\} \subseteq \mathrm{Z}_{8},{ }^{*},(2,6)\right\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in\{4\} \subseteq \mathrm{Z}_{5}\right\}=$ $A_{1} \cup A_{2} \subseteq G_{1} \cup G_{2}$ is a bisemigroup in $G$.

Example 1.2.27: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{5},{ }^{*},(1,3)\right\}$ $\cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{5}\right.$, *, $\left.(2,1)\right\}$ be an interval bigroupoid. G is not a S-interval bigroupoid as well as not a quasi S-interval bigroupoid.

Example 1.2.28: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{10}\right.$, $\left.{ }^{*},(1,2)\right\}$ $\cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{5}\right.$, $\left.{ }^{*},(2,1)\right\}$ be a quasi Smarandache interval bigroupoid.

In view of this we give the following results.
THEOREM 1.2.16: Let $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{n}\right.$, *, $(t, u),(t, u)=1 ; t \neq u ; t+u \equiv 1(\bmod n)\} \cup\left\{[0, b] / b \in Z_{m}, *\right.$, $(r, s),(r, s)=1, r \neq s, r+s=1(\bmod m)\}(m>5$ and $n>5)$ be an interval bigroupoid. $G$ is a $S$-biinterval groupoid.

Now as in case in usual bigroupoids we can define Smarandache interval bigroupoid, this task exercise for the reader.

Example 1.2.29: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{8},{ }^{*},(2,6)\right\}$ $\cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{12},{ }^{*},(3,9)\right\}$ be an interval bigroupoid $\mathrm{P}=\mathrm{P}_{1} \cup$ $\mathrm{P}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in\{0,2,4,6\} \subseteq \mathrm{Z}_{8},{ }^{*},(2,6)\right\} \cup\{[0, \mathrm{~b}] / \mathrm{b} \in\{0$, $3,6,9\} \subseteq \mathrm{Z}_{12}$, *, $\left.(3,9)\right\} \subseteq \mathrm{G}_{1} \cup \mathrm{G}_{2}$ is a Smarandache interval subbigroupoid of $G$.

The notion of Smarandache interval P-subbigroupoid, Smarandache strong P-interval groupoid, Smarandache Bol interval bigroupoid, Smarandache strong Bol interval bigroupoid, Smarandache right alternative interval bigroupoid so on can be defined as in case of usual groupoids [7, 11, 14].

We will give examples and related results for the reader. The definition is a matter of routine.

Example 1.2.30: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12}\right.$, $\left.{ }^{*},(3,4)\right\}$ $\cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{4},{ }^{*},(2,3)\right\}$ be an interval bigroupoid. It is easily verified G is a Smarandache interval Bol bigroupoid.

Example 1.2.31: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{6}\right.$, $\left.{ }^{*},(4,3)\right\}$ $\cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{6},{ }^{*},(3,5)\right\}$ be an interval groupoid. G is a Smarandache interval P-bigroupoid.

Example 1.2.32: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{10},{ }^{*},(5,6)\right\}$ $\cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{12}, *,(3,9)\right\}$ be an interval bigroupoid. G is a Smarandache Moufang interval bigroupoid.

Example 1.2.33: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{11}\right.$, $\left.{ }^{*},(6,6)\right\}$ $\cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{19},{ }^{*},(10,10)\right\}$ be an interval bigroupoid. It is easily verified $G$ is a Smarandache idempotent bigroupoid.

We will now state a theorem the proof of which is left as an exercise for the reader.

THEOREM 1.2.17: Let $G=G_{1} \cup G_{2}=\left\{[0, a] / *, a \in Z_{p}\right.$, $\left.\left(\frac{p+1}{2}, \frac{p+1}{2}\right)\right\} \cup\left\{[0, b] / *, b \in Z_{q},\left(\frac{q+1}{2}, \frac{q+1}{2}\right)\right\}$, where $p$ and $q$ are two distinct primes, then $G$ is a Smarandache idempotent interval bigroupoid.

THEOREM 1.2.18: Let $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{n},{ }^{*}\right.$, $(m, m)\} \cup\left\{[0, a] / a \in Z_{s}, *,(t, t)\right\}$ where $t \neq n$ and $m+m \equiv 1$ $(\bmod n), t+t \equiv 1(\bmod t)$ and $m^{2}=m(\bmod n)$ and $t^{2}=t(\bmod$ s). $G$ is $a$

1. Smarandache idempotent interval bigroupoid.
2. S-strong P-interval bigroupoid .
3. Smarandache strong interval Bol bigroupoid.
4. Smarandache strong Moufang interval bigroupoid.
5. Smarandache strong interval alternative bigroupoid.

THEOREM 1.2.19: Let $G=G_{1} \cup G_{2}$ be a S-strong alternative interval bigroupoid then $G$ is a S-alternative interval bigroupoid.

In this theorem 1.2.19 if we replace the S -strong alternative interval groupoid. G by S-strong Moufang or S-strong Pbigroupoid or S -strong idempotent bigroupoid or S -strong Bol bigroupoid then $G$ will be a S-Moufang or S-P-groupoid or Sidempotent bigroupoid or S-Bol interval bigroupoid.

THEOREM 1.2.20: $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{n}\right.$, *, $(t, u),(t+u) \equiv 1 \bmod n\} \cup\left\{[0, b] / b \in Z_{m}, *,(r, s),(r+s) \equiv 1\right.$ $\bmod m\}, m \neq n$ is a S-strong Moufang interval bigroupoid, S-interval idempotent bigroupoid, S-strong Bol interval bigroupoid and S-strong alternative interval bigroupoid if and only if $t^{2} \equiv t(\bmod n), u^{2} \equiv u(\bmod n), r^{2} \equiv r(\bmod m)$ and $s^{2} \equiv$ $s(\bmod m)$.

THEOREM 1.2.21: Let $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{n},{ }^{*}\right.$, (m, $0)\} \cup\left\{[0, b] / b \in Z_{t}, *,(r, 0)\right\}, t \neq n$ with $m^{2} \equiv m(\bmod n)$ and $r^{2}$ $=r(\bmod t)$. Then $G$ is a $S$-strong Bol interval bigroupoid, $S$ strong Moufang interval bigroupoid, S-strong P-interval bigroupoid and S-strong alternative interval bigroupoid.

Several interesting results in this direction can be obtained by any interested reader.

Now we can define quasi interval bigroupoid, as a bigroupoid $G=G_{1} \cup G_{2}$ where only one of $G_{1}$ or $G_{2}$ is an interval groupoid and the other is just a groupoid.

We will illustrate this situation by some examples.

Example 1.2.34: Let $G=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{7},{ }^{*}\right.$, $\left.(3,2)\right\}$ $\cup \mathrm{Z}_{11}(5,4)$ be a quasi interval bigroupoid. Clearly G is of finite order.

Example 1.2.35: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right.$, *, $(7,8)\} \cup \mathrm{Z}_{17}(3,8)$ be a quasi interval bigroupoid of infinite order.

Example 1.2.36: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{27}\right.$, $\left.{ }^{*},(3,8)\right\}$ $\cup\left\{\mathrm{Z}_{27}(19,4)\right\}$ be a quasi interval bigroupoid of finite order. Now we can find substructure in them.

Example 1.2.37: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{6},{ }^{*},(2,2)\right\}$ $\cup\left\{\mathrm{Z}_{6}(0,2)\right\}$ be a quasi interval bigroupoid. $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\{[0$, a] $\left./ \mathrm{a} \in\{0,2,4\}^{*},(2,2)\right\} \cup\left\{\{0,2,4\} \subseteq \mathrm{Z}_{6},{ }^{*},(0,2)\right\}$ is a quasi interval subbigroupoid of $G$.

Example 1.2.38: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12}\right.$, $\left.{ }^{*},(3,9)\right\}$ $\cup\left\{\mathrm{Z}_{6}(5,5)\right\}$ be a quasi interval bigroupoid. $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\{[0$, a] /a $\left.\in\{0,3,6,9\},{ }^{*},(3,9)\right\} \cup\left\{\{4\} \subseteq \mathrm{Z}_{6},{ }^{*},(5,5)\right\} \subseteq \mathrm{G}_{1} \cup$ $\mathrm{G}_{2}$ is a quasi interval subbigroupoid of G .

Example 1.2.39: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12}\right.$, $\left.{ }^{*},(2,10)\right\}$ $\cup\left\{\mathrm{Z}_{12}(10,8)\right\}$ be a quasi interval bigroupoid. Consider $P=P_{1} \cup P_{2}=\left\{[0, a] / a \in\{0,2,4,6,8,10\} \subseteq Z_{12},{ }^{*},(2,10)\right\} \cup$ $\left\{\{2,6,10\} \subseteq \mathrm{Z}_{12}, *,(10,8)\right\} \subseteq \mathrm{G}_{1} \cup \mathrm{G}_{2}, \mathrm{P}$ is a quasi interval subbigroupoid of $G$.

Now we say a quasi interval bigroupoid is a Smarandache quasi interval bigroupoid if it has quasi interval bisemigroup. Likewise one can derive results for other S-structures associated with identities. We will illustrate these situations by some examples.

Example 1.2.40: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{18},{ }^{*},(0,3)\right\}$ $\cup\left\{\mathrm{Z}_{18}(0,11)\right.$ be a quasi interval bigroupoid. Clearly G is not a quasi P -interval bigroupoid or a quasi alternative interval bigroupoid.

Example 1.2.41: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12}\right.$, $\left.{ }^{*},(0,4)\right\}$ $\cup\left\{\mathrm{Z}_{6}(0,3)\right\}$ be a quasi P interval bigroupoid as well as quasi alternative interval bigroupoid.

Example 1.2.42: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12}\right.$, $\left.{ }^{*},(9,0)\right\}$ $\cup\left\{\mathrm{Z}_{9}(0,10)\right\}$ be a quasi P-interval bigroupoid as well as quasi alternative interval bigroupoid.

We will give a theorem which gurantees the existence of quasi P-interval bigroupoid and quasi alternative interval bigroupoid.

THEOREM 1.2.22: Let $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{n}\right.$, *, $(0, t)\} \cup\left\{Z_{m}(0, r)\right\}$ be a quasi interval bigroupoid. $G$ is a quasi $P$-interval bigroupoid and quasi interval alternative bigroupoid if and only if $t^{2} \equiv t(\bmod n)$ and $r^{2} \equiv r(\bmod m), m \neq n$.

Corollary 1.2.1: In the above theorem if $n$ and $m$ are primes then the statement of the theorem is not true.

We also have a class of quasi normal interval bigroupoid.
Example 1.2.43: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{13}\right.$, $\left.{ }^{*},(7,7)\right\}$ $\cup\left\{\mathrm{Z}_{19}(2,2)\right\}$ be a quasi interval bigroupoid. Clearly G is a quasi interval normal bigroupoid.

Example 1.2.44: Let $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{43},(17,17)\right\}$ $\cup \mathrm{Z}_{23}(4,4)$ be a quasi normal interval bigroupoid.

In view of this we have the following theorem.
Theorem 1.2.23: Let $G=G_{1} \cup G_{2}=Z_{p}(t, t) \cup\{[0, a] / a \in$ $\left.Z_{q},{ }^{*},(u, u)\right\} p$ and $q$ are primes with $t<p$ and $u<q$, then $G=G_{1} \cup G_{2}$ is a quasi normal interval bigroupoid.

The proof is easy and hence is left as an exercise for the reader.

THEOREM 1.2.24: Let $G=G_{1} \cup G_{2}=Z_{n}(t, t) \cup\{[0, b] / b \in$ $\left.Z_{m},{ }^{*},(u, u)\right\}$ be a quasi interval bigroupoid. $G$ is a quasi interval P-bigroupoid.

THEOREM 1.2.25: Let $G=G_{1} \cup G_{2}=Z_{n}(t, t) \cup\{[0, a] / a \in$ $\left.Z_{m},{ }^{*},(u, u)\right\}, 1<t<n$ and $1<u<m$ be a quasi interval bigroupoid, $G$ is a not a quasi alternative interval bigroupoid if $m$ and $n$ are primes.

In view of this we have the following corollary.

COROLLARY 1.2.2: Let $G=G_{1} \cup G_{2}=Z_{n}(t, t) \cup\{[0, b] /$ $\left.b \in Z_{m},{ }^{*},(u, u)\right\}, n$ and $m$ are not primes be a quasi interval bigroupoid. $G$ is a quasi alternative interval bigroupoid if and only if $t^{2}=t(\bmod n)$ and $u^{2}=u(\bmod m)$.

Proof: Follows from the fact

$$
t^{2} x+t^{2} y+t x=t x+t^{2} y+t^{2} x \bmod n
$$

and

$$
\begin{gathered}
{\left[0, u^{2} b\right]+\left[0, u^{2} d\right]+[0, u b]=[0, u b]+\left[0, u^{2} d\right]+\left[0, u^{2} b\right]} \\
\text { i.e., }\left[0, u^{2} b+u^{2} d+u b\right]=\left[0, u b+u^{2} d+u^{2} b\right]
\end{gathered}
$$

where

$$
([0, \mathrm{~b}] *[0, \mathrm{~d}]) *([0, \mathrm{~b}])=([0, \mathrm{~b}] *([0, \mathrm{~d}] *[0, \mathrm{~b}])
$$

For more about these properties refer [7, 11, 14].

Example 1.2.45: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12},{ }^{*}\right.$, $(7,5)\} \cup\left\{\mathrm{Z}_{24}(13,11)\right\}$ be a quasi interval bigroupoid. Clearly G is a simple quasi interval bigroupoid.

Example 1.2.46: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{7}(2,5)\right\} \cup$ $\left\{\mathrm{Z}_{20}(7,13)\right\}$ be a simple quasi interval bigroupoid.

THEOREM 1.2.26: Let $G=G_{1} \cup G_{2}=Z_{n}(t, p) \cup\{[0, a] / a \in$ $\left.Z_{m} ;{ }^{*},(q, r)\right\}$ be a quasi interval bigroupoid. If $t+p=n$ and $q+r=m$ where $t, p, q$ and $r$ are primes then $G$ is a simple quasi interval bigroupoid.

THEOREM 1.2.27: Let $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{n}\right.$, ${ }^{*},(t, u)$ $\left.=1 ; t, u \in Z_{n} \backslash\{0\}\right\} \cup\left\{Z_{m}(r, s) /(r, s)=1 r, s, \in Z_{m} \backslash\{0\}\right\}$ be $a$ quasi interval bigroupoid. $\{0\} \cup\{0\}$ is not a biideal of $G$.

THEOREM 1.2.28: Let $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{n}\right.$, *, $(t, u) ; t, u \in Z_{n} \backslash\{0\}$ and $\left.(t, u)=1\right\} \cup\left\{Z_{m}(r, s) / r, s \in Z_{m} \backslash\{0\}\right.$ and $(r, s)=1\}$ be a quasi interval bigroupoid. $G$ is a quasi interval bisemigroup if and only if $t^{2} \equiv t(\bmod n), u^{2} \equiv u(\bmod n)$, $r^{2} \equiv r(\bmod n)$ and $s^{2} \equiv s(\bmod n)$.

Now we give examples of these situations.

Example 1.2.47: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{20}\right.$, ${ }^{*}$, $\left.(8,12)\right\}$ $\cup\left\{\mathrm{Z}_{15},(7,8)\right\}$ be a quasi interval bigroupoid. G is a quasi idempotent interval bigroupoid.

Example 1.2.48: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{10}\right.$, $\left.{ }^{*},(5,6)\right\}$ $\cup\left\{\mathrm{Z}_{12}(4,9)\right\}$ be a quasi interval bigroupoid. Clearly G is a quasi interval bisemigroup.

Example 1.2.49: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{4}\right.$, $\left.{ }^{*},(2,3)\right\}$ $\cup\left\{\mathrm{Z}_{4}(3,2)\right\}$ be the quasi interval bigroupoid. G has both left ideals as well as right ideals.

In view of this we have the following theorem.

THEOREM 1.2.29: Let $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{n},{ }^{*},(t, u)\right\}$ $\cup\left\{Z_{m}(p, q)\right\}$ be a quasi interval bigroupoid. $P=P_{1} \cup P_{2}$ is a right biideal of $G$ if and only if $P=P_{1} \cup P_{2}$ is a left biideal of $G^{\prime}=G_{1}^{\prime} \cup G_{2}^{\prime}=\left\{[0, a] / a \in Z_{n}, *,(u, t)\right\} \cup\left\{Z_{n}(q, p)\right\}$.

We as in case of interval bigroupoid can define S-interval quasi bigroupoid or S-quasi interval bigroupoid. The definition is a matter of routine, so we will give only examples of them.

Example 1.2.50: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12}\right.$, $\left.{ }^{*},(1,3)\right\}$ $\cup\left\{\mathrm{Z}_{5}(3,3)\right.$ be a quasi interval bigroupoid. Clearly G is a

Smarandache quasi interval bigroupoid as $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\{[0, \mathrm{a}] /$ $\left.a \in\{0,6\},{ }^{*},(1,3)\right\} \cup\left\{a=\{4\}, *,(3,3), 4 \in Z_{5}\right\} \subseteq G_{1} \cup G_{2}$ is a quasi interval bisemigroup. Hence the claim.

Example 1.2.51: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{6}\right.$, $\left.{ }^{*},(4,5)\right\}$ $\cup\left\{\mathrm{Z}_{6},(2,4)\right\}$ be a quasi interval bigroupoid. Consider $\mathrm{P}=$ $P_{1} \cup P_{2}=\left\{[0, a] / a \in\{1,3,5\} \subseteq Z_{6}, *,(4,5)\right\} \cup\{(0,2,4) \subseteq$ $\left.\mathrm{Z}_{6},{ }^{*},(2,4)\right\} \subseteq \mathrm{G}_{1} \cup \mathrm{G}_{2}, \mathrm{P}$ is an interval biideal of G .

However P is not a S -biideal of G .
Several other concepts like S-semi normal S-semiconjugate and S-normal can be defined for quasi interval bigroupoids. We can define identities in these special type of bigroupoids also. This task is also a matter of routine hence left to the reader. However we will give examples of them.

Example 1.2.52: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{10}\right.$, ${ }^{*}$, $\left.(5,6)\right\}$ $\cup\left\{\mathrm{Z}_{12},(3,9)\right\}$ be a quasi interval Smarandache Moufang bigroupoid.

Example 1.2.53: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12},{ }^{*},(3,4)\right\}$ $\cup\left\{\mathrm{Z}_{4}(2,3)\right\}$ be a quasi Smarandache Bol interval bigroupoid.

Example 1.2.54: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{6}\right.$, $\left.{ }^{*},(4,3)\right\}$ $\cup\left\{\mathrm{Z}_{6}(3,5)\right\}$ be a quasi Smarandache P-interval bigroupoid of finite order.

Example 1.2.55: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{14},{ }^{*},(7,8)\right\}$ $\cup\left\{\mathrm{Z}_{12}(1,6)\right\}$ be a Smarandache quasi alternative interval bigroupoid.

Now results related with interval bigroupoids can be got in an analogous way for quasi interval bigroupoids also. This task is left as an exercise to the reader. Now we define interval semigroup interval groupoid which we term as biinterval groupoid-semigroup or biinterval semigroup-groupoid.

DEFINITION 1.2.2: Let $G=S \cup G_{1}$ where ( $S,$. ) is an interval semigroup and $\left(G_{1}, *\right)$ is an interval groupoid. $(G, o)$ which inherits the operations of $S$ and $G_{1}$ is defined to be a biinterval semigroup groupoid. The operation 'o' is defined as follows.

First of all $G=S \cup G_{1}=\{[0, s] /[0, s] \in S\} \cup\left\{\left[0, g_{1}\right] /\right.$ $\left.\left[0, g_{1}\right] \in G_{1}\right\}=\left\{[0, s] \cup\left[0, g_{1}\right] /[0, s] \in S\right.$ and $\left.\left[0, g_{1}\right] \in G_{1}\right\}$.

Let $x=[0, s] \cup[0, g]$ and $y=[0, t] \cup[0, h]$ be in $G$. $x$ o $y=([0, s] \cup[0, g]) o([0, t] \cup[0, h])$
$=\{([0, s] .[0, t] \cup[0, g] *[0, h])\}=[0, s t] \cup\left[0, g^{*} h\right] \in G$ as $[0, s t] \in S$ and $\left[0, g^{*} h\right] \in G_{1}$.

Elements of $G$ are biintervals so we define $G$ as biinterval semigroup- groupoid. We will first illustrate this situation by some examples.

Example 1.2.56: Let $G=\mathrm{G}_{1} \cup \mathrm{~S}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{14},{ }^{*}\right.$, $\left.(3,7)\right\}$ $\cup\left\{[0, \mathrm{t}] / \mathrm{t} \in \mathrm{Z}^{+} \cup\{0\}, \times\right\}$ be a biinterval groupoid-semigroup.

Example 1.2.57: Let $G=S \cup G_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{15}\right.$, under multiplication modulo 15$\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{18}, *,(5,7)\right\}$ be a biinterval semigroup-groupoid. We see $G$ is of finite order and is non commutative.
Example 1.2.58: Let $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{20}\right.$, multiplication under modulo 20$\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{20}\right.$, *, (3, 7) $\}$ be a biinterval semigroup - groupoid of finite order; order of $G$ is just $(20,20)$ so $20^{2}$ elements are in $G$.

Example 1.2.59: Let $G=S \cup \mathrm{G}_{1}=$ \{interval symmetric semigroup $S(X)$ where $X=\left\{\left(\left[0, a_{1}\right],\left[0, a_{2}\right],\left[0, a_{3}\right]\right)\right\} \cup\{[0, a] /$ $\left.a \in Z_{49}, *,(0,9)\right\}$ be a biinterval semigroup groupoid of finite order. Clearly G is non commutative.

Now we proceed onto define substructures in them.
We call a proper bisubset $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2} \subseteq \mathrm{~S} \cup \mathrm{G}_{1}=\mathrm{G}$ a biinterval semigroup-groupoid to be a biinterval subsemigroup-
subgroupoid if $P_{1}$ is an interval subsemigroup of $S$ and $P_{2}$ is an interval subgroupoid of $\mathrm{G}_{1}$.

We will illustrate this situation by some examples.

Example 1.2.60: Let $G=S \cup \mathrm{G}_{1}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{40}\right.$ under multiplication modulo 40$\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{14},{ }^{*},(8,7)\right\}$ be a biinterval semigroup groupoid. Consider $P=P_{1} \cup P_{2}=\{[0, a] /$ $\left.a \in\{0,2,4,6, \ldots, 38\} \subseteq Z_{40}\right\} \cup\left\{[0, a] / a \in\{0,4\} \subseteq Z_{14}\right\} \subseteq$ $G=S \cup G_{1}$ is a biinterval subsemigroup - subgroupoid of $G$.

Example 1.2.61: Let $G=\mathrm{G}_{1} \cup \mathrm{~S}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12},{ }^{*},(1,3)\right\} \cup$ $\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{16}\right\}$ be a biinterval groupoid - semigroup. $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in\{0,3,6,9\} \subseteq \mathrm{Z}_{12}\right\} \cup\{[0, \mathrm{~b}] / \mathrm{b} \in$ $\left.\{0,2,4,6, \ldots, 14\} \subseteq \mathrm{Z}_{16}\right\} \subseteq \mathrm{G}_{1} \cup \mathrm{~S}$ is a biinterval subgroupoid - subsemigroup of G.

In a similar way we can define ideals, S-subgroupoid S-subsemigroups and so on.

We will call a biset $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2} \subseteq \mathrm{G}_{1} \cup \mathrm{~S}=\mathrm{G}$ to be a Smarandache sub biinterval groupoid - semigroup if $P_{1}$ is an interval S-subgroupoid and $\mathrm{P}_{2}$ is an interval S-semigroup.

We will illustrate this situation by some examples.

Example 1.2.62: Let $G=\mathrm{G}_{1} \cup \mathrm{~S}_{2}$ be a biinterval groupoidsemigroup where $\mathrm{G}_{1}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12}, *,(1,3)\right\}$ the interval groupoid and $\mathrm{S}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{20}\right\}$ an interval semigroup under multiplication modulo 20. Choose $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\{0,3,6,9\} \subseteq \mathrm{Z}_{12}, *,(1,3)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\{0,5,10,15\} \subseteq \mathrm{Z}_{20}\right\}$ $\subseteq \mathrm{G}_{1} \cup \mathrm{~S}_{2}=\mathrm{G} . \mathrm{P}$ is a Smarandache subinterval groupoid semigroup of S .

It is pertinent to mention here that every biinterval subgroupoid-subsemigroup need not in general be $a$ Smarandache biinterval subgroupoid - subsemigroup.

Infact every S-sub biinterval groupoid-semigroup (Smarandache biinterval subgroupoid - subsemigroup) is also a biinterval subgroupoid - subsemigroup and not conversely. We
also have the following theorem the proof of which is left to the reader.

Theorem 1.2.30: Let $S_{1} \cup G_{1}=G$ be a biinterval semigroup groupoid. If $G$ has a $S$-subbiinterval semigroup-groupoid then $G$ is a S-biinterval semigroup - groupoid.

S-interval biideals can be defined in an analogous way. We now define the notion of quasi biinterval semigroup - groupoid (groupoid - semigroup). Let $G=S_{1} \cup G_{1}$, if $S_{1}$ is a semigroup and not an interval semigroup and $\mathrm{G}_{1}$ and interval groupoid or $S_{1}$ an interval semigroup and $G_{1}$ an ordinary groupoid not an interval groupoid then we define $G$ to be a quasi biinterval semigroup - groupoid (quasi biinterval groupoid - semigroup).

We will illustrate this situation by some examples.

Example 1.2.63: Let $G=S \cup G_{1}=\left\{[0, a] / a \in Z_{45}\right.$ under multiplication modulo 45$\} \cup\left\{\mathrm{Z}_{12}(3,4)\right\}$ be a quasi biinterval semigroup - groupoid.

Example 1.2.64: Let $G=S \cup \mathrm{G}_{1}=\{\mathrm{S}$ (7); the symmetric semigroup on $(1,2, \ldots, 7)\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{43}, *,(10,11)\right\}$ be a quasi biinterval semigroup - groupoid of finite order which is non commutative.

Example 1.2.65: Let $\mathrm{G}=\mathrm{S} \cup \mathrm{G}_{1}=\{$ All $3 \times 3$ matrices with entries from $\left.\mathrm{Z}_{40}\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{19},{ }^{*},(2,3)\right\}$ be a quasi biinterval semigroup - groupoid.

Example 1.2.66: Let $\mathrm{G}=\mathrm{S} \cup \mathrm{G}_{1}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right.$ under multiplication $\} \cup\left\{\mathrm{Z}_{45}(3,8)\right\}$ be a quasi biinterval semigroupgroupoid.

We can define substructures and S-structures and Ssubstructure in an analogous way. This is direct and the interested reader can do the job.

Example 1.2.67: Let $G=\mathrm{G}_{1} \cup \mathrm{~S}=\left\{\mathrm{Z}_{14}(7,8)\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\mathrm{Z}^{+} \cup\{0\}\right\}$ be a quasi biinterval groupoid - semigroup. $\mathrm{P}=\mathrm{P}_{1} \cup$ $\left.\mathrm{P}_{2}=\{0,2\} \subseteq \mathrm{Z}_{14}, *,(7,8)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in 3 \mathrm{Z}^{+} \cup\{0\}\right\} \subseteq \mathrm{G}_{1} \cup$ S is a quasi biinterval subgroupoid-subsemigroup (quasi sub biinterval groupoid - semigroup).

Example 1.2.68: Let $G=\mathrm{G}_{1} \cup \mathrm{~S}=\left\{\mathrm{Z}_{7} \backslash\{0\}, \times\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in$ $\mathrm{Z}_{7}$, *, (3, 2) \} be a biinterval quasi semigroup - groupoid. G is a simple biinterval quasi semigroup - groupoid as $G$ has no subbiinterval quasi semigroup - groupoid.

Now we can also define bizerodivisors, biunits, biidempotents and their Smarandache analogue for these structures.

This task is also left for the reader.
We can define identities as semigroups can satisfy these identities as it holds an associative operation on it.

### 1.3 Interval Bigroups and their Generalization

In this section we introduce interval bigroups and generalize them to biinterval group-semigroup and biinterval group groupoid. We will illustrate this by examples.

Definition 1.3.1: Let $G=G_{1} \cup G_{2}$ where $\left(G_{1}, o\right)$ and $\left(G_{2}, *\right)$ be two distinct interval groups; $G$ with the inherited operations of $G_{1}$ and $G_{2}$ is a bigroup called the interval bigroup. $G=G_{1} \cup$ $G_{2}=\left\{[0, a] \cup[0, b] /[0, a] \in G_{1}\right.$ and $\left.[0, b] \in G_{2}\right\}$ with operation ' $\because$ ' defined by, for $g=[0, a] \cup[0, b]$ and $h=[0, c] \cup$ $[0, d]$ we have $g . h=([0, a] \cup[0, b]) .([0, c] \cup[0, d])=[0, a]$ $o[0, c] \cup[0, b] *[0, d]=[0, a$ o $c] \cup\left[0, b^{*} d\right]$ is in $G$.

It is a matter of routine to prove (G, .) is a bigroup. This task is left as an exercise for the reader.

Example 1.3.1: Let $G=G_{1} \cup G_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{10}\right.$ under addition modulo 10$\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{11} \backslash\{0\}\right.$ under multiplication modulo 11$\}$ is an interval bigroup. $[0,0] \cup[0,1]$ is the bidentity of G . We will describe the operations on the elements of $G$. Let $x=[0,6] \cup[0,3] \in G$ the inverse of $x$ is $[0$, $4] \cup[0,4]=x^{-1}$. For we see

$$
\begin{aligned}
\mathrm{xx}^{-1} & =([0,6] \cup[0,3]) \cdot([0,4] \cup[0,4]) \\
& =[0,10(\bmod 10)] \cup[0,12(\bmod 11)] \\
& =[0,0] \cup[0,1]=\text { the biidentity in } G .
\end{aligned}
$$

Now consider $x=[0,9] \cup[0,2]$ and $y=[0,4] \cup[0,7]$ in $G$.

$$
\begin{aligned}
\text { x.y } & =([0,9] \cup[0,2]) \cdot([0,4] \cup[0,7]) \\
& =([0,9]+[0,4]) \cup[0,2] \times[0,7]) \\
& =[0,13(\bmod 10)] \cup[0,14(\bmod 11)] \\
& =[0,3] \cup[0,3] \in G .
\end{aligned}
$$

We will give more examples of these interval bigroups.

Example 1.3.2: Let $G=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{23} \backslash\{0\}\right.$, multiplication modulo 23\} $\cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{19} \backslash\{0\}\right.$, multiplication modulo 19\} be a interval bigroup. Clearly G is commutative and is of finite order.

Example 1.3.3: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{\sum_{\mathrm{i}=0}^{\infty}[0, \mathrm{a}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{45}\right\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{29} \backslash\{0\}\right\}$ be an interval bigroup of infinite order.

Example 1.3.4: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}$

$$
=\left\{\sum_{\mathrm{i}=0}^{7}[0, \mathrm{a}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{25}\right\} \cup\left\{\sum_{\mathrm{i}=0}^{9}[0, \mathrm{a}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{47}\right\}
$$

be a finite interval bigroup, both $G_{1}$ and $G_{2}$ are groups under polynomial modulo addition.

Example 1.3.5: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{\mathrm{G}_{\mathrm{X}}\right.$ where $\mathrm{X}=\left\{\left(\left[0, \mathrm{a}_{1}\right],[0\right.\right.$, $\left.\mathrm{a}_{2}\right] \ldots\left[0, \mathrm{a}_{7}\right]$ ) under composition of mapping $\} \cup\left\{\mathrm{S}_{\mathrm{Y}}\right.$ where $\mathrm{Y}=$
$\left\{\left(\left[0, b_{1}\right],\left[0, b_{2}\right],\left[0, b_{3}\right]\right)\right\}$ under composition of mapping $\}$ be an interval bigroup. Clearly $G$ is a non commutative interval bigroup of finite order.

Now we proceed onto give examples of substructures in them.

Example 1.3.6: Let $G=G_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{28}\right.$, under addition modulo 28$\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{19} \backslash\{0\}\right.$, under multiplication modulo 19\} be an interval bigroup. Choose $P=P_{1} \cup P_{2}=\left\{[0, a] / a \in\{0,7,14,21\} \subseteq Z_{28}\right\} \cup\{[0, b] / b \in$ $\{1,18\} \subseteq Z_{19} \backslash\{0\} \subseteq G_{1} \cup G_{2}$ is an interval subbigroup of $G$.

Example 1.3.7: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{200}\right\} \cup\{[0, \mathrm{a}] /$ $\left.\mathrm{a} \in \mathrm{Z}_{144}\right\}$ be an interval bigroup. $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\{0,10,20, \ldots, 190\} \subseteq \mathrm{Z}_{200}\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{0,2, \ldots, 142\} \subseteq$ $\mathrm{G}_{1} \cup \mathrm{G}_{2}$ be an interval subbigroup of $G$.

All these interval bisubgroups are also normal as $G$ is a commutative interval bigroup.

Example 1.3.8: Let $G$ be an interval bigroup where $G_{1}$ is an interval symmetric group on $\mathrm{X}=\left\{\left(\left[0, \mathrm{a}_{1}\right], \ldots,\left[0, \mathrm{a}_{11}\right]\right)\right\}$ and $\mathrm{G}_{2}$ is also an interval symmetric group on $\mathrm{Y}=\left\{\left(\left[0, \mathrm{~b}_{1}\right], \ldots,[0\right.\right.$, $\left.\left.\left.\mathrm{b}_{7}\right]\right)\right\}$ i.e., $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}$.

Let $A=A_{x} \cup A_{y}$, the alternative interval bisubgroup of $G$.
Clearly A is an interval binormal subgroup of $G$. Infact all interval bisubgroups of G are not binormal in G .

Example 1.3.9: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{10}\right\} \cup\{[0, \mathrm{~b}] /$ $\left.\mathrm{b} \in \mathrm{Z}_{42}\right\}$ be an interval bigroup. All interval bisubgroups of G are normal as G is a commutative interval bigroup.

We define the biorder of $G$ to be $\left|G_{1}\right|$. $\left|G_{2}\right|$. We see all the properties enjoyed by usual groups are true in case of interval bigroups provided this is taken as the order, for $G=G_{1} \cup G_{2}=$ $\left\{[0, \mathrm{a}] \cup[0, \mathrm{~b}] / \mathrm{a} \in \mathrm{G}_{1}\right.$ and $\left.\mathrm{b} \in \mathrm{G}_{2}\right\}$; if both $\mathrm{G}_{1}$ and $\mathrm{G}_{2}$ are assumed to be of finite order all classical theorems for finite
groups are true in case of interval bigroups. This is only a matter of routine and can be easily derived as a regular simple exercise.

We will illustrate this by some simple examples.

Example 1.3.10: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12}\right\} \cup\{[0, \mathrm{a}]$ $\left./ \mathrm{a} \in \mathrm{Z}_{5} \backslash\{0\}\right\}$ be an interval bigroup. Clearly G is of finite biorder. $|\mathrm{G}|=\left|\mathrm{G}_{1}\right| \cdot\left|\mathrm{G}_{2}\right|=12.4=48$.

Now consider $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}=\{[0, \mathrm{a}] / \mathrm{a} \in\{0,2,4,6,8,10\}$ $\left.\subseteq \mathrm{Z}_{12}\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\{1,3\} \subseteq \mathrm{G}_{2}=\mathrm{Z}_{5} \backslash\{0\}\right\} \subseteq \mathrm{G}_{1} \cup \mathrm{G}_{2}$, the interval subbigroup of G. Order of $H$ is $\left|\mathrm{H}_{1}\right|$. $\left|\mathrm{H}_{2}\right|=6.2=12$. We see $12 / 48$. Now we define for any $x=[0, a] \cup[0, b] \in G$ we define $x^{n}=[0,1] \cup[0,1]$ if $[0, a]^{t}=1$ and $[0, b]^{s}=1$ then $n=s t$. We will illustrate this by some examples.

Let $x=[0,6] \cup[0,4] \in G$ then $x^{2}=[0,0] \cup[0,1]$ biidentity element of $G$. If $x=[0,9] \cup[0,3] \in G$ then $x^{16}=[0$, $9]^{4} \cup[0,3]^{4}=[0,0] \cup[0,1]$.

Likewise Cauchy theorem will be true in case of finite interval bigroups. Sylow theorems can be easily proved for finite interval bigroups. Cayley theorem can be extended by using two suitable symmetric interval bigroup in which all interval bigroups can be embedded.

Now we proceed onto define quasi interval bigroups.

DEFINITION 1.3.2: Let $G=G_{1} \cup G_{2}$, where only one of $G_{1}$ or $G_{2}$ is an interval group and the other is just a group then we call $G$ to be a quasi interval bigroup. The operations are defined on $G$ as in case bigroups and interval bigroups.

We will give examples of these structures.

Example 1.3.11: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=<\mathrm{g} / \mathrm{g}^{12}=1>\cup\{[0, \mathrm{a}] / \mathrm{a}$ $\left.\in \mathrm{Z}_{32}\right\}$ be a quasi interval bigroup of finite order. $|\mathrm{G}|=12 \times 32$.

Example 1.3.12: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{23} \backslash\{0\}\right\} \cup$ \{all $5 \times 5$ matrices with entries from R such that their determinant is non zero\} be a quasi interval bigroup. Clearly G is of infinite order and G is non commutative.

Example 1.3.13: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{\mathrm{S}_{3}\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{45}\right\}$ be a quasi interval bigroup of order $6 \times 45$.

Example 1.3.14: Let $G=G_{1} \cup G_{2}=S_{5} \cup\left\{\left(\left[0, a_{1}\right] \ldots\left[0, a_{6}\right]\right)\right.$ the symmetric interval group on 6 intervals\} be a quasi interval bigroup of order $5!\times 6!$.

Clearly G is a non commutative quasi interval bigroup.
We can define substructures in them in an analogous way which is direct.

Example 1.3.15: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\mathrm{S}_{3} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{40}\right\}$ be a quasi interval bigroup.
Consider $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=$

$$
\left\{\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)\right\}
$$

$\cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\{0,2,4, \ldots, 38\} \subseteq \mathrm{Z}_{40}\right\} \subseteq \mathrm{G}_{1} \cup \mathrm{G}_{2}$. P is a quasi interval bisubgroup of G and $|\mathrm{P}|=3.20=60$. We see P is also the quasi interval normal subbigroup of G . We see G has quasi interval subbigroups which are not normal in G.

Choose

$$
S=S_{1} \cup S_{2}=\left\{\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) \text { in } S_{3}\right\}
$$

$\cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\{0,10,20,30\} \subseteq \mathrm{Z}_{40}\right\} \subseteq \mathrm{G}_{1} \cup \mathrm{G}_{2} ; \mathrm{S}$ is only a quasi interval subbigroup of G and is not normal in G .

If $G=G_{1} \cup G_{2}$ is a quasi interval bigroup which is non commutative but all its quasi interval bisubgroups are commutative then we define G to be a quasi commutative quasi interval bigroup.

The quasi interval bigroup G given in example 1.3.15 is only a quasi commutative quasi interval bigroup; but $G$ is clearly non commutative.

Now having seen the substructures as in case of interval bigroup $G$, if $G$ is a quasi interval bigroup of finite order say if $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}$ then $|\mathrm{G}|=\left|\mathrm{G}_{1}\right| .\left|\mathrm{G}_{2}\right|$ and all classical theorems true for usual groups hold good for quasi interval bigroups also. Now we just give some examples.

Example 1.3.16: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{\mathrm{S}_{4}\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{150}\right\}$ be a quasi interval bigroup of finite order. $|G|=\lfloor 4 \times 150=3600$. It is easily verified every quasi interval bisubgroup of G divides the order of G hence the Lagrange theorem is true.

Further G is not a quasi commutative quasi interval bigroup. For take in $\mathrm{G} ; \mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\mathrm{A}_{4} \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{0,10,20,30, \ldots$, $140\} \subseteq G_{1} \cup G_{2}$; we see $P$ is quasi interval bisubgroup but clearly $P$ is non commutative, hence $G$ is not a quasi commutative quasi interval bigroup. G has also commutative interval subbigroups, for take $T=T_{1} \cup T_{2}=\left\{\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{array}\right)\right.$, $\left.\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1\end{array}\right),\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{array}\right),\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3\end{array}\right)\right\} \cup\{[0, \mathrm{a}] / \mathrm{a}$ $\left.\in\{0,30,60,90,120\} \subseteq Z_{150}\right\} \subseteq G_{1} \cup \mathrm{G}_{2} ; \mathrm{T}$ is commutative quasi interval subbigroups. Consider an element

$$
x=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{array}\right) \cup\left\{[0,20] / 20 \in \mathrm{Z}_{150}\right\}
$$

in $G$. We see $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{array}\right) \cup\{[0,0]\}$ is the biidentity element of $G$. We see $x^{-1}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3\end{array}\right) \cup\{[0,130]\} \in G$ is the biinverse of x . Consider $\mathrm{y}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1\end{array}\right) \cup\{[0,50]\} \in \mathrm{G}$.

We see $y^{12}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{array}\right) \cup\{[0,0]\}$. It is easily verified Cauchy theorem is true. Also one can easily check Sylow theorems are true for G .

Now consider the following examples.
Example 1.3.17: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\langle\mathrm{g} / \mathrm{g}^{17}=1\right\rangle \cup\{[0, \mathrm{a}] / \mathrm{a}$ $\left.\in \mathrm{Z}_{19}\right\}$ be a quasi interval bigroup. We see G is a strongly simple quasi interval bigroup for both $\mathrm{G}_{1}$ and $\mathrm{G}_{2}$ does not contain subgroups. If only one of $G_{1}$ or $G_{2}$ has subgroups we call G to be a simple quasi interval bigroup.

Example 1.3.18: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\langle\mathrm{g} / \mathrm{g}^{23}=1 \cup\{[0, \mathrm{a}] / \mathrm{a} \in\right.$ $\mathrm{Z}_{49}$ \} be a quasi interval bigroup. Clearly G is only a simple quasi interval bigroup and is not a strongly simple quasi interval bigroup for $\mathrm{G}_{2}$ has subgroup with respect to addition modulo 49.

Example 1.3.19: Let $G=G_{1} \cup \mathrm{G}_{2}=\left\{\mathrm{D}_{29}\right\} \cup\left\{\left[0\right.\right.$, a] / $\left.\mathrm{a} \in \mathrm{Z}_{43}\right\}$ be a quasi interval bigroup. $G$ is only a simple quasi interval bigroup for $\mathrm{G}_{2}$ has no proper interval subgroups. Thus G is not a doubly simple quasi interval bigroup.

We have the following theorem, the proof of which is direct and is left as an exercise to the reader.

THEOREM 1.3.1: A simple quasi interval bigroup is not strongly simple quasi interval bigroup.

Now we can define biinterval group - semigroup (semigroup group).

Definition 1.3.3: Let $G=G_{1} \cup G_{2}$ where ( $G_{1}$, *) is an interval group and $\left(S_{2}, o\right)$ is an interval semigroup. $G$ with operation '.' such that for every $x=[0, a] \cup[0, b]$ and $y=[0, c] \cup[0, d]$ in $G$ we define

$$
\begin{aligned}
x . y & =([0, a] \cup[0, b]) \cdot([0, c] \cup[0, d]) \\
& =[0, a] *[0, c] \cup[0, b] o[0, d] \\
& =\left[0, a^{*} c\right] \cup[0, b o d] \in G .
\end{aligned}
$$

$\left(G_{1},.\right)$ is defined as the biinterval group - semigroup. We call $G$ a biinterval group - semigroup as elements in $G$ are biintervals.

We illustrate this situation by some examples.

Example 1.3.20: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{40},+\right\} \cup\{[0, \mathrm{~b}]$ $\mid \mathrm{b} \in \mathrm{Z}_{20}$ under multiplication modulo 20$\}$ be the biinterval group-semigroup of finite order. Clearly $|G|=\left|G_{1}\right|\left|G_{2}\right|=40 \times 20$ $=800$. Suppose $x=[0,9] \cup[0,10]$ and $y=[0,1] \cup[0,7]$ are in G.

$$
\begin{aligned}
\mathrm{x} . \mathrm{y} & =([0,9] \cup[0,10]) \cdot([0,1] \cup[0,7]) \\
& =([0,9]+[0,1]) \cup([0,10] \cdot[0,7]) \\
& =[0,10] \cup[0,10] \in G .
\end{aligned}
$$

$[0,0] \cup[0,1]$ is the biidentity of $G$.
In general every biinterval group - semigroup need not contain the biidentity. This is evident from the following example.

Example 1.3.21: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{45}\right\} \cup\{[0, \mathrm{a}]$ / $\mathrm{a} \in 2 \mathrm{Z}^{+} \cup\{0\}$ under multiplication $\}$ be a biinterval group semigroup. Clearly order of $G$ is infinite and $G$ has no biidentity for the interval semigroup is not a monoid.

Example 1.3.22: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{7} \backslash\{0\}\right\} \cup$ $\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{19}\right\}$ be an interval group - semigroup. We see $\{[0,1] \cup[0,1]\}$ is the biidentity of $G$.

When a biinterval group - semigroup (semigroup - group) has no biinterval subgroup- subsemigroup then we call G to be a simple biinterval group - semigroup.

We will first illustrate this by some examples.

Example 1.3.23: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{~S}_{1}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{20}\right\} \cup\{[0, \mathrm{~b}] /$ $\left.\mathrm{b} \in \mathrm{Z}_{40}\right\}$ be a biinterval group - semigroup. Consider $\mathrm{H}=\mathrm{H}_{1} \cup$ $\mathrm{H}_{2}=\{[0, \mathrm{a}] / \mathrm{a} \in\{0,2,4,6,8, \ldots, 18\} \cup\{[0, \mathrm{~b}] / \mathrm{b} \in\{0,10$, $20,30\}$ (multiplication modulo 40 ) $\} \subseteq G=\mathrm{G}_{1} \cup \mathrm{~S}_{1}$ is a biinterval subgroup - subsemigroup of S.

Example 1.3.24: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{~S}_{1}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{11}\right\} \cup\{[0, \mathrm{~b}] /$ $\left.\mathrm{b} \in \mathrm{Z}_{7}\right\}$ be a biinterval group-semigroup. We see $\mathrm{G}_{1}$ has no interval subgroup where as $S=\{[0, a] / 0,1,6\} \subseteq S$ is an interval subsemigroup.

We under these conditions define the following.
DEFINITION 1.3.4: Let $G=G_{1} \cup S_{1}$ be a biinterval group semigroup. If only one of $G_{1}$ or $S_{1}$ has interval subgroup or interval subsemigroup, then we define $G$ to be a quasi subbiinterval group - semigroup.

Example 1.3.25: Let $G=G_{1} \cup \mathrm{G}_{2}=\{\mathrm{S}(\langle\mathrm{X}\rangle)$; interval symmetric semigroup $\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{42}\right\}$ be the biinterval semigroup-group of finite order which is non commutative.

Example 1.3.26: Let $\mathrm{G}=\mathrm{S}_{1} \cup \mathrm{G}_{1}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{17}\right\} \cup\{[0, \mathrm{a}] /$ a $\left.\in Z_{41}\right\}$ be a biinterval semigroup-group. $G$ is of finite order and order of G is 17.41.

Now we define quasi biinterval semigroup - group (group semigroup) if only one of them is group or the interval semigroup or an interval group or interval semigroup.

We will illustrate this situation by some examples.
Example 1.3.27: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{~S}_{1}=\left\{\mathrm{Z}_{15},+\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{7}\right.$, $\times\}$ be a quasi biinterval group-semigroup of finite order. $|\mathrm{G}|=$ $15.7=105$.

Example 1.3.28: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{~S}_{1}=\left\{\mathrm{S}_{9}\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12}\right.$, $\left.{ }^{*}\right\}$ be a quasi biinterval group-semigroup.

Example 1.3.29: Let $G=\mathrm{S}_{1} \cup \mathrm{G}_{1}=\left\{\mathrm{S}(\langle\mathrm{X}\rangle) /\langle\mathrm{X}\rangle=\left\langle\left(\left[0, \mathrm{x}_{1}\right]\right.\right.\right.$ $\left.\left.\left., \ldots,\left[0, \mathrm{x}_{7}\right]\right)\right\rangle\right\} \cup\left\{\mathrm{Z}_{15},+\right\}$ be a quasi biinterval semigroup group.

We will now give some substructures of them.

Example 1.3.30: Let $G=\mathrm{S}_{1} \cup \mathrm{G}_{1}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{45}, \mathrm{x}\right\} \cup\left\{\mathrm{Z}_{40}\right.$, $+\}$ be a quasi biinterval semigroup - group. Consider $\mathrm{H}=\mathrm{H}_{1} \cup$ $\mathrm{H}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in\{0,5,10,15,20,25,30,35,40\} \subseteq \mathrm{Z}_{45}, \times\right\} \cup$ $\left.\{0,10,20,30\} \subseteq \mathrm{Z}_{40},+\right\} \subseteq \mathrm{S}_{1} \cup \mathrm{G}_{1}=\mathrm{G}$ is a quasi biinterval subsemigroup-subgroup (quasi subbiinterval semigroup- group).

Example 1.3.31: Let $G=\mathrm{S}_{1} \cup \mathrm{G}_{1}=\left\{\mathrm{Z}_{120}, \times\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\mathrm{Z}_{19} \backslash\{0\}, \times\right\}$ be a quasi biinterval semigroup-group. Choose $\mathrm{H}=$ $\mathrm{H}_{1} \cup \mathrm{H}_{2}=\left\{\{0,10,20, \ldots, 110\} \subseteq \mathrm{Z}_{120}, \times\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\{1,18\} \subseteq \mathrm{Z}_{19}, \mathrm{x}\right\} \subseteq \mathrm{S}_{1} \cup \mathrm{G}_{1}$ is a quasi subbiinterval semigroupgroup of G .

Example 1.3.32: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{~S}_{1}=\left\{\mathrm{Z}_{7},+\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{3} \backslash\right.$ $\{0\}\}$ be a quasi biinterval group - semigroup. G has no quasi subbiinterval group - semigroup.

In view of this we have the following results the proof of which is direct.

THEOREM 1.3.2: Let $G=G_{1} \cup S_{1}=\left\{Z_{p},+\right\} \cup$ \{any interval semigroup\} be a quasi biinterval group-semigroup. $G$ is a quasi simple biinterval group-semigroup.

THEOREM 1.3.3: Let $G=G_{1} \cup S_{1}=\left\{[0, a] / a \in Z_{p},+, p a\right.$ prime\} $\cup$ \{any semigroup\} be a quasi biinterval groupsemigroup. $G$ is a quasi simple biinterval group - semigroup.

Now we cannot have all classical theorems to be true in case of quasi biinterval group - semigroup.

This will be illustrated by some examples.

Example 1.3.33: Let $\mathrm{G}=\mathrm{S}_{1} \cup \mathrm{G}_{1}=\left\{\mathrm{Z}_{16}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{7} \backslash\right.$ $\{0\}, \times\}$ be a quasi biinterval semigroup - group of order $16 \times 6$ $=96$.

Consider $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}=\left\{\{0,4,8,12,1\} \subseteq \mathrm{Z}_{16}, \times\right\} \cup\{[0$, a] $\left./ \mathrm{a} \in\{1,6\} \subseteq \mathrm{Z}_{7} \backslash\{0\}\right\} \subseteq \mathrm{S}_{1} \cup \mathrm{G}_{1}=\mathrm{G} ; \mathrm{H}$ is a quasi subbiinteval semigroup - group of order $5 \times 2=10$ we see $10 \times 96$.

Thus the classical Lagrange's theorem for finite groups is not true in general for biinterval semigroup - group or quasi biinterval semigroup - group. This is evident from the above example.

Example 1.3.34: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{~S}_{1}=\left\{\mathrm{Z}_{11} \backslash\{0\}, \times\right\} \cup\{[0, \mathrm{a}] / \mathrm{a}$ $\left.\in \mathrm{Z}_{9}, \times\right\}$ be a quasi biinterval group - semigroup of order $10 \times 9$ $=90 . \mathrm{H}=\left\{[0, \mathrm{a}] / \mathrm{a} \in\{1,10\} \subseteq \mathrm{Z}_{11} \backslash\{0\}, \times\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{0$, $\left.3\} \subseteq \mathrm{Z}_{9}, \times\right\}=\mathrm{H}_{1} \cup \mathrm{H}_{2} \subseteq \mathrm{G}_{1} \cup \mathrm{~S}_{1}=\mathrm{G} ; \mathrm{H}$ is a quasi subbiinterval group-semigroup of order 4. Clearly $4 \times 90$. Further Cauchy theorem is also not true for $x=\{10\} \cup\{[0,8]\}$ $\in G$ is such that $x^{4}=\{1\} \cup\{[0,1]\}$ identity element of $G$ and $4 \times 90$. Thus in general Cauchy theorem for finite groups is not true in case of quasi interval group - semigroup.

Example 1.3.35: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{~S}_{1}=\left\{\mathrm{S}_{3}\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{11}, \times\right\}$ be a quasi - biinterval group semigroup. Consider $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}$ $=\left\{A_{3}\right\} \cup\left\{[0,0],[0,1],[0,10] \in S_{1}\right\} \subseteq G_{1} \cup S_{1}$ is a quasi sub biinterval group - semigroup of G. Now o $(G)=6 \times 11=66$ and $o(H)=3 \times 3=9$ and $9 \times 66$.

Thus all classical theorems except Cayleys theorem (when modified for semigroups) does not hold good for quasi biinterval group - semigroup.

Having defined quasi biinterval group - semigroups we can define also quasi biinterval group - groupoid (groupoid - group). We wish to state here that the term biinterval is used in an
appropriate way but only to signify the structure under consideration is a bistructure. We also define the notion of biinterval group - groupoid.

Let $G=G_{1} \cup G_{2}$ where $\left\{G_{1},{ }^{\prime} o\right.$ ' $\}$ is an interval group and $\left\{G_{2}, *\right\}$ is an interval groupoid we define ' $\because$ ' on $G$ which operations is described in the following.

$$
\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] \cup[0, \mathrm{~b}] /[0, \mathrm{a}] \in \mathrm{G}_{1} \text { and }[0, \mathrm{~b}] \in \mathrm{G}_{2}\right\} .
$$ Let $x=[0, a] \cup[0, b]$ and $y=[0, c] \cup[0, d]$ be in $G$. Now

$$
\begin{aligned}
\text { x.y } & =([0, a] \cup[0, b]) \cdot([0, c] \cup[0, d]) \\
& =[0, a] o[0, c] \cup[0, b] *[0, d] \\
& =[0, \text { a o c }] \cup[0, b * d] \in G
\end{aligned}
$$

as $[0, \mathrm{a}],[0, \mathrm{c}] \in \mathrm{G}_{1}$ and $[0, \mathrm{c}],[0, \mathrm{~d}] \in \mathrm{G}_{2}$. We define $\left(\mathrm{G}_{1},\right.$. ) to be a biinterval group groupoid.

If both $G_{1}$ and $G_{2}$ are of finite order we say $G$ is of finite order and $|G|=\left|G_{1}\right| \times\left|G_{2}\right|$, even if one of $G_{1}$ or $G_{2}$ is of infinite order then we define $G$ to be of infinite order. If both $G_{1}$ and $G_{2}$ are commutative we say $G$ is commutative otherwise non commutative.

We will illustrate this situation by some examples.
Example 1.3.36: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{42},+\right\} \cup\{[0$, b] / b $\in \mathrm{Z}_{9}$, * $\left.(2,4)\right\}$ be a biinterval group - groupoid. Clearly G is of finite order. For $|G|=\left|G_{1}\right|\left|G_{2}\right|=42.9=378$. $G$ is non commutative as $\mathrm{G}_{2}$ is non commutative.
Let $\mathrm{x}=[0,24] \cup[0,4]$ and $\mathrm{y}=[0,7] \cup[0,3] \in \mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}$.
$x . y=([0,24] \cup[0,4]) \cdot([0,7] \cup[0,3])$
$=([0,24]+[0,7]) \cup([0,4] *[0,3])$
$=[0,31] \cup[0,8+12(\bmod 9)]$
$=[0,31] \cup[0,2] \in G$.

We in general cannot talk about biidentity or biinverse for $\mathrm{G}_{2}$ the groupoid may or may not have identity hence inverse may or may not exist.

Example 1.3.37: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{23},{ }^{*},(3,2)\right\}$ $\cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{25}\right.$, +$\}$ be an biinterval groupoid - group. Clearly G is of finite order and non commutative. G has no biidentity.

Further in general all the classical theorems for finite groups may not be true in case of finite biinterval group-groupoids (groupoids - group).

Example 1.3.38: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{19} \backslash\{0\}\right\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{40},{ }^{*},(7,9)\right\}$ be a biinterval group - groupoid of order $18 \times 40$. Take $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in\{1,18\} \subseteq \mathrm{Z}_{19} \backslash\right.$ $\{0\}\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\{0,10,20,30\} \subseteq \mathrm{Z}_{40}, *,(7,9)\right\} \subseteq \mathrm{G}_{1} \cup \mathrm{G}_{2}$ $=G$ is a subbiinterval group-groupoid of order $2 \times 4=8$. We see $o(H) / o(G)$.

Thus we may have some sub biinterval group - groupoids whose biorder divides the biorder of the biinterval group groupoid.

Example 1.3.39: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{25},+\right\} \cup\{[0$, a] / $\left.\mathrm{a} \in \mathrm{Z}_{120},{ }^{*},(3,7)\right\}$ be a biinterval group - groupoid. Clearly G is non commutative. Biorder of G is $25 \times 120$. Consider $\mathrm{H}=$ $\mathrm{H}_{1} \cup \mathrm{H}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in\{0,5,10,15,20\} \subseteq \mathrm{Z}_{25},+\right\} \cup\{[0, \mathrm{a}] /$ $\left.\mathrm{a} \in\{0,10,20,30,40,50, \ldots, 110\} \subseteq \mathrm{Z}_{120}, *,(3,7)\right\} \subseteq \mathrm{G}_{1} \cup \mathrm{G}_{2}$, H is a subbiinterval group - groupoid of $\mathrm{G} . \mathrm{o}(\mathrm{H})=5 \times 12=60$. We see o(H) / o(G).

Now we have also examples of finite quasi biinterval groupgroupoids G such that it contains subbiinterval group - groupoid H such that $\mathrm{o}(\mathrm{H}) / \mathrm{o}(\mathrm{G})$.

We will give some examples of them.

Example 1.3.40: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{\mathrm{Z}_{20},+\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{9}\right.$, *, $(5,3)\}$ be a biinterval group - groupoid of finite order o(G) $=$ $20 \times 9$. Consider $=\{0,5,10,15\} \cup\{1,2,4,5,7,8\}=H_{1} \cup \mathrm{H}_{2}$ $\subseteq \mathrm{G}_{1} \cup \mathrm{G}_{2}$ be a subbiinterval group-groupoid. Clearly o(H) $=$ $4.6=24 . o(G)=20 \times 9.24 \times 180$. Hence the order does not divide.

We can have such examples. This distinguishes usual interval bigroups from biinterval group-groupoids.

Next we proceed onto describe formally quasi biinterval groupgroupoids.

Let $G=G_{1} \cup G_{2}$ only one of $G_{1}$ or $G_{2}$ is an interval group or interval groupoid we define '.' on G so that ( $G,$. ) is defined as the quasi biinterval group-groupoid or quasi interval groupoid-group.

Let $(G,$.$) be a group and \left(G_{2},{ }^{*}\right)$ be an interval groupoid then $G=G_{1} \cup G_{2}=\left\{g \cup[0, a] / g \in G_{1},[0, a] \in G_{2}\right\}$, define '.' on $G$ as follows. $x=g \cup[0, a]$ and $y=h \cup[0, b]$ in $G$.

$$
\begin{aligned}
x . y= & (g \cup[0, a]) \cup[h \cup[0, b]) \\
& =\text { g. } \mathrm{h} \cup[0, \mathrm{a}] *[0, \mathrm{~b}] \\
& =\text { g.h } \cup[0, \mathrm{a} * \mathrm{~b}] \in \mathrm{G}
\end{aligned}
$$

Thus ( G, .) is the quasi interval group - groupoid.

Example 1.3.41: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{\mathrm{g} / \mathrm{g}^{12}=1\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\mathrm{Z}_{42},{ }^{*},(9,8)\right\}$ be a quasi interval group - groupoid of $G$ order $12 \times 42$.

Example 1.3.42: Let $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{57}\right.$, ${ }^{*}$, $(17,11)\} \cup\left\{\mathrm{S}_{10}\right\}$ be a quasi interval groupoid-group of order 57 $\times \mathrm{o}\left(\mathrm{S}_{10}\right)=57 \times \underline{10}$.

Example 1.3.43: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{409},+\right\} \cup\left\{\mathrm{Z}_{9}\right.$, $(2,4)\}$ be a quasi interval group-groupoid. Clearly order of $G$ is $409 \times 9$.

Example 1.3.44: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{43} \backslash\{0\}, \times\right\}$ $\cup\left\{\mathrm{Z}_{45},(8,11)\right\}$ be a quasi interval group-groupoid of order $42 \times 45$.

Now having seen examples of quasi interval group groupoids we now proceed onto give examples of their substructures.

Example 1.3.45: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\mathrm{S}_{3} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{9}\right.$, ${ }^{*}$, (5, $3)\}$ be a quasi interval group-groupoid. Clearly $G$ is non commutative. $\mathrm{o}(\mathrm{G})=6 \times 9=54$. Let $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}=\mathrm{A}_{3} \cup$ $\left\{1,2,4,5,7,8 \in \mathrm{Z}_{9},{ }^{*},(5,3)\right\} \subseteq \mathrm{G}_{1} \cup \mathrm{G}_{2}$ is a quasi interval subgroup - groupoid or quasi subbiinterval group - groupoid. $o(H)=3 \times 6=18$. Clearly $o(H) / o(G)$.

Example 1.3.46: Let $G=G_{1} \cup \mathrm{G}_{2}=\left\{\mathrm{g} / \mathrm{g}^{24}=1\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\mathrm{Z}_{6},{ }^{*},(2,2)\right\}$ be a quasi interval group-groupoid. Clearly $G$ is commutative. $o(G)=24 \times 6$.

Example 1.3.47: Let $G=G_{1} \cup \mathrm{G}_{2}=\left\{\mathrm{g} / \mathrm{g}^{20}=1\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in$ $\mathrm{Z}_{20}$, $\left.{ }^{*},(4,4)\right\}$ be a quasi interval group-groupoid. $G$ is commutative and is of order $20 \times 20$.

Now we have the following result which is left as an exercise for the reader.

THEOREM 1.3.4: Let $G=G_{1} \cup G_{2}=\left\{g / g^{n}=1\right\} \cup\{[0, a] / a \in$ $\left.Z_{n},{ }^{*},(t, t)\right\}$ be a quasi interval group - groupoid $G$ is commutative.

THEOREM 1.3.5: Let $G=G_{1} \cup G_{2}=\left\{S_{n}\right\} \cup\left\{[0, a] / a \in Z_{n},{ }^{*}\right.$, ( $t, u$ ); $\left.t \neq u, t, u \in Z_{n} \backslash\{0\}\right\}$ be a quasi interval group - groupoid. $G$ is non commutative.

Example 1.3.48: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{19} \backslash\{0\}, \times\right\} \cup$ $\left\{\mathrm{Z}_{19},(3,3)\right\}$ be a quasi interval group-groupoid. G is non commutative of order $18 \times 19$.

Example 1.3.49: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{11},+\right\} \cup\left\{\mathrm{Z}_{12}\right.$, $(3,7)\}$ be a quasi interval group - groupoid, $G$ is non commutative and has no substructures.

In view of this we have the following theorem the proof of which is direct.

THEOREM 1.3.6: Let $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{p},+\right\} \cup\left\{Z_{19}\right.$, $(3,2)\}$ is a quasi interval group - groupoid p, a prime has no substructures.

THEOREM 1.3.7: Let $G=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{n}, n a\right.$ composite number, +$\} \cup\left\{Z_{m},(t, u)\right\}$ be a quasi interval group groupoid. G has substructures.

Example 1.3.50: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12},+\right\} \cup\left\{\mathrm{Z}_{10}\right.$, $(5,6)\}$ is a quasi interval group - groupoid, G has substructures.

It is pertinent to mention that almost all classical theorems for finite groups in general is not true for these quasi interval group - groupoids. Further certain concepts cannot be even extended to these structures. Thus we have limitations however these structures can find its applications in appropriate fields. Now having seen these semi associative and non associative bistructures with single binary operation we now proceed onto define interval biloops.

### 1.4 Interval Biloops and their Generalization

In this section we introduce the notion of interval biloops quasi intervals biloops, interval loop - group, interval group - loop, interval groupoid - loop interval loop-semigroup and so on and describe them.

We now define and describe these structures. These structures also do not in general satisfy the classical theorems for finite groups.

DEFINITION 1.4.1: Let $L=L_{1} \cup L_{2}$ where both $L_{1}$ and $L_{2}$ are two distinct interval loops ( $L$, .) with '.' an operation inherited from both $L_{1}$ and $L_{2}$ is a loop called the biinterval loop or interval biloop.

We will illustrate this situation by some examples.

Example 1.4.1: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{a}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 9\}$, $\mathrm{m}=8, *$, where $[0, \mathrm{a}] *[0, \mathrm{~b}]=[0,7 \mathrm{~b}+8 \mathrm{a}(\bmod 9)\} \cup\{[0, \mathrm{~b}] /$ $b \in\{e, 1,2,3, \ldots, 15\}, m=8, *\}$ be a biinterval loop.

Suppose $x=[0,6] \cup[0,9]$ and $y=[0,4] \cup[0,10]$ in $L$.

$$
\begin{aligned}
\mathrm{x} \cdot \mathrm{y} & =([0,6] \cup[0,9] \cdot([0,4] \cup[0,10]) \\
& =[0,6] *[0,4] \cup[0,9] *[0,10] \\
& =[0,7.6 ; 4.8(\bmod 9)] \cup[0,7.9+8.10(\bmod 15)] \\
& =[0,2] \cup[0,8] \in \mathrm{L}
\end{aligned}
$$

$L$ is of finite order and is of even order given by $\left|L_{1}\right| .\left|L_{2}\right|=$ $10.16=160$.

We can construct several such interval biloops.
Example 1.4.2: Let $\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{a}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 11\}, 6$, $*\} \cup\{[0, b] / b \in\{e, 1,2, . ., 5\}, 3, *\}$ be a biinterval loop of order $12 \times 6=72$.

It is easily verified L is a commutative interval biloop.

Example 1.4.3: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}$ where $\mathrm{L}_{1}$ and $\mathrm{L}_{2}$ are given by the following tables.

Table of $\mathrm{L}_{1}$

| $*$ | $[0, \mathrm{e}]$ | $[0,1]$ | $[0,2]$ | $[0,3]$ | $[0,4]$ | $[0,5]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $[0, \mathrm{e}]$ | $[0, \mathrm{e}]$ | $[0,1]$ | $[0,2]$ | $[0,3]$ | $[0,4]$ | $[0,5]$ |
| $[0,1]$ | $[0,1]$ | $[0, \mathrm{e}]$ | $[0,3]$ | $[0,5]$ | $[0,2]$ | $[0,4]$ |
| $[0,2]$ | $[0,2]$ | $[0,5]$ | $[0, \mathrm{e}]$ | $[0,4]$ | $[0,1]$ | $[0,3]$ |
| $[0,3]$ | $[0,3]$ | $[0,4]$ | $[0,1]$ | $[0, \mathrm{e}]$ | $[0,5]$ | $[0,2]$ |
| $[0,4]$ | $[0,4]$ | $[0,3]$ | $[0,5]$ | $[0,2]$ | $[0,3]$ | $[0,1]$ |
| $[0,5]$ | $[0,5]$ | $[0,2]$ | $[0,4]$ | $[0,1]$ | $[0,3]$ | $[0, \mathrm{e}]$ |

Clearly $L_{1}$ is of order 6 built using the loop $L_{5}(2)$.

Now the table for the interval loop $L_{2}$ is as follows

| $*$ | $[0, \mathrm{e}]$ | $[0,1]$ | $[0,2]$ | $[0,3]$ | $[0,4]$ | $[0,5]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $[0, \mathrm{e}]$ | $[0, \mathrm{e}]$ | $[0,1]$ | $[0,2]$ | $[0,3]$ | $[0,4]$ | $[0,5]$ |
| $[0,1]$ | $[0,1]$ | $[0, \mathrm{e}]$ | $[0,4]$ | $[0,2]$ | $[0,5]$ | $[0,3]$ |
| $[0,2]$ | $[0,2]$ | $[0,4]$ | $[0, \mathrm{e}]$ | $[0,5]$ | $[0,3]$ | $[0,1]$ |
| $[0,3]$ | $[0,3]$ | $[0,2]$ | $[0,5]$ | $[0, \mathrm{e}]$ | $[0,1]$ | $[0,4]$ |
| $[0,4]$ | $[0,4]$ | $[0,5]$ | $[0,3]$ | $[0,1]$ | $[0, \mathrm{e}]$ | $[0,2]$ |
| $[0,5]$ | $[0,5]$ | $[0,3]$ | $[0,1]$ | $[0,4]$ | $[0,2]$ | $[0, \mathrm{e}]$ |

We see $L_{1}$ is non commutative interval loop of order 6 where as $\mathrm{L}_{2}$ is a commutative interval loop of order 6. Thus $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}$ is a non commutative biinterval loop of order $6 \times 6=36$.

We have several properties associated with them which we will be discussing. For more about loops refer [5, 9, 11].

Let us show by examples the properties satisfied by these bi interval loops.

Example 1.4.4: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 7\}$, *, ' 6 ' $\} \cup\{[0, \mathrm{~b}] / \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 13\}$, *, 9$\}$ be a biinterval loop of order $8 \times 14=112$. We see L is a S-biinterval loop, for $P=P_{1} \cup P_{2}=\{[0, e],[0,6], *\} \cup\{[0, e],[0,11], *\} \subseteq L_{1} \cup L_{2}$ is an interval bigroup of order $2 \times 2=4$. Thus L is a Smarandache interval biloop and is non commutative.

Example 1.4.5: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 19\}$, *, 8$\} \cup\left\{[0, \mathrm{~b}] \mid \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 23\}{ }^{*}, 10\right\}$ be an interval biloop. This has no proper interval bisubloop but has only interval bisubgroups.

These types of biinterval biloops which has no biinterval subloops but only biinterval subgroups will be defined as Smarandache biinterval subgroup loop or Smarandache interval bisubgroup biloops.

We have the following theorem.

THEOREM 1.4.1: Let $L=L_{1} \cup L_{2}=\{[0, a] / a \in\{e, 1,2, \ldots, p\}$, p a prime $m \neq e$ or 1 or $p, *\} \cup\{[0, b] / b \in\{e, 1,2, \ldots, q\}$ where $q$ is a prime $m^{\prime} \neq e$ or 1 or $\left.q,{ }^{*}\right)$ be a biclass of interval loops. (This is a class for as $m^{\prime}$ can vary from $2 \leq m \leq p-1$ and $2 \leq m^{\prime} \leq q-1$ respectively). This class of biinterval loop is a $S$ biinterval bisubgroup biloop.

Proof: Given p and q are primes so L has $(\mathrm{p}+1) \cdot(\mathrm{q}+1)$ elements ( L given in the theorem). By the very construction every bielement [0, a] $\cup[0, b]$ in $L$ generates an interval bigroup of order two. Hence L has no biinterval subloops only has biinterval subgroups. Hence the claims.

We can also define for biinterval loops principal isotope, as in case of loops [5, 9, 11]. We shall illustrate them by examples.

Example 1.4.6: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2,3,4,5\}$, $2, *\} \cup\{[0, b] / b \in\{e, 1,2,3,4,5\}, 3, *\}$ be biinterval biloop given by the following tables.

| $*$ | $[0, \mathrm{e}]$ | $[0,1]$ | $[0,2]$ | $[0,3]$ | $[0,4]$ | $[0,5]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $[0, \mathrm{e}]$ | $[0, \mathrm{e}]$ | $[0,1]$ | $[0,2]$ | $[0,3]$ | $[0,4]$ | $[0,5]$ |
| $[0,1]$ | $[0,1]$ | $[0, \mathrm{e}]$ | $[0,3]$ | $[0,5]$ | $[0,2]$ | $[0,4]$ |
| $[0,2]$ | $[0,2]$ | $[0,5]$ | $[0, \mathrm{e}]$ | $[0,4]$ | $[0,1]$ | $[0,3]$ |
| $[0,3]$ | $[0,3]$ | $[0,4]$ | $[0,1]$ | $[0, \mathrm{e}]$ | $[0,5]$ | $[0,2]$ |
| $[0,4]$ | $[0,4]$ | $[0,3]$ | $[0,5]$ | $[0,2]$ | $[0, \mathrm{e}]$ | $[0,1]$ |
| $[0,5]$ | $[0,5]$ | $[0,2]$ | $[0,4]$ | $[0,1]$ | $[0,3]$ | $[0, \mathrm{e}]$ |


| $*$ | $[0, \mathrm{e}]$ | $[0,1]$ | $[0,2]$ | $[0,3]$ | $[0,4]$ | $[0,5]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $[0, \mathrm{e}]$ | $[0, \mathrm{e}]$ | $[0,1]$ | $[0,2]$ | $[0,3]$ | $[0,4]$ | $[0,5]$ |
| $[0,1]$ | $[0,1]$ | $[0, \mathrm{e}]$ | $[0,4]$ | $[0,2]$ | $[0,5]$ | $[0,3]$ |
| $[0,2]$ | $[0,2]$ | $[0,4]$ | $[0, \mathrm{e}]$ | $[0,5]$ | $[0,3]$ | $[0,1]$ |
| $[0,3]$ | $[0,3]$ | $[0,2]$ | $[0,5]$ | $[0, \mathrm{e}]$ | $[0,1]$ | $[0,4]$ |
| $[0,4]$ | $[0,4]$ | $[0,5]$ | $[0,3]$ | $[0,1]$ | $[0, \mathrm{e}]$ | $[0,2]$ |
| $[0,5]$ | $[0,5]$ | $[0,3]$ | $[0,1]$ | $[0,4]$ | $[0,2]$ | $[0, \mathrm{e}]$ |

Now let $S=S_{1} \cup S_{2}=\{[0, a] / a \in\{e, 1,2,3,4,5\}, \otimes, 2\}$ $\cup\{[0, \mathrm{~b}] / \mathrm{b} \in\{\mathrm{e}, 1,2,3,4,5\}, \otimes, 3\}$ be the principal bi isotopes of $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}$ given by the following tables.

| $\otimes$ | $[0, \mathrm{e}]$ | $[0,1]$ | $[0,2]$ | $[0,3]$ | $[0,4]$ | $[0,5]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $[0, \mathrm{e}]$ | $[0,3]$ | $[0,2]$ | $[0,5]$ | $[0, \mathrm{e}]$ | $[0,1]$ | $[0,4]$ |
| $[0,1]$ | $[0,5]$ | $[0,3]$ | $[0,4]$ | $[0,1]$ | $[0, \mathrm{e}]$ | $[0,2]$ |
| $[0,2]$ | $[0,4]$ | $[0, \mathrm{e}]$ | $[0,3]$ | $[0,2]$ | $[0,5]$ | $[0,1]$ |
| $[0,3]$ | $[0, \mathrm{e}]$ | $[0,1]$ | $[0,2]$ | $[0,3]$ | $[0,4]$ | $[0,5]$ |
| $[0,4]$ | $[0,2]$ | $[0,5]$ | $[0,1]$ | $[0,4]$ | $[0,3]$ | $[0, \mathrm{e}]$ |
| $[0,5]$ | $[0,1]$ | $[0,4]$ | $[0, \mathrm{e}]$ | $[0,5]$ | $[0,2]$ | $[0,3]$ |

and the table of $S_{2}$ is as follows :

| $\otimes$ | $[0, \mathrm{e}]$ | $[0,1]$ | $[0,2]$ | $[0,3]$ | $[0,4]$ | $[0,5]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $[0, \mathrm{e}]$ | $[0,4]$ | $[0,5]$ | $[0,3]$ | $[0,1]$ | $[0, \mathrm{e}]$ | $[0,2]$ |
| $[0,1]$ | $[0,3]$ | $[0,2]$ | $[0,5]$ | $[0,3]$ | $[0,1]$ | $[0,4]$ |
| $[0,2]$ | $[0,5]$ | $[0,3]$ | $[0,1]$ | $[0,4]$ | $[0,2]$ | $[0, \mathrm{e}]$ |
| $[0,3]$ | $[0,2]$ | $[0,4]$ | $[0, \mathrm{e}]$ | $[0,5]$ | $[0,3]$ | $[0,1]$ |
| $[0,4]$ | $[0, \mathrm{e}]$ | $[0,1]$ | $[0,2]$ | $[0,3]$ | $[0,4]$ | $[0,5]$ |
| $[0,5]$ | $[0,1]$ | $[0, \mathrm{e}]$ | $[0,4]$ | $[0,2]$ | $[0,5]$ | $[0,3]$ |

Now we can define as in case of bi interval loops define Smarandache simple interval biloops. This task is also left to the reader.

Example 1.4.7: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0$, a$] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, \mathrm{n}\}$, *, m such that $(\mathrm{m}-1, \mathrm{n})=1=(\mathrm{m}, \mathrm{n}), 1<\mathrm{m}<\mathrm{n}\} \cup\{[0, \mathrm{~b}] / \mathrm{b}$ $\in\{\mathrm{e}, 1,2, \ldots, \mathrm{t}\}, *$, s such that $\{\mathrm{s}-1, \mathrm{t})=(\mathrm{t}, \mathrm{s})=1$ and $1<\mathrm{s}<$ $\mathrm{t}\}$ be an interval biloop. It is easily verified L is a Smarandache interval bisimple loop.

We have the following theorem which guarantees the existence is a class of such interval biloops.

THEOREM 1.4.2: $L=L_{1} \cup L_{2}=\{[0, a] / a \in\{e, 1,2, \ldots, m\}$, *, $t$ where $(t, m)=(t-1, m)=1 ; 1<t<m\} \cup\{[0, b] / b \in$ $\{e, 1,2, \ldots, n\},{ }^{*}, s$ such that $\{s, n)=(s-1, n)=1$ and $\left.1<s<n\right\}$ ( $m \neq n$ or if $m=n$ then $s \neq t$ ) be an interval biloop. $L$ is a Smarandache simple interval biloop.

The proof is direct and is left as an exercise for the reader to prove.

In fact we have for every $t$ in $L$ such that ( $t, m$ ) $=1$ and $(t-1, m)=1$ we have an interval loop hence we have a class of interval loops associated with each $t$ which we can denote by $\left\{\mathrm{L}_{\mathrm{m}}[0, \mathrm{a}](\mathrm{t})\right\}$. Similarly for $\mathrm{L}_{2}$ we have a class denoted by $\left\{\mathrm{L}_{\mathrm{n}}[0, \mathrm{~b}](\mathrm{s})\right\}$. So this class $\left\{\mathrm{L}_{\mathrm{m}}[0, \mathrm{a}](\mathrm{t})\right\} \cup\left\{\mathrm{L}_{\mathrm{n}}[0, \mathrm{~b}](\mathrm{s})\right\}$ is a Smarandache interval bisimple loop.

We will define an interval biloop to be A Smarandache weakly Lagrange biloop if there exist atleast one interval bisubgroup $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}$ in $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}$ such that $\mathrm{o}(\mathrm{H}) / \mathrm{o}(\mathrm{L})$ that is $\left|\mathrm{H}_{1}\right|\left|\mathrm{H}_{2}\right| /\left|\mathrm{L}_{1}\right|\left|\mathrm{L}_{2}\right|$.

We will first illustrate this situation by an example.
Example 1.4.8: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 15]$, *, 2$\} \cup\{[0, \mathrm{~b}] / \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 7\}, *, 6\}$ be an interval biloop.

Clearly $L$ is only a Smarandache weakly Lagrange biinterval loop.

For take $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}\{[0, \mathrm{e}],[0,8], *, 2\} \cup\{[0, \mathrm{e}],[0,3]$, $*, 6\} \subseteq \mathrm{L}_{1} \cup \mathrm{~L}_{2} . \mathrm{H}$ is an biinterval subgroup of $\mathrm{G} . \mathrm{o}(\mathrm{H})=2 \times 2$ $=4$. Now $o(L)=\left|L_{1}\right|\left|L_{2}\right|=16.8 .4 / 16.8$.

Consider $\mathrm{T}=\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2,5,8,11,14\} \subseteq$ $\{e, 1,2,3, \ldots, 15\} *, 2\} \cup\{[0, \mathrm{e}],[0,4], *, 6\} \subseteq \mathrm{L}_{1} \cup \mathrm{~L}_{2}, \mathrm{~T}$ is such that $\left|\mathrm{T}_{1}\right| .\left|\mathrm{T}_{2}\right|=6.2 \times 16.8$. Hence $L$ is only a Smarandache weakly Lagrange interval biloop.

Infact we have a non empty class of Smarandache weakly Lagrange interval biloop.

THEOREM 1.4.3: $L=\left\{L_{n}[0, a](t)\right] \cup\left\{L_{m}[0, b](s)\right\}(m \neq n)$ be a class of biinterval loop (interval biloops). Every interval
biloop in $L$ is a Smarandache weakly Lagrange interval bilooop.

The proof is straight forward and is hence left as an exercise to the reader [9].

We can define Smarandache Lagrange interval biloop in a similar way [9] and it is also easy to verify that every Smarandache Lagrange interval biloop is a Smarandache weakly Lagrange interval biloop [9].

Now we can define as in case of usual loops the notion of Smarandache Cauchy interval biloop.

Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}$ be an interval biloop. Let $\mathrm{x}=[0, \mathrm{a}] \cup[0, \mathrm{~b}]$ $\in L$ we say $x$ is a Smarandache-Cauchy biinterval element of $L$ if $x^{r}=[0, a]^{r_{1}} \cup[0, b]^{r_{2}}=[0,1] \cup[0,1]$ and $r_{1}>1, r_{2}>2$ with $r_{1}$ $r_{2} / L_{1}| | L_{2} \mid$, otherwise $x$ is not a Smarandache Cauchy bi interval element of $L$.

Example 1.4.9: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 11]$, *, 3$\left.\} \cup\{0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 13\},{ }^{*}, 7\right\}$ be an interval biloop.

Clearly $o(L)=\left|\mathrm{L}_{1}\right| .\left|\mathrm{L}_{2}\right|=12.14$. Consider $\mathrm{x}=[0,2] \cup[0,4]$ $\in$ L. $x * x=[0,2] \times[0,2] \cup[0,4][0,4]=[0,2 * 2] \cup[0,4 *$ $4]=[0, e] \cup[0, e]$. Thus $r_{1}=r_{2}=2$. Now $2.2 /\left|L_{1}\right|\left|L_{2}\right|$. Thus $x$ is a S-Cauchy biinterval element of $L$.

Recall if every bielement in L is a S-Cauchy bi interval element of $L$ then we define $L$ to be a Smarandache Cauchy interval biloop (S-Cauchy interval biloop) we will show we have a class of interval biloops which are S-Cauchy biinterval loops.

Theorem 1.4.4: Let $L=\left\{L_{1}\right\} \cup\left\{L_{2}\right\}=\left\{L_{n}[0, a](t)\right\} \cup$ $\left\{L_{m}[0, b](s)\right\} n \neq m$, be a class of biinterval loops. Every interval biloop in L is a Smarandache Cauchy interval biloop.

Proof is direct for we see in every interval biloop every bi interval element $\mathrm{x}=[0, \mathrm{a}] \cup[0, \mathrm{~b}] \in \mathrm{L}$ is of biorder 2.2 and since every interval loop $L_{n}[0, a](t)$ is of even order $2.2 /\left|L_{1}\right|$. $\left|\mathrm{L}_{2}\right|$. One can extend the notion of Smarandache pseudo Lagrange loops to interval biloops.

Let $L=L_{1} \cup L_{2}$ be an interval biloop of finite order. If the biorder of every interval S-subbiloop (S-biinterval subloop or Sinterval subbiloop) divides the biorder $\left|\mathrm{L}_{1}\right|\left|\mathrm{L}_{2}\right|$ then we say L is a Smarandache pseudo Lagrange biinterval loop or Smarandache pseudo Lagrange interval biloop.

If L has atleast one S-interval subbiloop $\mathrm{K}=\mathrm{K}_{1} \cup \mathrm{~K}_{2} \subseteq \mathrm{~L}_{1}$ $\cup \mathrm{L}_{2}$ such that $\left|\mathrm{K}_{1}\right| .\left|\mathrm{K}_{2}\right| /\left|\mathrm{L}_{1}\right| .\left|\mathrm{L}_{2}\right|$ then we say L is a Smarandache weakly pseudo Lagrange interval biloop [5, 9].

It is easily verified that every S-pseudo biinterval Lagrange loop is a S-weakly pseudo Lagrange biinterval loop [5,9,11]. Interested reader is expected to construct examples to this effect.

We can define Smarandache p-Sylow interval subbiloops as in case of loops [5, 9, 11]. We also can as in case of loops define Smarandache p-Sylow subgroup [5, 9, 11].

Further for Smarandache interval bisubgroup biloop we can define strong Sylow substructures. Let $L=L_{1} \cup L_{2}$ be a Smarandache biinterval subgroup loop of finite biorder; if every interval subbigroup is either of a prime power biorder and that bidivides $o(L)=\left|\mathrm{L}_{1}\right|\left|\mathrm{L}_{2}\right|$ then we call L to be a Smarandache strong interval p-Sylow biloop (S-strong interval p-Sylow biloop) [5, 9, 11].

We have a class of Smarandache strong 2-Sylow biloops.
Example 1.4.10: $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\mathrm{L}_{5}[0, \mathrm{a}]$ (3) $\cup \mathrm{L}_{7}$ [0, b] (3) be an interval biloop given by the following tables.

Table of $L_{5}[0, a](3)$

| $*$ | $[0, \mathrm{e}]$ | $[0,1]$ | $[0,2]$ | $[0,3]$ | $[0,4]$ | $[0,5]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $[0, \mathrm{e}]$ | $[0, \mathrm{e}]$ | $[0,1]$ | $[0,2]$ | $[0,3]$ | $[0,4]$ | $[0,5]$ |
| $[0,1]$ | $[0,1]$ | $[0, \mathrm{e}]$ | $[0,4]$ | $[0,2]$ | $[0,5]$ | $[0,3]$ |
| $[0,2]$ | $[0,2]$ | $[0,4]$ | $[0, \mathrm{e}]$ | $[0,5]$ | $[0,3]$ | $[0,1]$ |
| $[0,3]$ | $[0,3]$ | $[0,2]$ | $[0,5]$ | $[0, \mathrm{e}]$ | $[0,1]$ | $[0,4]$ |
| $[0,4]$ | $[0,4]$ | $[0,5]$ | $[0,3]$ | $[0,1]$ | $[0, \mathrm{e}]$ | $[0,2]$ |
| $[0,5]$ | $[0,5]$ | $[0,3]$ | $[0,1]$ | $[0,4]$ | $[0,2]$ | $[0, \mathrm{e}]$ |

Table for $\mathrm{L}_{7}[0, \mathrm{~b}]$ (3)

| $*$ | $[0, \mathrm{e}]$ | $[0,1]$ | $[0,2]$ | $[0,3]$ | $[0,4]$ | $[0,5]$ | $[0,6]$ | $[0,7]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $[0, \mathrm{e}]$ | $[0, \mathrm{e}]$ | $[0,1]$ | $[0,2]$ | $[0,3]$ | $[0,4]$ | $[0,5]$ | $[0,6]$ | $[0,7]$ |
| $[0,1]$ | $[0,1]$ | $[0, \mathrm{e}]$ | $[0,4]$ | $[0,7]$ | $[0,3]$ | $[0,6]$ | $[0,2]$ | $[0,5]$ |
| $[0,2]$ | $[0,2]$ | $[0,6]$ | $[0, \mathrm{e}]$ | $[0,5]$ | $[0,1]$ | $[0,4]$ | $[0,7]$ | $[0,3]$ |
| $[0,3]$ | $[0,3]$ | $[0,4]$ | $[0,7]$ | $[0, \mathrm{e}]$ | $[0,6]$ | $[0,2]$ | $[0,5]$ | $[0,1]$ |
| $[0,4]$ | $[0,4]$ | $[0,2]$ | $[0,5]$ | $[0,1]$ | $[0, \mathrm{e}]$ | $[0,7]$ | $[0,3]$ | $[0,6]$ |
| $[0,5]$ | $[0,5]$ | $[0,7]$ | $[0,3]$ | $[0,6]$ | $[0,2]$ | $[0, \mathrm{e}]$ | $[0,1]$ | $[0,4]$ |
| $[0,6]$ | $[0,6]$ | $[0,5]$ | $[0,1]$ | $[0,4]$ | $[0,7]$ | $[0,3]$ | $[0, \mathrm{e}]$ | $[0,2]$ |
| $[0,7]$ | $[0,7]$ | $[0,3]$ | $[0,6]$ | $[0,2]$ | $[0,5]$ | $[0,1]$ | $[0,4]$ | $[0, \mathrm{e}]$ |

We see every interval bielement $x=[0, a] \cup[0, b] \in L$ is such that $\mathrm{x}^{2}=[0,1] \cup[0,1]$. Thus L is a Smarandache strong 2-Sylow interval biloop.

THEOREM 1.4.5: Let $=\left\{L_{p}[0, a](t)\right\} \cup\left\{L_{q}[0, b](s)\right\}$ ( $p$ and $q$ two distinct primes) be a Smarandache interval biloop of order $|p+1| .|q+1|$. Then every interval biloop in $L$ is a Smarandache strong biinterval 2-Sylow loop.

Proof follows from the fact the biorder of $\mathrm{L}=\left|\mathrm{L}_{1}\right| \cdot\left|\mathrm{L}_{2}\right|=$ $|\mathrm{p}+1||\mathrm{q}+1|=$ even number $\times$ even number and as p and q are two distinct primes every interval bielement in L is of biorder 2.2. Hence each interval biloop in L is a Smarandache strong 2-Sylow biloop.

Now we can define as in case of usual S-loops the notion of Smarandache interval biloop homomorphism and S-interval biloop isomorphism [5, 9, 11]. Interested reader can substantiate this with examples. As in case of general loops we define Smarandache commutative interval biloop [5, 9, 11].

Example 1.4.11: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 7]$, *, 3$\} \cup\{[0, \mathrm{~b}] / \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 11\}$, *, 3\} be a biinterval loop. Clearly L is a S-commutative interval biloop.

We say an interval biloop $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}$ to be a Smarandache strongly commutative (S-strongly commutative) interval billoop if every proper bisubset $S=S_{1} \cup S_{2} \subseteq L_{1} \cup L_{2}$ which is a biinterval group (interval bigroup) is a commutative interval bigroup.

Also it is clear from the very definition if $L=L_{1} \cup L_{2}$ is S-strongly commutative interval biloop then L is a Smarandache commutative interval biloop.

Example 1.4.12: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0$, a$] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, 19], *, 8$\} \cup\{[0, b] / b \in\{e, 1,2, \ldots, 23\}, *, 9\}$ be an interval biloop. It is easily verified that L is a S-substrongly commutative interval biloop.

Example 1.4.13: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $21], 11, *\} \cup\{[0, b] / b \in\{e, 1,2, \ldots, 15\}, 8, *\}$ be a bi interval loop.

Clearly L is S-commutative biinterval biloop.
Now we have the following interesting theorem.
THEOREM 1.4.6: $\operatorname{Let} L=\left\{L_{p}[0, a](t)\right\} \cup\left\{L_{q}[0, b](s)\right\}, p$ and $q$ two distinct primes be a class of biinterval loops. Every interval biloop in L is a $S$-strongly commutative interval biloop.

Follows from the fact every proper bisubset $\mathrm{A}=\mathrm{A}_{1} \cup \mathrm{~A}_{1} \subseteq$ L which is an interval subbigroup is of biorder 2.2, and has no other interval subbiloops. Hence the claim.

Now as in case of loops we can in case of interval bilooops also define the notion of Smarandache cyclic interval biloop or Smarandache bicyclic interval biloop or Smarandache cyclic biinterval loop [5, 9, 11]. Also the notion of Smarandache strong cyclic biinterval loop as in case of loops. It is easily verified that every S-strong biinterval cyclic loop is a S-cyclic interval biloop.

We will illustrate this by some examples.
Example 1.4.14: $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2,3,4,5\}, 4$, $*\} \cup\{[0, \mathrm{~b}] / \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 29\}, *, 7\}$ be a biinterval loop. It is easily verified that L is S -strongly cyclic interval biloop.

We have a very large classes of class of S-strongly cyclic interval biloop which is stated in the following theorem the proof of which is left as an exercise to the reader.

Theorem 1.4.7: Let $L=\left\{L_{p}[0, a](t)\right\} \cup\left\{L_{q}[0, b](s)\right\}, p$ and $q$ two distinct primes be a class of biinterval loop. Then every biinterval loop in L is a $S$-strongly cyclic interval biloop.

In fact by varying the primes p and q over the set of primes we can get an infinite class of S-strongly cyclic interval biloops.

We have the following interesting theorem which gives the number of strictly non commutative interval biloops which are S-strongly commutative interval biloops and S-strongly cyclic interval biloops.

Theorem 1.4.8: Let $L=\left\{L_{n}[0, a](t)\right\} \cup\left\{L_{m}[0, b](s)\right\}$ $(m \neq n, m>3, n>3)$ where $n=p_{l}^{\alpha_{l}} \cdots p_{k}^{\alpha_{k}}$ and $m=q_{l}^{t_{l}} \cdots q_{s}^{t_{s}}$ with $\alpha_{i} \geq 1, t_{j} \geq 1,1 \leq i \leq k$ and $1 \leq j \leq s$. Then $L$ contains exactly $F_{n} . F_{m}$ interval biloops which are strictly non commutative and they are

1. S-strongly commutative interval biloops and
2. S-strongly cyclic interval bilooops where

$$
F_{n}=\prod_{i=1}^{K}\left(p_{i}-3\right) p_{i}^{\alpha_{i}-1}, \quad F_{m}=\prod_{j=1}^{s}\left(q_{j}-3\right) q_{j}^{t_{j}-1} .
$$

We can as in case of usual biloops define Smarandache pseudo commutative interval biloop and Smarandache strongly pseudo commutative interval biloop. We can also define the notion of Smarandache commutator interval bisubloop denoted by $\mathrm{L}^{\mathrm{S}}=$ $L_{1}^{s} \cup L_{2}^{s}$. We have the following interesting result viz. if $\mathrm{L}=\mathrm{L}_{1}$ $\cup \mathrm{L}_{2}$ be an S-interval biloop which has no S-interval subbiloops then $\mathrm{L}^{\prime}=\mathrm{L}^{\mathrm{s}}=L_{1}^{\prime} \cup L_{2}^{\prime}=L_{l}^{s} \cup L_{2}^{s}$ where $\mathrm{L}^{\prime}=L_{l}^{\prime} \cup L_{2}^{\prime}=$ $<\left\{[0, \mathrm{x}] \in \mathrm{L}_{1} /[0, \mathrm{x}]=([0, \mathrm{y}],[0, \mathrm{z}])\right.$ for some $\left.[0, \mathrm{y}],[0, \mathrm{z}] \in \mathrm{L}_{1}\right\}>$ $\cup<\left\{[0, \mathrm{y}] \in \mathrm{L}_{2} /[0, \mathrm{y}]=\left([0, \mathrm{~s}],[0, \mathrm{t}]\right.\right.$ for some $[0, \mathrm{~s}],[0, \mathrm{t}]$ in $\left.\mathrm{L}_{2}\right\}>$ and $\mathrm{L}^{\mathrm{s}}=L_{I}^{s} \cup L_{2}^{s}=\left\{L_{I}^{s}\right.$ is the interval subloop generated by all the interval commutators $\mathrm{A}_{1}, \mathrm{~A}_{1}$ a S -interval subloop of the
interval loop $\left.\mathrm{L}_{1}\right\} \cup\left\{L_{2}^{s}\right.$ is the interval subloop generated by all the interval commutators $\mathrm{A}_{2}, \mathrm{~A}_{2}$ a S-interval subloop of the interval loop $\left.\mathrm{L}_{2}\right\}$. We have the following theorem.

THEOREM 1.4.9: Let $L=\left\{L_{n}[0, a](t) / n\right.$ is a prime; $\left.0<t<n\right\}$ $\cup\left\{L_{m}[0, b](s) / m\right.$ is a prime, $\left.0<s<m\right\}$ be a class of non commutative interval biloops. Then we have $L^{\prime}= \begin{cases}L_{1}^{\prime} & {[0, a]}\end{cases}$ $(t)\} \cup\left\{L_{m}^{\prime}[0, b](s)\right\}=L^{s}=\left\{L_{n}^{s}[0, a](t)\right\} \cup\left\{L_{m}^{s} \quad[0, a](s)\right\}$ for every pair taken in $L$.

Here $\mathrm{L}_{\mathrm{n}}^{\prime}[0, \mathrm{a}](\mathrm{t})=\left\langle\left\{[0, \mathrm{~d}] \in \mathrm{L}_{\mathrm{n}}[0, \mathrm{a}](\mathrm{t}) /[0, \mathrm{~d}]=([0, \mathrm{~b}]\right.\right.$, $[0, \mathrm{c}]$ ) for some $[0, b],[0, \mathrm{c}]$ in $\left.\left.\mathrm{L}_{\mathrm{n}}[0, \mathrm{a}](\mathrm{t})\right\}\right\rangle$. Similarly $\mathrm{L}_{\mathrm{m}}^{\prime}[0, \mathrm{~b}](\mathrm{s})$ is defined.

The proof is direct for more information please refer [5].
We can as in case of loops define for interval biloops the notion of Smarandache associative interval biloops [5].

Example 1.4.15: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, 13], $\left.{ }^{*}, 5\right\} \cup\{[0, \mathrm{~b}] \mid \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 17\} *, 7\}$ be an interval biloop. Clearly L is not a S -associative interval biloop.

We have a very large class of interval biloops which are not S-associative interval biloops. This is evident from the following theorem, the proof of which is straight forward.

THEOREM 1.4.10: Let $L=\left\{L_{n}[0, a](t)\right\} \cup\left\{L_{m}[0, b](s)\right\}(n$ and $m$ are two distinct primes $1<t<n$ and $l<s<m$ ) be class of interval biloops. None of the interval biloops in this class of $(n+1)(m+1)$ biloops is an $S$-associative interval biloop.

The notion of Smarandache strongly pairwise associative interval biloops can be defined in an analogous way for interval biloops. We will illustrate this by an example.

Example 1.4.16 : Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $19\}, \mathrm{t}=7, *, 1<\mathrm{t}<19\} \cup\{[0, \mathrm{~b}] / \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 11\}$, *, $\mathrm{s}=$ $5,1<\mathrm{s}<11\} \mathrm{m}$ and n are distinct be a S-strongly pairwise associative interval biloop.

THEOREM 1.4.11: Let $L=L_{1} \cup L_{2}=\left\{L_{n}[0, a](t) / 0<t<n\right.$, * $\}$ $\cup\left\{L_{m}[0, b](s) \mid 0<s<m,{ }^{*}\right\}(m \neq n, m>3, n>3$; $m$ and $n$ positive integers) be a class of interval biloops. $L$ is a class of S-strongly pairwise associative interval biloops.

We give only hint of the proof.
Let $\mathrm{a}=[0, \mathrm{x}] \cup[0, \mathrm{y}] \in \mathrm{L}_{1}^{1} \cup \mathrm{~L}_{2}^{2}$ where $\mathrm{L}_{1}^{1}$ and $\mathrm{L}_{2}^{2}$ are interval loops from the class of loops $L_{1}$ and $L_{2}$ respectively. Similarly $b=[0, \mathrm{p}] \cup[0, \mathrm{~s}] \in \mathrm{L}_{1}^{1} \cup \mathrm{~L}_{2}^{2}$.

Now clearly using some simple number theoretic techniques we have

$$
\begin{aligned}
(\mathrm{a} \mathrm{~b}) \mathrm{a} & =(([0, \mathrm{x}] \cup[0, \mathrm{y}])([0, \mathrm{p}] \cup[0, \mathrm{~s}]) \times([0, \mathrm{x}] \cup[0, \mathrm{y}]) \\
& =[0,\{\mathrm{xp}) \mathrm{x}] \cup[0(\mathrm{ys}) \mathrm{y}] \\
& =[0, \mathrm{x}(\mathrm{px})] \cup[0, \mathrm{y}(\mathrm{sy})] \\
& =\mathrm{a}(\mathrm{ba})[] .
\end{aligned}
$$

We can also define the notion of Smarandache associator interval subbiloop denoted by $L^{A}=L_{1}^{A_{1}} \cup L_{2}^{A_{2}}=\{$ <interval subloop generated by all the interval associators in $A_{1}$, where $A_{1}$ is a S-interval subloop of $L_{1}$; that is $\left.A_{1} \subseteq L_{1}>\right\} \cup\{<$ interval subloop generated by all the interval associators in $A_{2}$, where $A_{2}$ is a S-interval subloop of $\mathrm{L}_{2}$ that is $\left.\mathrm{A}_{2} \subseteq \mathrm{~L}_{2}>\right\}$.

If $L$ is a $S$-interval biloop which has no $S$-interval bisubloops then we have $A(L)=L^{A}=A_{1}\left(L_{1}\right) \cup A_{2}\left(L_{2}\right)=$ $L_{1}^{\mathrm{A}_{1}} \cup \mathrm{~L}_{2}^{\mathrm{A}_{2}}$ that is the associator interval subbiloop of L coincides with the S-associator interval subbiloop [ ].

We have the following theorem which guarantees such class of interval biloops.

THEOREM 1.4.12: Let $L=L_{1} \cup L_{2}=\left\{L_{n}[0, a](t) ; *, l<t<\right.$ $n\} \cup\left\{L_{m}[0, a](s),{ }^{*}, 1<s<m\right\}$ be a class of interval biloops where $L_{i}$ 's are $S$-interval loops and has no $S$-interval subloops,
$i=1,2$. Then $A\{L\}=A\left(L_{1}\right) \cup A\left(L_{2}\right)=L_{1}^{A} \cup L_{2}^{A}$.
(Here we mean every pair of interval biloops in the class satisfies the condition which is represented by the class $\mathrm{L}=\mathrm{L}_{1}$ $\cup \mathrm{L}_{2}$ ).

In general we cannot say this for S-interval biloops which has S-interval subbiloops. Interested reader can construct examples to this effect [5, 9, 11]. Consequent of this we have the following theorem.

THEOREM 1.4.13: Let $L=L_{1} \cup L_{2}$ be an S-interval biloop having a S-interval subbiloop $A=A_{1} \cup A_{2}$, then $A(L) \neq L^{A}$ that is $A(L)=A_{1}\left(L_{1}\right) \cup A_{2}\left(L_{2}\right) \neq L_{1}^{A_{1}} \cup L_{2}^{A_{2}}$.

This proof is by constructing counter examples to this effect [ $5,9,11]$. We can as in case of loops define for interval biloops the notion of S-first normalizer and S-second normalizer and obtain the condition for the S-first normalize to be equal to Ssecond normalize for interval biloops.

Example 1.4.17: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, 21], *, 8$\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 33\},{ }^{*}, 5\right\}$ be an interval biloop. Clearly $H_{1}^{1}$ (7) is the interval subloop of $L$ is given by the following table $\mathrm{H}_{1}^{1}(7)=\{[0, \mathrm{e}],[0,1],[0,8],[0,15]\}$.

| $*$ | $[0, \mathrm{e}]$ | $[0,1]$ | $[0,8]$ | $[0,15]$ |
| :---: | :---: | :---: | :---: | :---: |
| $[0, \mathrm{e}]$ | $[0, \mathrm{e}]$ | $[0,1]$ | $[0,8]$ | $[0,15]$ |
| $[0,1]$ | $[0,1]$ | $[0, \mathrm{e}]$ | $[0,15]$ | $[0,8]$ |
| $[0,8]$ | $[0,8]$ | $[0,15]$ | $[0, \mathrm{e}]$ | $[0,1]$ |
| $[0,15]$ | $[0,15]$ | $[0,8]$ | $[0,1]$ | $[0, \mathrm{e}]$ |

$H_{1}^{2}(11)=\{[0, e],[0,11],[0,12],[0,23]\}$ is an interval subloop of $L_{2}$ given by the following table:

| $*$ | $[0, \mathrm{e}]$ | $[0,1]$ | $[0,12]$ | $[0,23]$ |
| :---: | :---: | :---: | :---: | :---: |
| $[0, \mathrm{e}]$ | $[0, \mathrm{e}]$ | $[0,1]$ | $[0,12]$ | $[0,23]$ |
| $[0,1]$ | $[0,1]$ | $[0, \mathrm{e}]$ | $[0,23]$ | $[0,12]$ |
| $[0,12]$ | $[0,12]$ | $[0,23]$ | $[0, \mathrm{e}]$ | $[0,1]$ |
| $[0,23]$ | $[0,23]$ | $[0,12]$ | $[0,1]$ | $[0, \mathrm{e}]$ |

Consider the interval bisubloop $\mathrm{H}_{1}^{1}(7) \cup \mathrm{H}_{1}^{2}(11) \subseteq \mathrm{L}_{1} \cup$ $\mathrm{L}_{2}$. It is easily verified that $\mathrm{SN}_{1}\left(\mathrm{H}_{1}^{1}(7)\right) \cup \mathrm{SN}_{1}\left(\mathrm{H}_{1}^{2}(11)\right)=$ $\mathrm{SN}_{2}\left(\mathrm{H}_{1}^{1}(7)\right) \cup \mathrm{SN}_{2}\left(\mathrm{H}_{1}^{2}(11)\right)$.

In view of this we have the following important theorem.
THEOREM 1.4.14: Let $L=L_{1} \cup L_{2}=\left\{L_{n}[0, a](t)\right\} \cup\left\{L_{m}[0\right.$, $b](s)$ \} be the class of interval biloops (this forms a class of interval biloops). For any pair of interval biloops from $L$ say $L_{n}^{1} \cup L_{m}^{2} \in L_{1} \cup L_{2}$, let $H_{i n}^{1}([0, a](p)) \cup H_{\text {im }}^{2}([0, b](q)) \subseteq$ $L_{n}^{\prime} \cup L_{m}^{2}$ be its interval S-subbiloop.
Then

$$
\begin{aligned}
& S N_{l}\left(H _ { i n } ^ { 1 } ( [ 0 , a ] ( p ) ) \cup S N _ { 2 } \left(H_{i m}^{2}([0, b](q))\right.\right. \\
= & S N_{2}\left(H _ { i n } ^ { 1 } ( [ 0 , a ] ( p ) ) \cup S N _ { 2 } \left(H_{i m}^{2}([0, b](q))\right.\right.
\end{aligned}
$$

if and only if

$$
\left(t^{2}-t+1, p\right)=(2 t-1, p) \text { and }\left(s^{2}-s+1, q\right)=(2 s-1, q) .
$$

Proof: Let $\mathrm{L}_{\mathrm{n}}^{1} \cup \mathrm{~L}_{\mathrm{m}}^{2}$ be as in theorem and $\mathrm{H}_{\mathrm{in}}^{1}([0$, a] $(\mathrm{p})) \cup$ $\mathrm{H}_{\mathrm{im}}^{2}([0, \mathrm{~b}](\mathrm{q})) \subseteq \mathrm{L}_{\mathrm{n}}^{\prime} \cup \mathrm{L}_{\mathrm{m}}^{2} \quad$ be an S -interval bisubloop of $\mathrm{L}_{\mathrm{n}}^{1} \cup \mathrm{~L}_{\mathrm{m}}^{2}$. First we show that first interval S-binormalizer
$\mathrm{SN}_{1}\left(\mathrm{H}_{\mathrm{in}}^{1}([0, \mathrm{a}](\mathrm{p}))\right) \cup \mathrm{SN}_{1}\left(\mathrm{H}_{\mathrm{im}}^{2}([0, \mathrm{~b}](\mathrm{q}))\right)=\mathrm{H}_{\mathrm{in}}^{1}\left(\mathrm{k}_{1}\right) \cup$ $H_{i m}^{2}\left(k_{2}\right)$ where $k=k_{1} \cup k_{2}=p / d_{1} \cup q / d_{2}$ and $d_{1} \cup d_{2}=(2 t-1, p)$ $\cup(2 s-1, q)$, we use only simple number theoretic arguments and the definition $\mathrm{SN}_{1}\left(\mathrm{H}_{\mathrm{in}}^{1}([0, \mathrm{a}](\mathrm{p})) \cup \mathrm{SN}_{2}\left(\mathrm{H}_{\mathrm{im}}^{2}([0, \mathrm{~b}](\mathrm{q}))=\right.\right.$ $\left\{\left[0, \mathrm{j}_{1}\right] \in \mathrm{L}_{\mathrm{n}}^{\prime} /\left[0, \mathrm{j}_{1}\right] \mathrm{H}_{\mathrm{in}}^{1}([0, \mathrm{a}](\mathrm{p}))=\mathrm{H}_{\mathrm{in}}^{1}([0, \mathrm{a}](\mathrm{p}))\left[0, \mathrm{j}_{1}\right]\right\} \cup$ $\left\{\left[0, \mathrm{j}_{2}\right] \in \mathrm{L}_{\mathrm{n}}^{2} /\left[0, \mathrm{j}_{2}\right] \mathrm{H}_{\mathrm{im}}^{2}([0, \mathrm{~b}](\mathrm{q})]=\mathrm{H}_{\mathrm{im}}^{2}([0, \mathrm{~b}](\mathrm{q}))\left[0, \mathrm{j}_{2}\right]\right\}$ is the S -first interval binormalizer of $\mathrm{H}_{\mathrm{in}}^{1}([0, \mathrm{a}](\mathrm{p})) \cup$ $\mathrm{H}_{\mathrm{im}}^{2}([0, \mathrm{~b}](\mathrm{q}))$.

It is left for the reader to verify $\left[0, \mathrm{j}_{1}\right] \mathrm{H}_{\mathrm{in}}^{1}([0, a](\mathrm{p})) \cup$ $H_{i n}^{1}([0, a](p)) .\left[0, j_{1}\right]$ if and only if $(2 t-1)\left(i-j_{1}\right) \equiv 0 \bmod (p)$ and $\left[0, \mathrm{j}_{1}\right] \mathrm{H}_{\mathrm{im}}^{2}([0, \mathrm{a}](\mathrm{q}))=\mathrm{H}_{\mathrm{im}}^{2}\left([0, \mathrm{~b}]\right.$ (q)) [0, $\left.\mathrm{j}_{2}\right]$ if and only if $(2 s-1)\left(i-j_{2}\right) \equiv 0(\bmod q)$.

For $\left[0, \mathrm{j}_{1}\right] \notin \mathrm{H}_{\mathrm{in}}^{1}([0, \mathrm{a}](\mathrm{p}))$ and $\left[0, \mathrm{j}_{2}\right] \notin \mathrm{H}_{\mathrm{im}}^{2}([0, \mathrm{~b}](\mathrm{q}))$ further if $\left[0, \mathrm{j}_{1}\right] \in \mathrm{H}_{\mathrm{in}}^{1}\left([0, \mathrm{a}](\mathrm{p})\right.$ ) we have $\left[0, \mathrm{j}_{1}\right] \mathrm{H}_{\mathrm{in}}^{1}([0, \mathrm{a}](\mathrm{p}))$ $=H_{i n}^{1}([0, a](p))\left[0, j_{1}\right]$.

Similar argument holds for $\mathrm{H}_{\mathrm{im}}^{2}([0, \mathrm{~b}](\mathrm{q}))$ and $\left[0, \mathrm{j}_{2}\right]$.
Now for the other part reasoning is done as in case of usual loops. Please refer [ ].

We have an interesting result relating $\mathrm{L}_{\mathrm{n}}([0, ~ a)(\mathrm{t})) \cup$ $\mathrm{L}_{\mathrm{m}}([0, \mathrm{~b}](\mathrm{s})$ ) where n and m are two distinct primes and $\operatorname{SN}\left(\mathrm{L}_{\mathrm{n}}([0, \mathrm{a}](\mathrm{t})) \cup \mathrm{SN}\left(\mathrm{L}_{\mathrm{m}}([0, \mathrm{~b}](\mathrm{s}))\right.\right.$.

THEOREM 1.4.15: Let $L=L_{l}^{n} \cup L_{2}^{m}=\left\{L_{n}([0, a](t)\} \cup\left\{L_{m}([0\right.\right.$, b](s)\} be a class of interval biloops where $n$ and $m$ are two distinct primes. Then for every pair of interval biloops $L_{n}^{l}([0$, $a])(t) \cup L_{m}^{2}([0, b])(s) \in L$ we have $\operatorname{SN}\left(L_{n}^{l}([0, a])(t)\right) \cup$ $\operatorname{SN}\left(L_{m}^{2}([0, b])(s)\right)=\{e\} \cup\{e\}$.

For proof refer [5, 9, 11].
Analogously one can derive for interval biloops with appropriate changes.

We can for interval biloops define S-Moufang bicenter. This is easily done by suitably extending to interval biloops.

We have the following theorems the proofs can be obtained as in $[5,9,11]$ with appropriate modifications.

Theorem 1.4.16: Let $L=L_{1} \cup L_{2}= \begin{cases}L_{n}[0, & a](t)\} \cup\end{cases}$ $\left\{L_{m}[0, b](s)\right\}, n$ and $m$ are two distinct primes be a class of interval bilooops, then $S$-Moufang bicenter of every interval biloop from $L$ say $L_{n}^{1}([0, a])(t) \cup L_{m}^{2}([0, b])(s)$ for fixed $t$ and $s$ is either $\{e\} \cup\{e\}$ or $L_{n}^{l}([0, a])(t) \cup L_{m}^{2}([0, b])(s)$.

THEOREM 1.4.17: Let $L=L_{l} \cup L_{2}=\left\{L_{n}[0, a](t)\right\} \cup\left\{L_{m}[0\right.$, $b](s)$ \} be a class of interval biloops where $n$ and $m$ are two distinct primes.

Then $N Z\left(L_{n}^{l}([0, a])(t)\right) \cup N Z\left(L_{m}^{2}([0, b])(s)\right)=Z\left(L_{n}^{l}([0\right.$, a]) $(t)) \cup Z\left(L_{m}^{2}([0, b])(s)\right)=\{e\} \cup\{e\}$ for every pair of
interval biloops $\left.L_{n}^{l}([0, a])(t)\right) \cup L_{m}^{2}([0, b])(s)$ in $L_{1} \cup L_{2}$ for a fixed $t$ and $s$.

For proof refer [5, 9] and obtain the proof with proper modifications for interval biloops. We can as in case of loops define direct product in case of interval biloops and derive their related properties. Now using interval loops we can define interval group - loop, interval semigroup - loop, quasi interval biloops and interval groupoid - loop.

Now we proceed onto define these structures and study some of their related properties.

DEFINITION 1.4.2: Let $L=L_{1} \cup L_{2}$ where $L_{1}$ be an interval loop and $G_{2}$ is just a loop. We call $L$ a quasi interval biloop. The operations from $L_{1}$ and $G_{2}$ are carried over to $L$.

We will illustrate this with examples.
Example 1.4.18: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}$ where $\mathrm{L}_{1}$ is $\mathrm{L}_{5}(3)$ and $\mathrm{L}_{2}=$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 7\},{ }^{*}, 6\right\}$ be a quasi interval biloop. We will just show how on $L$ operations are carried out. Let $\mathrm{x}=2 \cup$ $[0,4]$ and $\mathrm{y}=4 \cup[0,6]$ be in $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}$,

$$
\begin{aligned}
\mathrm{x} \cdot \mathrm{y} & =(2 \cup[0,4]) \cdot(4 \cup[0,6]) \\
& =2 * 4 \cup[0,4] *[0,6] \\
& =(4 \times 3-2 \times 2)(\bmod 5) \cup\{[0,4 \times 6]\} \\
& =\{12+1(\bmod 5)\} \cup\{(0,\{36-4 \times 5)(\bmod 7)\} \\
& =3 \cup[0,2] \in \mathrm{L}_{1} \cup \mathrm{~L}_{2}=\mathrm{L} .
\end{aligned}
$$

$\mathrm{e} \cup[0, \mathrm{e}] \in \mathrm{L}$ acts as the identity element. This quasi interval biloop is of order $6 \times 8=48$.

Example 1.4.19: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{a}] \mid \mathrm{a} \in\{\mathrm{e}, 1, \ldots, 11\}$, *, $9\} \cup \mathrm{L}_{7}(3)$ be a quasi interval biloop of order $20 \times 8=160$. $\mathrm{L}=$ $\{[0, a] \cup b / a \in\{e, 1,2, \ldots, 11\}$ and $b \in\{e, 1,2, \ldots, 7\}\}$. Operations on them can be carried out as shown in example 1.4.18. Now we can define quasi interval subbiloop, quasi interval S-biloops and so on. Several of the theorems proved for interval biloops can be derived also for quasi interval biloops with some simple changes.

We will illustrate these situations by some examples.
Example 1.4.20: $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 21\}$, *, $5\} \cup \mathrm{L}_{33}(8)$ be a quasi interval biloop. L is a S-quasi interval biloop. For take $A=A_{1} \cup A_{2}=\{[0, e],[0,10]\} \cup\{e, 6\} \subseteq L_{1} \cup$ $\mathrm{L}_{2}$ is a quasi interval bigroup, hence L is a S-quasi interval biloop. Consider $\mathrm{H}_{1}(7)=\{[0, \mathrm{e}],[0,1],[0,8],[0,15]\}$ and $\mathrm{H}_{1}(11)$ $=\{e, 1,12,23\}$ subloops of $L_{1}$ and $L_{2}$ respectively. $H=H_{1}(7) \cup$ $\mathrm{H}_{1}(11) \subseteq \mathrm{L}_{1} \cup \mathrm{~L}_{2}$ is not only a quasi interval subbiloop but also $H$ is a S-quasi interval bisubloop of order $4 \times 4=16$.

Example 1.4.21: Let $. \mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $\left.19\},^{*}, 8\right\} \cup \mathrm{L}_{17}$ (3) be a quasi interval biloop. L is a S-quasi interval biloop.

For take $\mathrm{A}=\mathrm{A}_{1} \cup \mathrm{~A}_{2}=\{[0, \mathrm{e}],[0,3]\} \cup\{\mathrm{e}, 9\} \subseteq \mathrm{L}_{1} \cup \mathrm{~L}_{2}$; A is a quasi interval bigroup, hence $L$ is a $S$-quasi interval biloop. Infact we have a class of S-quasi interval biloop.

THEOREM 1.4.18: Let. $L=L_{1} \cup L_{2}=L_{n}(m) \cup\{[0, a] / a \in\{e$, $\left.1,2, \ldots, t\},{ }^{*}, s ; 1<s<t(t, s)=1=(s-1, t)\right\}$ be a quasi interval biloop. $L$ is a Smarandache quasi interval biloop.

The proof is straight forward and hence is left as an exercise for the reader. In fact a class of quasi interval biloops exists. For in the theorem m and s can vary and we have a class. If we vary n and $t$ we get classes of quasi interval biloops of finite order.

We have a class of quasi interval biloops which are bisimple. We will first illustrate by an example.

Example 1.4.22: Let $\mathrm{L}=\mathrm{L} 9(8) \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 19\}$, $\left.{ }^{*}, 11\right\}$ be a quasi interval biloop which is clearly bisimple.

In fact we have a class of bisimple quasi interval biloops.
THEOREM 1.4.19: $L=L_{l} \cup L_{2}=L_{n} \cup\left\{L_{t}[0, a](s)\right\}$ be a class of quasi interval biloops. Clearly every pair of quasi interval biloops are simple.

Proof is straight forward as L has no non-trivial quasi interval normal bisubloops. Hence the claim.

Example 1.4.23: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\left\{\mathrm{L}_{19}(3)\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1$, $\left.2,3, \ldots, 23\},{ }^{*}, 5\right\}$ be quasi interval biloop. Clearly L is a Smarandache quasi interval bisubgroup biloops.

We have a class of S-quasi interval bisubgroup biloop.
Theorem 1.4.20: Let $L=L_{1} \cup L_{2}=L_{n} \cup\left\{\left\{L_{t}[0, a](s)\right\}\right.$ where $n$ and $t$ are distinct primes, be a class of quasi interval biloops. $L$ is a S-quasi interval subgroup biloop.

Now we have a class of quasi interval S-Cauchy biloops.
Example 1.4.24: Let $\mathrm{L}=\mathrm{L}_{15}(8) \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 21\}$, $11, *\}$ be a quasi interval biloop. Clearly L is a quasi interval S Cauchy biloop or S-Cauchy quasi interval biloop.

Theorem 1.4.21: Let $L=L_{1} \cup L_{2}=\left\{L_{m}\right\} \cup\left\{L_{t}[0, a]\right.$ (s)/ $1<s<t$, *\} be a class of quasi interval biloops. Every quasi interval biloop in this class is a $S$-Cauchy quasi interval biloop.

The proof is left as an exercise to the reader.
Example 1.4.25: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\mathrm{L}_{15}(2) \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2$, ..., 15\}, *, 2 \} be a quasi interval biloop of order $16 \times 16$.

We see $L$ has quasi interval S-subbiloops. $H=H_{1} \cup H_{2}=\{e$, $2,5,8,11,14\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{e}, 2,5,8,11,14\} \subseteq \mathrm{L}_{1} \cup \mathrm{~L}_{2}$ is a quasi interval S -subbiloop of order $6 \times 6$. Clearly o(H) $X\{\mathrm{~L}\}$ that is $6.6 \times 16.16$.

THEOREM 1.4.22: Let $L_{n} \cup\left\{L_{m}[0, a](t)\right\}=L$ be a class of quasi interval biloops. Every quasi interval biloop in $L$ is a $S$ weakly Lagrange quasi interval biloop.

Proof is straight forward and is left as an exercise for the reader.
We have a class of quasi interval biloops which are Smarandache strong quasi interval 2-Sylow biloops.

Example 1.4.26: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\mathrm{L}_{7}(3) \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2$, ..., 29\}, *, 12\} be a quasi interval biloop which is a S-strong quasi interval 2-Sylow biloop.

We have the following theorem which guarantees the existence of a class of quasi interval Smarandache strong 2Sylow biloops.

THEOREM 1.4.23: Let $L=L_{n} \cup\left\{[0, a] / a \in\{e, 1,2, \ldots, q\},{ }^{*}, t\right.$, $1<t<q\} ; n$ and $q$ primes be a class of quasi interval biloops. Every quasi interval biloop in L is a Smarandache strong quasi interval 2-Sylow biloop.

The proof is straight forward and hence is left as an exercise to the reader.

Example 1.4.27: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\mathrm{L}_{5}(4) \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{L}_{7}(2)\right\}$ is a quasi interval biloop.

Clearly L is a S-strongly cyclic quasi interval biloop.
THEOREM 1.4.24: Let $L=L_{1} \cup L_{2}=L_{n} \cup\left\{[0, a] / a \in L_{m}(t) ;\right.$ *; 1 $<t<m\}(n>3, m>3) n$ and $m$ are primes be a quasi interval biloop. Then every quasi interval biloop in $L$ is bicyclic so $L$ is a S-strongly cyclic quasi interval biloop.

The proof is direct and hence left for the reader to prove. Now we will give the theorem which gives even the number of quasi interval bicyclic biloops.

THEOREM 1.4.25: Let $L=L_{n} \cup\left\{L_{m}([0, a](s)\}(n>3, m>3)\right.$ be a class of quasi interval biloops. If $n=p_{l}^{\alpha_{t}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$ and $m$ $=q_{1}^{t_{l}} q_{2}^{t_{2}} \cdots q_{p}^{t_{p}}\left(\alpha_{i} \geq 1, t_{j} \geq 1 ; 1 \leq i \leq t ; 1 \leq j \leq p\right)$ then it contains exactly $F_{n} . F_{m}$ quasi interval biloops which are strictly noncommutative and they are

1) S-strongly commutative quasi interval biloops and
2) $S$-strongly quasi interval cyclic biloops where

$$
\mathrm{F}_{\mathrm{n}}=\prod_{\mathrm{i}=1}^{\mathrm{t}}\left(p_{i}-3\right) p_{i}^{\alpha_{i}-1} \text { and } \mathrm{F}_{\mathrm{m}}=\prod_{\mathrm{i}=1}^{\mathrm{p}}\left(q_{i}-3\right) q_{i}^{t_{i}-1}
$$

Proof is direct for information related to it refer [5, 9].

Also we can say when the S-commutative quasi interval biloop coincides with the quasi interval biloop.

To this effect we first give an example and then give the related theorem.

Theorem 1.4.26: Let $L=L_{n} \cup\left\{L_{m}([0, a](t)\} \mid l<t<m\right\}$ be a class of quasi interval biloops $n$ and $m$ distinct primes and $L$ is noncommutative. Every quasi interval biloop $P=P_{1} \cup P_{2} \subseteq L_{n}$ $\cup\left\{L_{n}([0, a]),(t)\right\}$ is such that $P^{\prime}=P_{1}^{\prime} \cup P_{2}^{\prime}=P^{s}=P_{1}^{s} \cup P_{2}^{s}$ $=P=P_{1} \cup P_{2}$.

For proof in an analogous way please refer [5, 9, 11].
We have a class of quasi interval biloops which are non associative. We will first illustrate this by an example.

Example 1.4.28: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\mathrm{L}_{\mathrm{n}} \cup\{[0, \mathrm{a}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $\mathrm{m}\}$, *, $\mathrm{t} ; 1<\mathrm{t}<\mathrm{m}\}$ where n and m are two distinct primes. For varying elements s and t between 1 to n and 1 to m respectively we get a class of quasi interval biloops. Every biloop in this class is not a S -associative quasi interval biloops.

We say quasi interval biloops $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}$ is Smarandache strongly pair wise associative if for all $[0, x] \cup[0, y],[0, a] \cup$ $[0, \mathrm{~b}]$ in $\mathrm{P}_{1} \cup \mathrm{P}_{2}$ we must have $([0, \mathrm{x}][0, \mathrm{a}]([0, \mathrm{x}]) \cup([0, \mathrm{y}]$ $[0, \mathrm{~b}])[0, \mathrm{y}]=[0, \mathrm{x}]([0, \mathrm{a}][0, \mathrm{x}]) \cup[0, \mathrm{y}]([0, \mathrm{~b}][0, \mathrm{y}])$. We show we have a class of S-strongly associative quasi interval biloops.

Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\mathrm{L}_{9}(8) \cup\{([0, \mathrm{a}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 15\}, *$, $14\}$ be a quasi interval biloop which is clearly S-strongly associative quasi interval biloop.

THEOREM 1.4.27: Let $L=L_{1} \cup L_{2}=L_{n} \cup\left\{L_{m}([0, a](s)\} \mid l<s\right.$ $<m\}$ be a class of quasi interval biloops. Every quasi interval biloop in $L$ is $S$-strongly associative quasi interval biloop.

Proof given in [5] can be analogously used for $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}$.

Example 1.4.29: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\mathrm{L}_{11}(5) \cup\{([0, \mathrm{a}]\} \mathrm{a} \in\{\mathrm{e}$, $1,2, \ldots, 25\}$, * 24$\}$ be a quasi interval biloop. Clearly L is $\mathrm{S}-$ biloop and has no S-subloops. Further $A(L)=A\left(L_{1} \cup L_{2}\right)=$ $\mathrm{A}\left(\mathrm{L}_{1}\right) \cup \mathrm{A}\left(\mathrm{L}_{2}\right)=\mathrm{L}^{\mathrm{A}}=\mathrm{L}_{1}^{\mathrm{A}} \cup \mathrm{L}_{2}^{\mathrm{A}}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}$.

We have a class of quasi interval biloops which satisfy the following condition.

THEOREM 1.4.28: Let $L=L_{1} \cup L_{2}=\left\{L_{n}\right\} \cup\{[0, a] \mid a \in\{e, 1,2$, .., $m\}$, *, $l<t<m\}$ ( $m$ and $n$ distinct odd numbers greater than three) be a class of quasi interval biloops. Every biloop $P=P_{1}$ $\cup P_{2}$ in $L$ is such that

1) $P$ is $S$-quasi interval biloop.
2) P has no $S$-quasi interval subbiloops
3) $A(P)=A\left(P_{1}\right) \cup A\left(P_{2}\right)$
$P^{4}=\mathrm{P}_{1}^{\mathrm{A}} \cup \mathrm{P}_{2}^{\mathrm{A}}=P_{1} \cup P_{2}$
for every $P$ in $L$.
The proof is direct using definitions and simple number theoretic techniques.

We leave it as an exercise to the reader to prove that we have a class of quasi interval biloops for which the first normalize is equal to second normalilzer under the condition $\left(m^{2}-m+1, t\right)=(2 m-1, t)$ where $L_{n}(m) \in L_{n}$ and $t / n$ and $(2 p-$ $p+1, s)=(2 p-1, t)$ an interval loop $L_{q}$ in which $s / q$ and $L_{q}$ is built using $p$ where $(p, q)=(p, q-1)=1$.
Further when both the interval loop and loop are built using $\mathrm{Z}_{\mathrm{q}}$ and $\mathrm{Z}_{\mathrm{p}}$, where p and q are primes we see the quasi interval biloop $\mathrm{L}=\mathrm{L}_{\mathrm{p}}(\mathrm{t}) \cup\left\{\mathrm{L}_{\mathrm{q}}([0, \mathrm{a}]) \mathrm{s}\right\}$ is such that $\mathrm{SN}(\mathrm{L})=$ $\mathrm{SN}\left(\mathrm{L}_{\mathrm{p}}(\mathrm{t})\right) \cup \mathrm{SN}\left(\mathrm{L}_{\mathrm{q}}([0, \mathrm{a}])(\mathrm{s})\right)=\{\mathrm{e}\} \cup\{\mathrm{e}\}$ where $1<\mathrm{t}<\mathrm{p}$ and $1<\mathrm{s}<\mathrm{q}$.
Further for all the quasi interval biloops given above we see the S-Moufang bicentre is $\{\mathrm{e}\} \cup\{\mathrm{e}\}$ or total of L .

Also in this case when p and q are two distinct primes we see the quasi interval biloops we have $N Z(L)=N Z\left(L_{p}(t)\right) \cup$ $\left.\mathrm{NZ}\left(\mathrm{L}_{\mathrm{q}}[0, \mathrm{a}](\mathrm{s})\right)\right)=\mathrm{Z}(\mathrm{L})=\mathrm{Z}\left(\mathrm{L}_{\mathrm{p}}(\mathrm{t})\right) \cup \mathrm{Z}\left(\mathrm{L}_{\mathrm{q}}[0, \mathrm{a}](\mathrm{s})\right)=$ $\{\mathrm{e}\} \cup\{\mathrm{e}\}$.

We can also define the notion of direct product to obtain more classes of quasi interval biloops.

DEFINITION 1.4.3: Let $L=L_{1} \cup G$ where $L_{1}$ is an interval loop and $G$ is an interval group, then $L$ is a interval loop - group. The operations on $L_{1}$ and $G$ are carried on $L$ component wise.

We will illustrate this situation by some examples.
Example 1.4.30: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{G}_{1}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 7\}$, $3, *\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{14},+\right\}$ be a interval loop group of finite order.

Order of $L$ is $8.14=112$.
Example 1.4.31: Let $\mathrm{L}=\mathrm{G}_{1} \cup \mathrm{~L}_{1}=\left\{\mathrm{Z}_{19} \backslash\{0\}, \times\right\} \cup\{[0, \mathrm{a}] /$ a $\left.\in\{e, 1,2, \ldots, 25\},{ }^{*}, 24\right\}$ be an interval group-loop of finite order.

Example 1.4.32: Let $\mathrm{L}=\mathrm{G}_{1} \cup \mathrm{~L}_{1}=\left\{\mathrm{Z}_{19} \backslash\{0\}\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in$ $\{\mathrm{e}, 1,2, \ldots, 23\}, *, 12\}$ be an interval group-loop of order $18 \times 24$. If one of them is alone an interval structure we define then as quasi interval loop-group. Clearly $L$ is a commutative quasi interval group-loop.

We can define quasi interval subgroup - subloop as in case of other algebraic structures.

Example 1.4.33: Let $G=\mathrm{G}_{1} \cup \mathrm{~L}_{1}=\left\{\mathrm{Z}_{25},+\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in$ $\{\mathrm{e}, 1,2, \ldots, 15\}, *, 8\}$ be an quasi interval group - loop.

Example 1.4.34: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}=\left\{\mathrm{Z}_{16},+\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in$ $\{\mathrm{e}, 1,2, \ldots, 15\}, 8, *\}$ be an quasi interval group - loop. Consider $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\{\{0,4,8,12\},+\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1$, $6,11\}, *, 8\} \subseteq \mathrm{V}_{1} \cup \mathrm{~V}_{2}$ given by the following tables.

| + | 0 | 4 | 8 | 12 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 4 | 8 | 12 |
| 4 | 4 | 8 | 12 | 0 |
| 8 | 8 | 12 | 0 | 4 |
| 12 | 12 | 0 | 4 | 8 |

and

| $*$ | $[0, \mathrm{e}]$ | $[0,1]$ | $[0,6]$ | $[0,11]$ |
| :---: | :---: | :---: | :---: | :---: |
| $[0, \mathrm{e}]$ | $[0, \mathrm{e}]$ | $[0,1]$ | $[0,6]$ | $[0,11]$ |
| $[0,1]$ | $[0,1]$ | $[0, \mathrm{e}]$ | $[0,11]$ | $[0,6]$ |
| $[0,6]$ | $[0,6]$ | $[0,11]$ | $[0, \mathrm{e}]$ | $[0,1]$ |
| $[0,11]$ | $[0,11]$ | $[0,6]$ | $[0,1]$ | $[0, \mathrm{e}]$ |

P is a quasi interval subgroup subloop of finite order. Clearly o (P) / o (L).

Example 1.4.35: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\left\{\mathrm{Z}_{23},+\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\{\mathrm{e}, 1,2, \ldots, 47\},{ }^{*}, 9\right\}$ be a quasi interval group-loop. L has no proper interval group-loop.

Example 1.4.36: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{G}_{2}=\mathrm{L} 9(8) \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\left\{\mathrm{Z}_{12}\right\}\right.$, + \} be a quasi interval loop-group.

Clearly L has substructures.
Example 1.4.37: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{G}_{1}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $\left.17\},^{*}, 10\right\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{23} \backslash\{0\}, \times\right\}$ be an interval loopgroup of order $18 \times 22$. L has interval bigroup as and has no interval loop-group. $\mathrm{A}=\mathrm{A}_{1} \cup \mathrm{~A}_{2}=\left\{[0, \mathrm{e}],[0,7],{ }^{*}, 10\right\} \cup$ $\{[0,1],[0,22]\} \subseteq L_{1} \cup G_{1}$ is an interval bigroup of $L$.

Example 1.4.38: Let $\mathrm{G}=\mathrm{L}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in\left\{\mathrm{Z}_{43}\right\},+\right\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 19\},{ }^{*}, 10\right\}$ be an interval group - loop. Clearly G has no interval substructures.

Infact we have a class of interval group - loop which has no substructures.

THEOREM 1.4.29: Let $L=L_{1} \cup L_{2}=\left\{[0, a] / a \in Z_{p},+; p a\right.$ prime $\} \cup\left\{[0, b] / b \in Z_{q},{ }^{*}, t ; 1<t<q, q\right.$ a prime $\}$ be an interval group-loop. L has no interval substructures.

Proof is direct and hence is left as an exercise to reader.

Example 1.4.39: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{G}_{1}=\mathrm{L}_{15}(8) \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{40}\right.$, + \} be a quasi interval loop - group of finite order. Clearly $P=P_{1} \cup\left\{[0, a] / a \in\{0,4,8,12,16,20,24,28,32,36\} \subseteq Z_{40}\right.$, $+\} \subseteq L_{1} \cup G_{1}$ where $P_{1}=\left\{\{e, 1,6,11\}\right.$ is a subloop of $L_{1}$ so $P$ is a quasi interval subloop-subgroup of finite order.

Example 1.4.40: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\left\{\mathrm{L}_{19}(8)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{49}\right.$, $+\}$ be a quasi interval loop- group of order $20 \times 49$. Clearly L has proper quasi interval bigroup.

The notion of Smarandache cannot arise as we are involving groups in these quasi structures.

Now we can define interval loop - semigroup and quasi interval loop - semigroup.

Definition 1.4.4: Let $L=S_{1} \cup L_{1}$ where $S_{1}$ is an interval semigroup and $L_{1}$ is an interval loop; operations carried out on $L$ using operations of $S_{1}$ and $L_{1}$. We define $L$ to be an interval semigroup - loop.

We will illustrate this by some examples so that one can easily follow how the operations on L are carried out.

Example 1.4.41: Let $\mathrm{L}=\mathrm{S}_{1} \cup \mathrm{~L}_{1}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{24}, \mathrm{x}\right\} \cup$ $\{[0, \mathrm{~b}] / \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 11\}, 8\}$ be an interval semigroup-loop of order $24 \times 12$.

$$
\begin{aligned}
& \text { Let } \begin{aligned}
\mathrm{x} & =[0,5] \cup[0,7] \text { and } \mathrm{y}=[0,12] \cup[0,5] \in \mathrm{L} . \\
& =([0,5] \cup[0,7]) .)[0,12] \cup[0,5]) \\
& =[0,5] \times[0,12] \cup[0,7] *[0,5] \\
& =[0,5 \times 12(\bmod 24)] \cup[0,40-50(\bmod 11)] \\
& =[0,12] \cup[0,7+10(\bmod 11)] \\
& =[0,12] \cup[0,6] \in \mathrm{L} .
\end{aligned}
\end{aligned}
$$

Now it is easily verified that $L$ is an interval semigrouploop.

Example 1.4.42: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~S}_{1}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 15$, *, 8$\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{28}, \times\right\}$ be an interval semigroup-loop of finite order. Clearly o $(\mathrm{L})=16 \times 28$. L is commutative.

Example 1.4.43: Let $\mathrm{L}=\mathrm{S}_{1} \cup \mathrm{~L}_{2}=\left\{\mathrm{S}(\mathrm{X}) / \mathrm{X}=\left(\left[0, \mathrm{a}_{1}\right],\left[0, \mathrm{a}_{2}\right]\right.\right.$, $\left.\left.\left[0, a_{3}\right],\left[0, a_{4}\right]\right)\right\} \cup\{[0, b] \mid b \in\{e, 1,2, \ldots, 19\}, *, 2\}$ be an interval semigroup-loop. L is of finite order and is non commutative.

Example 1.4.44: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~S}_{1}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $23\}, 4, *\} \cup\left\{S(\langle X\rangle) /\langle X\rangle=\left\langle\left\{\left[0, a_{1}\right],\left[0, a_{2}\right],\left[0, a_{3}\right],\left[0, a_{4}\right],[0\right.\right.\right.$, $\left.\left.\left.\left.\mathrm{a}_{5}\right]\right\}\right\rangle\right\}$ is an interval loop semigroup which is non commutative. We say $\mathrm{L}=\mathrm{S}_{1} \cup \mathrm{~L}_{1}$ is a quasi interval semigroup-loop if only one of $\mathrm{S}_{1}$ or $\mathrm{L}_{1}$ is an interval structure and the other is a usual structure.

Example 1.4.45: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~S}_{1}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{40}, \times\right\} \cup \mathrm{L}_{11}(3)$ be a quasi interval semigroup-loop of finite order. L is a non commutative structure.

Example 1.4.46: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~S}_{1}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{25}, \times\right\} \cup$ $\mathrm{L}_{19}(10)$ be a quasi interval semigroup-loop of finite order. Clearly L is a commutative structure.

We have a class of commutative quasi interval semigroupgroup which is evident from the following theorems, the proof of which are direct.

Theorem 1.4.30: Let $L=S_{1} \cup L_{1}=\left\{[0, a] / a \in Z_{m}, x\right\} \cup$

$$
\left\{L_{n}\left(\frac{n+1}{2}\right), *, \frac{n+1}{2}\right\}
$$

be a quasi interval semigroup-loop. $L$ is commutative.
THEOREM 1.4.31: Let $L=L_{1} \cup S_{1}=\{[0, a] / a \in\{e, 1,2, \ldots$, $\left.p\}, *, \frac{p+1}{2}\right\} \cup\left\{Z_{n}, \times\right\}$ be a quasi interval loop - semigroup of finite order. $L$ is a commutative structure.

Now we can also have a class of non commutative quasi interval loop semigroups which is evident from the following theorems the proof of which is direct.

THEOREM 1.4.32: Let $S=S(n) \cup\{[0, a] / a \in\{e, 1,2, \ldots, n\}$, *, $\left.t \neq \frac{n+1}{2}\right\}$ be a quasi interval semigroup - loop. $S$ is non commutative.

THEOREM 1.4.33: Let $S=S_{1} \cup L_{1}=\left\{S(X) / X=\left(\left[0, a_{1}\right], \ldots\right.\right.$, $\left.\left.\left[0, a_{n}\right]\right)\right\} \cup\left\{L_{n}(m)\right\}\left(m \neq \frac{n+1}{2}\right)$ be a quasi interval semigroup loop. $S$ is non commutative.

Now we can define substructures which is a matter of routine. We will however give examples of them.

Example 1.4.47: Let $G=S_{1} \cup L_{1}$ where $S_{1}=\{S(\langle X\rangle) / X=([0$, $\left.\left.\left.\mathrm{a}_{1}\right],\left[0, \mathrm{a}_{2}\right], \ldots,\left[0, \mathrm{a}_{8}\right]\right)\right\}$ be the special interval symmetric semigroup and $\mathrm{L}_{1}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 35\}, *, 9\}$ be the interval loop. G is a interval semigroup-loop of finite order. Take $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2}=\{\mathrm{S}(\mathrm{X}) \subseteq \mathrm{S}(\langle\mathrm{X}\rangle)\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{3 \mathrm{e}, 1,8$, $15,22,29\}, *, 9\} \subseteq S_{1} \cup \mathrm{~L}_{1}, \mathrm{P}$ is an interval subsemigroup subloop of L .

Example 1.4.48: Let $G=\left\{Z_{50}, \times\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $15\}, 8, *\}$ be a quasi interval semigroup - loop. Choose $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}=\left\{\{0,10,20,30,40\} \subseteq \mathrm{Z}_{50}, \times\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in$ $\{e, 1,6,11\} \subseteq\{e, 1,2, \ldots, 15\}, 8, *\} \subseteq G, H$ is a quasi interval subsemigroup-subloop of G.

Example 1.4.49: Let $G=\mathrm{G}_{1} \cup \mathrm{~S}_{1}=\mathrm{L}_{21}(5) \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{30}\right.$, $\times\}$ be a quasi interval semigroup-loop. $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}=\{\mathrm{a} \in$ $\{e, 1,8,15\}, *, 5\} \cup\{[0, a] / a \in\{0,2,4,6,8, \ldots, 26,28\}, \subseteq$ $\left.\mathrm{Z}_{30}, \times\right\} \subseteq \mathrm{G}_{1} \cup \mathrm{~S}_{1}$, is a quasi interval subsemigroup - subloop of L.

We can define Smarandache interval smeigroup-loop and Smarandache quasi interval semigroup - loop.

We will leave the task of defining the Smarandache structure to the reader as it is a matter of routine, however we give examples of them.

Example 1.4.50: Let $\mathrm{L}=\mathrm{S}_{1} \cup \mathrm{~L}_{1}=\left\{\mathrm{Z}_{18}, x\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\{\mathrm{e}, 1,2, \ldots, 21\},{ }^{*}, 11\right\}$ be a quasi interval semigroup - loop. Clearly L is a S-quasi interval semigroup-loop for L contains A $=A_{1} \cup A_{2}=\left\{\{1,17\} \subseteq \mathrm{Z}_{18}, \times\right\} \cup\{[0, \mathrm{e}],[0,19], *, 10\} \subseteq$ $\mathrm{L}=\mathrm{S}_{1} \cup \mathrm{~L}_{1}$ which is a quasi interval bigroup.

Example 1.4.51: Let $\mathrm{G}=\mathrm{S}_{1} \cup \mathrm{~L}_{1}=\left\{\mathrm{S}(\langle\mathrm{X}\rangle) / \mathrm{X}=\left(\left[0, \mathrm{a}_{1}\right],[0\right.\right.$, $\left.\left.\left.\mathrm{a}_{2}\right],\left[0, \mathrm{a}_{3}\right]\right)\right\} \cup\left\{\mathrm{L}_{19}(7)\right\}$ be a quasi interval semigroup loop. Clearly G is a S-quasi interval semigroup loop for $H=H_{1} \cup H_{2}$ $=S_{X} \cup\left\{\{\mathrm{e}, 11\} \subseteq \mathrm{L}_{19}(7)\right\}$ is a quasi interval bigroup of G .

Example 1.4.52: Let $G=S_{1} \cup L_{1}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{48}, \times\right\} \cup$ $\mathrm{L}_{15}(8)$ is a quasi interval semigroup-loop. Consider $\mathrm{H}=\mathrm{H}_{1} \cup$ $\mathrm{H}_{2}=\{[0, \mathrm{a}] / \mathrm{a} \in\{0,4,8,12, \ldots, 44\}, \times\} \cup\{\{\mathrm{e}, 1,6,11\} /$ $\left.8,{ }^{*}\right\} \subseteq S_{1} \cup L_{1}$ is a quasi interval subsemigroup-subloop of $G$. Also $P=P_{1} \cup P_{2}=\{[0,1],[0,4], \times\} \cup\{\{e, 12\}, *, 8\} \subseteq S \cup L_{1}$ is a quasi interval bigroup of G .

Example 1.4.53: Let $G=\mathrm{S}_{1} \cup \mathrm{~L}_{1}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{20}, \times\right\} \cup\{[0$, $\mathrm{b}] / \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 7\}, *, 4\}$ be a interval semigroup-loop. Clearly G is a S-interval semigroup-loop but G has no S-interval subsemigroup - subloop.

We have a class of interval semigroup loop which has no Sinterval subsemigroup - subloop.

Theorem 1.4.34: Let $S=G_{1} \cup L_{1}=\left\{L_{n} / n\right.$ a prime $\} \cup$ $\left\{Z_{p},+\right\}$ be a class of interval loop - semigroup for varying primes $p$. Clearly $S$ has no S-quasi interval subloop subsemigroup.

The proof is direct and hence it left as an exercise for the reader.

Theorem 1.4.35: Let $L=S \cup L_{1}=\left\{[0, a] / a \in Z_{p}, p\right.$ a prime $p$ varying over the set of all primes, under $x\} \cup\{[0, a] / a \in$ $\{e, 1,2, \ldots, n\}$, n a prime, $t, 1<t<n$, *, for varying $t$ between $(1, n)\}$ be a class of interval semigroup - loop $L$ has no S-interval subsemigroup - subloop.

The proof is an easy consequence of the definition and hence is left as an exercise for the reader.

This is a quasi associative interval algebraic structure.
Now we proceed onto define interval loop-groupoids.
DEFINITION 1.4.5: Let $G=G_{1} \cup L_{1}$ where $G_{1}$ is an interval groupoid and $L_{1}$ is an interval loop and $G$ inherits the operation from $G_{1}$ and $L_{1}$ denote the operation by '.', $(G$, .) is defined as the interval groupoid-loop.

We will illustrate this by some examples.
Example 1.4.54: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{~L}_{1}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{8},\{3,7\}, \otimes\right\}$ $\cup\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 7\}, *, 3\}$ be an interval groupoidloop.

$$
\begin{aligned}
& \text { Suppose } x=[0, a] \cup[0, b] \text { and } y=[0, c] \cup[0, d] \text { be in } G . \\
& \begin{aligned}
\mathrm{x} . \mathrm{y} & =([0, \mathrm{a}] \cup[0, \mathrm{~b}) \cdot([0, \mathrm{c}] \cup[0, \mathrm{~d}]) \\
& =[0, \mathrm{a}] \otimes[0, \mathrm{c}] \cup[0, b] *[0, \mathrm{~d}] \\
& =[0, \mathrm{a} \otimes \mathrm{c}] \cup[0, \mathrm{~b} * \mathrm{~d}] \\
& =[0,3 \mathrm{a}+7 \mathrm{c}(\bmod 8)] \cup[0,3 \mathrm{~d}-2 \mathrm{~b}(\bmod 7)] \text { is in } G .
\end{aligned}
\end{aligned}
$$

Example 1.4.55: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{~L}_{1}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{15},{ }^{*},(8,4)\right\}$ $\cup\{[0, \mathrm{~d}] / \mathrm{d} \in\{\mathrm{e}, 1,2, \ldots, 19\}, *, 4\}$ be a interval groupoidloop.

Example 1.4.56: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{~L}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}^{+}\right.$, *, $\left.(3,2)\right\} \cup$ $\{[0, \mathrm{~b}] / \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 43\}, 24, *\}$ be an interval groupoid loop. Clearly G is of infinite order.

All other examples of interval groupoid - loop given are only of finite order.

We can define substructures in them, this task is left to the reader. We give only examples.

Example 1.4.57: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{~L}_{1}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{6}\right.$, *, $\left.(4,5)\right\} \cup$ $\left\{[0, \mathrm{~b}] / \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 35\},{ }^{*}, 9\right\}$ be interval groupoid-loop of order $6 \times 36$.

Take $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}=\left\{[0,2],[0,4], 0 / 0,4,2 \in \mathrm{Z}_{6}\right.$, ${ }^{*}$, $(4,5)\} \cup\{[0, b] / b \in\{e, 1,8,15,22,29\} \subseteq\{e, 1,2, \ldots, 35\}, *$, $9\} \subseteq G_{1} \cup L_{1}, H$ is an interval subgroupoid-subloop of G.

The order of H is 3.6 clearly $\mathrm{o}(\mathrm{H}) / \mathrm{o}(\mathrm{G})$.
Example 1.4.58: Let $\mathrm{G}=\mathrm{H}_{1} \cup \mathrm{G}_{1}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{8},{ }^{*},(2,6)\right\} \cup$ $\left\{[0, \mathrm{~b}] / \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 15\},{ }^{*}, 8\right\}$ be an interval groupoid-loop of order 8.16. Consider $\mathrm{A}=\mathrm{A}_{1} \cup \mathrm{~A}_{2}=\{[0, \mathrm{a}] / \mathrm{a} \in\{0,2,4,6\}$ $\left.\subseteq \mathrm{Z}_{8},{ }^{*},(2,6)\right\} \cup\{[0, \mathrm{~b}] / \mathrm{b} \in\{\mathrm{e}, 1,6,11\} \subseteq\{\mathrm{e}, 1,2,3, \ldots, 14$, $\left.15\},{ }^{*}, 8\right\} \subseteq \mathrm{H}_{1} \cup \mathrm{G}_{1}$. A is an interval subgroupoid - subloop of G and $\mathrm{o}(\mathrm{A})=4.4$ and $\mathrm{o}(\mathrm{A}) / \mathrm{o}(\mathrm{G})$, that is $4.4 / 8.16$

Now we can define S-interval groupoid - loop. Further this algebraic structure is a non associative structure.

Example 1.4.59: Let $\mathrm{G}=\mathrm{H}_{1} \cup \mathrm{H}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{8}, ~ *,(2,6)\right\} \cup$ $\{[0, \mathrm{~b}] / \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 21\}$, *, 11\} be an interval groupoid loop of order $8.22=176$. Let $A=A_{1} \cup A_{2}=\{[0, a] / a \in\{0,2$, $\left.3,4,6\} \subseteq \mathrm{Z}_{8},{ }^{*},(2,6)\right\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in\{\mathrm{e}, 1,8,15\},{ }^{*}, 11\right\} \subseteq \mathrm{H}_{1}$ $\cup \mathrm{H}_{2}$; A is an interval subgroupoid - subloop of G. Clearly o (H) $\chi_{o}(\mathrm{G})$ for $o(\mathrm{H})=5.4$ and $5.4 \times 8.22$. We can define Smarandache structures in these algebraic structure.

An interval groupoid - loop G is said to be a Smarandache interval groupoid - loop if G has a proper subset $H=H_{1} \cup H_{2}$ where $\mathrm{H}_{1}$ is an interval semigroup and $\mathrm{H}_{2}$ is an interval subgroup.

We will illustrate this structure by an example.

Example 1.4.60: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{5},{ }^{*},(3,3)\right\} \cup$ $\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 19\}, *, 8\}$ be an interval groupoid loop. Consider $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}=\left\{[0,1] / 1 \in \mathrm{Z}_{5},{ }^{*},(3,3)\right\} \cup\{[0$, e] $[0,9] / e, 9 \in\{e, 1,2, \ldots, 19\}, *, 8\} \subseteq G_{1} \cup G_{2}$, is an interval semigroup-group, contained in G. Hence G is a S-interval groupoid - loop.

We have a class of such S-interval groupoid - loops.
Example 1.4.61: Let $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{6},{ }^{*},(4,5)\right\} \cup$ $\left\{[0, \mathrm{~b}] / \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 19\},{ }^{*}, 3\right\}$ be a S-interval groupoid loop.

Theorem 1.4.36: Let $S=G_{1} \cup G_{2}=\left\{[0, a] / a \in Z_{2 p}, p a\right.$ prime, *, (1, 2)\} $\cup\{[0, b] / b \in\{e, 1,2, \ldots, n\} ; n>3,1<m<$ $n,(m, n)=(1-m, n)=1, *\}$ be a class of interval groupoid - loop for varying $p$. Clearly every interval groupoid-loop in $S$ is a Smarandache groupoid-loop.

Proof is direct and is left as an exercise to the reader.
We call an interval groupoid - loop to be a S-Bol intervalgroupoid loop if both the interval-groupoid and interval loop are S-Bol. Similarly S-Moufang, S-alternative and S-idempotent interval gropoid-loop.

Interested reader is expected to supply examples of these structures. However since both the interval structures are non associative we can define interval S-quasi Bol groupoid - loop, or S-quasi Bol loop - groupoid, interval S-quasi Moufang loop groupoid or interval S-quasi P-groupoid and so on. We will also give the related theorems. We will further give examples of them.

Example 1.4.62: Let $G=\mathrm{L}_{1} \cup \mathrm{G}_{1}$ where $\mathrm{L}_{1}=\{[0, \mathrm{a}] / \mathrm{a} \in$ \{e, 1, 2, ..., 19\}, *, 12\} be a S-strong interval cyclic loop and $\mathrm{G}_{1}=\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{28},{ }^{*},(7,3)\right\}$ be an interval groupoid. Clearly $\mathrm{G}_{1}$ is a not a S-strongly interval cyclic groupoid. Hence G the interval loop - groupoid is only a interval quasi S-strongly cyclic loop-groupoid.

Example 1.4.63: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{~L}_{1}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{20}\right.$, $\left.{ }^{*},(7,8)\right\}$ $\cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 23\},{ }^{*}, 8\right\}$ be an interval groupoid loop. G is only a interval quasi S -strongly commutative groupoid loop as only $\mathrm{L}_{1}$ the interval loop is S -strongly commutative interval loop where as $\mathrm{G}_{1}$ is not a S -strongly interval commutative groupoid.

Several related results and properties can be derived with appropriate modifications. This can be treated as a matter of routine and carried out by the interested reader.

## Chapter Two

## n-Interval Algebraic Structures with Single Binary Operation

In this chapter we introduce several new types of n-interval algebraic structures ( $n>2$ ) with single binary operation. These structures are so mixed and they are utilized in places of appropriate applications. This chapter has five sections. Sections one deals with $n$-interval semigroups and analysis their properties. Section two introduces the notions of n-interval groupoids ( $\mathrm{n}>3$ ) and generalizes them. The notion of n -interval group and quasi $n$-interval structures using groups, semigroups groupoids are introduced for the first time in section three. The four section defines the notion of $n$-interval loops and describes a few properties related with them. The final section introduces the notion of mixed n-interval algebraic structures.

## 2.1 n-Interval Semigroups

In this section we introduce $n$-interval semigroups ( $\mathrm{n}>2$ ) and describe a few properties related with them.

DEFINITION 2.1.1: Let $S=S_{1} \cup S_{2} \cup \ldots \cup S_{n}$, $(n>2)$ where each $S_{i}$ is an interval semigroup, $S_{i} \nsubseteq S_{j}$ for any $i \neq j ; 1 \leq i, j \leq n$. The operation on $S$ is the component wise operation on each $S_{i}$ carried out in a systematic way and denoted by '.'; $1 \leq i \leq n$.

Thus any element $s \in S$ is represented as $s=s_{1} \cup s_{2} \cup \ldots \cup$ $s_{n}$ where $s_{i} \in S_{i} ; 1 \leq i \leq n$ and ( $S,$. .) is defined as the $n$-interval semigroup.

If $n=2$ we call it as the biinterval semigroup or interval bisemigroup.

If the order of every $S_{i}$ is finite $S$ will be finite $1 \leq i \leq n$.
Even if one of the $S_{i}$ 's is of infinite order, $S$ will be of infinite order, $1 \leq \mathrm{i} \leq \mathrm{n}$.

We will first illustrate this situation by examples.
Example 2.1.1: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5}=\{[0, a] / a \in$ $\left.\mathrm{Z}_{40}, \mathrm{x}\right\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}^{+} \cup\{0\},+\right\} \cup\left\{[0, \mathrm{c}] / \mathrm{c} \in \mathrm{Z}_{25},+\right\} \cup$ $\left\{[0, \mathrm{~d}] / \mathrm{d} \in \mathrm{Z}_{17}, \times\right\} \cup\left\{[0, \mathrm{~g}] / \mathrm{g} \in \mathrm{Z}_{12}, \times\right\}$ be a 5 -interval semigroup.

Take

$$
x=[0,2] \cup[0,4] \cup[0,3] \cup[0,7] \cup[0,8]
$$

and

$$
y=[0,1] \cup[0,5] \cup[0,20] \cup[0,4] \cup[0,4]
$$

in S.

$$
\begin{aligned}
\text { x.y }= & ([0,2] \cup[0,4] \cup[0,3] \cup[0,7] \cup[0,8])([0,1] \cup \\
& {[0,5] \cup[0,20] \cup[0,4] \cup[0,4]) } \\
= & ([0,2] .[0,1] \cup[0,4][0,5] \cup[0,3] .[0,20] \cup \\
& {[0,7][0,4] \cup[0,8][0,4]) } \\
= & {[0,2] \cup[0,20] \cup[0,10] \cup[0,11] \cup[0,8] }
\end{aligned}
$$

is in S .
Thus ( $\mathrm{S},$. ) is a 5 -interval semigroup of infinite order. Clearly $S$ is a commutative S-interval semigroup as each $S_{i}$ is a commutative semigroup, $1 \leq \mathrm{i} \leq 5$.

Example 2.1.2: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=$

$$
\left\{\left[\begin{array}{cc}
{[0, \mathrm{a}]} & {[0, \mathrm{~b}]} \\
{[0, \mathrm{c}]} & {[0, \mathrm{~d}]}
\end{array}\right] / \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{20}, \mathrm{x}\right\} \cup
$$

$$
\left\{([0, \mathrm{a}],[0, \mathrm{~b}],[0, \mathrm{c}],[0, \mathrm{~d}]) / \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \in \mathrm{Z}_{15}\right\} \cup
$$

be a 4-interval semigroup. Clearly V is of finite order but V is non commutative.

Example 2.1.3: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5} \cup S_{6}=$ $\left\{([0, \mathrm{a}],[0, \mathrm{~b}]) / \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{10}, \mathrm{x}\right\} \cup$

$$
\left.\left.\left\{\begin{array}{c}
{[0, \mathrm{a}]} \\
{[0, \mathrm{~b}]} \\
{[0, \mathrm{c}]} \\
{[0, \mathrm{~d}]}
\end{array}\right] \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathrm{Z}_{15},+\right\}
$$

$\cup\{\mathrm{S}(\mathrm{X}) / \mathrm{X}=([0, \mathrm{a}],[0, \mathrm{~b}],[0, \mathrm{c}])\} \cup\{$ All $3 \times 3$ interval matrices with intervals of the form [0, a] where a $\left.\in \mathrm{Z}_{12}\right\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{19}\right\} \cup\{$ All $2 \times 4$ interval matrices with intervals of the form $[0, \mathrm{a}]$ where $\left.\mathrm{a} \in \mathrm{Z}_{8},+\right\}$ be a 6 -interval semigroup.

Clearly S is of finite order and S is non commutative.
Example 2.1.4: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4}=\left\{\sum_{\mathrm{i}=0}^{5}[0, \mathrm{a}] \mathrm{x}^{\mathrm{i}} \mid\right.$ $\left.\mathrm{a} \in \mathrm{Z}_{12},+\right\} \cup\left\{([0, \mathrm{~b}],[0, \mathrm{a}],[0, \mathrm{c}]) / \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Z}_{14},+\right\} \cup$

$$
\left\{\left[\begin{array}{l}
{[0, \mathrm{a}]} \\
{[0, \mathrm{~b}]} \\
{[0, \mathrm{c}]}
\end{array}\right] / \mathrm{a}, \mathrm{~b}, \mathrm{c} \in \mathrm{Z}_{15},+\right\} \cup
$$

$\{3 \times 5$ interval matrices with intervals of the form [ $0, \mathrm{a}$ ] where a $\left.\in Z_{20},+\right\}$ be a 4-interval semigroup. $S$ is of finite order and is commutative.

Now having seen examples of n-interval semigroups we give examples of n -interval subsemigroups and ideals in n interval semigroups.

The task of giving definition is a matter of routine and hence is left as an exercise to the reader.

Example 2.1.5: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}^{+} \cup\right.$ $\{0\}\} \cup\left\{([0, \mathrm{a}],[0, \mathrm{~b}],[0, \mathrm{c}]) / \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Z}_{20}\right\} \cup$

$$
\left\{\left[\begin{array}{c}
{[0, \mathrm{a}]} \\
{[0, \mathrm{~b}]} \\
{[0, \mathrm{c}]}
\end{array}\right] / \mathrm{a}, \mathrm{~b}, \mathrm{c} \in \mathrm{Z}^{+} \cup\{0\}\right\} \cup\left\{\sum_{\mathrm{i}=0}^{5}[0, \mathrm{a}] \mathrm{x}^{\mathrm{i}} / \mathrm{a} \in \mathrm{Z}_{40},+\right\}
$$

be a 4-interval semigroup.
Consider $\mathrm{A}=\mathrm{A}_{1} \cup \mathrm{~A}_{2} \cup \mathrm{~A}_{3} \cup \mathrm{~A}_{4}=\left\{[0, \mathrm{a}] / \mathrm{a} \in 3 \mathrm{Z}^{+} \cup\right.$ $\{0\}\} \cup\left\{([0, \mathrm{a}], 0,[0, \mathrm{~b}]) / \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{20}\right\} \cup$

$$
\left\{\left[\begin{array}{l}
{[0, a]} \\
{[0, b]} \\
{[0, c]}
\end{array}\right] / \text { a, b, c } \in 5 \mathrm{Z}^{+} \cup\{0\}\right\} \cup\left\{\sum_{\mathrm{i}=0}^{8}[0, \mathrm{a}] \mathrm{x}^{\mathrm{i}} \mid\right.
$$

$\left.a \in\{2,0,4,8, \ldots, 36,38\} \subseteq Z_{40},+\right\} \subseteq S_{1} \cup S_{2} \cup S_{3} \cup S_{4} ; A$ is a 4 -interval subsemigroup of $S$. It is easily verified, $A$ is not an ideal of S.

Example 2.1.6: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5}=\{[0, a] / a \in$ $\left.\mathrm{Z}^{+} \cup\{0\}\right\} \cup\{$ All $3 \times 3$ interval matrices with intervals of the form $\left.[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\} \cup\{$ all $1 \times 5$ row interval matrices with intervals of the form $\left.[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}, \times\right\} \cup$
$\left\{\left.\left[\begin{array}{ll}{[0, \mathrm{a}]} & {[0, \mathrm{~b}]} \\ {[0, \mathrm{c}]} & {[0, \mathrm{~d}]}\end{array}\right] \right\rvert\, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{Z}^{+} \cup\{0\}\right\} \cup\left\{\sum_{\mathrm{i}=0}^{8}[0, \mathrm{a}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}^{+} \cup\right.$ $\{0\}, \times$ with $\left.x^{9}=1\right\}$ be an 5 -interval semigroup.

Consider $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2} \cup \mathrm{P}_{3} \cup \mathrm{P}_{4} \cup \mathrm{P}_{5}=\left\{[0, \mathrm{a}] / \mathrm{a} \in 5 \mathrm{Z}^{+} \cup\right.$ $\{0\}\} \cup\{$ All $3 \times 3$ interval matrices with intervals of the form $[0, a]$ where $\left.a \in 7 \mathrm{Z}^{+} \cup\{0\}, \times\right\} \cup\{$ All $1 \times 5$ row interval matrices with intervals of the form $\left[0\right.$, a] where $a \in 19 Z^{+} \cup\{0\}$, $\times\} \cup$

$$
\begin{aligned}
& \left\{\left.\left[\begin{array}{cc}
{[0, \mathrm{a}]} & {[0, \mathrm{~b}]} \\
{[0, \mathrm{c}]} & {[0, \mathrm{~d}]}
\end{array}\right] \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in 3 \mathrm{Z}^{+} \cup\{0\}\right\} \cup \\
& \left\{\sum_{\mathrm{i}=0}^{8}[0, \mathrm{a}] \mathrm{x}^{\mathrm{i}} / \mathrm{x}^{9}=1, \mathrm{a} \in 5 \mathrm{Z}^{+} \cup\{0\}, \mathrm{x}\right\}
\end{aligned}
$$

$\subseteq \mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4} \cup \mathrm{~S}_{5}=\mathrm{S}$ be a 5-interval subsemigroup of $S$. It is easily verified $P$ is also a 5-interval ideal of $S$.

However it is interesting note the following result.
Theorem 2.1.1: Let $S=S_{1} \cup S_{2} \cup \ldots \cup S_{n}$ be a $n$-interval semigroup. Let $P=P_{1} \cup P_{2} \cup \ldots \cup P_{n} \subseteq S_{1} \cup S_{2} \cup \ldots \cup S_{n}$ be a $n$-interval subsemigroup. $P$ in general is not a $n$-interval ideal of S. Further every n-interval ideal of a $n$-interval semigroup is a $n$-interval subsemigroup of $S$.

The proof is direct and hence is left as an exercise for the reader.

Now having seen the notion of n-ideals in an n-interval semigroups and n-interval subsemigroups we now proceed onto define S-n-interval semigroups.

DEFINITION 2.1.2: Let $S=S_{1} \cup S_{2} \cup \ldots \cup S_{n}$ be a $n$-interval semigroup. If each $S_{i}$ is a Smarandache semigroup then we define $S$ to be a Smarandache n-interval semigroup (S-ninterval semigroup) $1 \leq i \leq n$.

We will illustrate this situation by some examples.

Example 2.1.7: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4}$ be a 4-interval semigroup, where $S_{1}=\left\{[0, a] / a \in Z_{12}, \times\right\}, S_{2}=\{([0, a],[0, b] /$ $\left.\mathrm{a}, \mathrm{b} \in \mathrm{Z}_{9}\right\}, \mathrm{S}_{3}=\left\{([0, \mathrm{a}],[0, \mathrm{~b}],[0, \mathrm{c}],[0, \mathrm{~d}]) / \mathrm{a} \in \mathrm{Z}_{11}\right\}$ and

Now choose $A=A_{1} \cup A_{2} \cup A_{3} \cup A_{4}$
$=\left\{[0,1],[0,11] / 1,11 \in \mathrm{Z}_{12}\right\} \cup\{([0,1][0,1]),([0,8]$, $[0,8]),([0,8],[0,1])([0,1],[0,8])\} \cup\{([0,1],[0,1],[0,1]$, $[0,1]),([0,10],[0,10],[0,10],[0,10]) \cup$
$\subseteq S_{1} \cup S_{2} \cup S_{3} \cup S_{4}$. It is easily verified A is a 4-interval group in S .

Hence each $\mathrm{S}_{\mathrm{i}}$ is a S -interval semigroup, $1 \leq \mathrm{i} \leq 4$. Thus S is a S-4-interval semigroup.

It is important and interesting to note that in general all ninterval semigroups need not be S-n-interval semigroups.

We will illustrate this situation by an example.
Example 2.1.8: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right.$, $x\} \cup\left\{\left[\begin{array}{c}{[0, \mathrm{a}]} \\ {[0, \mathrm{~b}]}\end{array}\right] / \mathrm{a}, \mathrm{b} \in \mathrm{Z}^{+} \cup\{0\},+\right\} \cup\{([0, \mathrm{a}][0, \mathrm{~b}]) / \mathrm{a}, \mathrm{b} \in$ $\left.\mathrm{Q}^{+} \cup\{0\}\right\}$ be a 3-interval semigroup. It is easily verified S is not a S-3- interval semigroup.

We can define as a matter of routine the notion of S-interval subsemigroup. We will only give an example of it.

Example 2.1.9: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4}=\{\mathrm{S}(\mathrm{X}) \mid \mathrm{X}=([0$, $\left.\left.\left.\mathrm{a}_{1}\right],\left[0, \mathrm{a}_{2}\right],\left[0, \mathrm{a}_{3}\right]\right)\right\} \cup\left\{\mathrm{S}(\langle\mathrm{X}\rangle) / \mathrm{X}=\left(\left[0, \mathrm{x}_{1}\right],\left[0, \mathrm{x}_{2}\right],\left[0, \mathrm{x}_{3}\right]\right)\right\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{20},+\right\} \cup\{([0, \mathrm{a}],[0, \mathrm{~b}],[0, \mathrm{c}],[0, \mathrm{~d}]) / \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in$ $\left.\mathrm{Z}_{15},+\right\}$ be a 4-interval semigroup. Consider $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3}$ $\cup \mathrm{V}_{4}=\left\{\mathrm{S}_{\mathrm{x}}\right\} \cup\left\{\mathrm{S}_{\langle\mathrm{x}\rangle}\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{2,0,4,6,8,10, \ldots, 18\}$ $\left.\subseteq \mathrm{Z}_{20},+\right\} \cup\{([0, \mathrm{a}],[0, \mathrm{~b}],[0, \mathrm{c}],[0, \mathrm{~d}]) / \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in\{0,3,6,9$, $\left.12\} \subseteq \mathrm{Z}_{15},+\right\} \subseteq \mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4}$.

It is easily verified V is a 4 -interval subsemigroup of S . Consider $A=A_{1} \cup A_{2} \cup A_{3} \cup A_{4}=\left\{A_{x}\right\} \cup\left\{A_{\langle x\rangle}\right\} \cup\{[0, a] /$ $\left.a \in\{0,4,8,12,16\} \subseteq Z_{20},+\right\},\{([0, a][0, a][0, a]) / a \in\{0,2$, $\left.4,6,8,10, \ldots, 18\} \subseteq Z_{20},+\right\} \subseteq V_{1} \cup V_{2} \cup V_{3} \cup V_{4} \subseteq S_{1} \cup S_{2}$ $\cup S_{3} \cup S_{4}$. Clearly each $A_{i}$ is a interval group in $\mathrm{S}_{\mathrm{i}} ; 1 \leq \mathrm{i} \leq 4$. Thus A is a 4-interval group. Hence V is a S-4-interval subsemigroup.

Example 2.1.10: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}=\left\{[0, a] / a \in Z_{11}\right.$, $\times\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{13}, \mathrm{x}\right\} \cup\left\{[0, \mathrm{c}] / \mathrm{c} \in \mathrm{Z}_{19}, \times\right\} \cup\{[0, \mathrm{~d}] / \mathrm{d} \in$ $\left.\mathrm{Z}_{23}, \times\right\}$ be a 4 -interval semigroup. Clearly S is a $\mathrm{S}-4$-interval semigroup as $A=A_{1} \cup A_{2} \cup A_{3} \cup A_{4}=\{[0,1],[0,10], \times\} \cup$ $\{[0,1],[0,12], \times\} \cup\{[0,1],[0,18], \times\} \cup\{[0,1],[0,22], \times\} \subseteq$ $\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4}$ is a 4-itnerval group.

Example 2.1.11: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5}=\{[0, a] / a \in$ $\left.\mathrm{Z}_{6}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{\mathrm{q}}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{16}, \times\right\} \cup\{[0, \mathrm{a}] / \mathrm{a}$ $\left.\in \mathrm{Z}_{25}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{36}, \times\right\}$ be a 5 -interval semigroup.

Consider $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2} \cup \mathrm{P}_{3} \cup \mathrm{P}_{4} \cup \mathrm{P}_{5}=\{[0, \mathrm{a}] / \mathrm{a} \in\{0,2$, $\left.4\} \subseteq \mathrm{Z}_{6}, x\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\{0,3,6\} \subseteq \mathrm{Z}_{9}, \times\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{0$, $\left.4,8,12\} \subseteq \mathrm{Z}_{16}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\{0,5,10,15,20\} \subseteq \mathrm{Z}_{25}, \times\right\} \cup$ $\left\{[0, a] / a \in\{0,6,12,18,24\} \subseteq Z_{36}, \times\right\} \subseteq S_{1} \cup S_{2} \cup S_{3} \cup S_{4} \cup$ $\mathrm{S}_{5}$. P is a 5 -interval subsemigroup of S . But P is not a $\mathrm{S}-5-$ interval subsemigroup of S . However S is a S - 5 -interval semigroup as $A=A_{1} \cup A_{2} \cup A_{3} \cup A_{4} \cup A_{5}=\{[0,1],[0,5], \times\}$ $\cup\{[0,1],[0,8], \times\} \cup\{[0,1],[0,24], \times\} \cup\{[0,1],[0,35], \times\}$ $\subseteq \mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4} \cup \mathrm{~S} 5$ is a 5-interval group. Thus S is a S-5interval semigroup but every 5 -interval subsemigroup of S need not be a S-5-interval subsemigroup.

In view of this we have the following theorem the proof of which is direct.

THEOREM 2.1.2: Let $S=S_{1} \cup S_{2} \cup \ldots \cup S_{n}$ be a n-interval semigroup. If $S$ has a $S$-n-interval subsemigroup then $S$ is a $S$-ninterval semigroup. Suppose $S$ is a $S$-n-interval semigroup then every n-interval subsemigroup of $S$ in general is not a S-ninterval subsemigroup.

Now having seen examples of these situations we leave the task of defining S-n-interval ideal and illustrate them by examples.

Now as in case of usual n-semigroups we can in case of ninterval semigroups also define the notion of n-zero divisors, nunits and n-idempotents and quasi n-zero divisors, quasi $n$-units and quasi n-idempotents.

DEFINITION 2.1.3: Let $S=S_{1} \cup S_{2} \cup \ldots \cup S_{n}$ be a n-interval semigroup. Suppose for $x=x_{1} \cup x_{2} \cup \ldots \cup x_{n} \in S$ there exists $a$ $y=y_{1} \cup y_{2} \cup \ldots \cup y_{n} \in S$ such that $x . y=x_{1} y_{1} \cup x_{2} y_{2} \cup \ldots \cup x_{n} y_{n}$ $=0 \cup 0 \cup \ldots \cup 0$ in $S$ then we call $x$ to be a n-interval zero divisor of $S$.

We will illustrate this situation by some examples.
Example 2.1.12: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{12}, \times\right\}$ $\cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{15}, \times\right\} \cup\left\{([0, \mathrm{a}],[0, \mathrm{~b}])\right.$ where $\left.\mathrm{a}, \mathrm{b} \in \mathrm{Z}_{24}, \times\right\} \cup$

$$
\left\{\left.\left[\begin{array}{c}
{[0, \mathrm{a}]} \\
{[0, \mathrm{~b}]}
\end{array}\right] \right\rvert\, \mathrm{a}, \mathrm{~b} \in \mathrm{Z}_{10},+\right\}
$$

be a 4-interval semigroup. Let

$$
\left.x=\{[0,4] \cup[0,3] \cup([0,12],[0,6])\} \cup\left[\begin{array}{l}
{[0,5]} \\
{[0,7]}
\end{array}\right]\right\} \in \mathrm{S}
$$

We have

$$
y=[0,3] \cup[0,5] \cup([0,2][0,4]) \cup\left[\begin{array}{l}
{[0,5]} \\
{[0,3]}
\end{array}\right] \in S
$$

is such that

$$
\begin{aligned}
\text { x.y }= & \left([0,4] \cup[0,3] \cup([0,12],[0,6]) \cup\left(\left[\begin{array}{l}
{[0,5]} \\
{[0,7]}
\end{array}\right]\right)\right. \\
& \left([0,3] \cup[0,5] \cup([0,2],[0,4]) \cup\left[\begin{array}{l}
{[0,5]} \\
{[0,3]}
\end{array}\right]\right. \\
= & {[0,4] \times[0,3] \cup[0,3] \times[0,5] \cup([0,12],[0,6]) \times } \\
& ([0,2],[0,4]) \cup\left[\begin{array}{l}
{[0,5]} \\
{[0,7]}
\end{array}\right]+\left[\begin{array}{l}
{[0,5]} \\
{[0,3]}
\end{array}\right] \\
= & {[0,12] \cup[0,15] \cup([0,24],[0,24]) \cup\left[\begin{array}{l}
{[0,10]} \\
{[0,10]}
\end{array}\right] } \\
= & 0 \cup 0 \cup 0 \cup 0
\end{aligned}
$$

is a 4-interval zero divisor in S .

Example 2.1.13: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\}$ $\cup\left\{[0, a] / a \in Z_{19} \backslash\{0\}\right\} \cup\left\{[0, a] / a \in \mathrm{Q}^{+} \cup\{0\}\right\}$ be a 3-interval semigroup. S has no interval zero divisors.

Example 2.1.14: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4}=\{([0, \mathrm{a}],[0, \mathrm{~b}]$, $\left.[0, \mathrm{c}],[0, d]) / a, b, c, d \in Z^{+} \cup\{0\}\right\} \cup\left\{[0, a] / a \in Z_{16}, \times\right\} \cup$ $\left\{([0, a],[0, b],[0, ~ c],[0, d],[0, ~ e]) / a, b, c, d, e, \in\right.$ Q $\left.^{+} \cup\{0\}\right\} \cup$ $\left\{[0, a] / a \in Z_{40}, \times\right\}$ be a 4-interval semigroup. $G$ has non trivial 4 - interval zero divisors. For take $\mathrm{x}=([0,0],[0,8],[0,0]$, $[0,12]) \cup\{[0,8]\} \cup([0,2],[0,1 / 3],[0,0],[0,8 / 9],[0,0]) \cup$ $[0,10] \in G$, we have $y=([0,2],[0,0],[0,12],[0,0]) \cup$ $\{[0,4]\} \cup\{([0,0],[0,0],[0,9 / 7],[0,0],[0,11 / 3])\} \cup[0,8]$ in G such that
x.y $=\{([0,0],[0,8],[0,0],[0,12]) \cup[0,8] \cup([0,2]$, $[0,1 / 3],[0,0],[0,8 / 9],[0,0]) \cup[0,10]\} .\{[0,2]$, $[0,0],[0,12],[0,0]) \cup[0,4] \cup([0,0],[0,0]$, $[0,9 / 7],[0,0],[0,11 / 3]) \cup[0,8]\}$ $=([0,0],[0,8],[0,0],[0,12]) \times([0,2],[0,0]$, $[0,12],[0,0]) \cup[0,8][0,4] \cup([0,2],[0,1 / 3]$, $[0,0],[0,8 / 9],[0,0]) \times([0,0],[0,0],[0,9 / 7]$, $[0,0],[0,11 / 3]) \cup[0,10] \times[0,8]$

$$
\begin{aligned}
= & ([0,0],[0,2],[0,8],[0,0],[0,0],[0,12],[0,12] .[0,0]) \\
& \cup[0,32] \cup([0,2],[0,0],[0,1 / 3],[0,0],[0,0], \\
= & {[0,9 / 7],[0,8 / 9],[0,0],[0,0],[0,11 / 3]) \cup[0,80] } \\
= & ([0,0],[0,0],[0,0],[0,0]) \cup[0,0] \cup([0,0],[0,0], \\
& {[0,0],[0,0],[0,0]) \cup[0,0] . }
\end{aligned}
$$

Thus x is a 4 interval zero divisor in S .
Now one can define S-n-interval zero divisor analogous to S-zero divisors and illustrate by examples.

Now we proceed onto give examples of n-interval idempotents in a n-interval semigroup S.

Example 2.1.15: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4} \cup \mathrm{~S}_{5}=\{[0, \mathrm{a}] /$ $\left.a \in Z_{6}, x\right\} \cup\left\{[0, a] / a \in Z_{20}, x\right\} \cup\left\{[0, a] / a \in Z_{18}, x\right\} \cup\{[0$, a] / a $\left.\in \mathrm{Z}_{24}, x\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{10}\right\}$ be a 5 -interval semigroup. Consider $\mathrm{x}=[0,3] \cup[0,5] \cup[0,9] \cup[0,9] \cup[0,5] \in \mathrm{S}$.

Clearly
$x^{2}=([0,3] \cup[0,5] \cup[0,9] \cup[0,9] \cup[0,5])([0,3] \cup$ $[0,5] \cup[0,9] \cup[0,9] \cup[0,5])$
$=[0,3] .[0,3] \cup[0,5][0,5] \cup[0,9] .[0,9] \cup[0,9]$ $[0,9] \cup[0,5][0,5]$
$=[0,9(\bmod 6)] \cup[0,25(\bmod 20)] \cup[0,81(\bmod 18)] \cup$ $[0,81(\bmod 24)] \cup[0,25(\bmod 10)]$
$=[0,3] \cup[0,5] \cup[0,9] \cup[0,9] \cup[0,5]$
$=\mathrm{x}$.
Thus x is a 5-interval idempotent in S .
Example 2.1.16: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}=\{[0, a] / a \in$ $\left.\mathrm{Z}^{+} \cup\{0\}\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Q}^{+} \cup\{0\}\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{R}^{+} \cup\{0\}\right\}$ $\cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{43}\right\}$ be a 4 - interval semigroup. It is easily verified $S$ has only trivial 4 - interval idempotents like ( $[0,1] \cup$ $[0,1] \cup[0,1] \cup[0,1])$ or $[0,0] \cup[0,0] \cup[0,0] \cup[0,0]$ or elements of the form $[0,1] \cup[0,0] \cup[0,1] \cup[0,1]$ and so on. We call all those idempotents constructed using $[0,0]$ and $[0,1]$ as trivial interval idempotents.

Example 2.1.17: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}^{+}\right\}$ $\cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Q}^{+}\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{R}^{+}\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{43} \backslash\{0\}\right\}$ be a 4-interval semigroup. S has only non trivial 4-interval idempotents.

Let $S=S_{1} \cup S_{2} \cup \ldots \cup S_{n}$ be a n-interval semigroup we can define the notion of Smarandache Lagrange semigroup, Smarandache p-Sylow semigroup and Smarandache weakly Lagrange semigroup.

We see if $S=S_{1} \cup S_{2} \cup \ldots \cup S_{n}$ be n-interval semigroup say each $S_{i}$ is of order $m_{i}$ then $|S|=m_{1} m_{2} \ldots m_{n}$.

We say a n-interval subsemigroup P of S divides the order of P if $\mathrm{o}(\mathrm{P}) / \mathrm{o}(\mathrm{S})$.

We define S-Lagrange interval semigroup and S-weakly Lagrange interval semigroup in an analogous way [10-3].

We leave this routine task to the reader but give some examples of them.

Example 2.1.18: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4}=\{\mathrm{S}(\mathrm{X})$ where $\mathrm{X}=$ $\left.\left\{\left(\left[0, \mathrm{a}_{1}\right],\left[0, \mathrm{a}_{2}\right],\left[0, \mathrm{a}_{3}\right],\left[0, \mathrm{a}_{4}\right]\right)\right\}\right\} \cup\left\{\mathrm{S}(\mathrm{Y}) / \mathrm{Y}=\left\{\left(\left[0, \mathrm{a}_{1}\right],[0\right.\right.\right.$, $\left.\left.\left.\mathrm{a}_{2}\right],\left[0, \mathrm{a}_{3}\right]\right)\right\} \cup\left\{\mathrm{S}(\mathrm{A}) / \mathrm{A}=\left\{\left(\left[0, \mathrm{a}_{1}\right],\left[0, \mathrm{a}_{2}\right]\right)\right\} \cup\{\mathrm{S}(\mathrm{B}) / \mathrm{B}=\right.$ $\left.\left\{\left(\left[0, a_{1}\right],\left[0, a_{2}\right], \ldots,\left[0, a_{7}\right]\right)\right\}\right\}$ be a 4-interval semigroup.

$$
\begin{aligned}
& \mathrm{A}=\mathrm{A}_{1} \cup \mathrm{~A}_{2} \cup \mathrm{~A}_{3} \cup \mathrm{~A}_{4}= \\
& \left\{\left(\begin{array}{llll}
{\left[0, a_{1}\right]} & {\left[0, a_{2}\right]} & {\left[0, a_{3}\right]} & {\left[0, a_{4}\right]} \\
{\left[0, a_{1}\right]} & {\left[0, a_{2}\right]} & {\left[0, a_{3}\right]} & {\left[0, a_{4}\right]}
\end{array}\right),\right. \\
& \left(\begin{array}{cccc}
{\left[0, a_{1}\right]} & {\left[0, a_{2}\right]} & {\left[0, a_{3}\right]} & {\left[0, a_{4}\right]} \\
{\left[0, a_{2}\right]} & {\left[0, a_{3}\right]} & {\left[0, a_{4}\right]} & {\left[0, a_{1}\right]}
\end{array}\right), \\
& \left(\begin{array}{cccc}
{\left[0, \mathrm{a}_{1}\right]} & {\left[0, \mathrm{a}_{2}\right]} & {\left[0, \mathrm{a}_{3}\right]} & {\left[0, \mathrm{a}_{4}\right]} \\
{\left[0, \mathrm{a}_{3}\right]} & {\left[0, \mathrm{a}_{4}\right]} & {\left[0, \mathrm{a}_{1}\right]} & {\left[0, \mathrm{a}_{2}\right]}
\end{array}\right), \\
& \left.\left(\begin{array}{cccc}
{\left[0, a_{1}\right]} & {\left[0, a_{2}\right]} & {\left[0, a_{3}\right]} & {\left[0, a_{4}\right]} \\
{\left[0, a_{4}\right]} & {\left[0, a_{1}\right]} & {\left[0, a_{2}\right]} & {\left[0, a_{3}\right]}
\end{array}\right)\right\} \cup
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\left(\begin{array}{lll}
{\left[0, \mathrm{a}_{1}\right]} & {\left[0, \mathrm{a}_{2}\right]} & {\left[0, \mathrm{a}_{3}\right]} \\
{\left[0, \mathrm{a}_{1}\right]} & {\left[0, \mathrm{a}_{2}\right]} & {\left[0, \mathrm{a}_{3}\right]}
\end{array}\right),\left(\begin{array}{lll}
{\left[0, \mathrm{a}_{1}\right]} & {\left[0, \mathrm{a}_{2}\right]} & {\left[0, \mathrm{a}_{3}\right]} \\
{\left[0, \mathrm{a}_{2}\right]} & {\left[0, \mathrm{a}_{1}\right]} & {\left[0, \mathrm{a}_{3}\right]}
\end{array}\right),\right. \\
& \left.\left(\begin{array}{ccc}
{\left[0, \mathrm{a}_{1}\right]} & {\left[0, \mathrm{a}_{2}\right]} & {\left[0, \mathrm{a}_{3}\right]} \\
{\left[0, \mathrm{a}_{3}\right]} & {\left[0, \mathrm{a}_{1}\right]} & {\left[0, \mathrm{a}_{2}\right]}
\end{array}\right)\right\} \cup \\
& \left\{\left(\begin{array}{cc}
{\left[0, a_{1}\right]} & {\left[0, a_{2}\right]} \\
{\left[0, a_{1}\right]} & {\left[0, a_{2}\right]}
\end{array}\right),\left(\begin{array}{cc}
{\left[0, a_{1}\right]} & {\left[0, a_{2}\right]} \\
{\left[0, a_{2}\right]} & {\left[0, a_{1}\right]}
\end{array}\right)\right\} \cup \\
& \left\{\begin{array}{llll}
{\left[0, a_{1}\right]} & {\left[0, a_{2}\right]} & \ldots & {\left[0, a_{7}\right]} \\
{\left[0, a_{1}\right]} & {\left[0, a_{2}\right]} & \ldots & {\left[0, a_{7}\right]}
\end{array}\right), \\
& \left(\begin{array}{cccc}
{\left[0, a_{1}\right]} & {\left[0, a_{2}\right]} & \ldots & {\left[0, a_{7}\right]} \\
{\left[0, a_{2}\right]} & {\left[0, a_{3}\right]} & \ldots & {\left[0, a_{1}\right]}
\end{array}\right), \ldots, \\
& \left.\left(\begin{array}{cccc}
{\left[0, a_{1}\right]} & {\left[0, a_{2}\right]} & \ldots & {\left[0, a_{7}\right]} \\
{\left[0, a_{7}\right]} & {\left[0, a_{1}\right]} & \ldots & {\left[0, a_{6}\right]}
\end{array}\right)\right\}
\end{aligned}
$$

$\subseteq S_{1} \cup S_{2} \cup S_{3} \cup S_{4}, A$ is a 4-intrval group of $S . o(A) / o(S)$. We have $o(S)=4^{4} \cdot 3^{3} \cdot 2^{2} \cdot 7^{7}$ and $o(A)=4.3 .2 .7$ so $o(A) /$ $\mathrm{o}(\mathrm{S})$.

We see S is only a S-weakly Lagrange 4-interval semigroup. Consider $H=H_{1} \cup H_{2} \cup H_{3} \cup H_{4}=S_{X} \cup S_{Y} \cup S_{A}$ $\cup \mathrm{S}_{\mathrm{B}} \subseteq \mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4}$ is a 4-interval subgroup.

Clearly $\mathrm{o}(\mathrm{H}) \times \mathrm{o}(\mathrm{S})$; where $\mathrm{o}(\mathrm{H})=4!\times 3!\times 2!\times 7!$ and $o(H) X o(S)$. Thus $S$ cannot be a S-Lagrange 4-interval semigroup only a S-weakly Lagrange 4-itnerval semigroup.

Having seen an example of a S-weakly Lagrange 4-interval semigroup.

Example 2.1.19: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12}, \times\right\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{10}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{6}, \times\right\}$ be a 3-interval semigroup. Consider $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \mathrm{H}_{3}$ any 3-interval group in $S=S_{1} \cup S_{2} \cup S_{3}$. We see $S$ is a S-weakly Lagrange 3-interval semigroup. Take $A=A_{1} \cup A_{2} \cup A_{3}=\{[0, a] / a \in\{1,11\} \subseteq$ $\left.\mathrm{Z}_{12}\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\{1,9\} \subseteq \mathrm{Z}_{10}\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\{1,5\} \subseteq \mathrm{Z}_{6}\right\} \subseteq$ $\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3}, \mathrm{~A}$ is a 3-interval group and $\mathrm{o}(\mathrm{A})=2.2 .2 /$
12.10.6. Consider $\mathrm{S}_{1}$, the subgroups in $\mathrm{S}_{1}$ are $\mathrm{A}_{1}=\{[0,1]$, $[0,11\}, \mathrm{B}_{1}=\{[0,1],[0,5]\}$ and $\mathrm{C}_{1}=\{[0,1],[0,7]\}$. The interval groups in $\mathrm{S}_{3}$ are as follows: $\mathrm{A}_{3}=\{[0,1],[0,5]\}$ is the only interval subgroup of $\mathrm{S}_{3}$.

Now the subgroups of $\mathrm{S}_{2}$ are $\mathrm{A}_{2}=\{[0,1],[0,9]\}, \mathrm{B}_{2}=\{[0$, $1],[0,3],[0,9],[0,7]\}$ is given by the following table.

| $\times$ | $[0,1]$ | $[0,3]$ | $[0,7]$ | $[0,9]$ |
| :---: | :---: | :---: | :---: | :---: |
| $[0,1]$ | $[0,1]$ | $[0,3]$ | $[0,7]$ | $[0,9]$ |
| $[0,3]$ | $[0,3]$ | $[0,9]$ | $[0,1]$ | $[0,7]$ |
| $[0,7]$ | $[0,7]$ | $[0,1]$ | $[0,9]$ | $[0,3]$ |
| $[0,9]$ | $[0,9]$ | $[0,7]$ | $[0,3]$ | $[0,1]$ |

Clearly $B_{2}$ is a interval subgroup of $S_{2}$ but o $\left(B_{2}\right) \times o\left(S_{2}\right)$.
$S_{2}$ has only two subgroups. Only one of them divide the order of $\mathrm{S}_{2}$. Thus S is only a S-weakly Lagrange interval semigroup and is not a S-Lagrange interval semigroup.

Example 2.1.20: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{61}\right\}$ $\cup\left\{[0, a] / a \in Z_{7}\right\} \cup\left\{[0, a] / a \in Z_{11}\right\} \cup\left\{[0, a] / a \in Z_{13}\right\}$ be $a$ 4-interval semigroup.

It is easily verified $S$ is a S-4-interval semigroup as $A=A_{1}$ $\cup A_{2} \cup A_{3} \cup A_{4}=\{[0, a] / a=1$ and $60, x\} \cup\{[0, a] / a=1$ and $6, x\} \cup\{[0, a] / a=1$ and $10, x\} \cup\{[0, a] / a=1$ and 12 , $x\} \subseteq S_{1} \cup S_{2} \cup S_{3} \cup S_{4}$ is a 4-interval subgroup of $S$. Thus $S$ is a Smarandache 4-interval semigroup. Clearly o(A) $X$ o(S) as $o(A)=2^{4}$ and $o(S)=61 \cdot 7 \cdot 11.13$. Further $S$ is only a S-weakly Lagrange semigroup.

Now in view of this we have the following theorem.
Theorem 2.1.3: Let $S=S_{1} \cup S_{2} \cup \ldots \cup S_{n}$ be a $n$-interval semigroup where each $S_{i}=\left\{[0, a] / a \in Z_{p}, p\right.$ a prime, $\left.x\right\} ; 1 \leq i$ $\leq n$. Clearly $S$ is a $S$-n-interval semigroup and $S$ is only a S-weakly Lagrange n-interval semigroup.

The proof is left as an exercise to the interested reader.

Example 2.1.21: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}=\left\{[0, a] / a \in Z_{6}\right.$, $\times\} \cup\left\{[0, b] / b \in Z_{12}, \times\right\} \cup\left\{S(X) / X=\left(\left[0, a_{1}\right],\left[0, a_{2}\right]\right.\right.$, $\left.\left.\left[0, a_{3}\right]\right)\right\} \cup\left\{[0, a] / a \in Z_{8}, \times\right\}$ be a 4-interval semigroup. It is easily verified $S$ is a $S$-weakly cyclic 4 -interval semigroup.

Example 2.1.22: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}=\left\{[0, a] / a \in Z_{18}\right.$, $x\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{40}, \mathrm{x}\right\} \cup\left\{[0, \mathrm{c}] / \mathrm{c} \in \mathrm{Z}_{64}, \mathrm{x}\right\} \cup\{[0, \mathrm{~d}] / \mathrm{d} \in$ $\left.\mathrm{Z}_{72}, \times\right\}$ be a 4 -interval semigroup. Clearly S is a S -weakly cyclic 4-interval semigroup.

In view of this we have the following theorem which guarantees a classes of S-n-interval semigroups which are S-weakly cyclic n-interval semigroups.

THEOREM 2.1.4: Let $S=S_{1} \cup S_{2} \cup \ldots \cup S_{n}=\left\{S\left(\mathrm{X}_{1}\right) / \mathrm{X}_{1}=\right.$ $\left.\left([0, a 1], \ldots,\left[0, a_{m_{1}}\right]\right)\right\} \cup\left\{S\left(\mathrm{X}_{2}\right) / X_{2}=\left(\left[0, a_{1}\right], \ldots,\left[0, a_{m_{2}}\right]\right)\right\}$ $\cup \ldots \cup\left\{S\left(X_{n}\right) / X_{n}=\left\{\left(\left[0, a_{1}\right], \ldots,\left[0, a_{m_{n}}\right]\right)\right\}\right.$ be a $n$-interval semigroup. Clearly $S$ is a $S$-weakly cyclic n-interval semigroup.

This proof is also direct and hence is left as an exercise to the reader.

Example 2.1.23: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{10}\right.$, $x\} \cup\left\{[0, a] \mid a \in Z_{32}, x\right\} \cup\left\{[0, a] / a \in Z_{42}, x\right\} \cup\{[0, a] / a \in$ $\left.\mathrm{Z}_{28}, \times\right\}$ be a 4-interval semigroup. Clearly S is a S-2-Sylow 4interval semigroup.

Inview of this we have a theorem which gurantees the existence of a class of S-2-Sylow n-interval semigroups.

THEOREM 2.1.5: Let $S=S_{1} \cup S_{2} \cup \ldots \cup S_{n}=\{[0, a] / a \in$ $\left.Z_{2 m_{1}}, x\right\} \cup\left\{[0, a] / a \in Z_{2 m_{2}}, x\right\} \cup \ldots \cup\left\{[0, a] / a \in Z_{2 m_{n}} \times\right\}$ be a $n$ interval semigroup. Clearly $S$ is a S-2-Sylow n-interval semigroup.

The proof is left as an exercise.

Example 2.1.24: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12}\right\}$ $\cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{30}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{40}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{16}\right.$, $\times\}$ be a 4-interval semigroup. S has S -Cauchy elements.

However every n-interval semigroup need not have S-Cauchy elements.

Example 2.1.25: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{11}\right.$, $\times\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{11}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{19}, \times\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\mathrm{Z}_{13}, \times\right\}$ be a 4-interval semigroup. S has S -Cauchy elements.

Inview of this we have a theorem which guarantees the existence of n-interval semigroups which have no S-Cauchy elements.

THEOREM 2.1.6: Let $S=S_{1} \cup S_{2} \cup \ldots \cup S_{n}=\left\{[0, a] / a \in Z_{p_{1}}\right.$, $p_{1}$ a prime, $\left.x\right\} \cup\left\{[0, a] / a \in Z_{p_{2}}, p_{2}\right.$ a prime,$\left.x\right\} \cup \ldots \cup\{[0$, a] / $a \in Z_{p_{n}}, p_{n}$ a prime, $\left.x\right\}$ be a n-interval semigroup where $p_{1}, p_{2}, \ldots, p_{n}$ are $n$ distinct primes. $S$ has no S-Cauchy elements.

The proof is straight forward and hence is left as an exercise to the reader.

Example 2.1.26: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4}=\{\mathrm{S}(\mathrm{X}) / \mathrm{X}=([0$, $\left.\left.\left.\mathrm{a}_{1}\right],\left[0, \mathrm{a}_{2}\right], \ldots,\left[0, \mathrm{a}_{6}\right]\right)\right\} \cup\left\{\mathrm{S}(\mathrm{Y}) / \mathrm{Y}=\left(\left[0, \mathrm{a}_{1}\right],\left[0, \mathrm{a}_{2}\right], \ldots,[0\right.\right.$, $\left.\left.\left.\mathrm{a}_{10}\right]\right)\right\} \cup\left\{\mathrm{S}(\mathrm{A}) / \mathrm{A}=\left(\left[0, \mathrm{a}_{1}\right],\left[0, \mathrm{a}_{2}\right], \ldots,\left[0, \mathrm{a}_{15}\right]\right)\right\} \cup\{\mathrm{S}(\mathrm{B}) / \mathrm{B}$ $\left.=\left(\left[0, \mathrm{a}_{1}\right],\left[0, \mathrm{a}_{2}\right], \ldots,\left[0, \mathrm{a}_{21}\right]\right)\right\}$ be a 4-interval semigroup. S is a S-2-Sylow 4-interval semigroup.

Also $S$ is a $S(3,5,3,7)$ - Sylow 4-interval semigroup. Further $S$ is also a $S-(3,2,3,3)$ Sylow 4-interval semigroup. S is also a $S(3,5,5,7)$ - Sylow 4-interval semigroup.

Thus if $S=S_{1} \cup S_{2} \cup \ldots \cup S_{n}$ is such that each $S_{i}=S\left(X_{i}\right)$ with $X_{i}=\left(\left[0, a_{1}\right], \ldots,\left[0, a_{m_{i}}\right]\right)$ where $m_{i}=p_{1}^{i} \ldots p_{t_{i}}^{i}\left(p_{j}^{i}\right.$ distinct primes, $1 \leq \mathrm{j} \leq \mathrm{t}_{\mathrm{i}}$ ) for $\mathrm{i}=1,2, \ldots$, n be a n -interval semigroup.

Then $S$ is a $S-\left(\mathrm{p}_{\mathrm{t}_{1}}^{1}, \mathrm{p}_{\mathrm{t}_{2}}^{2}, \ldots, \mathrm{p}_{\mathrm{t}_{\mathrm{n}}}^{\mathrm{n}}\right)$ Sylow n -interval semigroup where $p_{t_{k_{i}}}^{i}$ can vary in $p_{1}^{i} \ldots p_{t_{i}}^{i} i=1,2, \ldots, n$ and $1<k_{i}<i$. Thus we get several $\mathrm{S}-\left(\mathrm{p}_{\mathrm{t}_{1}}^{1}, \mathrm{p}_{\mathrm{t}_{2}}^{2}, \ldots, \mathrm{p}_{\mathrm{t}_{\mathrm{n}}}^{\mathrm{n}}\right)$ Sylow n -interval semigroups from S .

It is easily verified these $S-\left(p_{1}^{i} \ldots p_{t_{i}}^{i}\right)$ - Sylow n-interval semigroups in general need not be conjugate.

When the n-interval semigroups are constructed using interval matrix semigroups or interval polynomial semigroups calculations become very difficult. At this juncture it is suggested that a nice program in general be made so that calculations become easy.

Now we can define n-interval homomorphisms of n-interval semigroups in four ways.
(1) We take two n-interval semigroups $S=S_{1} \cup \ldots \cup S_{n}$ and $P$ $=P_{1} \cup P_{2} \cup \ldots \cup P_{n}$ and define $n$-homomorphism from $\eta$ : $S \rightarrow P$ by assigning to each $S_{i}$ a unique $P_{j}, 1<i, j<n$ where $\eta=\eta_{1} \cup \eta_{2} \cup \ldots \cup \eta_{\mathrm{n}}$ and $\eta_{\mathrm{i}}: S_{\mathrm{i}} \rightarrow P_{\mathrm{j}}$ such that each $\eta_{\mathrm{i}}$ is an interval semigroup homomorphism.
(2) Another way of defining $\eta: S \rightarrow P$ where $\eta=\eta_{1} \cup \eta_{2} \cup \ldots$ $\cup \eta_{\mathrm{n}}: S \rightarrow P$ is such that $\eta_{\mathrm{i}}: S_{i} \rightarrow P_{j}$ to a $S_{i}$ any $P_{j}$ is assigned that for more than one $S_{i}$ the same $P_{j}$ may be assigned.
(3) Suppose $S=S_{1} \cup S_{2} \cup \ldots \cup S_{n}$ and $P=P_{1} \cup P_{2} \cup \ldots \cup P_{m}$ be any $n$-interval semigroup and m-interval semigroup respectively. $\mathrm{n}<\mathrm{m}$.

Let $\eta=\eta_{1} \cup \eta_{2} \cup \ldots \cup \eta_{n}: S \rightarrow P$ is such that $\eta_{i}: S_{i} \rightarrow P_{j}$ each $P_{j}$ is distinct or we can assign to more than one $S_{i}$ same $P_{j}$ 's.

If $\mathrm{m}<\mathrm{n}$ then $\eta=\eta_{1} \cup \eta_{2} \cup \ldots \cup \eta_{\mathrm{n}}: S_{1} \cup S_{2} \cup \ldots \cup S_{\mathrm{n}} \rightarrow$ $P_{1} \cup \ldots \cup P_{m}$ where $\eta_{i}: S_{i} \rightarrow P_{j}$ maps more than one $S_{i}$ to same $\mathrm{P}_{\mathrm{j}}$ 's.

Thus when we define the n-homomorphism of n-interval semigroups we can have several n-homomorphism for each $\mathrm{S}_{\mathrm{i}}$ can be mapped on to any one of the $\mathrm{P}_{\mathrm{j}}$ 's.

Interested reader can analyse the properties of n-interval homomorphism of n-interval semigroups.

Now we proceed onto define quasi n-interval semigroups or quasi ( $\mathrm{s}, \mathrm{r}$ ) - interval semigroup.

DEFINITION 2.1.4: Let $S=S_{1} \cup \ldots \cup S_{n}$ where $s$ of the semigroups are distinct interval semigroups and $n-s$ of them are just $n$-s distinct semigroups. Then we define $S$ to be a quasi $n$-interval semigroup or quasi ( $s, n-s$ ) - interval semigroup.

We will first illustrate this situation by some examples.
Example 2.1.27: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5}=\{[0, a] / a \in$ $\left.\mathrm{Z}_{12}, \times\right\} \cup\left\{\mathrm{Z}_{19}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{25}, \times\right\} \cup\left\{\mathrm{Z}_{36}, \times\right\} \cup\{[0, \mathrm{a}] /$ $\left.\mathrm{a} \in \mathrm{Z}_{30}, \times\right\}$ be a quasi 5 -interval semigroup or quasi $(3,2)$ interval semigroup.

Example 2.1.28: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5} \cup S_{6}=$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{8}, \times\right\} \cup\left\{\mathrm{Z}_{20}, \times\right\} \cup\left\{\mathrm{Z}_{48}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{11}, \times\right\}$ $\cup\left\{\mathrm{Z}_{18}, x\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12}, \times \mathrm{x}\right\}$ be a quasi 6 -interval semigroup or a quasi (3, 3)-interval semigroup.

Example 2.1.29: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3}=\left(\mathrm{Z}_{48}, \times\right) \cup\{[0, \mathrm{a}] /$ $\left.\mathrm{a} \in \mathrm{Z}_{12}, \times\right\} \cup\left\{\mathrm{Z}_{20}, \times\right\}$ be a quasi 3 -interval semigroup or quasi $(2,1)$ interval semigroup.

Now having seen examples of quasi (r, s)-interval semigroups we now proceed onto give examples of substructures. The task of defining these substructures is left as an exercise to the reader.

Example 2.1.30: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}=\left\{Z_{40}, \times\right\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{18}, \times\right\} \cup\left\{\mathrm{Z}_{48}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{20}, \times\right\}$ be a quasi 4-interval semigroup.

Consider $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}=\{\{0,2,4,8, \ldots, 38\}, \times\}$ $\cup\left\{[0, a] / a \in\{0,3,6,9,12,15\}, Z_{18}, x\right\} \cup\{\{0,6,12,18, \ldots$, $\left.42\} \subseteq \mathrm{Z}_{48}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\{0,5,10,15\} \subseteq \mathrm{Z}_{20}, \times\right\} \subseteq \mathrm{S}_{1} \cup \mathrm{~S}_{2}$ $\cup S_{3} \cup S_{4} ; V$ is a quasi 4 -interval subsemigroup of S. Clearly $V$ is also a quasi 4-interval ideal of $S$.

Example 2.1.31: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{R}^{+} \cup\{0\}\right.$, $\times\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Q}^{+} \cup\{0\}, \times\right\}$ a quasi 3 -interval semigroup.

Consider $\mathrm{X}=\mathrm{X}_{1} \cup \mathrm{X}_{2} \cup \mathrm{X}_{3}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Q}^{+} \cup\{0\}\right\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\} \cup\left\{\mathrm{Q}^{+}\right\} \subseteq \mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3}=\mathrm{S}$; X is only a quasi 3-interval subsemigroup but is not a quasi 3-interval ideal of S .

Thus every quasi $n$-interval subsemigroup of a quasi ninterval semigroup need not be a quasi n-interval ideal.

Inview of this we have the following theorem the proof of which is direct.

Theorem 2.1.7: Let $S=S_{1} \cup S_{2} \cup \ldots \cup S_{n}$ be a quasi $n$ interval semigroup. Every quasi n-interval ideal of $S$ is a quasi $n$-interval subsemigroup of $S$, but in general a quasi $n$-interval subsemigroup need not be a quasi $n$-interval ideal of $S$.

We will illustrate by some examples S-quasi n-interval semigroups.

It is pertinent to mention here that every quasi n-interval semigroup need not in general be a S-quasi n-interval semigroup.

Example 2.1.32: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4}=\left\{\mathrm{Z}_{45}, \times\right\} \cup\{[0, \mathrm{a}]$ $\left./ \mathrm{a} \in \mathrm{Z}_{20}\right\} \cup\left\{\mathrm{Z}_{17}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{80}\right\}$ be a quasi 4-interval semigroup. Consider $H=H_{1} \cup H_{2} \cup H_{3} \cup H_{4}=$ $\left\{\{1,44\} \subseteq \mathrm{Z}_{45}\right\} \cup\left\{[0,1],[0,19] / 1,19 \in \mathrm{Z}_{20}\right\} \cup\{1,16\} \cup$
$\left\{[0,1][0,79] / 1,79 \in \mathrm{Z}_{80}\right\} \subseteq \mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4} . \mathrm{H}$ is a quasi 4 -interval group. So $S$ is a $S$-quasi 4 -interval semigroup.

Example 2.1.33: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3}=\left\{[0\right.$, a$\left.] / \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\}$ $\cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{R}^{+},+\right\} \cup\left\{3 \mathrm{Z}^{+} \cup\{0\},+\right\}$ be a quasi 3 -interval semigroup. Clearly S is not a S-quasi 3-interval semigroup.

Now we will give classes of quasi n-interval semigroups which are S-quasi n-interval semigroups.

THEOREM 2.1.8: Let $S=S_{1} \cup S_{2} \cup \ldots \cup S_{n}$ where $S_{i}=\{[0, a] /$ $\left.a \in Z_{n_{i}}, x\right\}$ and $S_{j}=\left\{Z_{m_{j}}, x\right\}, 1<i, j<n$ be a quasi $n$-interval semigroup. $S$ is a $S$-quasi $n$-interval semigroup.

The proof is direct however we give a small hint which makes the proof obvious.

Let $\mathrm{A}=\mathrm{A}_{1} \cup \mathrm{~A}_{2} \cup \ldots \cup \mathrm{~A}_{\mathrm{n}}$ where $\mathrm{A}_{\mathrm{i}}=\left\{[0,1],\left[0, \mathrm{n}_{\mathrm{i}}-1\right]\right\} \subseteq$ $S_{i}$ and $A_{j}=\left\{1, m_{j}-1\right\} \subseteq S_{j}$ are subgroups and $A$ is a quasi interval $n$-group so $S$ is a S -quasi n -interval semigroup.

THEOREM 2.1.9: Let $S=S_{1} \cup S_{2} \cup \ldots \cup S_{n}=S\left(X_{1}\right) \cup S\left(m_{2}\right) S$ $\left(X_{2}\right) \cup \ldots \cup S\left(m_{2}\right) \cup \ldots \cup S\left(X_{n}\right)$ where $S\left(X_{i}\right)$ is the interval symmetric semigroup group on $n_{i}$ intervals and $S\left(m_{j}\right)$ are just symmetric semigroups on $m_{j}$ elements, $1 \leq i, j \leq n$. Thus $S$ is a quasi $n$-interval semigroup. $S$ is a $S$-quasi $n$-interval semigroup.

For this theorem also we only give an hint.
Every $S_{i}$ if $S_{i}$ is a interval symmetric semigroup then $S_{i}=$ $\mathrm{S}\left(\mathrm{X}_{\mathrm{i}}\right)$ has $\mathrm{A}_{\mathrm{i}}=\mathrm{S}_{\mathrm{X}_{\mathrm{i}}}$ to be the symmetric interval group in $\mathrm{S}_{\mathrm{i}}$. Similarly for $S_{j}=S\left(m_{j}\right)$ we have $A_{j}=S_{m_{i}} \subseteq S\left(m_{j}\right)$ is the symmetric group, $1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n}$. So $\mathrm{A}=\mathrm{A}_{1} \cup \mathrm{~A}_{2} \cup \ldots \cup \mathrm{~A}_{\mathrm{n}} \subseteq \mathrm{S}_{1}$ $\cup S_{2} \cup \ldots \cup S_{n}$ is the quasi n-interval group, hence $S$ is a $S$ quasi $n$-interval semigroup.

Now we will give examples of S-quasi interval subsemigroups.

Example 2.1.34: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4} \cup \mathrm{~S}_{5}=\left\{\mathrm{Z}_{20}, \times\right\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{15}\right\} \cup\left\{\mathrm{Z}_{19}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{30}\right\} \cup\left\{\mathrm{Z}_{12}, \times\right\}$ be a quasi 5 -interval semigroup.

$$
P=P_{1} \cup P_{2} \cup P_{3} \cup P_{4} \cup P_{5}=\left\{\{1,19\} \subseteq Z_{20}, \times\right\} \cup\{[0,1],
$$ $\left.[0,14] /\{1,14\} \in \mathrm{Z}_{15}\right\} \cup\left\{1,18 / 1,18 \in \mathrm{Z}_{19}\right\} \cup\{[0,1],[0$, 29] / 1, $\left.29 \in \mathrm{Z}_{30}\right\} \cup\left\{1,11 / 1,11 \in \mathrm{Z}_{12}, \times\right\} \subseteq \mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup$ $S_{4} \cup S_{5}$ is a quasi 5 -interval group. So $S$ is a S-quasi 5 -interval semigroup. Now consider the quasi 5 -interval subsemigroup $\mathrm{T}=$ $\mathrm{T}_{1} \cup \mathrm{~T}_{2} \cup \mathrm{~T}_{3} \cup \mathrm{~T}_{4} \cup \mathrm{~T}_{5}=\{\{0,10\}, \times\} \cup\{[0,5],[0,10],[0,0]$, $\times\} \cup\{[0,0],[0,1]\} \cup\{[0,0],[0,10]\} \cup\{0,6\} \subseteq S_{1} \cup S_{2} \cup S_{3}$ $\cup S_{4} \cup S_{5}$ is a quasi 5 -interval subsemigroup of $S$. Clearly $T$ is not a S-quasi 5 -interval subsemigroup. However $S$ is a S-quasi 5 -interval semigroup.

Inview of this we have the following theorem.
THEOREM 2.1.10: Let $S=S_{1} \cup S_{2} \cup \ldots \cup S_{n}$ be a $S$-quasi $n-$ interval semigroup. Then if $T=T_{1} \cup T_{2} \cup \ldots \cup T_{n} \subseteq S_{1} \cup S_{2} \cup$ $\ldots \cup S_{n}=S$ be a quasi n-interval subsemigroup of $S$. $T$ in general need not be a S-quasi $n$ - interval subsemigroup of $S$.

The proof is by counter example. Example 2.1.34 will prove the theorem.

THEOREM 2.1.11: Let $S=S_{1} \cup S_{2} \cup \ldots \cup S_{n}$ be a quasi $n-$ interval semigroup. If $P=P_{1} \cup P_{2} \cup \ldots \cup P_{n} \subseteq S_{1} \cup S_{2} \cup \ldots \cup$ $S_{n}$ be a $S$-quasi $n$-interval subsemigroup of $S$ then $S$ is a $S$-quasi $n$-interval semigroup.

The proof is direct and hence is left as an exercise to the reader.

Now one can as in case of n-interval semigroups define the notion of $n$-interval zero divisors, n-interval units and n-interval idempotents [10-3].

We will illustrate this situation by some examples.
Example 2.1.35: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{20}\right\}$ $\cup\left\{\mathrm{Z}_{12}, \mathrm{x}\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{15}\right\} \cup\left\{\mathrm{Z}_{24}, \times\right\}$ be a quasi 4-interval
semigroup. Now take $x=\{[0,10]\} \cup\{6\} \cup\{[0,5]\} \cup\{12\} \in$ S. Choose $y=\{[0,6]\} \cup\{2\} \cup\{[0,6]\} \cup\{6\} \in S$. We see $x y$ $=\{0\} \cup\{0\} \cup\{0\} \cup\{0\}$. Thus $S$ has 4 -interval zero divisor.

Consider $x=[0,19] \cup\{11\} \cup\{[0,14]\} \cup\{23\} \in \mathrm{S}$. We see $x^{2}=[0,1] \cup\{1\} \cup\{[0,1]\} \cup\{1\}$ so $x$ is a 4-interval unit in S .
$x=\{[0,5]\} \cup\{9\} \cup\{[0,10]\} \cup\{9\}$ in $S$ is such that $x^{2}=$ $[0,25(\bmod 20)] \cup\{81(\bmod 12)\} \cup[0,100(\bmod 15)\} \cup\{81$ $(\bmod 24)\}=[0,5] \cup\{9\} \cup\{[0,10]\} \cup\{0\}=x$. Thus $x$ is a $4-$ interval idempotent of $S$.

Example 2.1.36: Let $S=S_{1} \cup S_{2} \cup S_{3}=\left\{[0, a] / a \in Z^{+}, x\right\} \cup$ $\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Q}^{+}\right\} \cup\left\{\mathrm{R}^{+}, \times\right\}$be a quasi 3 -interval semigroup. S has no 3-interval units, no 3-interval zero divisors and no three interval idempotents. Thus we have 3 -interval semigroups which have none of the special elements. It is further important to note that $S$ is not Smarandache quasi 3-interval semigroup.

Further S has no quasi 3-interval ideals. However S has quasi 3-interval subsemigroup say $P=P_{1} \cup P_{2} \cup P_{3}=\left\{3 Z^{+}, \times\right\}$ $\cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}^{+}\right\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Q}^{+}\right\} \subseteq \mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3}$. Infact S has infinite number of quasi 3 -interval subsemigroups none of them are quasi 3-interval ideals.

Now as in case of n-interval semigroups or quasi interval bisemigroups discuss and study the concept of zero divisors, Szero divisors, idempotents and S-idempotents. We give examples of quasi $n$-interval semigroups using interval matrices and interval polynomials.

Example 2.1.37: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5} \cup S_{6} \cup S_{7}=$ $\left\{\sum_{i=0}^{\infty}[0, a] x^{i} \mid a \in Z^{+} \cup\{0\}, \times\right\} \cup\{$ All $8 \times 4$ interval matrices with intervals of the form $\left.[0, a] / a \in Z_{40},+\right\} \cup\left\{\left[0, a_{1}\right],\left[0, a_{2}\right]\right.$, $\left.\ldots,\left[0, a_{9}\right] / a_{i} \in Z_{23}, 1 \leq i \leq 9, \times\right\} \cup$

$$
\left\{\left.\begin{array}{c}
{\left[\begin{array}{c}
{\left[0, a_{1}\right]} \\
{\left[0, a_{2}\right]} \\
{\left[0, a_{3}\right]} \\
{\left[0, a_{4}\right]}
\end{array}\right]}
\end{array} \right\rvert\, a_{\mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{120},+, 1 \leq \mathrm{i} \leq 4}\right\}
$$

$\cup\{$ All $7 \times 7$ upper triangular interval matrices with intervals of the form $[0, \mathrm{a}]$ where $\left.\mathrm{a} \in \mathrm{Q}^{+} \cup\{0\},+\right\} \cup$

$$
\left\{\sum_{i=0}^{\infty}[0, a] x^{i} \mid a \in Z_{48}, x\right\} \cup\left\{\sum_{i=0}^{27}[0, a] x^{i} \mid a \in Z_{144},+\right\}
$$

is a 7 -interval semigroup of infinite order which is clearly non commutative.

Example 2.1.38: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4} \cup \mathrm{~S}_{5}=\left\{\left(\left[0, \mathrm{a}_{1}\right]\right.\right.$, $[0$, $\left.\left.\left.\mathrm{a}_{2}\right], \ldots,\left[0, \mathrm{a}_{12}\right]\right) / \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{50}, 1 \leq \mathrm{i} \leq 12, \times\right\} \cup\{$ All $3 \times 3$ matrices with entries from $\left.\mathrm{Z}_{250}, \times\right\} \cup\{$ all $7 \times 2$ interval matrices with intervals of the form $\left.[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{420},+\right\} \cup$

$$
\left\{\sum_{\mathrm{i}=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Q}^{+} \cup\{0\}, \times\right\} \cup
$$

$\{\mathrm{S}(8)\}$ be a quasi 5 -interval semigroup.
We see in these two examples the interval semigroups and semigroups are of varying types.

Now having seen such hectrogeneous examples now we proceed onto describe n-interval groupoids and quasi $n$-interval groupoids.

## 2.2 n-Interval Groupoids

In this section we proceed onto describe the notion of ninterval groupoids, quasi $n$-interval groupoids and (m, n) interval semigroup-groupoids (interval m-semigroup-ngroupoids) and its quasi analogue.

DEFINITION 2.2.1: Let $G=G_{1} \cup G_{2} \cup G_{3} \cup \ldots \cup G_{n}$ be such that each $G_{i}$ is an interval groupoid and the $G_{i}$ 's are distinct ( $G_{i}$ $\nsubseteq G_{j}$, if $\left.i \neq j 1 \leq i, j \leq n\right)$. We define '.' on $G$ which takes operations on each of the $G_{i}$ 's; $1 \leq i \leq n$. We define ( $G$, .) to be the n-interval groupoid ( $n>2$ ). If $n=2$ we call $G$ as interval bigroupoid.

We will illustrate this by examples.

Example 2.2.1: Let $G=G_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{14}\right.$, *, $(3,5)\} \cup\left\{[0, \mathrm{~b}] \mid \mathrm{b} \in \mathrm{Z}_{20},{ }^{*},(7,0)\right\} \cup\left\{[0, \mathrm{c}] \mid \mathrm{c} \in \mathrm{Z}_{19},{ }^{*},(4\right.$, $4)\} \cup\left\{[0, \mathrm{~d}] / \mathrm{d} \in \mathrm{Z}_{17},{ }^{*},(1,3)\right\}$ be a 4-interval groupoid. We define ' $'$ ' on $G$ as follows. Suppose $x=[0,3] \cup[0,8] \cup[0,1]$ $\cup[0,5]$ and $y=[0,2] \cup[0,1] \cup[0,8] \cup[0,10] \in G$. Then

$$
\begin{aligned}
\mathrm{x.y}= & ([0,3] \cup[0,8] \cup[0,1] \cup[0,5]) \cdot([0,2] \cup[0,1] \cup \\
& {[0,8] \cup[0,10]) } \\
= & {[0,3] *[0,2] \cup[0,8] *[0,1] \cup[0,1] \cup[0,8] \cup } \\
& {[0,5] *[0,10] } \\
= & {[0,3.3+2.5(\bmod 14)] \cup[0,7.8+0.1(\bmod 20)] \cup } \\
& {[0,(1.4+1.8) \bmod 19] \cup[0,(1.5+3.10)(\bmod 17)] } \\
= & {[0,5] \cup[0,16] \cup[0,12] \cup[0,1] \in \mathrm{G} . }
\end{aligned}
$$

Thus (G, .) is a 4-interval groupoid of finite order.

Example 2.2.2: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4} \cup \mathrm{~S}_{5}=\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\mathrm{Z}^{+} \cup\{0\},{ }^{*},(3,2)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{45},{ }^{*},(2,1)\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\mathrm{Z}_{20},{ }^{*},(13,0)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{R}^{+} \cup\{0\},{ }^{*},(3,0)\right\} \cup\{[0, \mathrm{a}] / \mathrm{a}$ $\left.\in \mathrm{Z}_{48},{ }^{*},(0,7)\right\}$ be a 5-interval groupoid.

Example 2.2.3: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4}=\{$ All $3 \times 3$ interval matrices with intervals of the form [0, a]; a $\left.\in \mathrm{Z}_{12},{ }^{*},(7,0)\right\} \cup$

$$
\left\{\{ \sum _ { \mathrm { i } = 0 } ^ { \infty } [ 0 , \mathrm { a } ] \mathrm { x } ^ { \mathrm { i } } | \mathrm { a } \in \mathrm { Z } _ { 1 5 } , * , ( 0 , 3 ) \} \cup \left\{\left\{\sum_{\mathrm{i}=0}^{\infty}[0, \mathrm{a}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{19},{ }^{*},(4,0)\right\}\right.\right.
$$

$\cup\left\{\left(\left[0, \mathrm{a}_{1}\right],\left[0, \mathrm{a}_{2}\right], \ldots,\left[0, \mathrm{a}_{6}\right]\right) \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{120},{ }^{*},(8,5)\right\}$ be a 4interval groupoid where we describe the operations in each of the $\mathrm{S}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq 4$.

Let

$$
A=\left(\begin{array}{lll}
{[0,3]} & {[0,1]} & {[0,7]} \\
{[0,1]} & {[0,8]} & {[0,0]} \\
{[0,2]} & {[0,0]} & {[0,5]}
\end{array}\right), B=\left(\begin{array}{lll}
{[0,2]} & {[0,0]} & {[0,0]} \\
{[0,7]} & {[0,5]} & {[0,0]} \\
{[0,1]} & {[0,3]} & {[0,8]}
\end{array}\right)
$$

in $S_{1}$.

$$
\begin{gathered}
\mathrm{A} * \mathrm{~B}=\left(\begin{array}{lll}
{[0,3]} & {[0,1]} & {[0,7]} \\
{[0,1]} & {[0,8]} & {[0,0]} \\
{[0,2]} & {[0,0]} & {[0,5]}
\end{array}\right) *\left(\begin{array}{lll}
{[0,2]} & {[0,0]} & {[0,0]} \\
{[0,7]} & {[0,5]} & {[0,0]} \\
{[0,1]} & {[0,3]} & {[0,8]}
\end{array}\right)= \\
\left(\begin{array}{lll}
{[0,(3.7+0.2) \bmod 12]} & {[0,(0.7+0.1) \bmod 12]} & {[0,(0.7+0.7) \bmod 12]} \\
{[0,(7.7+0.1) \bmod 12]} & {[0,(5.7+8.0) \bmod 12]} & {[0,(7.0+0.0) \bmod 12} \\
{[0,(7.1+0.2) \bmod 12]} & {[0,(8.3+0.0) \bmod 12]} & {[0,(8.7+0.5) \bmod 12}
\end{array}\right) \\
=\left(\begin{array}{lll}
{[0,9]} & {[0,0]} & {[0,0]} \\
{[0,1]} & {[0,11]} & {[0,0]} \\
{[0,7]} & {[0,0]} & {[0,8]}
\end{array}\right) .
\end{gathered}
$$

We now describe the operation in $\mathrm{S}_{2}$.

$$
p(x)=[0,5] x^{7}+[0,2] x^{3}+[0,3] x+[0,1]
$$

and

$$
\begin{aligned}
\mathrm{q}(\mathrm{x})= & {[0,1] \mathrm{x}^{6}+[0,9] \mathrm{x}+[0,7] \mathrm{x}^{3}+[0,4] ; } \\
\mathrm{p}(\mathrm{x}) * \mathrm{q}(\mathrm{x})= & {[0,0] \mathrm{x}^{7}+[0,3] \mathrm{x}^{6}+[0,(2.0+7.3) \bmod 15] } \\
& \mathrm{x}^{3}+[0,(3.0+9.3) \bmod 15] \mathrm{x}+ \\
= & {[0,(0.1+4.3) \bmod 15] } \\
= & {[0,3] \mathrm{x}^{6}+[0,9] \mathrm{x}^{3}+[0,9] \mathrm{x} . }
\end{aligned}
$$

Thus this is the way * on the interval polynomial groupoid $S_{2}$ is defined.

In a similar way the operation on $\mathrm{S}_{3}$ is carried out. Now consider the operation * on $\mathrm{S}_{4}$. Take $\mathrm{x}=([0,3],[0,2],[0,1],[0$, $0],[0,5],[0,9])$ and $y=([0,9],[0,12],[0,20],[0,40]$, $[0,8],[0,1])$ in $S_{4}$. Now $x^{*} y=([0,(24+45) \bmod 120]$,
[0, (16+60) mod 120], [0, (8+120) mod 120], [0, $(0+40 \times 5) \bmod$ 120], [0, (40+40) mod 120], [0, (72+5) mod 120])
$=([0,69],[0,76],[0,8],[0,0],[0,80],[0,77])$.
Example 2.2.4: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4} \cup \mathrm{~S}_{5} \cup \mathrm{~S}_{6}=\{$ All $5 \times$ 5 interval matrices with intervals of the form [0, a] where a $\in$ $\left.\mathrm{Z}_{7},{ }^{*},(3,4)\right\} \cup\left\{\left(\left[0, \mathrm{a}_{1}\right],\left[0, \mathrm{a}_{2}\right], \ldots,\left[0, \mathrm{a}_{10}\right]\right) / \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{11}, 1 \leq \mathrm{i} \leq\right.$ $\left.10,{ }^{*},(8,3)\right] \cup\left\{[0, a] / a \in Z_{6},{ }^{*},(4,0)\right\} \cup\left\{[0, a] / a \in Z_{14}, *\right.$, $(0,3)\} \cup\left\{\sum_{\mathrm{i}=0}^{9}[0, \mathrm{a}] \mathrm{x}^{\mathrm{i}}, *, \mathrm{a} \in \mathrm{Z}_{10},(3,2)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{4}, *\right.$, $(2,2)\}$ be a 6 -interval groupoid.

We have seen examples of n-interval groupoids.
Now we proceed onto illustrate the substructure of an ninterval groupoid. As the definition is easy the reader is left with the task of defining the substructures.

Example 2.2.5: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}^{+} \cup\right.$ $\{0\},(3,0), *\} \cup\left\{\left(\left[0, a_{1}\right],\left[0, a_{2}\right],\left[0, a_{3}\right]\right) / a_{i} \in Z_{10}, 1 \leq i \leq 3, *\right.$, $(7,2)\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{40},{ }^{*},(10,13)\right\} \cup\left\{[0, \mathrm{c}] / \mathrm{c} \in \mathrm{Z}_{12},{ }^{*},(8\right.$, 0 ) $\}$ be a 4 -interval groupoid. Consider $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4}$ $=\left\{[0, \mathrm{a}] / \mathrm{a} \in 7 \mathrm{Z}^{+} \cup\{0\}, *,(3,0)\right\} \cup\left\{\left(\left[0, \mathrm{a}_{1}\right], 0,\left[0, \mathrm{a}_{2}\right]\right) / \mathrm{a}_{1}, \mathrm{a}_{2}\right.$ $\left.\in \mathrm{Z}_{10},{ }^{*},(7,2)\right\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in\{0,10,20,30\} \subseteq \mathrm{Z}_{40},{ }^{*}\right.$, $(10,13)\} \cup\left\{[0, \mathrm{c}] / \mathrm{c} \in\{0,2,4,6,8,10\} \subseteq \mathrm{Z}_{12}, *,(8,0)\right\} \subseteq$ $S_{1} \cup S_{2} \cup S_{3} \cup S_{4} ; V$ is a 4-interval subgroupoid of $S$.

Example 2.2.6: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4} \cup \mathrm{~S}_{5}=\left\{\left(\left[0, \mathrm{a}_{1}\right]\right.\right.$, $\left.\left.\left[0, a_{2}\right],\left[0, a_{3}\right],\left[0, a_{4}\right],\left[0, a_{5}\right]\right) / a_{i} \in Z_{12}, *, 1 \leq i \leq 5,(3,2)\right\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{35}, *,(7,0)\right\} \cup\{$ All $2 \times 2$ interval matrices with intervals of the form [0, a] where $\left.\mathrm{a} \in \mathrm{Z}_{40},{ }^{*},(10,2)\right\} \cup$
$\left\{\left.\left[\begin{array}{l}{[0, \mathrm{a}]} \\ {[0, \mathrm{~b}]} \\ {[0, \mathrm{c}]}\end{array}\right] \right\rvert\, a, b, c \in \mathrm{Z}_{15}, *,(3,2)\right\} \cup\left\{\sum_{\mathrm{i}=0}^{7}[0, \mathrm{a}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in \mathrm{Z}_{24}, *,(3,11)\right\}$
be a 5-interval groupoid. $\mathrm{P}=\mathrm{P}_{1} \cup \mathrm{P}_{2} \cup \mathrm{P}_{3} \cup \mathrm{P}_{4} \cup \mathrm{P}_{5}=\left\{\left(\left[0, \mathrm{a}_{1}\right]\right.\right.$, $\left.\left.\left[0, a_{2}\right], \ldots,\left[0, a_{5}\right]\right) / a_{i} \in\{0,2,4,6,8,10\} \subseteq Z_{12},{ }^{*},(3,2)\right\}$
$\cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\{0,5,10, \ldots, 30\} \subseteq \mathrm{Z}_{35},{ }^{*},(7,0)\right\} \cup\{$ All $2 \times 2$ interval matrices with intervals of the form [0, a] where $a \in\{0$, $\left.2,4, \ldots, 38\} \subseteq \mathrm{Z}_{40},(10,2)\right\} \cup$

$$
\begin{aligned}
& \left\{\left.\left[\begin{array}{l}
{[0, a]} \\
{[0, b]} \\
{[0, c]}
\end{array}\right] \right\rvert\, a, b, c \in\{0,5,10\} \subseteq Z_{15}, *,(3,2)\right\} \cup \\
& \qquad\left\{\sum_{i=0}^{3}[0, a] x^{i} \mid a \in Z_{24}, *,(3,11)\right\}
\end{aligned}
$$

$\subseteq S_{1} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5}$ is a 5-interval subgroupoid of $S$.
Example 2.2.7: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}=\{$ All $2 \times 5$ interval matrices with intervals of the form $\left.[0, \mathrm{a}], \mathrm{a} \in \mathrm{Z}_{8},{ }^{*},(3,1)\right\} \cup$

$$
\begin{gathered}
\left\{\sum_{i=0}^{9}[0, a] x^{i} \mid a \in Z_{10},(2,0), *\right\} \\
\cup\left\{[0, a] / a \in Z_{12}, *,(4,3)\right\} \cup\left\{\sum_{i=0}^{4}[0, a] x^{i} \mid a \in Z_{40}, *,(0,7)\right\}
\end{gathered}
$$

be a 4-interval groupoid.
Consider $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4}=\{[0, \mathrm{a}] / \mathrm{a} \in\{0,2,4,6\}$ $\left.\subseteq \mathrm{Z}_{8},{ }^{*},(3,1)\right\} \cup$

$$
\begin{gathered}
\left\{\sum_{i=0}^{9}[0, a] x^{\mathrm{i}} \mid \mathrm{a} \in\{0,2,4,6,8\} \subseteq \mathrm{Z}_{10}, *,(2,0)\right\} \cup \\
\left\{[0, \mathrm{a}] / \mathrm{a} \in\{0,3,6,9\} \subseteq \mathrm{Z}_{12},(4,3)\right\} \cup \\
\left\{\sum_{\mathrm{i}=0}^{4}[0, \mathrm{a}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a} \in\{0,4,8,12, \ldots, 36\} \subseteq \mathrm{Z}_{40}, *,(0,7)\right\}
\end{gathered}
$$

$\subseteq \mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4}=\mathrm{S}$ is a 4-interval subgroupoid of S .

Now having seen n-interval subgroupoids now we proceed onto describe other properties like S-n-interval groupoids and special identities satisfied by the $n$-interval groupoids. We will call a n-interval groupoid $S=S_{1} \cup S_{2} \cup \ldots \cup S_{n}$ to be a S-ninterval groupoid if $S$ has a proper subset $A=A_{1} \cup A_{2} \cup \ldots \cup$ $A_{n}$ where each $A_{i}$ is an interval semigroup under the operations of $\mathrm{S}, 1 \leq \mathrm{i} \leq \mathrm{n}$, that is if S contains a n -interval semigroup then we call S to be a Smarandache n -interval groupoid.

We will illustrate this situation by some examples.
Example 2.2.8: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5}=\{[0, a] / a \in$ $\left.\mathrm{Z}_{10},{ }^{*},(5,6)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12}, *,(3,9)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12}\right.$, $\left.{ }^{*},(3,4)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{4},{ }^{*},(2,3)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{6},{ }^{*}\right.$, $(4,3)\}$ be a 5 -interval groupoid it is easily verified S is a Smarandache 5-interval groupoid of finite order.

Example 2.2.9: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}=\left\{[0, a] / a \in Z_{6}\right.$, ${ }^{*}$, $(3,5)\} \cup\left\{[0, a] / a \in \mathrm{Z}_{14}, *,(7,8)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12}, *\right.$, $(5,10)\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12},{ }^{*},(2,10)\right\}$ be a 4 -interval groupoid and $S$ is a Smarandache 4-interval grouped of finite order.

Example 2.2.10: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5} \cup \mathrm{G}_{6} \cup \mathrm{G}_{7}$ $=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{9},{ }^{*},(7,3)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{16},{ }^{*},(7,10)\right\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{20},{ }^{*},(10,11)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{19},{ }^{*},(17,3)\right\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{14}, *,(8,7)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{22},{ }^{*},(12,11)\right\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{27}, *,(23,5)\right\}$ is a 7 -interval groupoid which is a S-7-interval groupoid.

In view of this we have the following theorem which guarantees the existence of a class of S-n-interval groupoids.

THEOREM 2.2.1: Let $G=G_{1} \cup G_{2} \cup G_{3} \cup \ldots \cup G_{n}$ where $G_{i}=$ $\left\{[0, a] / a \in Z_{m_{i}},{ }^{*},\left(t_{i}, u_{i}\right)\right.$ where $\left(t_{i}, u_{i}\right)=1$ and $t_{i}+u_{i} \equiv$ $\left.1\left(\bmod m_{i}\right)\right\}$ true for $i=1,2, \ldots, n$ and each $m_{i}>5$. Then $G$ is a Smarandache $n$-interval groupoid of order $m_{1}, m_{2}, \ldots, m_{n}$.

Proof is straight forward as every n-element. $\mathrm{x}=\left[0, \mathrm{a}_{1}\right] \cup\left[0, \mathrm{a}_{2}\right]$ $\cup \ldots \cup\left[0, a_{n}\right] \in G$ such that $x^{*} x=x$ so $\{x\}$ is a $n$-interval semigroup in G .

Hence the claim.
We say an n-interval groupoid $G=G_{1} \cup G_{2} \cup \ldots \cup G_{n}$ is said to be an n-interval idempotent groupoid if for every $\mathrm{x}=\mathrm{x}_{1}$ $\cup \mathrm{x}_{2} \ldots \cup \mathrm{x}_{\mathrm{n}}$ in G we have $\mathrm{x} * \mathrm{x}=\mathrm{x}$.

We will first illustrate this by some examples.
Example 2.2.11: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}=\left\{[0, a] / a \in Z_{10}\right.$, $(7,4), *\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{13},{ }^{*},(9,5)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{20},{ }^{*}\right.$, $(11,10)\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{15},{ }^{*},(9,7)\right\}$ be a 4-interval groupoid. It is easily verified G is a 4 -interval idempotent groupoid. For take $x=[0,5] \cup[0,7] \cup[0,12] \cup[0,9]$ in $S$.

$$
\begin{aligned}
\mathrm{x}^{2}= & {[0,5] *[0,5] \cup[0,7] *[0,7] \cup[0,12] *[0,12] \cup } \\
& {[0,9] *[0,9] } \\
= & {[0,(35+20)(\bmod 10)] \cup[0,(63+35) \bmod 13] \cup } \\
= & {[0,(132+120) \bmod 20] \cup[0,(81+63) \bmod 15] } \\
= & {[0,5] \cup[0,7] \cup[0,12] \cup[0,9] } \\
= & x .
\end{aligned}
$$

It is easily verified $\mathrm{x}^{2}=\mathrm{x}$ for every $\mathrm{x} \in \mathrm{S}$ is a 4 -interval groupoid. It is easily verified $G$ is a 4-interval idempotent groupoid.

In view of this we have the following theorem which guarantees the existence of n-interval idempotent groupoid.

THEOREM 2.2.2: Let $G=G_{1} \cup G_{2} \cup G_{3} \cup \ldots \cup G_{n}$ be a $n-$ interval groupoid $G_{i}=\left\{[0, a] / a \in Z_{m_{i}},\left(t_{i}, u_{i}\right)=1\left(t_{i}+u_{i}\right) \equiv 1\right.$ $\left.\bmod m_{i}, *\right\}$ is an interval groupoid for each $i=1,2, \ldots, n$.
$G$ is a $n$-interval idempotent groupoid.
The proof is direct and is left as an exercise to the reader.
Now we will give examples of n-interval groupoids which has S-n-interval subgroupoids.

Example 2.2.12: Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}=\left\{[0, a] / a \in Z_{14}\right.$, $\left.{ }^{*},(7,8)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12},{ }^{*},(5,10)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{10},{ }^{*}\right.$, $(5,6)\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12},{ }^{*},(1,3)\right\}$ be a 4-interval groupoid of finite order. Consider $A=A_{1} \cup A_{2} \cup A_{3} \cup A_{4}=\{[0, a] / a \in$ $\{0,4\}, *,\{7,8\}\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\{0,6\} \subseteq \mathrm{Z}_{12}, *,(5,10)\right\} \cup\{[0$, a] $\left./ \mathrm{a} \in\{0,5\} \subseteq \mathrm{Z}_{10},{ }^{*},(5,6)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\{0,6,3,9\} \subseteq \mathrm{Z}_{12}\right.$, *, $(1,3)\} \subseteq S_{1} \cup S_{2} \cup S_{3} \cup S_{4}$. Clearly a is a Smarandache 4interval subgroupoid. As $P=P_{1} \cup P_{2} \cup P_{3} \cup P_{4}=\{[0,4]$, *, (7, 8) $\} \cup\left\{[0,6] / 6 \in \mathrm{Z}_{12}, *,(5,16)\right\} \cup\left\{[0,5] / 5 \in \mathrm{Z}_{10}, *,(5,6)\right\}$ $\cup\left\{[0,0],[0,6] / 0,6 \in Z_{12}, *,(1,3)\right\} \subseteq A_{1} \cup A_{2} \cup A_{3} \cup A_{4}=$ $A \subseteq S_{1} \cup S_{2} \cup S_{3} \cup S_{4}=S$ is a 4-interval semigroup in A.

Thus A is a S-4-interval subgroupoid of $S$.
Now we have the following nice theorem the proof of which is direct.

THEOREM 2.2.3: Let $G=G_{1} \cup G_{2} \cup \ldots \cup G_{n}$ be a $n$-interval groupoid. If $A=A_{1} \cup A_{2} \cup \ldots \cup A_{n}$ is a $n$-interval subgroupoid of $G$ which is a $S$-n-interval subgroupoid, then $G$ is itself a $S$-ninterval groupoid. But if $G$ is a $S$-n-interval groupoid then in general every n-interval subgroupoid of $G$ need not be a $S$ ninterval subgroupoid of $G$.

To this effect the interested reader can give examples.
Example 2.2.13: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{4},{ }^{*}\right.$, $(2,3)\} \cup\left\{[0, a] / a \in Z_{12},(3,4),{ }^{*}\right\} \cup\left\{[0, a] / a \in Z_{6},{ }^{*},(2,3)\right\}$ be a Smarandache Bol 3-interval groupoid.

This can be easily verified by the reader. However G is not a S-strong Bol 3-groupoid.

Example 2.2.14: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{6},{ }^{*}\right.$, $(4,3)\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{4},{ }^{*},(2,3)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{6},{ }^{*},(3,5)\right\}$ be a Smarandache strong 3-interval P-groupoid. Hence G is a Smarandache 3-interval P-groupoid.

The following theorem guarantees the existence of Smarandache n-interval P-groupoid.

THEOREM 2.2.4: Let $G=G_{1} \cup G_{2} \cup \ldots \cup G_{n}$ be a n-interval groupoid. If each $G_{i}=\left\{[0, a] / a \in Z_{m_{i}}, *, t_{i}+u_{i} \equiv 1\left(\bmod m_{i}\right)\right.$ $\left.\left(t_{i}, u_{i}\right)\right\}$ is an interval groupoid $1 \leq i \leq n . G$ is a Smarandache alternative $n$-interval groupoid if and only if $t_{i}^{2}=t_{i}\left(\bmod m_{i}\right)$ and $u_{i}^{2}=u_{i}\left(\bmod m_{i}\right)$, for every $i=1,2, \ldots, n$.

The proof is direct for analogous methods refer [ ].
The next theorem guarantees the existence of a class of Smarandache n-interval P-groupoids.

THEOREM 2.2.5: Let $G=G_{1} \cup G_{2} \cup \ldots \cup G_{n}$ where $G_{i}=$ $\left\{[0, a] / a \in Z_{m_{i}},{ }^{*},\left(t_{i}, u_{i}\right) 1+u_{i}=1\left(\bmod m_{i}\right)\right\}, 1 \leq i \leq n$ be $a$ n-interval groupoid. G is a Smarandache n-interval P-groupoid if and only if $t_{i}^{2}=t_{i}\left(\bmod m_{i}\right)$ and $u_{i}^{2}=u_{i}\left(\bmod m_{i}\right)$ for $i=1,2$, ..., $n$.

Now we will give example of a Smarandache strong n-interval Moufang groupoid.

Example 2.2.15: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5}=\{[0, \mathrm{a}] / \mathrm{a}$ $\left.\in \mathrm{Z}_{12}, *,(4,9)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{10},(5,6), *\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{15}\right.$, $*,(6,10)\} \cup\left\{[0, a] / a \in Z_{20},(5,16), *\right\} \cup\left\{[0, a] / a \in Z_{21},(7\right.$, 15) $\}$ be a 5 -interval groupoid.

Clearly $G$ is a Smarandache strong Moufang 5-interval groupoid.

We give a theorem which gurantees the existence of Smarandache strong Moufang n-interval groupoid.

THEOREM 2.2.6: Let $G=G_{1} \cup G_{2} \cup \ldots \cup G_{n}=\{[0, a] / a \in$ $\left.Z_{m_{1}},{ }^{*},\left(t_{1}, u_{1}\right), t_{1}+u_{1}=1\left(\bmod m_{1}\right)\right\} \cup\left\{[0, a] / a \in Z_{m_{2}}, *,\left(t_{2}\right.\right.$, $\left.\left.u_{2}\right), t_{2}+u_{2}=1\left(\bmod m_{2}\right)\right\} \cup \ldots \cup\left\{[0, a] / a \in Z_{m_{n}}, *,\left(t_{n}, u_{n}\right), t_{n}\right.$ $\left.+u_{n}=1\left(\bmod m_{n}\right)\right\}$ be a n-interval groupoid. $G$ is a

Smarandache strong Moufang n-interval groupoid if and only if $u_{i}^{2}=u_{i}\left(\bmod m_{i}\right)$ and $t_{i}^{2}=t_{i}\left(\bmod m_{i}\right), i=1,2, \ldots, n$.

Now we give the existence of a class of Smarandache strong Bol n-interval groupoid.

THEOREM 2.2.7: Let $G=G_{1} \cup G_{2} \cup \ldots \cup G_{n}=\{[0, a] / a \in$ $\left.Z_{m_{1}},{ }^{*},\left(t_{1}, u_{1}\right) ; t_{1}+u_{1} \equiv 1\left(\bmod m_{1}\right)\right\} \cup\left\{[0, a] / a \in Z_{m_{2}},{ }^{*},\left(t_{2}\right.\right.$, $\left.\left.u_{2}\right), t_{2}+u_{2} \equiv 1\left(\bmod m_{2}\right)\right\} \cup \ldots \cup\left\{[0, a] / a \in Z_{m_{n}}, *,\left(t_{n}, u_{n}\right),{ }^{*}\right.$, $\left.t_{n}+u_{n} \equiv 1,\left(\bmod m_{n}\right)\right\}$ be a $n$-interval groupoid. $G$ is a Smarandache strong Bol n-interval groupoid if and only if $t_{i}^{2}=t_{i}\left(\bmod m_{i}\right)$ and $u_{i}^{2}=u_{i}\left(\bmod m_{i}\right) ; i=1,2, \ldots, n$.

The proof is straight forward for

$$
\begin{aligned}
& \left(\left(\left[0, \mathrm{x}_{\mathrm{i}}\right] *\left[0, \mathrm{y}_{\mathrm{i}}\right]\right) *\left(\left[0, \mathrm{z}_{\mathrm{i}}\right]\right) *\left[0, \mathrm{x}_{\mathrm{i}}\right]\right. \\
& =\left(\left[0, \mathrm{t}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right] *\left[0, \mathrm{z}_{\mathrm{i}}\right]\right) *\left[0, \mathrm{x}_{\mathrm{i}}\right] \\
& =\left[0, \mathrm{t}_{\mathrm{i}}^{2}+\mathrm{t}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}\right] *\left[0, \mathrm{x}_{\mathrm{i}}\right] \\
& =\left[0, t_{i}^{3} x_{i}+t_{i}^{2} u_{i} y_{i}+t_{i} u_{i} z_{i}+u_{i} x_{i}\right] \\
& =\left[0, t_{i} x_{i}+t_{i} u_{i} y_{i}+t_{i} u_{i} z_{i}+u_{i} x_{i}\right] \quad-I \\
& \left(t_{i}^{3}=t_{i}\left(\bmod m_{i}\right)\right) \\
& {\left[0, \mathrm{x}_{\mathrm{i}}\right] *\left(\left(\left[0, \mathrm{y}_{\mathrm{i}}\right] *\left[0, \mathrm{z}_{\mathrm{i}}\right]\right) *\left[0, \mathrm{x}_{\mathrm{i}}\right]\right)} \\
& =\left[0, x_{i}\right] *\left(\left[0, \mathrm{t}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}\right] *\left[0, \mathrm{x}_{\mathrm{i}}\right]\right) \\
& =\left[0, x_{i}\right] *\left[0, \mathrm{t}_{\mathrm{i}}^{2} \mathrm{u}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}+\mathrm{t}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}}^{2} \mathrm{x}_{\mathrm{i}}\right] \\
& =\left[0, t_{i} x_{i}+t_{i}^{2} u_{i} y_{i}+t_{i} u_{i}^{2} x_{i}+u_{i} x_{i}\right] \quad-\quad \text { II } \\
& \left(u_{i}^{2}=u_{i}\left(\bmod m_{i}\right)\right)
\end{aligned}
$$

I and II are equal for every $\left[0, x_{i}\right],\left[0, y_{i}\right],\left[0, z_{i}\right] \in G_{i}$; for $i=1$, 2 , ...n. Hence $G$ is a Smarandache strong Bol n-interval groupoid.

We give examples of Smarandache n-interval idempotent groupoids.

Example 2.2.16: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5}=\{[0, \mathrm{a}] / \mathrm{a}$ $\in \mathrm{Z}_{11}$, *, $\left.(6,6)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{19}, *,(10,10)\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\mathrm{Z}_{13},{ }^{*},(7,7)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{23}, *,(12,12)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{43}\right.$,
*, $(22,22)$ \} be a 5 -interval groupoid. It is easily verified G is a Smarandache 5-interval idempotent groupoid.

We have a class of Smarandache n-interval groupoid, which is evident from the following theorems.

THEOREM 2.2.8: Let $G=G_{1} \cup G_{2} \cup G_{3} \cup \ldots \cup G_{n}=\{[0, a] / a$ $\in Z_{p_{1}},{ }^{*},\left(\frac{p_{1}+1}{2}, \frac{p_{1}+1}{2}\right),{ }^{*}, p_{1}$ a prime $\} \cup\left\{[0, a] / a \in Z_{p_{2}}\right.$, $*,\left(\frac{p_{2}+1}{2}, \frac{p_{2}+1}{2}\right),{ }^{*}, p_{2}$ a prime $\} \cup \ldots \cup\left\{[0, a] / a \in Z_{p_{n}}, *\right.$, $\left(\frac{p_{n}+1}{2}, \frac{p_{n}+1}{2}\right), *, p_{n}$ a prime\} (all the $p_{i}$ 's are $n$-distinct primes, $i=1,2, \ldots, n$ ). $G$ is a Smarandache $n$-interval idempotent groupoid.

The proof is straight forward and hence is left as an exercise for the reader to prove.

Now having seen the properties enjoyed by n-interval groupoids now we proceed onto define quasi $n$-interval groupoids and (t, s) interval semigroup - groupoid and (t, s) quasi interval semigroup- groupoid.

Let $G=G_{1} \cup G_{2} \cup \ldots \cup G_{n}$ where some $t$ number $G_{i}$ 's are distinct interval groupoids and the remaining n-t are just groupoids then we define $G$ to be a quasi $n$-interval groupoid or quasi $(\mathrm{t},(\mathrm{n}-\mathrm{t})$ ) - interval groupoid.

If in $G=G_{1} \cup G_{2} \cup \ldots \cup G_{n}$, $t$ of the $G_{i}$ 's are interval semigroups and $n-t-$ of the $\mathrm{G}_{\mathrm{j}}$ 's are interval groupoids and groupoids we define $G$ to be a quasi n-interval semigroupgroupoid.

We will illustrate this situation by some examples.
Example 2.2.17: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5} \cup \mathrm{G}_{6} \cup \mathrm{G}_{7}$ $=\left\{\mathrm{Z}_{9}(3,2)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{40}, *,(19,11)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{24}\right.$, $*,(11,13)\} \cup\left\{\mathrm{Z}_{12}(7,5)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{42},{ }^{*},(8,11)\right\} \cup\left\{\mathrm{Z}_{27}\right.$ $(3,1)\} \cup\left\{\mathrm{Z}_{45}(11,13)\right\}$ be a quasi 7 -interval groupoid.

Example 2.2.18: Let $G=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4}=\{$ All $3 \times 3$ interval matrices with intervals of the form $[0, \mathrm{a}]$ where $\mathrm{a} \in \mathrm{Z}_{7}$, $(2,3)\} \cup\left\{\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}\right) / \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{5},{ }^{*},(3,3)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{9}\right.$, , , $(2,7)\} \cup\left\{\mathrm{Z}_{11}(3,2)\right\}$ be a quasi 4-interval groupoid.

Let

$$
x=\left(\begin{array}{ccc}
{[0,3]} & {[0,2]} & {[0,1]} \\
0 & {[0,4]} & 0 \\
{[0,3]} & 0 & {[0,2]}
\end{array}\right) \cup(2,1,0,3) \cup\{[0,7]\} \cup\{3\}
$$

and

$$
y=\left(\begin{array}{ccc}
{[0,3]} & 0 & {[0,1]} \\
0 & {[0,5]} & 0 \\
{[0,5]} & {[0,4]} & {[0,2]}
\end{array}\right) \cup(3,1,2,4) \cup[0,5] \cup\{9\} \in G .
$$

x.y is calculated as follows;

$$
\begin{aligned}
& \mathrm{x} . \mathrm{y}=\left(\begin{array}{ccc}
{[0,3]} & {[0,2]} & {[0,1]} \\
0 & {[0,4]} & 0 \\
{[0,3]} & 0 & {[0,2]}
\end{array}\right) *\left(\begin{array}{ccc}
{[0,3]} & 0 & {[0,1]} \\
0 & {[0,5]} & 0 \\
{[0,5]} & {[0,4]} & {[0,2]}
\end{array}\right) \\
& \cup(2,1,0,3) *(3,1,2,4) \cup[0,7] *[0,5] \cup\{3 * 9\} \\
& =\left(\begin{array}{ccc}
{[0,6+9(\bmod 7)]} & {[0,4+0(\bmod 7)]} & {[0,2+3(\bmod 7)]} \\
{[0,0+0(\bmod 7)]} & {[0,8+15(\bmod 7)]} & {[0,0]} \\
{[0,6+15(\bmod 7)]} & {[0,12(\bmod 7)]} & {[0,4+6(\bmod 7)]}
\end{array}\right) \\
& =[(6+9(\bmod 5),(3+3)(\bmod 5),(0+6 \bmod 5),(9+12) \bmod 5] \\
& \cup[0,14+35(\bmod 9)] \cup[9+18(\bmod 11)] \\
& =\left[\begin{array}{lll}
{[0,1]} & {[0,4]} & {[0,5]} \\
{[0,0]} & {[0,9]} & {[0,0]} \\
{[0,0]} & {[0,5]} & {[0,3]}
\end{array}\right] \cup(0,4,1,1) \cup[0,4] \cup\{5\}
\end{aligned}
$$

is in G. Thus G is a quasi 4-interval groupoid of finite order.

Example 2.2.19: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5}=\mathrm{Z}_{10}(3,2)$ $\cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{11}, *,(8,9)\right\} \cup\left\{\mathrm{Z}_{45}(7,2)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{9}, *\right.$, $(2,4)\} \cup\left\{\sum_{\mathrm{i}=0}^{7}[0, \mathrm{a}] \mathrm{x}^{\mathrm{i}} / \mathrm{a} \in \mathrm{Z}_{40},{ }^{*},(3,2)\right\}$ be a quasi 5 -interval groupoid of finite order.

Example 2.2.20: Let $G=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4}=\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\mathrm{Z}_{10}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{19}, \times\right\} \cup\{[0, \mathrm{a}] /$ $\left.a \in Z_{20}, \times,(11,7)\right\}$ be a 4-interval semigroup-groupoid of finite order.

Example 2.2.21: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4} \cup \mathrm{~S}_{5}=\{\mathrm{S}(\mathrm{X}) / \mathrm{X}=$ $\left.\left(\left[0, \mathrm{a}_{1}\right],\left[0, \mathrm{a}_{2}\right],\left[0, \mathrm{a}_{3}\right],\left[0, \mathrm{a}_{4}\right]\right)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right.$, $(9,3)\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{120},{ }^{*},(43,29)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{40}, \times\right\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{25},{ }^{*},(3,7)\right\}$ be a 5 -interval groupoid semigroup of infinite order.

Having seen examples of these structures it is a matter of routine to define substructures, however we give examples of them.

Example 2.2.22: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{4}\right.$, $(2,3), *\} \cup\left\{\mathrm{Z}_{12}(3,4)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{10}, *,(5,6)\right\} \cup \mathrm{Z}_{12}(1$, 3) be a 4-interval groupoid. $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \mathrm{H}_{3} \cup \mathrm{H}_{4}=\{\{[0,0]$, $\left.[0,2] / 0,2 \in \mathrm{Z}_{4},{ }^{*},(2,3)\right\} \cup\left\{0,4 \in \mathrm{Z}_{12},{ }^{*},(3,4)\right\} \cup\{[0,0]$, $\left.[0,2] / 0,2 \in \mathrm{Z}_{10},{ }^{*},(5,6)\right\} \cup\left\{0,3,6,9, \in \mathrm{Z}_{12}, *,(1,3)\right\} \subseteq$ $S_{1} \cup S_{2} \cup S_{3} \cup S_{4}$; is a quasi 4-interval subgroupoid of $S$.

Example 2.2.23: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4}=\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\mathrm{Z}_{12},{ }^{*},(1,3)\right\} \cup\left\{\mathrm{Z}_{6}(4,5)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{8},{ }^{*},(2,6)\right\} \cup$ $\mathrm{Z}_{12}(10,8)$ be a quasi 4-interval groupoid of finite order. Consider $\mathrm{A}=\mathrm{A}_{1} \cup \mathrm{~A}_{2} \cup \mathrm{~A}_{3} \cup \mathrm{~A}_{4}=\{[0, \mathrm{a}] / \mathrm{a} \in\{0,3,6,9\} \subseteq$ $\left.\mathrm{Z}_{12},{ }^{*},(1,3)\right\} \cup\left\{\{1,3,5\} \subseteq \mathrm{Z}_{6}, *,(4,5)\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{0,2$, $\left.4,6\} \subseteq \mathrm{Z}_{8}, *,(2,6)\right\} \cup\left\{\{6,2,10\} \subseteq \mathrm{Z}_{12}, *,(10,8)\right\} \subseteq \mathrm{S}_{1} \cup \mathrm{~S}_{2}$ $\cup S_{3} \cup S_{4}$, $A$ is a quasi 4-interval subgroupoid of $G$.

Now we can as in case of n-interval groupoids mention special identities satisfied by quasi n-interval groupoids.

In case of quasi n-interval groupoids also all theorems given for $n$-interval groupoids can be proved with appropriate modifications. We now proceed onto describe substructure of ninterval semigroup groupoid.

Example 2.2.24: Let $G=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5}=\{[0, \mathrm{a}] / \mathrm{a}$ $\left.\in \mathrm{Z}_{24}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{9},{ }^{*},(5,3)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{40}, \times\right\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12},{ }^{*},(3,9)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12}, \mathrm{x}\right\}$ be a 5-interval semigroup-groupoid. Let $A=A_{1} \cup A_{2} \cup A_{3} \cup A_{4} \cup$ $A_{5}=\left\{[0, a] / a \in\{0,2,4, \ldots, 22\} \subseteq Z_{24}, x\right\} \cup\{[0, a] / a \in\{1$, $\left.2,4,5,7,8\} \subseteq \mathrm{Z}_{9},{ }^{*},(5,3)\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{0,10,20,30\} \subseteq$ $\left.\mathrm{Z}_{40}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\{0,3,6,9\} \subseteq \mathrm{Z}_{12}, *,(3,9)\right\} \cup\{[0, \mathrm{a}] / \mathrm{a}$ $\left.\in\{0,3,6,9\} \subseteq Z_{12}, x\right\} \subseteq G_{1} \cup G_{2} \cup G_{3} \cup G_{4} \cup G_{5}, A$ is a $5-$ interval subsemigroup - subgroupoid of G .

Example 2.2.25: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4}=\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\mathrm{Z}_{24}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12},{ }^{*},(3,9)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{10},{ }^{*}\right.$, $(5,6)\} \cup\left\{S(X) / X=\left(\left[0, a_{1}\right],\left[0, a_{2}\right],\left[0, a_{3}\right],\left[0, a_{4}\right]\right)\right\}$ be a $4-$ interval semigroup-groupoid. It is easily verified $G$ is a Smarandache 4-interval semigroup-groupoid.

Now having seen examples of these new structures now we proceed onto define the notion of quasi n-interval semigroupgroupoid. $G=G_{1} \cup G_{2} \cup \ldots \cup G_{\mathrm{n}}$ is a quasi $n$-interval semigroup-groupoid if some $\mathrm{G}_{\mathrm{i}}$ 's are interval groupoids some $\mathrm{G}_{\mathrm{j}}$ 's are groupoids some $\mathrm{G}_{\mathrm{k}}$ 's are interval semigroups and the rest are semigroups.

We will describe them by some examples.
Example 2.2.26: Let $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3} \cup \mathrm{~V}_{4} \cup \mathrm{~V}_{5} \cup \mathrm{~V}_{6}=$ $\left\{\mathrm{Z}_{25}, \times\right\} \cup\left\{\mathrm{Z}_{7}(3,2)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{40}, x\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{23}\right.$, *, $(3,2)\} \cup\left\{\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right] / \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{Z}_{12}, \times\right\} \cup\{([0, \mathrm{a}],[0, \mathrm{~b}]$, $[0, \mathrm{c}]) / \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Z}_{43}$, ,,$\left.(7,0)\right\}$ be a quasi 6 -interval semigroupgroupoids.

If both of interval semigroups and semigroups are Smarandache and both groupoids and interval groupoids are

Smarandache then we define the quasi n-interval semigroupgroupoid to be a Smarandache quasi $n$-interval semigroupgroupoid.

Interested reader can construct examples of them. The notion of zero divisors, idempotents, S-zero divisors and Sidempotent are defined in case of these structures also. However it is only semiassociative so one cannot deal with special identities. All other results can be derived and illustrated with examples by any interested reader. In the next section we proceed on to define and describe n-interval groups and their generalizations.

## 2.3 n-Interval Groups and their Properties

In this section we proceed onto describe n-interval groups, quasi n -interval groups, n -interval group-semigroups and n-interval groupoid - groups and enumerate a few of the properties related with them.

DEFINITION 2.3.1: Let $G=G_{1} \cup G_{2} \cup \ldots \cup G_{n}$ be such that each $G_{i}$ is an interval group and $G_{i} \neq G_{j}$ or $G_{i} \nsubseteq G_{j} ;$ if $i \neq j, 1 \leq$ $i, j \leq n$. Then $G$ obtains the operation '. ', componentwise inherited from $G_{i}$ 's so $G$ with this operation is defined as the ninterval group. If $n=2$ we get the interval bigroup of biinterval group.

We will illustrate this situation by some examples.
Example 2.3.1: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12}\right.$, $+\} \cup\left\{[0, a] / a \in Z_{19} \backslash\{0\}, x\right\} \cup\left\{[0, a] / a \in Z_{17},+\right\} \cup\{[0, a] /$ $\left.\mathrm{a} \in \mathrm{Z}_{43} \backslash\{0\}, \times\right\}$ be a 4 -interval group of finite order. Clearly G is a commutative 4 -interval group. Consider $\mathrm{x}=\{[0,3] \cup[0,2]$ $\cup[0,7] \cup[0,40]\}$ and $y=[0,7] \cup[0,10] \cup[0,12] \cup[0,10]$ in $G$.
$\begin{aligned} \mathrm{x} . \mathrm{y}= & ([0,3]+[0,7]) \cup([0,2] \times[0,10]) \cup([0,7]+ \\ & {[0,12]) \cup([0,40] \times[0,10]) }\end{aligned}$

$$
\begin{array}{ll}
= & {[0,10(\bmod 12)] \cup[0,20(\bmod 19)] \cup[0,19(\bmod } \\
= & 17)] \cup[0,400(\bmod 43)] \\
= & {[0,10] \cup[0,1] \cup[0,2] \cup[0,13] \in G .}
\end{array}
$$

It is easily verified G has a group structure.
Example 2.3.2: Let $G=G_{1} \cup G_{2} \cup G_{3} \cup G_{4} \cup G_{5}=\left\{S_{x} / x=\right.$ $\left.\left(\left[0, a_{1}\right],\left[0, a_{2}\right],\left[0, a_{3}\right],\left[0, a_{4}\right]\right)\right\} \cup\left\{\sum_{i=0}^{\infty}[0, a] x^{i} / a \in Z_{29} \backslash\{0\}\right.$, $x\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{45},+\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{420},+\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\mathrm{Z}_{11} \backslash\{0\}, \times\right\}$ be a 5 -interval group. G is non commutative infinite 5 -interval group.

Example 2.3.3: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5} \cup \mathrm{G}_{6}=$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{15},+\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{23} \backslash\{0\}, x\right\} \cup\left\{\sum_{\mathrm{i}=0}^{9}[0, \mathrm{a}] \mathrm{x}^{\mathrm{i}} /\right.$ $\left.a \in Z_{45},+\right\} \cup\left\{S_{x} / x=\left\{\left(\left[0, a_{1}\right]\left[0, a_{2}\right]\left[0, a_{3}\right]\right)\right\}\right\} \cup\{A=$ $\left[\begin{array}{lll}{[0, \mathrm{a}]} & {[0, \mathrm{~b}]} & {[0, \mathrm{e}]} \\ {[0, \mathrm{c}]} & {[0, \mathrm{~d}]} & {[0, \mathrm{f}]}\end{array}\right] /$ a, b, c, d, e, f, $\left.\in \mathrm{Z}_{420},+\right\} \cup\{\Sigma$ $\left.[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{19} \backslash\{0\}, \times\right\}$ be a 6 -interval group. $\mathrm{e}=[0,0] \cup$ $[0,1] \cup[0,0] \cup\left(\begin{array}{lll}{\left[0, a_{1}\right]} & {\left[0, a_{2}\right]} & {\left[0, a_{3}\right]} \\ {\left[0, a_{1}\right]} & {\left[0, a_{2}\right]} & {\left[0, a_{3}\right]}\end{array}\right) \cup\left\{\left\{\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\right\} \cup$ $[0,1]$ acts as the 6 -interval identity of $G$.

Now having seen examples of n-interval groups we now proceed onto describe substructures in them and illustrate it with examples.

DEFINITION 2.3.2: Let $G=G_{1} \cup G_{2} \cup G_{3} \cup \ldots \cup G_{n}$ be an $n$ interval group under the operation '. '. Let $H=H_{1} \cup H_{2} \cup H_{3} \cup$ $\ldots \cup H_{n} \subseteq G_{1} \cup G_{2} \cup G_{3} \cup \ldots \cup G_{n}$; if each $H_{i}$ is an interval subgroup of $G_{i}, i=1,2, \ldots, n$ then ( $H,$. .) is defined as the $n$ interval subgroup of $G$. If each $H_{i}$ is normal in $G_{i}$ for $i=1,2,3$, ..., $n$ then we call $H$ to be a $n$-interval normal subgroup of $G$.

We will say $G$ is $n$-interval simple group if $G$ has no $n$ interval normal subgroup.

Now these definitions are described by the following examples.

Example 2.3.4: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5}=\{[0, \mathrm{a}] / \mathrm{a}$ $\left.\in \mathrm{Z}_{40},+\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{29} \backslash\{0\}, \times\right\} \cup\left\{\mathrm{S}_{\mathrm{x}}\right.$ where $\mathrm{X}=\left(\left[0, \mathrm{a}_{1}\right]\right.$ $\left.\left.\left[0, a_{2}\right],\left[0, a_{3}\right]\right)\right\} \cup\left\{\left[\begin{array}{c}{[0, a]} \\ {[0, b]}\end{array}\right] / b, a \in Z_{45},+\right\} \cup\left\{\left[\begin{array}{cc}{[0, a]} & {[0, b]} \\ {[0, c]} & {[0, d]}\end{array}\right] /\right.$ a, b, c, d $\in \mathrm{Z}_{200},+$ \}e a 5-interval group. Choose $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}$ $\cup \mathrm{H}_{3} \cup \mathrm{H}_{4} \cup \mathrm{H}_{5}=\{[0, \mathrm{a}] / \mathrm{a} \in\{0,2,4, \ldots, 38\},+\} \cup\{[0,1]$, $\left.[0,28] / 1,28 \in \mathrm{Z}_{29} \backslash\{0\}, \times\right\} \cup$

$$
\begin{gathered}
\left\{\left(\left[\begin{array}{lll}
{\left[0, \mathrm{a}_{1}\right]} & {\left[0, \mathrm{a}_{2}\right]} & {\left[0, \mathrm{a}_{3}\right]} \\
{\left[0, \mathrm{a}_{1}\right]} & {\left[0, \mathrm{a}_{2}\right]} & {\left[0, \mathrm{a}_{3}\right]}
\end{array}\right),\left(\begin{array}{lll}
{\left[0, \mathrm{a}_{1}\right]} & {\left[0, \mathrm{a}_{2}\right]} & {\left[0, \mathrm{a}_{3}\right]} \\
{\left[0, \mathrm{a}_{2}\right]} & {\left[0, \mathrm{a}_{1}\right]} & {\left[0, \mathrm{a}_{3}\right]}
\end{array}\right)\right\}\right. \\
\left\{\left.\left[\begin{array}{l}
{[0, \mathrm{a}]} \\
{[0, \mathrm{~b}]}
\end{array}\right] \right\rvert\, \mathrm{a}, \mathrm{~b} \in\{0,3,6,9,12, \ldots, 42,+\} \cup\left\{\left\{\begin{array}{cc}
{[0, \mathrm{a}]} & 0 \\
0 & {[0, \mathrm{~b}]}
\end{array}\right] /\right.\right.
\end{gathered}
$$

a, $\left.b \in Z_{200},+\right\} \subseteq G_{1} \cup G_{2} \cup G_{3} \cup G_{4} \cup G_{5}, H$ is a 5 -interval subgroup of G. Every 5 -interval subgroup in $G$ is not a 5 interval normal subgroup of G. Infact G is not a 5 -interval simple group.

Example 2.3.5: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5}=\left\{\mathrm{A}_{\mathrm{x}} / \mathrm{x}=\right.$ $\left.\left(\left[0, a_{1}\right],\left[0, a_{2}\right],\left[0, a_{3}\right],\left[0, a_{8}\right]\right)\right\} \cup\left\{[0, a] / a \in Z_{11},+\right\} \cup\{[0,1]$, $\left.[0,26] / 1,26 \in Z_{27}, x\right\} \cup\left\{A_{x} / x=\left\{\left[0, a_{1}\right],\left[0, a_{2}\right], \ldots,\left[0, a_{10}\right]\right\}\right.$ $\cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{5},+\right\}$ be a 5 -interval group. G is a 5 -interval simple group. Infact $G$ has no 5 -interval subgroup.

Example 2.3.6: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5}=\{[0, \mathrm{a}] / \mathrm{a}$ $\left.\in Z_{45},+\right\} \cup\left\{\left(\left[0, a_{1}\right],\left[0, a_{2}\right], \ldots,\left[0, a_{9}\right]\right) / a_{i} \in Z_{20}, 1 \leq i \leq 9,+\right\}$ $\cup\left\{\left[\begin{array}{l}{\left[0, a_{1}\right]} \\ {\left[0, a_{2}\right]} \\ {\left[0, a_{3}\right]}\end{array}\right] / a_{i} \in Z_{42},+.1 \leq i \leq 3\right\} \cup\left\{\left[\begin{array}{cc}{[0, a]} & {\left[0, a_{1}\right]} \\ {\left[0, a_{1}\right]} & {[0, a]}\end{array}\right] / a, a 1\right.$
$\left.\in \mathrm{Z}_{24},+\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{19} \backslash\{0\}, \times\right\}$ be a 5 -interval group. This has 5 -interval subgroups. $G$ is commutative and is of finite order.

Now having seen examples of substructures in n-interval groups we can extend all the classical theorems for groups to ninterval groups with out any difficulty.

Further if $G=G_{1} \cup G_{2} \cup \ldots \cup G_{\mathrm{n}}$ is a n-interval group where each $G_{i}$ is of finite order then $o(G)=0\left(G_{1}\right) o\left(G_{2}\right) \ldots$ $o\left(G_{n}\right)=\left|G_{1}\right|\left|G_{2}\right| \ldots\left|G_{n}\right|$.

We have several classical theorems like Lagrange, Sylow, Cauchy, Cayley which are true for n-interval groups.

We now proceed onto describe quasi $n$-interval groups. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \ldots \cup \mathrm{G}_{\mathrm{n}}$ be such that some of the groups $\mathrm{G}_{\mathrm{i}}$ are groups and the rest of the $G_{j}$ are interval groups. We define $G$ to be quasi n-interval group.

We give examples of this structure.
Example 2.3.7: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5}=\mathrm{S}_{3} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12},+\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{17} \backslash\{0\}, \times\right\} \cup \mathrm{D}_{26} \cup\{[0, \mathrm{a}]$ $\left./ \mathrm{a} \in \mathrm{Z}_{19} \backslash\{0\}, \times\right\}$ be a quasi 5-interval group. Clearly G is of finite order and is non commutative. Order of G $=6 \times 12 \times 16 \times$ $12 \times 18$.

Example 2.3.8: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{45}\right.$, $+\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{19} \backslash\{0\}\right\} \cup<\mathrm{g} / \mathrm{g}^{5}=1>\cup\left(\mathrm{Z}_{10},+\right)$ be a quasi 4-interval group o $(G)=$ o $\left(\mathrm{G}_{1}\right)$ o $\left(\mathrm{G}_{2}\right)$ o $\left(\mathrm{G}_{3}\right)$ o $\left(\mathrm{G}_{4}\right)=45 \times 18 \times$ $5 \times 10$. Clearly G is commutative.

Example 2.3.9: Let $G=G_{1} \cup G_{2} \cup G_{3} \cup G_{4} \cup G_{5}=\left\{A_{9}\right\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{19},+\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{11},+\right\} \cup\left\{\mathrm{A}_{7}\right\} \cup\left\{\mathrm{g} / \mathrm{g}^{7}=\right.$ $1\}$ be a quasi 5 -interval group.

Clearly $G$ is non commutative and $o(G)=$ $\frac{\underline{9}}{2} \times 19 \times 11 \frac{\underline{7}}{2} \times 7$. Further $G$ has no quasi 5 -interval normal subgroup hence G is simple.

Example 2.3.10: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4}=\left\{\mathrm{S}_{4}\right\} \cup\{[0, \mathrm{a}] /$ $\left.\mathrm{a} \in \mathrm{Z}_{12},+\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{11} \backslash\{0\}, \times\right\} \cup\left\{\mathrm{A}_{5}\right\}$ be a quasi 4 interval group of order $\underline{4} \times 12 \times 10 \times \underline{5} / 2$. Clearly $G$ is non
commutative. Consider $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \mathrm{H}_{3} \cup \mathrm{H}_{4}=\left\{\mathrm{A}_{4}\right\} \cup$ $\{[0, \mathrm{a}] / \mathrm{a} \in\{0,2,4,6,8,10\},+\} \cup\left\{[0,1],[0,10] / 1,10 \in \mathrm{Z}_{11}\right.$ $\backslash\{0\}, \times\} \cup\left\{<\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1\end{array}\right)>\right\} . \mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} . \mathrm{H}$ is a quasi 4-interval subgroup of $G$. Clearly $G$ has no quasi 4interval normal subgroups as $\mathrm{A}_{5}$ has no normal subgroup.

$$
o(H)=\underline{4} / 2.6 \times 2 \times 5=720
$$

Interested reader can construct any number of examples. All classical theorem for groups are true in case of quasi n-interval groups. One can easily verify this claim.

Now we proceed onto define n-interval semigroup group. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \ldots \cup \mathrm{G}_{\mathrm{n}}$ where some of the $\mathrm{G}_{\mathrm{i}}$ 's are interval semigroups and the rest are interval groups. We define $G$ with inherited operations from $G$ to be a n-interval semigroup group.

We will illustrate this situation by some examples.

Example 2.3.11: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5}=\{[0, \mathrm{a}] / \mathrm{a}$ $\left.\in \mathrm{Z}_{10}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{11} \backslash\{0\}, \times\right\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{40}, \times\right\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{15},+\right\} \cup\left\{([0, \mathrm{a}][0, \mathrm{~b}][0, \mathrm{c}]) / \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Z}_{24}, \times\right\}$ be a 5 -interval group-semigroup of finite order. Clearly $G$ is commutative 5-interval group semigroup.

Example 2.3.12: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4}=\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\mathrm{Z}_{16},+\right\} \cup\left\{([0, \mathrm{a}],[0, \mathrm{~b}],[0, \mathrm{c}]) / \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Z}_{15}, \times\right\} \cup\{$ All $4 \times 4$ interval matries with intervals of the form [0, a] where $a \in Z_{30}$, $\times\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{3} \backslash\{0\}, \times\right\}$ is a 4-interval semigroup-group of finite order.

We can have substructures in them.

Example 2.3.13: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5}=\{[0, \mathrm{a}] / \mathrm{a}$ $\left.\in \mathrm{Z}_{40},+\right\} \cup\left\{\mathrm{S}_{(\mathrm{X})} / \mathrm{X}=\left(\left[0, \mathrm{a}_{1}\right] \ldots\left[0, \mathrm{a}_{5}\right]\right)\right.$ where $\mathrm{a}_{\mathrm{i}} \in \mathrm{I}, 1 \leq \mathrm{i} \leq$ $5\} \cup\left\{\mathrm{S}_{\mathrm{Y}} / \mathrm{Y}=\left(\left[0, \mathrm{a}_{1}\right], \ldots,\left[0, \mathrm{a}_{4}\right]\right) / \mathrm{a}_{\mathrm{i}} \in \mathrm{I}_{\mathrm{m}} 1 \leq \mathrm{i} \leq 4\right\} \cup\{[0, \mathrm{a}] / \mathrm{a}$ $\left.\in \mathrm{Z}_{13} \backslash\{0\}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{16},+\right\}$ be a 5-interval semigroup - group of finite order. Clearly $G$ is non commutative.

Example 2.3.14: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4}=\{\mathrm{S}(\mathrm{X}) / \mathrm{X}=$ $([0,1],[0,2],[0,3])\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{24}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{7} \backslash\right.$ $\{0\}, \times\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{14},+\right\}$ be a 4-interval group-semigroup of finite order.

Clearly $G$ is non commutative and $G$ is not simple. $G$ has 4interval subgroup - subsemigroup.

$$
\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \mathrm{H}_{3} \cup \mathrm{H}_{4}=\left\{\mathrm{S}_{\mathrm{x}}\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in 2 \mathrm{Z}_{24}, \times\right\} \cup
$$ $\{[0,1],[0,6] \times\} \cup\{[0, a] / a \in\{0,7\}+\} \subseteq G_{1} \cup G_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4}$ is a 4-interval subsemigroup subgroup of $G$.

Now we will proceed onto define the notion of quasi interval semigroup - group.

Let $G=G_{1} \cup G_{2} \cup \ldots \cup G_{n}$ where $G_{1}, G_{2}, \ldots, G_{n}$ are set of semigroups, interval semigroups, groups and interval groups. $G$ with the inherited operations from $G_{1}, G_{2}, \ldots, G_{n}$ forms the quasi $n$-interval semigroup-group.

We will illustrate this situation by some examples.
Example 2.3.15: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4} \cup \mathrm{~S}_{5}=\{\mathrm{S}(3)\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{24}, \times\right\} \cup\left\{\mathrm{S}_{5}\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{19} \backslash\{0\}, \times\right\} \cup$ $\left\{\left[\begin{array}{l}{[0, \mathrm{a}]} \\ {[0, \mathrm{~b}]}\end{array}\right] / \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{25},+\right\}$ be a 5-interval semigroup - group.
Clearly S is of finite order but non commutative.
Now we give an example of a quasi n-interval semigroup group of infinite order and non commutative.

Example 2.3.16: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5}=\{\mathrm{Z},+\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}, \times\right\} \cup\left\{\mathrm{S}_{26}\right\} \cup \mathrm{S}(46) \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{45}\right.$, $\times\}$ be the quasi 5 -interval semigroup - group. Clearly $G$ is non commutative but is of infinite order.

Example 2.3.17: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{7} \backslash\right.$ $\{0\}, \times\} \cup\left\{([0, \mathrm{a}],[0, \mathrm{~b}],[0, \mathrm{c}]) / \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Z}_{25}, \times\right\} \cup\left\{\mathrm{G}_{3}=<\mathrm{g} /\right.$ $\left.\mathrm{g}^{27}=1>\right\} \cup\left\{\mathrm{Z}_{28}, \times\right\}$ be a quasi 4 -interval semigroup-group of finite order.

Defining substructures in them is a matter of routine we will give one or two examples of them.

Example 2.3.18: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5}=\left\{\mathrm{S}_{7}\right\} \cup$ $\{\mathrm{S}(3)\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{240}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{43} \backslash\{0\}, \times\right\} \cup$ $\left\{\left.\left[\begin{array}{l}{[0, a]} \\ {[0, b]} \\ {[0, c]}\end{array}\right] \right\rvert\, a, b, c \in Z_{12},+\right\}$ be a 5-quasi interval groupsemigroup of finite order which is non commutative. Consider $\mathrm{W}=\mathrm{W}_{1} \cup \mathrm{~W}_{2} \cup \mathrm{~W}_{3} \cup \mathrm{~W}_{4} \cup \mathrm{~W}_{5}=\mathrm{A}_{7} \cup\left\{\mathrm{~S}_{3}\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.2 Z_{240}, x\right\} \cup\left\{[0, a] / a=1,42 \in \mathrm{Z}_{43} \backslash\{0\}, x\right\} \cup\left\{\left[\begin{array}{l}{[0, a]} \\ {[0, b]} \\ {[0, c]}\end{array}\right] / a, b\right.$, $\left.c \in 2 Z_{12},+\right\} \subseteq G_{1} \cup G_{2} \cup G_{3} \cup G_{4} \cup G_{5}$; clearly $W$ is a quasi 5 -interval subgroup -subsemigroup of $G$.

Example 2.3.19: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4}=\{\mathrm{S}(\mathrm{X})$ where X $\left.=\left(\left[0, a_{1}\right],\left[0, a_{2}\right]\left[0, a_{3}\right]\right)\right\} \cup\left\{\mathrm{S}_{7}\right\} \cup<\mathrm{g} / \mathrm{g}^{120}=1>\cup\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\mathrm{Z}_{47} \backslash\{0\}, \times\right\}$ be quasi 4 -interval group - semigroup. Take $\mathrm{H}=$ $H_{1} \cup H_{2} \cup H_{3} \cup H_{4}=\left\{A(X) / X=\left(\left[0, a_{1}\right],\left[0, a_{2}\right],\left[0, a_{3}\right]\right)\right\} \cup$ $\left\{\mathrm{A}_{7}\right\} \cup\left\{<\mathrm{g}^{2 \mathrm{n}} / \mathrm{n}=0,2, \ldots, 118\right.$ when $\left.\mathrm{g}^{120}=1>\right\} \cup\{[0, \mathrm{a}] / \mathrm{a}=$ 1 and $\left.46 \in Z_{47} \backslash\{0\}, x\right\} \subseteq G_{1} \cup G_{2} \cup G_{3} \cup G_{4}$. H is a quasi 4interval subgroup-subsemigroup.

It is pertinent to mention here that all classical theorems in group theory are not in general true in case of quasi 4-interval group-semigroup.

This sort of contradictions can be easily derived by constructing counter examples.

Example 2.3.20: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5}$ be a quasi 5 interval semigroup - group. If even only one of the $G_{i}$ is $S(n)$ or $\mathrm{S}(\mathrm{X})$ symmetric semigroup or symmetric interval semigroup we see Lagrange theorem for finite groups, Sylow theorems for finite groups and Cauchy theorem for finite groups cannot hold good.

We will leave the task of providing counter examples to the reader. Now in the next section we proceed onto define ninterval loops, quasi n-interval loops and their generalizations.

## 2.4 n-Interval Loops

In this section we proceed onto describe and define ninterval loops, quasi $n$-interval loops and $n$-interval loop-group and so on.

DEFINITION 2.4.1: Let $G=G_{1} \cup G_{2} \cup G_{3} \cup \ldots \cup G_{n}$ be such that each $G_{i}$ be an interval loop. $G$ with the component wise operations from each $G_{i}$ is defined to be the n-interval loop. We will illustrate this by some simple examples.

Example 2.4.1: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}=\{[0, \mathrm{a}] / \mathrm{a} \in$ $\{e, 1,2, \ldots, 19\}(3), *\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 7\}, *, 5\} \cup$ $\{[0, a] / a \in\{e, 1,2,3, \ldots, 23\}, 10, *\} \cup\{[0, a] / a \in\{e, 1,2$, $\ldots, 15\}, 8, *\} \cup\{[0, \mathrm{a}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 17\}, *, 8\}$ be a $5-$ interval loop. Clearly L is of finite order and L is non commutative.

Example 2.4.2: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1$, $\left.2, \ldots, 29\},{ }^{*}, 20\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 11\}, *, 6\} \cup\{[0$, a] $\left./ a \in\{e, 1,2, \ldots, 9\},{ }^{*}, 8\right\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 31\}, *$, 9 \} be a 4 -interval loop.

Example 2.4.3: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}=\{[0, \mathrm{a}] /$ $a \in\{e, 1,2, \ldots, 43\}, *, 8\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 43\}, *$, $40\} \cup\left\{[0, a] / a \in\{e, 1,2, \ldots, 43\}, .{ }^{*}, 32\right\} \cup\{[0, a] / a \in$ $\{e, 1,2, \ldots, 43\}, *, 25\} \cup\{[0, \mathrm{a}] \mid \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 43\}, *, 15\}$ be a 5 -interval loop of order (43) ${ }^{5}$. Clearly L is non commutative.

Example 2.4.4: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1$, $2, \ldots, 17\}, 9, *\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 27\}, 14, *\} \cup\{[0$, a] $/ a \in\{e, 1,2, \ldots, 19\}, *, 10\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 21\}$,

11, *\} be a 4-interval loop. Clearly $L$ is a commutative 4interval loop.

Example 2.4.5: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $9\}, 8, *\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 15\}, *, 8\} \cup\{[0, a] / a \in$ $\left.\{\mathrm{e}, 1,2, \ldots, 25\},{ }^{*}, 12\right\}$ be a 3-interval loop. Consider $\mathrm{H}=\mathrm{H}_{1} \cup$ $H_{2} \cup H_{3}=\{[0, a] / a \in\{e, 1,4,7\} \subseteq\{e, 1,2,3, \ldots, 9\}, *, 8\} \cup$ $\{[0, a] / a \in\{e, 1,6,11\} \subseteq\{e, 1,2, \ldots, 15\}, *, 8\} \cup\{[0, a] / a$ $\in\{\mathrm{e}, 1,6,11,16,21\}\} \subseteq \mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3}$ is a 3-interval subloop of L .

Now having given one example of n-interval subloop interested reader can construct n-interval subloops and study their properties.

We will give some of the properties of n -interval loops.
Example 2.4.6: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}=\{[0, \mathrm{a}] / \mathrm{a} \in$ $\{e, 1,2, \ldots, 19\}, *, 10\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 19\}, *, 10\}$ $\cup\left\{[0, a] / a \in\{e, 1,2, \ldots, 27\}{ }^{*}, 17\right\} \cup\{[0, a] / a \in\{e, 1,2$, $\ldots, 43\}, *, 25\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 47\},{ }^{*}, 32\right\}$ be a $5-$ interval loop of finite order.

Example 2.4.7: let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1$, $\left.2, \ldots, 45\},{ }^{*}, 8\right\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 9\}, *, 8\} \cup\{[0, a] /$ $a \in\{e, 1,2, \ldots, 25\}, *, 12\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 15\}, *$, $2\}$ be a 4 -interval loop.
$H=H_{1} \cup H_{2} \cup H_{3} \cup H_{4}=\{[0, a] / a \in\{e, 1,16,31\} \subseteq\{e$, $\left.1,2, \ldots, 45\}^{*}, 8\right\} \cup\{[0, a] / a \in\{e, 1,4,7\} \subseteq\{e, 1,2, \ldots, 9\}$, *, 8$\} \cup\{[0, a] / a \in\{e, 1,6,11,16,21\} \subseteq\{e, 1,2,3, \ldots, 25\}$, $\left.{ }^{*}, 12\right\} \cup\left\{[0, a] / a \in\{e, 1,6,11\} \subseteq\{e, 1,2, \ldots, 15\}^{*}, 2\right\} \subseteq L_{1}$ $\cup L_{2} \cup L_{3} \cup L_{4}$ is 4-interval subloop of $L$.

The reader is expected to define n-interval subloops of a ninterval loop.

We now give a theorem which guarantees the existence of n-interval subloops of an n-interval loop.

Theorem 2.4.1: Let $L=L_{1} \cup L_{2} \cup \ldots \cup L_{n}=\{[0, a] / a \in$ $\left.\left\{e, 1,2, \ldots, m_{1}\right\},{ }^{*}, s_{1}\right\} \cup\left\{[0, a] / a \in\left\{e, 1,2, \ldots, m_{2}\right\}, *, s_{2}\right\} \cup$ $\ldots \cup\left\{[0, a] / a \in\left\{e, 1,2, \ldots, m_{n}\right\},{ }^{*}, s_{n}\right\}$ be a $n$-interval loop where each $H=H_{1}\left(t_{1}\right) \cup H_{2}\left(t_{2}\right) \cup \ldots \cup H_{n}\left(t_{n}\right)=\left\{e, i, i+t_{1}, \ldots\right.$, $\left.\left(k_{1}-t_{1}\right) t_{1}\right\} \cup\left\{e, j, j+t_{2}, \ldots,\left(k_{2}-t_{2}\right) t_{2}\right\} \cup \ldots \cup\left\{e, p, p+t_{n}, \ldots,\left(k_{n}-\right.\right.$ $\left.\left.t_{n}\right) t_{n}\right\}$ where $k_{i}=n_{i} / t_{i} i=1,2, \ldots, n$. $H$ is a $n$-interval subloop infact a $S$-n- interval subloop of $L\left(1<t_{1}, j<t_{2}, \ldots, p<t_{n}\right)$.

The proof is left to the reader as an exercise. This proves the existence of $n$-interval subloops and S-n-interval subloops of an n-interval loop.

Now we can define Smarandache n-interval loop. Let $\mathrm{L}=$ $\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \ldots \cup \mathrm{~L}_{\mathrm{n}}$ be a n-interval loop. If each $\mathrm{L}_{\mathrm{i}}$ is a Smarandache interval loop then we call L to be Smarandache ninterval loop (S-n-interval loop).

We will illustrate this by some examples.
Example 2.4.8: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4}=\{[0, \mathrm{a}] / \mathrm{a} \in$ $\{e, 1,2, \ldots, 13\}, *, 8\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 15\}, *, 8\} \cup$ $\{[0, a] / a \in\{e, 1,2, \ldots, 17\}, *, 7\} \cup\{[0, a] / a \in\{e, 1,2, \ldots$, $19\}, *, 6\}$ be a 4 -interval loop. L is a $\mathrm{S}-4$-interval loop for $\mathrm{A}=$ $A_{1} \cup A_{2} \cup A_{3} \cup A_{4}=\left\{[0\right.$, e $\left.],[0,7],{ }^{*}, 8\right\} \cup\{[0$, e] $[0,5], *, 8\} \cup\left\{[0, \mathrm{e}],[0,15],{ }^{*}, 7\right\} \cup\{[0, \mathrm{e}][0,11], *, 6\} \subseteq \mathrm{L}_{1}$ $\cup \mathrm{L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4}$ is a 4-interval group in L hence L is a S-4interval loop.

Example 2.4.9: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}=\{[0, \mathrm{a}] / \mathrm{a} \in$ $\{e, 1,2, \ldots, 19\}, *, 7\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 19\}, *, 6\} \cup$ $\{[0, a] / a \in\{e, 1,2, \ldots, 19\}, *, 3\} \cup\{[0, a] / a \in\{e, 1,2, \ldots$, $19\}, *, 2\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 19\}, *, 9\}$ be a 5 -interval loop. Clearly L is a S-5-interval loop.

Now using these examples we can have the following theorem which guarantees the existence of S-n-interval loops.

THEOREM 2.4.2: Let $L=L_{1} \cup L_{2} \cup \ldots \cup L_{n}=\{[0, a] / a \in\{e$, $\left.\left.1,2, \ldots, m_{1}\right\},{ }^{*}, p_{1}\right\} \cup\left\{[0, a] \mid a \in\left\{e, 1,2, \ldots, m_{2}\right\}, *, p_{2}\right\} \cup \ldots$
$\cup\left\{[0, a] \mid a \in\left\{e, 1,2, \ldots, m_{n}\right\},{ }^{*}, p_{n}\right\}$ be a $n$-interval loop. $L$ is a $S$-n-interval loop.

The proof is direct for in each $\mathrm{L}_{\mathrm{i}}, \mathrm{A}_{\mathrm{i}}=\{[0, \mathrm{e}],[0, \mathrm{a}]\}$ is an interval subgroup.

Hence the theorem follows.
Corollary 2.4.1: If $L=L_{1} \cup L_{2} \cup \ldots \cup L_{n}$ be a $S$-n-interval loop then every n-interval subloop of $L$ is a $S$-n-interval subloop of $L$.

Further we give examples of S-n-interval simple loops.
Example 2.4.10: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4}=\{[0, \mathrm{a}] / \mathrm{a} \in$ $\{e, 1,2, \ldots, 23\}, *, 14\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 29\}, *, 28\}$ $\cup\{[0, a] / a \in\{e, 1,2, \ldots, 31\}, *, 17\} \cup\{[0, a] / a \in\{e, 1,2$, $\ldots, 37\}, *, 19\}$ be a 4 -interval loop. It can be easily verified that $L$ has no $\mathrm{S}-4$-interval normal subloops. Hence L is a 4interval S-simple loop.

In view of this we have a theorem which establishes the existence of a class of $n$-interval S-simple loops.

THEOREM 2.4.3: Let $L=L_{1} \cup L_{2} \cup \ldots \cup L_{n}=\{[0, a] / a \in$ $\left.\left\{e, 1,2, \ldots, m_{1}\right\},{ }^{*}, p_{1}\right\} \cup\left\{[0, a] / a \in\left\{e, 1, \ldots, m_{2}\right\},{ }^{*}, p_{2}\right\}$ $\cup \ldots \cup\left\{[0, a] / a \in\left\{e, 1, \ldots, m_{n}\right\},{ }^{*}, p_{n}\right\}$ be an n-interval loop. $L$ is a n-interval $S$-simple loop.

The proof is left as an exercise to the reader. Now we have seen a class of n-interval S-simple loops. Now we will give an example of a Smarandache n-interval subgroup-loop.

Example 2.4.11: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5} \cup \mathrm{~L}_{6}=$ $\{[0, a] / a \in\{e, 1,2, \ldots, 23\}, *, 4\} \cup\{[0, a] / a \in\{e, 1,2, \ldots$, $\left.29\},{ }^{*}, 5\right\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 17\}, *, 8\} \cup\{[0, a] / a \in$ $\{e, 1,2, \ldots, 47\}, *, 9\} \cup\left\{[0, a] / a \in\{e, 1,2, \ldots, 53\},{ }^{*}, 12\right\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 41\},{ }^{*}, 14\right\}$ be a 6 -interval loop. Clearly L is a 6 -interval S-subgroup loop.

Inview of this example we will now proceed onto give a theorem which gurantees the existence of n-interval S-subgroup loop.

THEOREM 2.4.4: Let $L=L_{1} \cup L_{2} \cup \ldots \cup L_{n}=\{[0, a] / a \in\{e$, $\left.\left.1,2, \ldots, p_{1}\right\},{ }^{*}, m_{1}\right\} \cup\left\{[0, a] / a \in\left\{e, 1,2, \ldots, p_{2}\right\},{ }^{*}, m_{2}\right\} \cup \ldots$ $\cup\left\{[0, a] / a \in\left\{e, 1,2, \ldots, p_{n}\right\},{ }^{*}, m_{n}\right\}$ be a n-interval loop where $p_{1}, p_{2}, \ldots, p_{n}$ are $n$ primes then $L$ is a n-interval $S$ subgroup loop.

The proof is straight forward and is left as an exercise for the reader to prove.

We will give an example of Smarandache Cauchy n-interval loop.

Example 2.4.12: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \ldots \cup \mathrm{~L}_{6}=\{[0, \mathrm{a}] / \mathrm{a}$ $\in\{e, 1,2, \ldots, 25\}, *, 7\} \cup\left\{[0, a] / a \in\{e, 1,2, \ldots, 37\},{ }^{*}, 11\right\}$ $\cup\left\{[0, a] / a \in\{e, 1,2, \ldots, 85\},{ }^{*}, 7\right\} \cup\{[0, a] / a \in\{e, 1,2$, $\left.\ldots, 93\},{ }^{*}, 17\right\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 23\}, *, 10\} \cup\{[0, a]$ $/ \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 43\}, *, 27\}$ be a 6 -interval loop. Clearly L is a 6-interval S-Cauchy loop.

Infact we have a class of n-interval S-Cauchy loops which is evident from the following theorem.

THEOREM 2.4.5: Let $L=L_{1} \cup L_{2} \cup \ldots \cup L_{n}=\{[0, a] / a \in\{e$, $\left.\left.1,2, \ldots, m_{1}\right\},{ }^{*}, t_{1}\right\} \cup\left\{[0, a] / a \in\left\{e, 1,2, \ldots, m_{2}\right\},{ }^{*}, t_{2}\right\} \cup \ldots \cup$ $\left\{[0, a] / a \in\left\{e, 1,2, \ldots, m_{n}\right\},{ }^{*}, t_{n}\right\}$ be $n$-interval loop. $L$ is a $n$ interval S-Cauchy loop.

Proof: Every loop $\mathrm{L}_{\mathrm{i}}$ in L is of even order. Further $|\mathrm{L}|=\left|\mathrm{L}_{1}\right| \ldots$ $\left|\mathrm{L}_{\mathrm{n}}\right|=2^{\mathrm{n}} \mathrm{M}$, where

$$
M=\left|\frac{L_{1}}{2}\right|\left|\frac{\mathrm{L}_{2}}{2}\right| \ldots\left|\frac{\mathrm{L}_{\mathrm{n}}}{2}\right| ; 1 \leq \mathrm{i} \leq \mathrm{n} .
$$

Since every interval loop $L_{i}$ is a $S$ interval loop and $2 /\left|L_{i}\right|$; $1 \leq \mathrm{i} \leq \mathrm{n}$, we see every interval loop $\mathrm{L}_{\mathrm{i}}$ is a S-Cauchy interval loop, hence L is a n -interval S-Cauchy loop.

Now we proceed onto describe by an example of a 4-n interval Lagrange loop.

Example 2.4.13: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}$, $1,2, \ldots, 23\}, *, 14\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 29\}, *, 14\} \cup$ $\{[0, a] / a \in\{e, 1,2, \ldots, 37\}, *, 14\} \cup\{[0, a] / a \in\{e, 1,2, \ldots$, $43\}, *, 14\}$ be a 4-interval loop. Clearly $L$ is a 4-interval Lagrange loop.

Since each $L_{i}$ is an interval loop of order a prime number plus one. The only interval subgroups are of order $2,1 \leq \mathrm{i} \leq 4$. Thus L is a 4-interval S-Lagrange loop.

Inview of this we have the following theorem which gives a class of S-n-interval Lagrange loop.

THEOREM 2.4.6: Let $G=G_{1} \cup G_{2} \cup \ldots \cup G_{n}=\{[0, a] / a \in$ $\left.\left\{e, 1,2, \ldots, p_{1}\right\},{ }^{*}, m_{1}\right\} \cup\left\{[0, a] / a \in\left\{e, 1,2, \ldots, p_{2}\right\},{ }^{*}, m_{2}\right\} \cup$ $\ldots \cup\left\{[0, a] / a \in\left\{e, 1,2, \ldots, p_{n}\right\},{ }^{*}, m_{n}\right\}$ be $n$-interval loop where $p_{1}, \ldots, p_{n}$ are primes. Then $G$ is a $S$-n-interval Lagrange loop.

The proof is left as an exercise to the reader.
THEOREM 2.4.7: Let $L=L_{1} \cup L_{2} \cup \ldots \cup L_{n}=\{[0, a] / a \in\{e$, $\left.\left.1,2, \ldots, m_{1}\right\}, t_{1}, *\right\} \cup\left\{[0, a] / a \in\left\{e, 1,2, \ldots, m_{2}\right\}, t_{2}, *\right\} \cup \ldots \cup$ $\left\{[0, a] / a \in\left\{e, 1,2, \ldots, m_{n}\right\}, t_{n}, *\right\}$ be a $n$-interval loop; $m_{1}, \ldots$, $m_{n}$ are non primes. $L$ is not a S-n-interval Lagrange loop but only a S-n-interval weakly Lagrange loop.

This proof is also direct and hence left as an exercise to the reader. However we give examples of them.

Example 2.4.14: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}$, $1,2, \ldots, 15\}, *, 2\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 15\}, *, 8\} \cup\{[0$, a] /a $\in\{e, 1,2, \ldots, 15\}, *, 14\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 63\}$, *, 14\} is a 4-interval loop, which can be easily checked to be a S-n-interval weakly Lagrange loop.

We next proceed onto show Smarandache strong n-interval p-Sylow loop by examples and give a theorem which gurantees the existence of such n-interval loops.

Example 2.4.15: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}$, $\left.1,2, \ldots, 13\},{ }^{*}, 10\right\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 43\}, *, 20\} \cup$ $\left\{[0, a] / a \in\{e, 1,2, \ldots, 23\},{ }^{*}, 20\right\} \cup\{[0, a] / a \in\{e, 1,2, \ldots$, $\left.19\},{ }^{*}, 12\right\}$ be a 4 -interval loop. It is easily verified L is a Smarandache strong 4-interval 2-Sylow loop.

In this we observe each of the interval loops $\mathrm{L}_{\mathrm{i}}$ given in example 2.4.14 is of order a prime $+1,\left(p_{i}+1\right)$. Thus we have the following theorem which proves the existence of a class of n-interval loops which are Smarandache strong 2-Sylow ninterval loops.

THEOREM 2.4.8: Let $L=L_{1} \cup L_{2} \cup \ldots \cup L_{n}=\{[0, a] / a \in\{e$, $\left.\left.1,2, \ldots, p_{1}\right\}, *, t_{1}\right\} \cup\left\{[0, a] / a \in\left\{e, 1,2, \ldots, p_{2}\right\}, *, t_{2}\right\} \cup\{[0$, $\left.a] / a \in\left\{e, 1,2, \ldots, p_{3}\right\}, *, t_{3}\right\} \cup \ldots \cup\{[0, a] / a \in\{e, 1,2, \ldots$, $\left.\left.p_{n}\right\},{ }^{*}, t_{n}\right\}$ be a $n$-interval loop where $p_{1}, p_{2}, \ldots, p_{n}$ are primes. Then $L$ is a Smarandache strong n-interval 2-Sylow loop.

Proof is direct and hence is left for the reader to prove [ ]. It is pertinent to mention here that the interval loop $\mathrm{L}_{\mathrm{i}}$ in L can be many for varying $t_{i}$ and for the fixed $p_{i}$. Thus we get a class $L_{p_{i}}\left([0, \mathrm{a}]\left(\mathrm{t}_{\mathrm{i}}\right)\right)$ for every $\mathrm{i}, \mathrm{i}=1,2, \ldots, \mathrm{n}$. Hence we have a class of n-interval loops which are Smarandache strong ninterval 2-Sylow loops. Now we will give examples of Smarandache commutative n-interval loops.

Example 2.4.16: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}=\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\{e, 1,2, \ldots, 21\},{ }^{*}, 11\right\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 15\}, *, 8\} \cup$ $\left\{[0, a] / a \in\{e, 1,2, \ldots, 25\},{ }^{*}, 12\right\} \cup\{[0, a] / a \in\{e, 1,2, \ldots$, $27\}, *, 26\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 9\}, *, 2\}$ be a 5 -interval loop. Clearly L is a Smarandache commutative 5 -interval loop.

We have a class of S-commutative n-interval loops.

THEOREM 2.4.9: Let $L=L_{1} \cup L_{2} \cup L_{3} \cup \ldots \cup L_{n}=\{[0, a] / a$ $\left.\in\left\{e, 1,2, \ldots, m_{1}\right\},{ }^{*}, t_{1}\right\} \cup\left\{[0, a] / a \in\left\{e, 1,2, \ldots, m_{2}\right\},{ }^{*}, t_{2}\right\} \cup$ $\ldots \cup\left\{[0, a] / a \in\left\{e, 1,2, \ldots, m_{n}\right\},{ }^{*}, t_{n}\right\}$ be a $n$-interval loop. $L$ is a Smarandache commutative n-interval loop.

The proof is direct [5].
Example 2.4.17: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}=\{[0, \mathrm{a}] / \mathrm{a} \in$ $\{e, 1,2, \ldots, 19\}, *, 8\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 11\}, *, 7\} \cup$ $\left\{[0, a] / a \in\{e, 1,2, \ldots, 23\},{ }^{*}, 12\right\} \cup\{[0, a] / a \in\{e, 1,2, \ldots$, $\left.31\},{ }^{*}, 13\right\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 37\}, *, 20\}$ be a $5-$ interval loop. It is easily verified that L is a Smarandache strongly commutative 5-interval loop.

We now give a class of n-interval loops which are Smarandache strongly commutative n-interval loop. We first observe the entries of the interval loops given in example 2.4.17 is built using e and $\mathrm{Z}_{\mathrm{P}_{\mathrm{i}}}$, $\mathrm{p}_{\mathrm{i}}$ are primes.

THEOREM 2.4.10: Let $L=L_{1} \cup L_{2} \cup L_{3} \cup \ldots \cup L_{n}=\{[0, a] / a$ $\left.\in\left\{e, 1,2, \ldots, p_{1}\right\}, *, m_{1}\right\} \cup\left\{[0, a] / a \in\left\{e, 1,2, \ldots, p_{2}\right\},{ }^{*}, m_{2}\right\}$ $\cup \ldots \cup\left\{[0, a] / a \in\left\{e, 1,2, \ldots, p_{n}\right\},{ }^{*}, m_{n}\right\}$ be a $n$-interval loop, where $p_{1}, p_{2}, \ldots, p_{n}$ are primes. $L$ is a Smarandache strongly commutative $n$-interval loop.

The proof easily follows from the result [5, 11-2].
Now we give examples of S-strongly n-cyclic loop.
Example 2.4.18: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}=\{[0, \mathrm{a}] / \mathrm{a} \in$ $\{e, 1,2, \ldots, 19\}, *, 3\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 23\}, *, 4\} \cup$ $\{[0, a] / a \in\{e, 1,2, \ldots, 29\}, *, 3\} \cup\{[0, a] / a \in\{e, 1,2, \ldots$, $\left.31\},{ }^{*}, 4\right\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 37\}, *, 3\}$ be a 5 -interval loop. Clearly L is a Smarandache strong 5 -interval cyclic loop. All the loops are built using $Z_{p_{i}} \cup\{e\}$, $p_{i}$ 's are prime, $1 \leq \mathrm{i} \leq 4$.

We will illustrate this situation by a theorem. This theorem will prove the existence of a class of n-interval loops which are Smarandache strongly cyclic.

THEOREM 2.4.11: Let $L=L_{1} \cup L_{2} \cup L_{3} \cup \ldots \cup L_{n}=\{[0, a] / a$ $\left.\in\left\{Z_{p_{1}} \cup\{e\}\right\},{ }^{*}, t_{1}\right\} \cup\left\{[0, a] / a \in\left\{Z_{p_{2}} \cup\{e\}\right\}, *, t_{2}\right\} \cup \ldots \cup$ $\left\{[0, a] / a \in\left\{Z_{p_{n}} \cup\{e\}\right\},{ }^{*}, t_{n}\right\}$ be a $n$-interval loop. $L$ is $a$ Smarandache strongly cyclic n-interval loop.

For proof refer [5].
Now we can derive most of the results which are true for interval biloops in case of n-interval loops like S-right nucleus, S-left nucleus, S-center, S-Moufang center and so on.

We will give examples of n-interval loops in which Smarandache first normalizer is equal to Smarandache second normalizer in S-n-interval subloop.

Example 2.4.19: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}$, $\left.1,2, \ldots, 9\},{ }^{*}, 8\right\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 25\}, *, 7\} \cup\{[0$, a] $/ a \in\{e, 1,2, \ldots, 49\}, *, 9\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 121\}$, *, 3\} be a 4-interval loop. Clearly if we take $H=H_{1} \cup H_{2} \cup H_{3}$ $\cup \mathrm{H}_{4}=\left\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,4,7\},{ }^{*}, 8\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,6$, $\left.11,16,21\},{ }^{*}, 7\right\} \cup\left\{[0, a] / a \in\{e, 1,8,19,40\},{ }^{*}, 9\right\} \cup$ $\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,12,23,34,45,56,67,78,89,100,111\}$, *, $3\} \subseteq L_{1} \cup L_{2} \cup L_{3} \cup L_{4}$ is a 4-interval S-subloop of L.

We see $\mathrm{SN}_{1}(\mathrm{H})=\mathrm{SN}_{2}(\mathrm{H})$ that is $\mathrm{SN}_{1}\left(\mathrm{H}_{1}(3)\right) \cup$ $\mathrm{SN}_{1}\left(\mathrm{H}_{1}(5)\right) \cup \mathrm{SN}_{1}\left(\mathrm{H}_{1}(7)\right) \cup \mathrm{SN}_{1}\left(\mathrm{H}_{1}(11)\right)=\mathrm{SN}_{2}\left(\mathrm{H}_{1}(3)\right) \cup$ $\mathrm{SN}_{2}\left(\mathrm{H}_{1}(5)\right) \cup \mathrm{SN}_{2}\left(\mathrm{H}_{1}(7)\right) \cup \mathrm{SN}_{2}\left(\mathrm{H}_{1}(11)\right.$.

In view of this we have the following theorem.
THEOREM 2.4.12: Let $L=L_{1} \cup L_{2} \cup L_{3} \cup \ldots \cup L_{n}=\{[0, a] /$ $\left.a \in\left\{e, 1,2, \ldots, m_{1}\right\}, *, p_{1}\right\} \cup\left\{[0, a] / a \in\left\{e, 1,2, \ldots, m_{2}\right\}, *\right.$, $\left.p_{2}\right\} \cup \ldots \cup\left\{[0, a] / a \in\left\{e, 1,2, \ldots, m_{n}\right\},{ }^{*}, p_{n}\right\}$ be a $n$-interval loop. Suppose $H=H_{i}^{1}\left(t_{1}\right) \cup H_{i}^{2}\left(t_{2}\right) \cup \ldots \cup H_{i}^{n}\left(t_{n}\right) \subseteq L_{1} \cup$ $L_{2} \cup \ldots \cup L_{n}$ be a $S$-subloop of $L$; $S N_{1}(H)=S N_{2}(H)$ if and only if $\left(m_{i}^{2}-m_{i}+1, t_{i}\right)=\left(2 m_{i}-i, t_{i}\right)$ for every $i, i=1,2, \ldots, n$.

For analogous proof refer [5, 11-2].

Example 2.4.20: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}=\{[0, \mathrm{a}] / \mathrm{a} \in$ $\{e, 1,2, \ldots, 7\}, *, 4\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 13\}, *, 4\} \cup$ $\left\{[0, a] / a \in\{e, 1,2, \ldots, 19\},{ }^{*}, 14\right\} \cup\{[0, a] / a \in\{e, 1,2, \ldots$, $23\}, *, 20\}$ be a 4 -interval loop. Clearly $\mathrm{SN}(\mathrm{L})=\{[0, \mathrm{e}] \cup[0$, e] $\cup[0, \mathrm{e}] \cup[0, \mathrm{e}]\}$.

In view of this we have the following theorem. We first make a small observation each $L_{i}$ is built using $Z_{p}$, $p$ a prime viz in this; example 2.4.20, 7, 13, 19 and 23 are primes, so that $\mathrm{S}(\mathrm{L})$ is the identity.

Theorem 2.4.13: Let $L=L_{1} \cup L_{2} \cup \ldots \cup L_{n}=\{[0, a] / a \in\{e$, $\left.\left.1,2, \ldots, p_{1}\right\},{ }^{*}, t_{1}\right\} \cup\left\{[0, a] / a \in\left\{e, 1,2, \ldots, p_{2}\right\}, *, t_{2}\right\} \cup \ldots \cup$ $\left\{[0, a] / a \in\left\{e, 1,2, \ldots, p_{n}\right\}, *, t_{n}\right\}$ be a $n$-interval loop. $p_{i}$ 's are primes, $1 \leq i \leq n$. We see $S N(L)=[0, e] \cup \ldots \cup[0, e]$ (Infact we get a class of n-interval loop $\{L\}=\left\{L_{1}\right\} \cup \ldots \cup\left\{L_{n}\right\}$ as $L_{i}$ can be constructed using any $t_{i} ; 1<t_{i}<p_{i}, i=1,2, \ldots, n$ ).

Proof: Given $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}$ are prime. Hence L has no S -n- interval subloop but L is a S -n-interval loop.

Hence $\mathrm{N}(\mathrm{L})=\{[0, \mathrm{e}] \cup \ldots \cup[0, \mathrm{e}]\}$ further we know $\mathrm{SN}(\mathrm{L})=\mathrm{N}(\mathrm{L})$. Hence we have used analogous results for interval loops. $\mathrm{SN}(\mathrm{L})=[0, \mathrm{e}] \cup[0, \mathrm{e}] \cup \ldots \cup[0, \mathrm{e}]$.

Example 2.4.21: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2$, $\left.\ldots, 23\},{ }^{*}, 14\right\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 19\}, *, 11\} \cup\{[0, a]$ $\left./ \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 13\},{ }^{*}, 10\right\}$ be a 3 -interval loop. It is easily verified S-Moufang centre of $L$ is either $[0, e] \cup[0, e] \cup[0, e]$ or $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3}$.

We have the following theorem.
THEOREM 2.4.14: Let $L=L_{1} \cup L_{2} \cup \ldots \cup L_{n}=\{[0, a] / a \in\{e$, $\left.\left.1,2, \ldots, p_{1}\right\},{ }^{*}, t_{1}\right\} \cup\left\{[0, a] / a \in\left\{e, 1,2, \ldots, p_{2}\right\}, *, t_{2}\right\} \cup \ldots \cup$ $\left\{[0, a] / a \in\left\{e, 1,2, \ldots, p_{n}\right\}, *, t_{n}\right\}$ be a n-interval loop where $p_{1}$, $p_{2}, \ldots, p_{n}$ are primes. Then $S$-Moufang $n$-center of $L$ is $\{[0, e] \cup$ $[0, e] \cup \ldots \cup[0, e]\}$ or $L_{1} \cup L_{2} \cup \ldots \cup L_{n}$.

For analogous proof refer [5].

THEOREM 2.4.15: Let $L=L_{1} \cup L_{2} \cup L_{3} \cup L_{4} \cup L_{5}=\{[0, a] / a$ $\left.\in\left\{e, 1,2, \ldots, p_{1}\right\},{ }^{*}, t_{1}\right\} \cup\left\{[0, a] / a \in\left\{e, 1,2, \ldots, p_{2}\right\},{ }^{*}, t_{2}\right\} \cup$ $\ldots \cup\left\{[0, a] / a \in\left\{e, 1,2, \ldots, p_{n}\right\},{ }^{*}, t_{n}\right\}$ be a n-interval loop where $p_{1}, \ldots, p_{n}$ are $n$ primes. $N Z(L)=Z(L)=\{[0, e],[0, e]$, $\ldots,[0, e]\}$.

The proof is direct and hence left as an exercise to the interested reader.

All other properties enlisted in interval biloops can be analogously obtained for n-interval loops. It is left as an exercise to the reader.

Now we proceed onto define and describe quasi n-interval loops.

DEFINITION 2.4.2: Let $L=L_{1} \cup L_{2} \cup \ldots \cup L_{n}$ where some $L_{i}$ 's are interval loops and the rest are just loops. $L$ inherits the operations from each $L_{i} ; 1 \leq i \leq n$, denoted by '.', ( $L$, .) is defined as the quasi $n$-interval loop.

We will illustrate this situation by some examples.
Example 2.4.22: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}=\left\{\mathrm{L}_{9}(8)\right\} \cup$ $\{[0, a] / a \in\{e, 1,2, \ldots, 11\}, *, 7\} \cup\left\{\mathrm{L}_{11}(3)\right\} \cup\{[0, a] / a \in$ $\left.\{e, 1,2, \ldots, 13\},{ }^{*}, 9\right\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 15\}, *, 8\}$ be a quasi 5 -interval loop. Suppose $x=\{6 \cup[0,10] \cup 7 \cup[0,8]$ $\cup[0,12]\}, \mathrm{y}=\{2 \cup[0,7] \cup 3 \cup[0,5] \cup[0,10]\}$ are in L .

$$
\begin{aligned}
\mathrm{x.y}= & (6 * 2) \cup[(0,10] *[0,7]) \cup(7 * 3) \cup([0,8] *[0,5]) \\
& \cup([0,12] *[0,10]) \\
= & (16-42(\bmod 9) \cup\{[0,49-60(\bmod 11)]\} \cup\{9-7 \times 1(\bmod 11)\} \cup\{[0, \quad 45-64 \quad(\bmod 13)\} \cup \\
& 2(\bmod ) \\
& \{[0,80-84(\bmod 15)]\} . \\
= & \{1\} \cup\{[0,0]\} \cup\{6\} \cup\{[0,3]\} \cup\{[0,11]\} \in \mathrm{L} .
\end{aligned}
$$

Thus L is a quasi 5 -interval loop.
Example 2.4.23: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4}=\left\{\mathrm{L}_{23}(7)\right\} \cup$ $\{[0, a] / a \in\{e, 1,2, \ldots, 23\}, *, 20\} \cup\left\{L_{19}(6)\right\} \cup\{[0, a] / a \in$
$\left.\{\mathrm{e}, 1,2, \ldots, 19\},{ }^{*}, 12\right\}$ be a quasi 4-interval loop of order $24^{2} 20^{2}$.

Clearly L is non commutative. Now we can define substructure in quasi n-interval loop, this task is left as an exercise to the reader. However we will provide this by some simple examples.

Example 2.4.24: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}=\{[0, \mathrm{a}] / \mathrm{a} \in$ $\{e, 1,2, \ldots, 15\}, *, 8\} \cup\left\{[0, a] / a \in\{e, 1,2, \ldots, 15\},{ }^{*}, 14\right\} \cup$ $\mathrm{L}_{15}(2) \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 21\},{ }^{*}, 11\right\} \cup \mathrm{L}_{21}(5)$ be a quasi 5-interval loop. Consider $H=H_{1} \cup \mathrm{H}_{2} \cup \mathrm{H}_{3} \cup \mathrm{H}_{4} \cup \mathrm{H}_{5}=$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,6,11\},{ }^{*}, 8\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 2,7,12\},^{*}\right.$, $14\} \cup\{[0, a] / a \in\{e, 1,4,7,10,13\}, *, 2\} \cup\{[0, a] / a \in$ $\{\mathrm{e}, 1,8,15\}, *, 11\} \cup\left\{\{\mathrm{e}, 1,4,7,10,13,16,19\},{ }^{*}, 5\right\} \subseteq \mathrm{L}_{1} \cup$ $\mathrm{L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}$ is a quasi 5-interval subloop of L .

Example 2.4.25: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4}=\left\{\mathrm{L}_{49}(10)\right\} \cup\{[0$, a] $/ a \in\{e, 1,2, \ldots, 49\}, *, 12\} \cup\{[0, a] / a \in\{e, 1,2, \ldots$, $121\}, *, 4\} \cup\left\{\mathrm{L}_{121}(8)\right\}$ be a quasi 4 -interval loop. Consider H $=H_{1} \cup H_{2} \cup H_{3} \cup H_{4}=\left\{\{e, 1,8,15,22,29,36,43\},^{*}, 10\right\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 2,9,16,23,30,37,44\},{ }^{*}, 12\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\{e, 1,12,23,34,45,56,67,78,89,100,111\},{ }^{*}, 4\right\} \cup\{\{e, 3$, $\left.14,25,36,47,58,69,80,91,102,113\},{ }^{*}, 8\right\} \subseteq \mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3}$ $\cup \mathrm{L}_{4}$ is a quasi 4-interval subloop of L .

We say a quasi n-interval loop is a Smarandache quasi ninterval loop (S-quasi n-interval loop) if L has a proper subset A $=A_{1} \cup A_{2} \cup \ldots \cup A_{n} \subseteq L_{1} \cup L_{2} \cup \ldots \cup L_{n}$ such that $A$ is a quasi n -interval group with respect to the operations on L .

We will illustrate first this by some examples.
Example 2.4.26: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}=\{[0, \mathrm{a}] / \mathrm{a}$ $\left.\in\{e, 1,2, \ldots, 29\},{ }^{*}, 8\right\} \cup \mathrm{L}_{19}(8) \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $\left.17\},{ }^{*}, 3\right\} \cup \mathrm{L}_{23}(9) \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 143\},{ }^{*}, 15\right\}$ be a quasi 5 -interval loop. $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \mathrm{H}_{3} \cup \mathrm{H}_{4} \cup \mathrm{H}_{5}=\{[0, \mathrm{e}]$, $[0,7], *, 8\} \cup\{e, 12, *\} \cup\{[0, e],[0,10], *, 3\} \cup\{e, 15, *, 9\}$ $\cup\left\{[0, \mathrm{e}][0,141],{ }^{*}, 15\right\} \subseteq \mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}$ is a S-quasi 5 -interval loop, as H is a S-quasi 5 -interval group.

Example 2.4.27: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5} \cup \mathrm{~L}_{6}=\{[0$, a] $/ a \in\{e, 1,2, \ldots, 47\}, *, 10\} \cup L_{53}(2) \cup L_{61}(5) \cup\{[0, a] / a$ $\in\{e, 1,2, \ldots, 79\}, *, 14\} \cup L_{19}(3) \cup\{[0, a] / a \in\{e, 1,2, \ldots$, $101\}$, $\left.{ }^{*}, 42\right\}$ be a quasi 6-interval loop. $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \ldots \cup \mathrm{H}_{6}$ $=\{[0,1],[0,46], *, 10\} \cup\{e, 38, *, 2\} \cup\{e, 48, *, 5\} \cup\{[0$, e], $[0,77], *, 14\} \cup\left\{[\mathrm{e}, 8, * 3\} \cup\{[0, \mathrm{e}][0,98], *, 42\} \subseteq \mathrm{L}_{1} \cup\right.$ $\mathrm{L}_{2} \cup \ldots \cup \mathrm{~L}_{6}$ is a quasi 6-interval group hence L is a S-quasi 6interval loop.

Now having seen examples of S-quasi n-interval loops we now proceed onto give a class of S-quasi n-interval loops.

THEOREM 2.4.16: Let $L=L_{1} \cup L_{2} \cup \ldots \cup L_{n}=L_{m_{1}}\left(t_{1}\right) \cup\{[0$, $\left.a] / a \in\left\{e, 1,2, \ldots, m_{2}\right\},{ }^{*}, t_{2}\right\} \cup\left\{L_{m_{3}}\left(t_{3}\right)\right\} \cup\left\{L_{m_{4}}\left(t_{4}\right)\right\} \cup \ldots \cup$ $\left\{[0, a] / a \in\left\{e, 1,2, \ldots, m_{n}\right\},{ }^{*}, t_{n}\right\}$ be a quasi $n$-interval loop. $L$ is a $S$-quasi n-interval loop.

Infact we get of class of such loops using $m_{1}, m_{2}, \ldots, m_{n}$ and appropriately varying $t_{1}, \ldots, t_{n}$ in $m_{1}, m_{2}, \ldots, m_{n}$ respectively.

The proof is easy and hence is left as an exercise to the reader.

Example 2.4.28: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}=\left\{\mathrm{L}_{9}(5)\right\} \cup$ $\left\{\mathrm{L}_{15}(8)\right\} \cup\left\{\mathrm{L}_{17}(3)\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 11\}, *, 4\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 19\},{ }^{*}, 8\right\}$ be a quasi 5 -interval loop. We see $A(L)=L$.

For more refer [5].
Inview of this we have the following theorem which gives a class of loops $\{\mathrm{L}\}$ such that for each L in $\{\mathrm{L}\}$ are have $A(L)=L$.

THEOREM 2.4.17: $\{L\}=\left\{L_{m_{1}}\right\} \cup\left\{L_{m_{2}}\right\} \cup\{\{[0, a] / a \in\{e, 1$, $\left.\left.\left.\ldots, m_{i}\right\},{ }^{*}, t_{i} ; 1<t_{i}<m_{i}\right\}\right\} \cup \ldots \cup\left\{L_{m_{i+r}}\right\} \cup \ldots \cup\{\{[0, a] / a \in$ $\left.\left.\left\{e, 1,2, \ldots, m_{n}\right\},{ }^{*}, t_{n} ; 1<t_{n}<m_{n}\right\}\right\}$ be a class of quasi $n$ -
interval loops. Every quasi $n$-interval loop $L$ in $\{L\}$ is such that $A(L)=L$.

Proof follows from the fact that every loop $L_{i}$ in $L$ is such that $\mathrm{A}\left(\mathrm{L}_{\mathrm{i}}\right)=\mathrm{L}_{\mathrm{i}}$ where $\mathrm{L}_{\mathrm{i}}$ is an interval loop or other wise.

Example 2.4.29: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}=\left\{\mathrm{L}_{9}(5)\right\} \cup$ $\{[0, a] / a \in\{e, 1,2, \ldots, 11\}, *, 6\} \cup\left\{L_{13}(7)\right\} \cup\{[0, a] / a \in$ $\left.\{\mathrm{e}, 1,2, \ldots, 21\},{ }^{*}, 11\right\} \cup \mathrm{L}_{43}(22)$ be a quasi 5 -interval loop.

We have the following theorem which guarantees the existence of quasi n-interval loop.

THEOREM 2.4.18: Let $L=L_{1} \cup L_{2} \cup \ldots \cup L_{n}=$ $\left\{L_{m_{1}}\left(\frac{m_{1}+1}{2}\right)\right\} \cup\left\{L_{m_{2}}\left(\frac{m_{2}+1}{2}\right)\right\} \cup \ldots \cup\{\{[0, a] / a \in\{e, 1$, $\left.\left.\ldots, m_{i}\right\}, *,\left(\frac{m_{i}+1}{2}\right)\right\} \cup \ldots \cup\left\{L_{m_{n}}\left(\frac{m_{n}+1}{2}\right)\right\}$ be a quasi $n$ interval loop. L is a commutative quasi n-interval loop.

Example 2.4.30: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}=\left\{\mathrm{L}_{11}(3)\right\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 19\},{ }^{*}, 3\right\} \cup \mathrm{L}_{17}(8) \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}$, $1,2, \ldots, 29\}, *, 24\} \cup \mathrm{L}_{43}(8)$ be a quasi 5 -interval loop. L has quasi 5 -interval subloops. L is a Smarandache 5-interval subgroup loop.

THEOREM 2.4.19: Let $L=L_{1} \cup L_{2} \cup \ldots \cup L_{n}=\left\{L_{p_{1}}\left(m_{1}\right)\right\} \cup$ $\left\{[0, a] / a \in\left\{e, 1,2, \ldots, p_{2}\right\},{ }^{*}, m_{2}\right\} \cup\left\{L_{p_{3}}\left(m_{3}\right)\right\} \cup\{[0, a] / a$ $\left.\in\left\{e, 1,2, \ldots, p_{4}\right\},{ }^{*}, m_{4}\right\} \cup\left\{[0, a] / a \in\left\{e, 1,2, \ldots, p_{5}\right\},{ }^{*}, m_{5}\right\}$ $\cup \ldots \cup\left\{L_{p_{n}}\left(m_{n}\right)\right\}$ be a quasi $n$-interval loop. L is a S-quasi $n$ interval subgroup loop.

Example 2.4.31: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3}=\left\{\mathrm{L}_{7}(3)\right\} \cup\{[0, \mathrm{a}] / \mathrm{a}$ $\in\{\mathrm{e}, 1,2, \ldots, 15\}, *, 8\} \cup \mathrm{L}_{25}$ (8) be a quasi 3 -interval loop. It is easily verified L is a S -quasi 3 -interval simple loop. (quasi 3interval S-simple loop).

In view of this example we have the following theorem.

THEOREM 2.4.20: Let $L=L_{1} \cup L_{2} \cup \ldots \cup L_{n}=\left\{L_{m_{1}}\left(t_{1}\right)\right\} \cup$ $\left\{[0, a] / a \in\left\{e, 1,2, \ldots, m_{2}\right\}, t_{2}, *\right\} \cup \ldots \cup\left\{L_{m_{n}}\left(t_{n}\right)\right\}$ be a quasi n-interval loop. L is a S-quasi n-interval simple loop (quasi $n$ interval S-simple loop).

Proof is obvious.
Example 2.4.32: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4}=\left\{\mathrm{L}_{9}(5)\right\} \cup\{[0$, a] $/ \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 17\}, *, 4\} \cup\left\{\mathrm{L}_{15}(14)\right\} \cup \mathrm{L}_{29}(3)$ be a quasi 4 interval loop. L is a S-quasi 4-interval Cauchy loop (quasi 4interval S-Cauchy loop).

In view of this we have the following theorem.
THEOREM 2.4.21: Let $L=L_{1} \cup L_{2} \cup \ldots \cup L_{n}=\{[0, a] / a \in$ $\left.\left\{e, 1, \ldots, m_{1}\right\},{ }^{*}, t_{1}\right\} \cup\left\{L_{m_{2}}\left(t_{2}\right)\right\} \cup\left\{L_{m_{3}}\left(t_{3}\right)\right\} \cup \ldots \cup\{[0, a] / a$ $\left.\in\left\{e, 1,2, \ldots, m_{n-1}\right\},{ }^{*}, t_{n-1}\right\} \cup L_{m_{n}}\left(t_{n}\right)$ be a quasi $n$-interval loop. L is a S-Cauchy quasi n-interval loop.

Proof follows from the fact order of each $L_{i}$ is of even order and $2^{\mathrm{n}} /|\mathrm{L}|$. Infact we get a class of such loops for appropriate $\mathrm{t}_{1}$, $\ldots, \mathrm{t}_{\mathrm{n}}$.

Example 2.4.33: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}=\{[0, \mathrm{a}] /$ $\left.a \in\{e, 1, \ldots, 19\},{ }^{*}, 8\right\} \cup \mathrm{L}_{11}(9) \cup \mathrm{L}_{12}(7) \cup\{[0, \mathrm{a}] / \mathrm{a} \in$ $\{\mathrm{e}, 1, \ldots, 23\}, *, 12\} \cup \mathrm{L}_{43}(2)$ be a quasi 5 -interval loop. L is a Smarandache Lagrange quasi 5 -interval loop.

Example 2.4.34: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4}=\left\{\mathrm{L}_{15}(8)\right\} \cup\{[0$, a] /a $\in\{e, 1, \ldots, 25\}, *, 7\} \cup L_{49}(9) \cup\{[0, a] / a \in\{e, 1, \ldots$, $21\}$, *, 5\} be a quasi 4-interval loop. Clearly L is a Smarandache weakly Lagrange quasi 4 -interval loop.

In view of these examples we have a class of S-weakly Lagrange quasi n-interval loops and S-Lagrange n-interval loop.

THEOREM 2.4.22: Let $L=L_{1} \cup L_{2} \cup \ldots \cup L_{n}=\{[0, a] / a \in\{e$, $\left.\left.1, \ldots, p_{1}\right\},{ }^{*}, t_{1}\right\} \cup\left\{L_{p_{2}}\left(t_{2}\right)\right\} \cup\left\{L_{p_{3}}\left(t_{3}\right)\right\} \cup \ldots \cup\{[0, a] / a \in$
$\left.\left\{e, 1,2, \ldots, p_{n-1}\right\}, *, t_{n-1}\right\} \cup L_{p_{n}}\left(t_{n}\right)$ be a quasi $n$-interval loop, here $p_{1}, p_{2}, \ldots, p_{n}$ are $n$ primes. $L$ is a $S$-Lagrange quasi interval loop.

Proof is direct hence left as an exercise to the reader.
Theorem 2.4.23: Let $L=L_{1} \cup L_{2} \cup \ldots \cup L_{n}=L_{m_{1}}\left(t_{1}\right) \cup$ $\left\{[0, a] / a \in\left\{e, 1, \ldots, m_{2}\right\},{ }^{*}, t_{2}\right\} \cup\left\{L_{m_{3}}\left(t_{3}\right)\right\} \cup \ldots \cup\{[0, a] / a$ $\left.\in\left\{e, 1,2, \ldots, m_{n}\right\},{ }^{*}, t_{n}\right\}$ be a quasi $n$-interval loop where $m_{1}$, $m_{2}, \ldots, m_{n}$ are not primes. Then $L$ is only a S-weakly Lagrange quasi $n$-interval loop.

Example 2.4.35: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4}=\left\{\mathrm{L}_{19}(8)\right\} \cup\{[0$, a] /a $\in\{e, 1, \ldots, 11\}, *, 3\} \cup L_{13}(9) \cup\{[0, a] / a \in\{e, 1, \ldots$, $43\}$, *, 29\} be a quasi 4 -interval loop. Clearly L is a Smarandache strong quasi 4-interval 2-Sylow loop.

In view of this we have the following theorem the proof of which is easy. Only one thing to observe from example 2.4.35 is that all the $\mathrm{Z}_{\mathrm{i}}$ 's used are prime fields of characteristic 19, 11, 13 and 29. Keeping this in mind we state the theorem.

THEOREM 2.4.24: Let $L=L_{1} \cup L_{2} \cup \ldots \cup L_{n}=\left\{L_{p_{1}}\left(m_{1}\right)\right\} \cup$ $\left\{[0, a] / a \in\left\{e, 1, \ldots, p_{2}\right\},{ }^{*}, m_{2}\right\} \cup\left\{L_{p_{3}}\left(m_{3}\right)\right\} \cup \ldots \cup\{[0, a] /$ $\left.a \in\left\{e, 1,2, \ldots, p_{n}\right\},{ }^{*}, m_{n}\right\}$ be a quasi $n$-interval loop where $p_{1}$, $p_{2}, \ldots, p_{n}$ are primes. $L$ is a Smarandache strongly quasi $n$ interval commutative loop.

It is verified L mentioned in the above theorem is also a Smarandache strongly quasi $n$-interval cyclic loop.

Several other results obtained in case of n-interval loops can also be derived for quasi n-intervals. This task is left to the reader.

Now we proceed onto define n-interval loop - group.
DEFINITION 2.4.3: Let $L=L_{1} \cup L_{2} \cup \ldots \cup L_{n}$ be such that some $L_{i}$ 's are interval groups and rest are interval loops. $L$ inherits
the operations from $L_{i \cdot} \cdot(1 \leq i \leq n) . \quad L$ is a n-interval group loop.

We will first illustrate this situation by some examples.

Example 2.4.36: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{28}\right.$, $+\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1, \ldots, 47\}, *, 9\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{19} \backslash\{0\}, \times\right.$ $\} \cup\{[0, a] / a \in\{e, 1, \ldots, 43\}, *, 7\}$ be a 4-interval group-loop.

Example 2.4.37: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}=\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\mathrm{Z}_{10},+\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{11} \backslash\{0\}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{27},+\right\} \cup\{[0$, a] $/ a \in\{e, 1,2, \ldots, 13\}, *, 7\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 27\}$, *, 11\} be a 5-interval group-loop.

We cannot talk of any of the usual properties studied for non associative structures. The only thing we can analyse is about substructures and Lagrange theorem, Cauchy element and Sylow theorems.

We will just give examples of substructures.

Example 2.4.38: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}=\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\mathrm{Z}_{40},+\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{11} \backslash\{0\}, \times\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $15\}, *, 8\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 25\}, *, 12\} \cup\{[0, a] / a \in$ $\left.\mathrm{Z}_{24},+\right\}$ be a 5-interval group-loop.

Consider $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \mathrm{H}_{3} \cup \mathrm{H}_{4} \cup \mathrm{H}_{5}=\{[0, \mathrm{a}] / \mathrm{a} \in\{0$, $4,8,12,16, \ldots, 36\},+\} \cup\{[0,1][0,11], \times\} \cup\{[0, a] / a \in\{e$, $1,6,11\}, *, 8\} \cup\{[0, a] / a \in\{e, 1,6,11,16,21\}, *, 12\} \cup$ $\{[0, \mathrm{a}] / \mathrm{a} \in\{0,3,6,9,12,15,18,21\},+\} \subseteq \mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4}$ $\cup L_{5}$ is a 5-interval subgroup - subloop of $L$.

If L has no n-interval normal subgroup - normal subloop then we call L to be a n-interval S-simple group-loop.

Example 2.4.39: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}=\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\mathrm{Z}_{11},+\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 11\}, *, 7\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}$, $1,2, \ldots, 13\}, *, 8\} \cup\left\{[0, a] / a \in Z_{17},+\right\} \cup\{[0, a] / a \in\{e, 1$, $2, \ldots, 23\}, *, 18\}$ be a 5 -interval loop-group.

Clearly L is a 5-interval S-simple loop-group or S-simple 5 interval loop - group.

For we know very well the notion of Smarandache simple in case of group has no meaning.

Example 2.4.40: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}=\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\mathrm{Z}_{23} \backslash\{0\}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{47} \backslash\{0\}, \times\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in$ $\{e, 1,2, \ldots, 21\}, *, 11\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 15\}, *, 8\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{37} \backslash\{0\}, \times\right\}$ be a 5 -interval group - loop. Every element in L is a Cauchy element.

$$
\begin{aligned}
\text { For or }(\mathrm{L}) & =\left|\mathrm{L}_{1}\right|\left|\mathrm{L}_{2}\right|\left|\mathrm{L}_{3}\right|\left|\mathrm{L}_{4}\right|\left|\mathrm{L}_{5}\right| \\
= & 22 \times 46 \times 22 \times 16 \times 36 .
\end{aligned}
$$

In general we have Cauchy theorem to be true in case of ninterval loop-group for the special class of interval loops.

THEOREM 2.4.25: Let $L=L_{1} \cup L_{2} \cup \ldots \cup L_{n}$ be a $n$-interval loop - group where some $L_{i}$ are interval groups and the rest of the $L_{j}$ 's are interval loops of the form $\left\{[0, a] / a \in\left\{e, 1, \ldots, m_{i}\right\}\right.$, $t_{i}$, ${ }^{*}$. Then every element in $L$ is a Cauchy element.

Proof is straight forward as every element in these type of interval loops are of order two and every interval loop of this type is of even order.

Example 2.4.41: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}=\{[0, \mathrm{a}] /$ $\left.a \in Z_{46},+\right\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 25\}, *, 12\} \cup\{[0, a] / a$ $\left.\in \mathrm{Z}_{13} \backslash\{0\}, \times\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 15\}, 8, \times\} \cup\{[0, \mathrm{a}] /$ $a \in Z_{20}$, +$\}$ be a 5-interval group - loop. Clearly L is a only Sweakly 5 -interval group-loop.

Example 2.4.42: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3}$ be a 3-interval grouploop where $\mathrm{L}_{1}=\left\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 19, *, 14\}, \mathrm{L}_{2}=\{[0, \mathrm{a}]\right.$ $\left./ \mathrm{a} \in \mathrm{Z}_{24},+\right\}$ and $\mathrm{L}_{3}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{23} \backslash\{0\}, \times\right\}$. It is easily verified that L is a S -Lagrange 3 -interval group-loop.

When we say S-Lagrange the Smarandache qualifies only the loop and not the group as for groups Smarandache has no relevance.

We will now illustrate by some theorems which gurantees such n-interval group-loops.

THEOREM 2.4.26: Let $L=L_{1} \cup L_{2} \cup \ldots \cup L_{n}$ where some $L_{i}$ 's are interval groups of finite order and the rest of the $L_{j}$ 's are interval loops of the form $\left\{[0, a] / a \in\left\{e, 1,2, \ldots, m_{j}\right\},{ }^{*}, t_{j}\right\}$ and ( $m_{j}$ 's are non prime odd numbers greater than three) be a ninterval group-loop. L is a Smarandache weakly Lagrange ninterval loop-group.

The proof is direct and easy and hence is left as an exercise for the reader to prove.

THEOREM 2.4.27: Let $L=L_{1} \cup L_{2} \cup \ldots \cup L_{n}$, where some $L_{i}$ 's are interval groups of finite order and the rest of the $L_{j}$ 's are interval loops of the form $\left\{[0, a] / a \in\left\{e, 1,2, \ldots, p_{j}\right\}, t_{j},{ }^{*}\right.$, $\left.1<t_{j}<p_{j}\right\}, p_{j}$ 's are prime. L is a n-interval group-loop and $L$ is a Smarandache Lagrange n-interval loop - group.

Proof is direct hence left as an exercise.
We cannot prove p-Sylow theorems for n-interval grouploops. However only special p-Sylow theorems can be derived for these n-interval group-loops.

Example 2.4.43: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{24}\right.$, $+\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 19\}, *, 12\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1$, $2, \ldots, 13\}, *, 10\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{19} \backslash\{0\}, \times\right\}$ be a 4 -interval group-loop. Clearly L is a 4-interval Smarandache 2-Sylow loop-group.

In view of this we have the following theorem.

THEOREM 2.4.28: Let $L=L_{1} \cup L_{2} \cup \ldots \cup L_{n}$ be a n-interval group - loop where some $L_{i}$ 's are interval groups of finite order and the rest are interval loops of the form $\{[0, a] / a \in\{e, 1,2$, $\left.\ldots, p\} /^{*}, t_{i}, 1<t_{i}<p\right\}, p$ a prime. L is a Smarandache strong 2-Sylow interval loop-group.

Automatically interval groups are of finite order hence will be Sylow but the interval loops of only this type is a Smarandache strong 2-Sylow loops.

Similar results proved for n-interval loop can also be easily extended in case of n-interval loop-group. We see however all results cannot be extended for general interval loops.

Now having seen this type of n-interval loop-group we will now proceed onto define n-interval loop - semigroup.

DEFINITION 2.4.4: Let $L=L_{1} \cup L_{2} \cup \ldots \cup L_{n}$ be such that some $L_{i}$ 's are interval semigroups and the rest interval loops. The operation on $L$ is inherited from each $L_{i}, 1 \leq i \leq n$, $L$ will be defined as n-interval loop-semigroup or n-interval semigrouploop.

We will illustrate this situation by some example.
Example 2.4.44: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}=\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\mathrm{Z}_{24}, \times\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 25\}, *, 8\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12}\right.$, $\times\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 27\}, *, 11\} \cup\left\{[0, a] / a \in Z_{40}, \times\right\}$ be a 5-interval semigroup-loop of finite order o (L) $=\left|\mathrm{L}_{1}\right|\left|\mathrm{L}_{2}\right|$ $\left|\mathrm{L}_{3}\right|\left|\mathrm{L}_{4}\right|\left|\mathrm{L}_{5}\right|=$ 24.25.12.27.40. Clearly L is non commutative.

Example 2.4.45: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3}=\left\{\mathrm{S}(\mathrm{X}) / \mathrm{X}=\left\{\left(\left[0, \mathrm{a}_{1}\right]\right.\right.\right.$ $\left.\left[0, \mathrm{a}_{2}\right]\left[0, \mathrm{a}_{3}\right]\left[0, \mathrm{a}_{4}\right]\right) \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{14}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{42}\right.$, $\times\}$ be a 3-interval loop semigroup of finite order and L is non commutative. Now o (L) $=4^{4}$.14.42.

Now as only one of the structure is associative and other is non associative we cannot proceed to arrive results for non associative structure.

We can define substructures, this task is left as an exercise.
Example 2.4.46:Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}$, $1,2, \ldots, 15\}, *, 8\} \cup\left\{[0, a] / a \in Z_{24}, x\right\} \cup\{[0, a] / a \in\{e, 1$, $2, \ldots, 25\}, *, 12\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{40}, \times\right\}$ be a 4 -interval loop semigroup. Consider $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \mathrm{H}_{3} \cup \mathrm{H}_{4}=\{[0, \mathrm{a}] / \mathrm{a} \in$ $\{e, 1,4,7,10,13\}, *, 8\} \cup\left\{[0, a] / a \in\{0,2,4, \ldots, 22\} \subseteq Z_{24}\right.$, $\times\} \cup\{[0, a] / a \in\{e, 1,6,11,16,21\}, *, 12\} \cup\{[0, a] / a \in\{0$, $10,20,30\}, \times\}$ be the 4 -interval subloop - subsemigroup of $L$.

Example 2.4.47: Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{27}, \times\right\} \cup$ $\left\{[0, a] / a \in Z^{+} \cup\{0\}, x\right\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 11\}, *, 4\}$ be 3 -interval loop-semigroup. Clearly S is of infinite order, but S-commutative and has 3 -interval subloop-subsemigroup of only infinite order. Except when the subsemigroup of $S_{2}$ is taken as $\{0,1\}$ under product. Thus $S$ has only one finite 3 interval subloop - subsemigroup, but infinite number of infinite 3 interval subloop - subsemigroup. One more observation is infact the interval subloop is an interval group only.

Other properties like zero divisors, etc associated with interval semigroup cannot be studied as interval loops do not have such properties associated with it.

Next we proceed onto study describe and define n-interval loop-groupoid.

Let $G=G_{1} \cup G_{2} \cup \ldots \cup G_{n}$ be a $n$ interval in which some $\mathrm{G}_{\mathrm{i}}$ 's are interval loops and the rest are interval groupoids. G inherits operations of every $\mathrm{G}_{\mathrm{i}}$ done component wise denoted by '. (G, .) is defined as the n-interval loop-groupoid.

It is nice to observe that both the algebraic structures are non associative hence they have several common properties enjoyed by them which will be discussed. We will illustrate this situation by some examples.

Example 2.4.48: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5} \cup \mathrm{G}_{6}$ be a 6 -interval loop groupoid where $\mathrm{G}_{1}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{7},{ }^{*},(3,2)\right\}$, $\mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 7\},{ }^{*}, 4\right\} \mathrm{G}_{3}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12},{ }^{*}\right.$, $(3,7)\}, \mathrm{G}_{4}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 19\}, *, 10\}, \mathrm{G}_{5}=\{[0, \mathrm{a}] /$ $\left.\mathrm{a} \in \mathrm{Z}_{18},{ }^{*},(0,7)\right\}$ and $\mathrm{G}_{6}=\left\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 23\}\right.$, * $\left.^{*} 7\right\}$. Clearly $G$ is of finite order. $|G|=\left|G_{1}\right|\left|G_{2}\right| \ldots\left|G_{6}\right|$ $=7 \times 8 \times 12 \times 20 \times 18 \times 24$.

Example 2.4.49: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{25}\right.$, *, $(7,0)\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 101\}, *, 6\} \cup\{[0, a] / a \in$ $\left.\mathrm{Z}_{32}, *\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 43\}, *, 7\}$ be a 4 -interval loop-groupoid of finite order which is clearly non commutative.

Now having seen examples of $n$ interval loop-groupoids we now leave the task of defining substructures to the reader, but we give some examples of substructures in them.

Example 2.4.50: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}=\{[0, \mathrm{a}] / \mathrm{a} \in$ $\{e, 1,2, \ldots, 15\}, *, 8\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 25\}, *, 9\} \cup$ $\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 21\}, *, 11\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{0,2,4,6$, $8,10\}, *,(3,0)\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 3,6,9,12\},^{*},(0,2)\right\} \subseteq \mathrm{L}_{1}$ $\cup L_{2} \cup L_{3} \cup L_{4} \cup L_{5} . H$ is a 5-interval subgroupoid subloop. Both L and H are non commutative and is of finite order.

Example 2.4.51: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{7}\right.$, $+\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 11\}, *, 10\} \cup\left\{[0, a] / a \in Z_{13}\right.$, $+\} \cup\left\{[0, a] / a \in\{e, 1,2, \ldots, 17\},^{*}, 12\right\}$ be a 4 -interval groupoid-loop.

L has no 4-interval subgroupoid-subloop. Thus L is a simple 4-interval groupoid-loop.

Now we will study some of the special identities satisfied ninterval groupoid-loops for this we need to know about Smarandache n-interval groupoid-loops.
We will call a n-interval groupoid-loop $G=G_{1} \cup G_{2} \cup \ldots \cup G_{n}$ to be Smarandache n-interval groupoid - loop if G contains a n interval group-semigroup. It is interesting to note that in general all n-interval loop-groupoids are not Smarandache ninterval loop-groupoids.

We will illustrate this situation by some examples.
Example 2.4.52: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}$, $\left.1,2, \ldots, 11\},{ }^{*}, 4\right\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 13\}, *, 5\} \cup\{[0$, a] /a $\left.\in \mathrm{Z}_{12},{ }^{*},(2,0)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 17\},{ }^{*}, 10\right\}$ be a 4-interval loop-groupoid. G is a Smarandache 4-interval loopgroupoid.

Example 2.4.53: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}=\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\mathrm{Z}_{15},{ }^{*},(3,6)\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 15\}, *, 8\} \cup\{[0, \mathrm{a}] / \mathrm{a}$ $\left.\in\{e, 1,2, \ldots, 17\},{ }^{*}, 3\right\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 25\}, *, 9\}$ $\cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12},{ }^{*},(2,1)\right\}$ be a 5 -interval loop-groupoid. Clearly L is a Smarandache 5 -interval loop-groupoid.

Now having seen examples of S-n-interval loop-groupoid interested reader can construct examples of n-interval loopgroupoids which satisfies special identities.

Example 2.4.54: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}=\{[0, \mathrm{a}] / \mathrm{a} \in$ $\{e, 1,2, \ldots, 41\}, *, 20\} \cup\{[0, a] / a \in\{e, 1,2, \ldots, 43\}, *, 38\}$ $\cup\{[0, a] / a \in\{e, 1,2, \ldots, 29\}, *, 14\} \cup\left\{[0, a] / a \in Z_{25}, *,(3\right.$, $0)\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{30}, *,(4,7)\right\}$ be a n-interval groupoid-loop. L is not S-5-interval Bol groupoid - loop. L is also not a Smarandache 5-interval Moufang loop-groupoid.

## 2.5 n-Interval Mixed Algebraic Structures

In this section we define the new notion of n-interval mixed algebraic structures and describe a few properties associated with them. These structures are so unique that they are mixture of associative and non associative algebraic structures.

DEFINITION 2.5.1: Let $M=M_{1} \cup M_{2} \cup \ldots \cup M_{n}$ be $a$ n-interval set, where some $M_{i}$ 's are interval loops, some $M_{j}$ 's are interval groupoids, some $M_{k}$ 's are interval groups and the rest are interval semigroups ( $1 \leq i, j, k<n$ ); $M$ obtains the operation ‘.' which is the componentwise operation of every $M_{i} ; i=1,2, \ldots n$. (M,.) is defined as the n-interval mixed algebraic structure or mixed n-interval algebraic structure.

We will first accept even if three algebraic structures are involved then also M is a mixed n -interval algebraic structure. Thus what we demand is more than two algebraic structure must be present in the mixed n-interval algebraic structure. We see the $n$-interval algebraic structures discussed in earlier sections are not mixed n-interval algebraic structures as they do not contains more than two structures.

We will illustrate this situation by some examples.

Example 2.5.1: Let $G=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5}=\{[0, \mathrm{a}] /$ $\left.\mathrm{a} \in \mathrm{Z}_{20}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{19} \backslash\{0\}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{11},+\right\} \cup$
$\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{40}, *(3,1)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 27\}{ }^{*}, 8\right\}$ be a mixed 5 -interval algebraic structure.

Example 2.5.2: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{40}\right.$, $\times\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{15},+\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1, \ldots, 29\},{ }^{*}, 8\right\} \cup$ $\left\{[0, a] / a \in Z_{12}, \times\right\}$ be mixed 4-interval algebraic structure.

Example 2.5.3: Let $\mathrm{G}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{7},+\right\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{16}, \mathrm{x}\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{7},{ }^{*},(3,2)\right\}$ be a mixed $3-$ interval algebraic structure.

Example 2.5.4: Let $G=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5} \cup \mathrm{~L}_{6}=\{[0, \mathrm{a}]$ $\left./ a \in \mathrm{Z}_{64}, \times\right\} \cup\{$ All $3 \times 3$ interval matrices with intervals of the form [0, a] where $a \in Z_{11}$ under matrix addition $\} \cup\{$ All $1 \times 7$ row interval matrices with intervals of the form [0, a] where a $\in$ $\left.\mathrm{Z}_{11},{ }^{*},(3,7)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\{e, 1,2, \ldots, 45\},{ }^{*}, 17\right\} \cup$ $\left\{\sum_{i=0}^{10}[0, a] x^{i} / a \in Z^{+} \cup\{0\}\right.$ under polylnomial addition $\} \cup$ $\left\{\sum_{\mathrm{i}=0}^{\infty}[0, \mathrm{a}] \mathrm{x}^{\mathrm{i}} / \mathrm{a} \in \mathrm{Z}_{12}\right.$, under polynomial multiplication $\}$ be a 6 interval mixed algebraic structure.

Clearly L is of infinite order and is non commutative. We can only define substructure of one type as this is a mixed ninterval algebraic structure. We leave the task of defining the substructure to the reader, but give examples of the same.

Example 2.5.5: Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}$, $1,2, \ldots, 27\}, *, 8\} \cup\left\{[0, a] / a \in Z_{12}, x\right\} \cup\left\{[0, a] / a \in Z_{45},+\right\}$ $\cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{14},{ }^{*},(2,0)\right\}$ be a 4 -interval mixed algebraic structure. Consider $H=H_{1} \cup H_{2} \cup H_{3} \cup H_{4}=\{[0, a] / a \in\{e$, $1,4,7,10,13,16,19,22,25\}, *, 8\} \cup\{[0, a] / a \in\{0,2,4,6$, $8,10\}, \times\} \cup\{[0, a] / a \in\{0,5,10,15,20,25,30,35,40\},+\} \cup$ $\left\{[0, \mathrm{a}] / \mathrm{a} \in\{0,2,4,6,8,10,12\},^{*},(2,0)\right\} \subseteq \mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup$ $\mathrm{G}_{4}, \mathrm{H}$ is a mixed 4-interval algebraic substructure of G .

We cannot define identities or other algebraic properties as they are mixed.

Now the following examples will show the way these mixed structures can be used in n-models.

Example 2.5.6: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4}=\{$ All $5 \times 3$ interval matrices with intervals of the form [0, a] where a $\in \mathrm{Z}_{12}$, ${ }^{*}$, (5, 7 ) $\} \cup\{$ All $4 \times 7$ interval matrices with intervals of the form [0, a] where $\mathrm{a} \in \mathrm{Z}_{20}$ under usual matrix addition $\} \cup\{$ All $4 \times 4$ interval matrices with intervals of the form $[0, a]$ where $a \in\{e$, $\left.1,2, \ldots, 19\},{ }^{*}, 12\right\} \cup\{$ All $7 \times 5$ interval matrices with intervals of the form [ $0, \mathrm{a}$ ] where $\mathrm{a} \in \mathrm{Z}_{40}$ under matrix addition $\}$ be a mixed 4-interval algebraic structures which is non commutative and is of finite order.

Example 2.5.7: Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3}=\{$ All $5 \times 5$ interval matrices with intervals of the form [0, a] with $a \in \mathrm{Z}_{42}$ under matrix addition $\} \cup\{$ All $3 \times 7$ interval matrices with intervals of the form [0, a] with $\mathrm{a} \in \mathrm{Z}_{18}$ under matrix addition $\} \cup\{$ All $6 \times 2$ interval matrices with intervals of the form [0, a] with a $\in \mathrm{Z}_{27}$ with operation *, $(3,8)\}$ be mixed 3 -interval algebraic structures. This sort of mixed 3-interval matrices can be used in mathematical models.

We will just show how operations on this interval matrices are carried out on each of interval groupoids, interval semigroups, interval groups and interval loops.

Suppose B, A is a $m \times n$ interval matrix from an $m \times n$ interval matrix groupoid $\mathrm{G}=\left\{\left(\left[0, \mathrm{a}_{\mathrm{ij}}\right]\right) / \mathrm{a}_{\mathrm{ij}} \in \mathrm{Z}_{\mathrm{m}}, *,(\mathrm{t}, \mathrm{u}), \mathrm{t}, \mathrm{u} \in\right.$ $\mathrm{Z}_{\mathrm{m}}$ \}

$$
A=\left(\left[0, \mathrm{a}_{\mathrm{ij}}\right]\right) \quad 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}
$$

and

$$
\text { B }=\left(\left[0, \mathrm{~b}_{\mathrm{ij}}\right]\right) \quad 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}
$$

$A * B=\left(\left[0, a_{i j}\right] *\left[0, b_{i j}\right]\right)$
$=\left(\left[0, \mathrm{ta}_{\mathrm{ij}}+\mathrm{u} \mathrm{b}_{\mathrm{ij}}(\bmod m)\right]\right)$;

* in general is non associative. We follow the same operation even if $\mathrm{m}=\mathrm{n}$.

Suppose $S$ is an interval matrix semigroup.
We can have two operations. If $A, B \in S$ are two interval $m$ $\times \mathrm{n}$ matrices $\mathrm{m} \neq \mathrm{n}$ then $\mathrm{A}+\mathrm{B},+$ the usual matrix addition is the only operation on S . If $\mathrm{A}, \mathrm{B} \in \mathrm{S}$ are such that the interval matrices are square matrices then we can have usual interval matrix addition 'or' usual interval matrix multiplication.

In both cases this S has a semigroup structure. 'or' used only in the mutually exclusive sense.

Suppose L denotes the set of all interval $\mathrm{m} \times \mathrm{n}$ matrices with intervals of the form $[0, \mathrm{a}]$ with entries from $\{\{\mathrm{e}, 1,2, \ldots$, $\mathrm{m}\} \mathrm{m}>3, \mathrm{~m}$ odd, t , *, where $1<\mathrm{t}<\mathrm{m}$ with $(\mathrm{t}, \mathrm{m})=(\mathrm{t}-1, \mathrm{~m})=$ 1 and for $[0, a],[0, b]$ in this set.

$$
[0, \mathrm{a}] *[0, \mathrm{~b}]=[0, \mathrm{tb}-(\mathrm{t}-1) \mathrm{a}(\bmod \mathrm{~m}))] .
$$

Now

$$
\mathrm{A}=\left(\left[0, \mathrm{a}_{\mathrm{ij}}\right]\right) \quad 1 \leq \mathrm{i} \leq \mathrm{m} \quad 1 \leq \mathrm{j} \leq \mathrm{n}
$$

and

$$
\mathrm{B}=\left(\left[0, \mathrm{~b}_{\mathrm{ij}}\right]\right) \text { in } \mathrm{L},
$$

then

$$
A * B=\left(\left[0,\left(\mathrm{tb}_{\mathrm{ij}}-(\mathrm{t}-1) \mathrm{a}_{\mathrm{ij}}\right) \bmod \mathrm{m}\right]\right) .
$$

This is the only operation $L$ which is compatible and even if $\mathrm{m}=\mathrm{n}$ we have only this operation.

If $G$ is the set of all $m \times n$ interval matrices then usual interval matrix addition is the operation. If $\mathrm{m} \neq \mathrm{n}$ multiplication cannot be adopted for interval matrices. If $\mathrm{m}=\mathrm{n}$ then the interval matrix can have either addition or multiplication.

Thus we have these mixed n-interval structures to function as dynamical systems in the mathematical modeling.

## Chapter Three

## Applications of Interval Structures and N-Interval Structures

These n-interval structures and biinterval structures are newly introduced in this book. A few of the probable applications are mentioned in this chapter.

1. Some of these interval structures can be adopted in finite interval analysis.
2. If the experts wants more than one approximate solution or if the experts are interested in appropriate solution with some possible flexibility these interval structures can be used. For the experts can have the liberty to choose the
appropriate solution from the interval than forcefully accepting the approximate solution.
3. The introduction of n-interval matrix loops, (groupoids or groups or semigroups) gives the expert liberty to choose the suitable n-interval algebraic structure depending on the experiment / study. So non associative n-interval matrix algebraic structure would be a boon to them.
4. The $n$-interval $m \times s$ matrices with the operations defined on them can be used in interval stiffness matrix, which will yield an interval solution.
5. With the advent of computers several such models can be studied simultaneously using these n-interval matrix algebraic structures or mixed n-interval matrix algebraic structure.

## Chapter Four

## Suggested Problems

In this chapter we suggest around 295 problems for the reader some of which, are simple and some of them are difficult and some at research level.

1. Obtain some interesting properties about interval bisemigroups.
2. Let $S=S_{1} \cup S_{2}$ be a finite interval bisemigroup.
a. Can every interval bisubsemigroup divide the order of S?
b. Does a interval bisemigroup have in general interval bisubsemigroups which are not interval biideals?
3. Give an example of a non commutative interval bisemigroup of finite order.
4. Give an example of a commutative interval bisemigroup.
5. Does there exist a cyclic interval bisemigroup?
6. Is $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\} \cup\{\mathrm{S}<\mathrm{X}>/ \mathrm{X}=([0$, $\left.\left.\left.a_{1}\right],\left[0, a_{2}\right],\left[0, a_{3}\right]\right)\right\}$ a finite interval bisemigroup?
a. Find interval subbisemigroups in S .
b. Prove S has interval biideal!
c. Does $S$ contain interval bisubsemigroups which are not ideals?
7. Does there exist an interval bisemigroup which has no interval biideals?
8. Does there exist an interval bisemigroup of prime order? Justify your answer.
9. Does there exist an interval bisemigroup in which every interval bisubsemigroup is an interval biideal?
10. Find only left biideals of $S=S_{1} \cup S_{2}=\left\{S(\langle X\rangle) / X=\left(\left[0, a_{1}\right]\right.\right.$, $\left.\left.\left[0, \mathrm{a}_{2}\right],\left[0, \mathrm{a}_{3}\right]\right)\right\} \cup\left\{\mathrm{S}(\langle\mathrm{Y}\rangle)\right.$ where $\mathrm{Y}=\left\{\left(\left[0, \mathrm{~b}_{1}\right], \ldots,\left[0, \mathrm{~b}_{8}\right]\right)\right\}$ the interval bisemigroup (symmetric bisemigroup).
a. Show every left biideal in general is not a right
b. biideal.
c. Can $S$ have two sided interval biideals?
d. Can S have interval bisubsemigroups which are not interval biideals?
11. Give an example of an interval bisemigroup which has no interval bizero divisors.
12. Does there exist interval bisemigroups which are interval idempotent bisemigroups?
13. Give an example of an interval bisemigroup which has no non trivial idempotents.
14. Give an example of a bisemigroup which has non trivial zero divisors.
15. Give an example of an interval bisemigroup which has no zero divisors and no idempotents.
16. Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{450}, \times\right\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{41}, \times\right\}$ be an interval bisemigroup.
a. Can S have S-zero divisors?
b. Is S a S-interval bisemigroup?
c. Can S have S-interval biideals?
d. Can S have S-interval bisubsemigroups?
e. Give at least an interval biideal which is not an S-interval biideal.
f. Can S have S-idempotent?
17. Give an example of a interval bisemigroup which is not an Sinterval bisemigroup.
18. Prove the class of special symmetric biinterval semigroups are always S-interval semigroups.
19. $C$ Can $S=S_{1} \cup S_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{19},+\right\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{43},+\right\}$ the interval bisemigroup be a S-interval bisemigroup?
20. Show if in problem (19) + is replaced by $\times S$ is a S-interval bisemigroup.
21. Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{420}, \times\right\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{240}, \times\right\}$ be an interval bisemigroup.
a. Find all bizero divisors of S .
b. Does S have S-bizero divisors?
c. Find all biidempotents of $S$.
d. Can S have S-biidempotents?
e. Find atleast 5 biideals of $S$.
f. Can S have S-biideals?
g. Can S have S-interval bisemigroups which are not S ideals?
h. Can S have S-interval bisubsemigroups?
i. Can S have binilpotents?
22. Let $S=S_{1} \cup S_{2}$ be a quasi interval bisemigroup. Obtain some properties enjoyed by these algebraic structures which are not enjoyed by the interval bisemigroups.
23. Let $S=S_{1} \cup S_{2}=\left\{Z_{30}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}\right\}$ be a quasi interval bisemigroup.
a. Is S a S-quasi interval bisemigroup?
b. Can S have S-interval biideals?
c. Can S have S -interval bisubsemigroups?
d. Find quasi interval bisubsemigroup in $S$.
e. Find quasi interval biideals in S which are not S-ideals?
f. Can S have S-zero divisors?
g. Can S have S-idempotents?
24. Let S and G be any two interval bisemigroups. Define a interval bisemigroup homomorphism from S to G . Is it always possible to define bikernel of an interval bisemigroup homomorphism? Justify!
25. Let $S=S_{1} \cup S_{2}=\left\{[0, a] / \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}, \times\right\} \cup\{[0, \mathrm{~b}] / \mathrm{b} \in$ $\left.\mathrm{Z}_{244}, \times\right\}$ be an interval bisemigroup.
a. Define $\eta: S \rightarrow S$ so that $\eta$ is an interval bisemigroup homomorphism such that $\eta$ has a nontrivial bikernel.
b. Define $\eta: S \rightarrow S$ so that $\eta$ is one to one but different from identity bihomomorphism.
c. Is biker $\eta=$ ker $\eta_{1} \cup$ ker $\eta_{2}$ where $\eta_{i}: S_{i} \rightarrow S_{i}, 1 \leq i \leq 2$, an interval biideal of $S$. Illustrate this situation by an example.
26. Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in 3 \mathrm{Z}^{+} \cup\{0\}, \times\right\} \cup\{[0, \mathrm{~b}] / \mathrm{b} \in$ $\left.5 Z^{+} \cup\{0\}, \times\right\}$ be an interval bisemigroup under multiplication.
a. Is S a S-interval bisemigroup?
b. Does S have S-interval biideals?
c. Can S have S-bizero divisors?
27. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\mathrm{S}(\mathrm{X}) \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{43}, \times\right\}$ where $\mathrm{X}=$ $\left\{\left(\left[0, a_{1}\right],\left[0, a_{2}\right], \ldots,\left[0, a_{11}\right]\right)\right\}$ be an interval bisemigroup.
a. Find the order of G.
b. Does the biorder of every interval bisubsemigroup divide the biorder of the interval bisemigroup?
c. Does G have S-interval biideals?
d. Is G a S-interval bisemigroup?
e. Can $S$ have biideals which are not S-biideals?
28. Obtain some interesting properties related with the interval bisemigroup.
(Properties like S-Lagrange, S-p-Sylow, S-Cauchy,...)
29. Does there exist an interval bisemigroup in which every element is S-Cauchy?
30. What is the marked difference between a S-interval bisemigroup and interval bisemigroup?
31. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}$ be any S-interval matrix bisemigroup. Can S have S biideals?
32. Let $\left.\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{\begin{array}{ll}{\left[\begin{array}{ll}{[0, \mathrm{a}]} & {[0, \mathrm{~b}]} \\ {[0, \mathrm{c}]} & {[0, \mathrm{~d}]}\end{array}\right]}\end{array}\right] \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{Z}^{+} \cup\{0\}, \mathrm{x}\right\}$
$\cup\left\{\begin{array}{l}\left.\left.\left[\begin{array}{l}{[0, a]} \\ {[0, b]} \\ {[0, c]} \\ {[0, d]}\end{array}\right] \right\rvert\, a, b, c, d \in Z^{+} \cup\{0\},+\right\} \text { be an interval }, ~\end{array}\right.$
bisemigroup.
a. Does S have S-interval biideals?
b. Can $S$ have S-zero divisors?
c. Can $S$ have interval bisemigroups which are not S-
d. interval bisemigroups?
33. Let $S=S_{1} \cup S_{2}=\left\{\left(\left[0, a_{1}\right],\left[0, a_{2}\right], \ldots,\left[0, a_{11}\right]\right) / a_{i} \in Z_{27}, \times\right\} \cup$ $\left.\left.\left\{\begin{array}{llll}{\left[0, a_{1}\right]} & {\left[0, a_{2}\right]} & {\left[0, a_{3}\right]} & {\left[0, a_{4}\right]} \\ {\left[0, a_{5}\right]} & {\left[0, a_{6}\right]} & {\left[0, a_{7}\right]} & {\left[0, a_{8}\right]}\end{array}\right] \right\rvert\, a_{i} \in Z_{45},+, 1 \leq i \leq 8\right\}$ be an interval bisemigroup.
a. Find the biorder of S.
b. Can S satisfy the modified form of S-Lagrange theorem?
c. Can $S$ have S-biideals?
d. Can $S$ have S-zero divisors?
34. Let $\left.\left.G=G_{1} \cup G_{2}=\left\{\begin{array}{ll}{\left[0, a_{1}\right]} & {\left[0, a_{2}\right]} \\ {\left[0, a_{3}\right]} & {\left[0, a_{4}\right]} \\ {\left[0, a_{5}\right]} & {\left[0, a_{6}\right]} \\ {\left[0, a_{7}\right]} & {\left[0, a_{8}\right]}\end{array}\right] \right\rvert\, a_{i} \in Z^{+} \cup\{0\},+\right\} \cup$
$\left\{\left.\left[\begin{array}{llll}{\left[0, a_{1}\right]} & {\left[0, a_{2}\right]} & \ldots & {\left[0, a_{9}\right]} \\ {\left[0, a_{10}\right]} & {\left[0, a_{11}\right]} & \ldots & {\left[0, a_{18}\right]}\end{array}\right] \right\rvert\, \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\},+\right\}$ be an interval matrix bisemigroup.
a. Show G is of infinite order.
b. Can G have S-biideals?
c. Can G have S-zero divisors or just zero divisors?
35. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\{$ Set of all $5 \times 5$ interval matrices with intervals of the form $\left[0, a_{1}\right]$ where $\left.a_{i} \in Z_{5}\right\} \cup\{$ set of all $6 \times 6$ interval matrices with intervals of the form $\left[0, a_{i}\right]$ where $a_{i} \in$ $\left.\mathrm{Z}_{4}\right\}$ be an interval matrix bisemigroup.
a. Find the biorder of G .
b. Is $P=P_{1} \cup P_{2}=\{$ set of all $5 \times 5$ interval diagonal matrices with intervals of the form [0, a] where $\left.a \in Z_{5}\right\} \cup$ \{set of all diagonal $4 \times 4$ interval matrices with intervals of the form $\left[0, a_{i}\right]$ where $\left.a_{i} \in Z_{4}\right\} \subseteq G_{1} \cup G_{2}$ an $S$ biideal of G?
c. If diagonal interval matrices in P are replaced by upper triangular interval matrices will that structure be an interval biideal? Justify.
d. Can G have S-bizerodivisors?
e. Can $G$ have biidempotents?
f. Can G have S-binilpotents?
g. Can G have S-Cauchy bielements?
36. Give some interesting properties enjoyed by interval matrix bisemigroups which are not in general true for interval bisemigroups.
37. Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{\sum_{\mathrm{i}=0}^{8}[0, \mathrm{a}] \mathrm{x}^{\mathrm{i}} / \mathrm{a} \in \mathrm{Z}_{9},+\right\} \cup$ $\left\{\sum_{i=0}^{12}[0, b] x^{i} / b \in Z_{12},+\right\} \quad$ be $\quad$ an interval polynomial
bisemigroup.
a. Find biideals if any in S .
b. What is the biorder of $S$ ?
c. Does S contain any Cauchy bielement?
d. Is S a S-interval polynomial bisemigroup?
e. Can S have S -biidempotents?
38. Let $G=\left\{\sum_{i=0}^{\infty}[0, a] x^{i} / a \in Z_{40}, ' x^{\prime}\right\} \cup\left\{\sum_{i=0}^{\infty}[0, b] x^{i} / b \in Z_{25}, ' \times '\right\}$ be an interval bisemigroup.
a. Prove G is of infinite biorder.
b. Find some interval biideals in G.
c. Can G have S-biideals?
d. Can G have S-bizero divisors?
39. Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{\sum_{\mathrm{i}=0}^{5}[0, \mathrm{a}] \mathrm{x}^{\mathrm{i}} / \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\},+\right\} \cup$ $\left\{\sum_{\mathrm{i}=0}^{\infty}[0, \mathrm{~b}] \mathrm{x}^{\mathrm{i}} / \mathrm{b} \in \mathrm{Z}_{12}\right\}$ be an interval polynomial bisemigroup.
a. Find the biorder of S.
b. Find biideals and S-biideals in S.
c. Find interval subbisemigroups which are not biideals of S.
40. Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{40}, \times\right\} \cup$ $\left\{\sum_{i=0}^{3}[0, a] x^{i} / a \in Z_{12}, '+'\right\}$ be an interval bisemigroup.
a. Find the biorder of $S$.
b. Does S satisfy the S-Lagrange theorem for
c. bisemigroups?
d. Can S satisfy the S-Cauchy theorem?
e. Can S have S-bizero divisors?
41. Let $S=S_{1} \cup S_{2}=\left\{\left.\left[\begin{array}{c}{[0, a]} \\ {[0, b]} \\ {[0, c]} \\ {[0, d]}\end{array}\right] \right\rvert\, a, b, c, d \in Z_{14},+\right\} \cup\{[0, a] / a \in$
$\left.\mathrm{Z}_{12}, \times\right\}$ be an interval bisemigroup.
a. What is the order of $S$ ?
b. Can $S$ have $S$ interval bisubsemigroups?
c. Find S-bizero divisors if any in $S$.
d. Can $S$ have S-biidempotents?
42. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\{$ All $8 \times 8$ interval matrices with intervals of the form $\left.[0, a] / a \in Z_{2}, x\right\} \cup\left\{\sum_{i=0}^{9}\left[0, a_{i}\right] x^{i} / a_{i} \in Z_{2},+\right\}$ be an interval bisemigroup.
a. Prove G is of finite biorder.
b. Find the biorder of G.
c. Can G have S-zero divisors?
d. Can $G$ have biideals which are not S-biideals?
e. Can G have bizero divisors which are not S-bizero divisors?
43. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12}, \times\right\} \cup\{$ All $7 \times 1$ interval column matrices with entries from $\left.\mathrm{Z}_{3}\right\}$ be an interval bisemigroup.
a. What is the biorder of G ?
b. Find atleast 4-interval sub bisemigroups.
c. Is G a S-interval bisemigroup?
d. Can G have S-interval biideals? Justify.
44. Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{\sum_{\mathrm{i}=0}^{\infty}[0, \mathrm{a}] \mathrm{x}^{\mathrm{i}} / \mathrm{a} \in \mathrm{Z}_{2}\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{7}\right\}$ be an interval bisemigroup. Enumerate the properties enjoyed by S.
45. Give an example of a bisimple interval bisemigroup.
46. Give an example of a S-bisimple interval bisemigroup.
47. Is a S-bisimple interval bisemigroup bisimple? Justify.
48. Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\left\{([0, \mathrm{a}],[0, \mathrm{~b}]) / \mathrm{a}, \mathrm{b} \in \mathrm{Z}_{15}, \times\right\} \cup\{([0, \mathrm{a}]$, $\left.[0, b],[0, c],[0, d]) / a, b, c, d \in Z_{12}\right\}$ be an interval semigroup.
a. What is the order of $S$ ?
b. Find bizero divisor and S-bizero divisor in S?
c. Can $S$ have S-biideals?
d. Is every biideal a S-biideal? Justify!
49. Does there exist an interval bisemigroup of order 47? Justify!
50. Give an example of an interval bisemigroup of order 1048.
51. What are the special properties enjoyed by interval bigroupoids?
52. Give conditions under which an interval bigroupoid G is a Sinterval bigroupoid.
53. Give an example of an interval bigroupoid which is not a Sinterval bigroupoid.
54. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12},(3,2), *\right\} \cup\{[0, \mathrm{~b}] / \mathrm{b} \in$ $\left.\mathrm{Z}_{9}, *,(8,0)\right\}$ be an interval bigroupoid.
a. What is the biorder of G?
b. Find S-interval bisubgroupoid in G.
c. Is every interval bisubgroupoid in G a S-interval
d. subbigroupoid?
55. Let $\mathrm{G}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{7},{ }^{*},(1,4)\right\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{11}, *\right.$, $(2,3)\}$ be an interval bigroupoid.
a. Find the biorder of G.
b. Does G have interval subbigroupoid?
c. Can $G$ have bizero divisors?
d. Is G commutative?
e. Is G a S-interval bigroupoid?
f. Does the biorder of interval subbigroupoid divide
g. biorder of G?
56. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\}, *,(3,2)\right\} \cup\{[0, \mathrm{a}] /$ $\left.a \in 3 Z^{+} \cup\{0\}, *,(0,30)\right\}$ be an interval bigroupoid.
a. Prove G is of infinite biorder.
b. Find interval bisubgroupoids if any in G.
c. Does G have S-interval subbigroupoids?
d. Is G a S-interval bigroupoid?
e. Can G satisfy any of the well known identities?
57. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{41},{ }^{*},(3,9)\right\} \cup\{[0, \mathrm{~b}] / \mathrm{b} \in$ $\left.\mathrm{Z}_{43},{ }^{*},(3,9)\right\}$ be an interval bigroupoid.
a. Find biorder of G.
b. Can G have interval bisubgroupoids?
c. Is G a S-interval bigroupoid?
d. Is G a S-interval P-bigroupoid?
e. Is G commutative?
f. Can G have S-interval subbigroupoids?
58. Let $\mathrm{G}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{R}^{+} \cup\{0\}, *,(8,3)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Q}^{+} \cup\right.$ $\{0\}, *,(7,11)\}=\mathrm{G}_{1} \cup \mathrm{G}_{2}$ be an interval bigroupoid.
a. Prove G is infinite.
b. Enumerate all properties enjoyed by G.
c. Is G a S-interval bigroupoid?
d. Can $G$ have S-interval bisubgroupoids?
59. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{19},(11,9), *\right\} \cup\{[0, \mathrm{~b}] / \mathrm{b} \in$ $\left.\mathrm{Z}_{11},(7,5), *\right\}$ be an interval bigroupoid. Find all the special properties enjoyed by $G$.
60. Does there exist an interval bigroupoid which is not an Sinterval bigroupoid?
61. Does there exists an interval bigroupoid in which all interval bisubgroupoids are S-interval subbigroupoids?
62. Give an example of an interval Bol bigroupoid.
63. Give an example of an S-strong interval Bol bigroupoid.
64. Give an example of a S-Bol interval bigroupoid.
65. Give an example of an interval bigroupoid of order 218.
66. Does there exist an interval bigroupoid of order 23? Justify your answer.
67. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12}\right.$, *, $\left.(2,6)\right\} \cup\{[0, \mathrm{~b}] / \mathrm{b} \in$ $\left.\mathrm{Z}_{20}, *,(10,2)\right\}$ be an interval bigroupoid. Can G have an interval subbigroupoid H so that o (H) / o (G) ?
68. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{19}, *,(3,2)\right\} \cup\{[0, \mathrm{~b}] / \mathrm{b} \in$ $\left.\mathrm{Z}_{43},{ }^{*},(11,3)\right\}$ be an interval bigroupoid. Does G contain an interval subbigroupoid $H$ such that $o(H) / o(G)$ ?
69. Give an example of an interval bigroupoid which has no Sinterval subbigroupoids.
70. Give an example of an interval bigroupoid which has no interval normal subbigroupoids.
71. Give an example of an interval bigroupoid which is an interval normal bigroupoid.
72. Give an example of an interval bigroupoid which is a Moufang interval bigroupoid.
73. Give an example of an interval bigroupoid $G$ in which every interval subbigroupoid is a S-Moufang interval bigroupoid but G is not a Moufang interval bigroupoid.
74. Suppose $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}$ be an interval bigroupoid of order p . q , where p and q are two distinct primes, Can G be an interval alternative bigroupoid?
75. Determine some important and interesting properties enjoyed by interval bigroupoids of order pq where p and q are primes.
76. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{18}, *,(3,0)\right\} \cup\{[0, \mathrm{~b}] / \mathrm{b} \in$ $\left.\mathrm{Z}_{36},{ }^{*},(0,5)\right\}$ be an interval bigroupoid. What are the special properties enjoyed by G?
77. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{43},{ }^{*},(7,0)\right\} \cup\{[0, \mathrm{~b}] / \mathrm{b} \in$ $\mathrm{Z}_{47}$, , ( 0,7 ) $\}$ be an interval bigroupoid.
a. Is $G$ left alternative?
b. Can G be alternative?
c. Is G a P-interval bigroupoid?
d. Can $G$ be a S-interval bigroupoid? Justify all your claims.
78. Give an example of an interval bigroupoid which has no zero divisors.
79. Give an example of an interval bigroupoid which has every element to be an idempotent.
80. Give an example of an interval bigroupoid which has biidentity.
81. Does there exist an interval bigroupoid in which every interval subbigroupoid is an interval bisemigroup?
82. Does there exist an interval bigroupoid in which no interval subbigroupoid is an interval bisemigroup? If that is the case what is the speciality of that interval bigroupoid?
83. Define the notion of finite biorder of elements in an interval bigroupoid and illustrate them with an example.
84. Let $\mathrm{G}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{20},{ }^{*},(3,3)\right\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{13}, *,(10\right.$, 10) \} be an interval bigroupoid.
a. Is G an interval bisemigroup?
b. Can G has non associative triples?
c. Can G have interval subbigroupoids?
d. Is G a S-interval bigroupoid?
e. Does G satisfy any of the special identities?
85. Give an example of an interval bigroupoid which is right alternative but not left alternative.
86. Give an example of a commutative interval bigroupoid.
87. Give an example of an S-interval inner commutative bigroupoid.
88. Give an example of an interval P-bigroupoid.
89. Prove there exist an infinite class of interval bigroupoids of finite order.
90. Prove there does not exist an interval bigroupoid of prime order.
91. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{11}, *,(3,2)\right\} \cup$ $\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{42},{ }^{*},(7,4)\right\}$ and $\mathrm{H}=\mathrm{H}_{1} \cup \mathrm{H}_{2}=\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\mathrm{Z}_{11}, *,(5,7)\right\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{42},{ }^{*},(3,2)\right\}$ be two interval bigroupoids.
(i) How many distinct homomorphisms from G to H exist?
(ii) Can ever G be isomorphic with H?
92. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in 3 \mathrm{Z}^{+}, *,(3,2)\right\} \cup$ $\left\{[0, b] / b \in 5 Z^{+},{ }^{*},(3,2)\right\}$. Is $G$ an interval bigroupoid? Prove your claim.
93. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{49}, *,(7,0)\right\} \cup$ $\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{25},{ }^{*},(5,0)\right\}$ be an interval bigroupoid. Does G enjoy any special property?
94. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{7},{ }^{*},(3,2)\right\} \cup\{[0, \mathrm{~b}] / \mathrm{b} \in$ $\left.\mathrm{Z}_{7},{ }^{*},(2,3)\right\}$ be an interval bigroupoid. Does G have any special property associated with it?
95. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{24}, *,(11,13)\right\} \cup$ $\left\{\mathrm{a} / \mathrm{a} \in \mathrm{Z}_{40},{ }^{*},(7,3)\right\}$ be an interval quasi bigroupoid.
(i) Is $G$ a $S$-quasi interval bigroupoid?
(ii) Can G have S-quasi interval subbigroupoids?
96. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}^{+} \cup\{0\},{ }^{*},(3,2)\right\} \cup\{\mathrm{x} / \mathrm{x}$ $\left.\in \mathrm{Q}^{+} \cup\{0\}, *,(3,29)\right\}$ be a quasi interval bigroupoid.
a. Can $G$ be a S-quasi interval bigroupoid?
b. Does $G$ satisfy any of the special identities?
c. Does G contain quasi interval subbigroupoids?
d. Give any of the special features enjoyed by G.
97. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{9},{ }^{*},(4,4)\right\} \cup\{\mathrm{a} / \mathrm{a} \in \mathrm{R}$, *, $(\sqrt{3}, 2)\}$ be a quasi interval bigroupoid.
a. Does G have S-quasi interval S subbigroupoids?
b. Can $G$ satisfy any one of the special identities?
98. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{\left(\left[0, \mathrm{a}_{1}\right],\left[0, \mathrm{a}_{2}\right],\left[0, \mathrm{a}_{3}\right],\left[0, \mathrm{a}_{4}\right]\right) / \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{14}\right.$, $\left.{ }^{*},(3,7), 1 \leq \mathrm{i} \leq 4\right\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{43},{ }^{*},(3,7)\right\}$ be an interval bigroupoid. Mention atleast two special features satisfied by G.
99. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{\sum_{\mathrm{i}=0}^{\infty}[0, \mathrm{a}] \mathrm{x}^{\mathrm{i}} / \mathrm{a} \in \mathrm{Z}_{11}, *,(3,2)\right\} \cup\{[0, \mathrm{a}] /$ $\mathrm{a} \in \mathrm{Z}_{3}$, ,,$\left.(1,2)\right\}$ be an interval bigroupoid.
$\left(\operatorname{In} \mathrm{G}_{1} ;\left([0, \mathrm{a}] \mathrm{x}^{\mathrm{i}}\right) *\left([0, \mathrm{~b}] \mathrm{x}^{j}\right)=[0, \mathrm{a} * \mathrm{~b}] \mathrm{x}^{\mathrm{i}+\mathrm{j}}=[0,3 \mathrm{a}+2 \mathrm{~b}\right.$ $(\bmod 11)] \mathrm{x}^{\mathrm{i}+\mathrm{j}}$ extended for any sum).
a. Is G a S -interval bigroupoid?
b. Can $G$ have interval subbigroupoids?
c. Does G satisfy any special identities?
100. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}$ be an interval semigroup-groupoid. Analyse the properties specially enjoyed by G .
101. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{40}, \times\right\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{40}\right.$, , , $(7,11)\}$ be an interval semigroup-groupoid.
a. Is G a S-interval semigroup-groupoid?
b. Can $G$ have interval subsemigroup-subgroupoid $H$ such that o(H) / o (G)?
102. Give an example of a S-interval semigroup-groupoid.
103. Give an example of an interval semigroup-groupoid which is not a S-interval semigroup-groupoid.
104. Does there exist an interval semigroup-groupoid in which every interval subsemigroup-subgroupoid is a S-interval subsemigroup-subgroupoid?
105. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{14}, *,(3,2)\right\} \cup\{\mathrm{S}(\mathrm{X})\}$ be an interval groupoid - semigroup where $\mathrm{X}=\left(\left[0, \mathrm{a}_{1}\right],\left[0, \mathrm{a}_{2}\right], \ldots\right.$, [0, $\left.\mathrm{a}_{7}\right]$ );
a. Find the biorder of $G$.
b. Is G a S-interval groupoid-semigroup?
c. Does G have S-interval subgroupoid-subsemigroup?
d. Does G contain interval bisubsemigroup?
106. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{\sum_{\mathrm{i}=0}^{8}\left[0, \mathrm{a}_{\mathrm{i}}\right] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{15},+\right\} \cup\{[0, \mathrm{a}] / \mathrm{a} \in$ $\left.\mathrm{Z}_{15}, *,(2,7)\right\}$ be an interval semigroup-groupoid.
a. What is the biorder of G?
b. Can $G$ have S-interval subsemigroup-subgroupoid?
107. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{16}, *,(3,7)\right\} \cup$ $\left\{[0, a] / a \in Z_{16}, \times\right\}$ be an interval semigroup-groupoid.
Enumerate some of the special properties enjoyed by G.
108. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\mathrm{Z}_{12}(3,7) \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12}, \times\right\}$ be a quasi interval groupoid-semigroup.
a. Is G a S-quasi interval groupoid-semigroup?
b. What is the biorder of G?
c. Does $G$ have any proper bistructures?
109. Let $G=G_{1} \cup G_{2}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 23\}, *, 3\} \cup\{[0$, a] / a $\left.\in\{e, 1,2, \ldots, 11\},{ }^{*}, 3\right\}$ be a biinterval loop or interval biloop.
a. What is the biorder of G?
b. Is G a S-interval biloop?
c. Can G have S-interval subbiloop?
d. Is G S-bisimple?
e. Does G satisfy any one of the special identities?
f. Does G satisfy in particular right alternative condition?
110. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 43\} *, 7\} \cup\{[0$, $b] / b \in\{e, 1,2,3,4, \ldots, 13\}, *, 7\}$ be an interval biloop.
a. What is the biorder of G?
b. Is G commutative?
c. Is G S-Lagrange?
d. Is G a S-2-Sylow?
e. Can G have substructures other than biorder 4? Justify all your claims.
111. Give an example of an interval biloop which is not a Sinterval biloop.
112. Let $G=G_{1} \cup G_{2}$ be an interval biloop where $G_{1}=\{[0, a] / a$ $\in\{e, 1,2, \ldots, 45\},(23), *\}$ and $G_{2}=\{[0, b] / b \in\{e, 1,2, \ldots$, 55\}, *, 13\};
a. Find all interval bisubloops of G.
b. Prove all interval bisubloops of G are also S-interval bisubloops.
c. Prove G is also an S-interval biloop.
d. Does G satisfy any one of the special identities?
113. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}$ be an interval biloop where $\mathrm{G}_{1} \cup \mathrm{G}_{2}=\{[0$, a] $/ a \in\{e, 1,2, \ldots, 19\}, *, 18\} \cup\{[0, b] / b \in\{e, 1,2, *$, 43\}, *, 12\}.
a. Does G satisfy any one of the special identities?
b. Prove $G$ has no S-interval bisubloops or interval bisubloops.
c. Can $G$ be interval biloop which is bisimple?

Justify your answers.
114. Let $G=G_{1} \cup G_{2}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 47\}, *, 12\} \cup$ $\mathrm{L}_{25}(7)$ be a quasi interval biloop.
a. Is G a S-quasi interval biloop?
b. Is G a S-strong Moufang quasi interval biloop?
115. Give an example of a Moufang interval biloop.
116. Give an example of a right alternative interval biloop.
117. Give an example of a Jordan interval biloop.
118. Give an example of an interval Burck biloop.
119. Give an example of an interval P-biloop.
120. Give an example of an S-interval Moufang loop.
121. Give an example of a S-interval strongly cyclic biloop.
122. Is $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 13\},^{*}, 10\right\} \cup\{[0$, b] /b $\left.\in\{\mathrm{e}, 1,2, \ldots, 17\},{ }^{*}, 9\right\}$ an interval biloop? Is L a Sstrongly interval biloop?
123. Give an example of a S-strongly commutative interval biloop.
124. Give an example of a S-pseudo commutative interval biloop.
125. For the interval biloop $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots$, $29\}, *, 12\} \cup\left\{[0, b] / b \in\{e, 1,2, \ldots, 31\},{ }^{*}, 15\right\}$ find its principal biisotope.
Does it preserve the properties enjoyed by $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}$ ?
126. Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}$ be an interval biloop. Find $\mathrm{Z}(\mathrm{L})=$ $\mathrm{Z}\left(\mathrm{L}_{1}\right) \cup \mathrm{Z}\left(\mathrm{L}_{2}\right)$ where $\mathrm{L}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 23\}$, *, $22\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 29\},{ }^{*}, 28\right\}$.
127. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}$ be an interval biloop, where $\mathrm{G}_{1}=\{[0, \mathrm{a}] / \mathrm{a}$ $\in\{e, 1,2, \ldots, 47\}, *, 43\}$ and $G_{2}=\{[0, a] / a \in\{e, 1,2, \ldots$, $\left.43\},{ }^{*}, 42\right\}$. Is G a S-Lagrange interval biloop?
128. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\mathrm{L}_{7}(4) \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 7\}$, , 5$\}$ be a quasi interval biloop. Find the right regular birepresentation of L .
129. Obtain some interesting properties enjoyed by interval biloops.
130. Obtain the special properties related with S-interval biloops.
131. Obtain some interesting properties related with quasi interval biloops.
132. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\mathrm{L}_{23}(9) \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{40}, \times\right\}$ be a quasi interval loop - semigroup.
a. Find the biorder of G.
b. Find substructure of G.
133. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 27\}, 11\} \cup\{[0$, b] / $\left.b \in \mathrm{Z}_{42}, \times\right\}$ be an interval loop - semigroup.
a. Find interval subloop-subsemigroups of G .
b. Is G a S-interval loop-semigroup?
c. Does G have S-interval subloop-subsemigroup?
134. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\mathrm{L}_{17}(3) \cup\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 43\}$, *, 2\} be a quasi interval biloop.
a. Find $S(N(G))=S\left(N\left(G_{1}\right)\right) \cup S\left(N\left(G_{2}\right)\right)$.
b. $\quad$ Is $S Z(G)=S Z\left(G_{1}\right) \cup S Z\left(G_{2}\right)$ ?
135. Does there exist an interval biloop whose Smarandache binucleus is empty?
136. Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 15\},{ }^{*}, 2\right\} \cup\{[0$, b] / $\mathrm{b} \in\{\mathrm{e}, 1,2, \ldots, 45\}$, *, 8$\}$ be an interval biloop.
a. Find SZ $(\mathrm{L})=S Z\left(\mathrm{~L}_{1}\right) \cup S Z\left(\mathrm{~L}_{2}\right)$.
b. Is $\mathrm{SN}(\mathrm{L})=\mathrm{SN}\left(\mathrm{L}_{1}\right) \cup \mathrm{SN}\left(\mathrm{L}_{2}\right)$ ?
c. Determine an interval S-bisubloop $A=A_{1} \cup A_{2}$ of $L$ and find $\mathrm{SN}_{1}(\mathrm{~A})$ and $\mathrm{SN}_{2}(\mathrm{~A})$.
137. Is $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{6}\right.$, $\left.{ }^{*},(4,3)\right\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{6}\right.$, *, $(3,5)\}$ the interval bigroupoid a S-P-interval bigroupoid?
138. Give an example of a S-strong P-interval bigroupoid.
139. Give an example of a S-Bol interval bigroupoid.
140. Give an example of a S-strong right alternative interval bigroupoid.
141. Give an example of a S-strong Moufang interval loopgroupoid.
142. Give an example of a S-Bol interval loop-groupoid.
143. Characterize those interval bigroupoids which are S-strong Bol bigroupoids.
144. Give some special properties enjoyed by S-strong Moufang biloops.
145. Enumerate the properties enjoyed by S-strong idempotent interval bigroupoid.
146. Does there exist a S-strong Bol interval matrix bigroupoid? Illustrate your claim if it exists.
147. Does there exists a S-strong Moufang interval polynomial bigroupoid?
148. Give an example of a S-right alternative interval matrix bigroupoid.
149. Give an example of a S-strong quasi interval P-bigroupoid.
150. Prove $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{\mathrm{n}}, *,(\mathrm{t}, \mathrm{u})\right\} \cup$ $\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{\mathrm{m}},{ }^{*},(\mathrm{r}, \mathrm{s})\right\}$ is a S-alternative interval bigroupoid if and only if $\mathrm{t}^{2}=\mathrm{t}(\bmod \mathrm{n}), \mathrm{u}^{2}=\mathrm{u}(\bmod \mathrm{n}), \mathrm{s}^{2}=\mathrm{s}(\bmod m)$ and $\mathrm{r}^{2}=\mathrm{r}(\bmod m)$ with $\mathrm{t}+\mathrm{u}=1(\bmod \mathrm{n})$ and $\mathrm{s}+\mathrm{r}=1(\bmod$ m ). Illustrate this situation by an example.
151. Is the interval bigroupoid given in problem, (150) a S-strong Bol interval bigroupoid?
152. Is the interval bigroupoid $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{2 \mathrm{p}}\right.$, ${ }^{*}$, $(1,2)\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{2 \mathrm{q}}, *,(1,2)\right\}, \mathrm{p}$ and q two distinct primes a S-interval bigroupoid ?
153. Give an example of a S-interval bigroupoid which is not a Sinterval P-bigroupoid.
154. Give an example of an interval bigroupoid which is not a Sstrong Bol interval bigroupoid.
155. Give an example of a S-interval bigroupoid which is not an Sinterval idempotent bigroupoid.
156. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{20},+\right\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{42},+\right\}$ be an interval bigroup.
a. Verify whether Lagrange theorem for finite groups is satisfied by G.
b. Find all interval subbigroups of $G$.
c. Verify p-Sylow theorems for G.
157. Let $G=G_{1} \cup G_{2}=\left\{S_{X}, X=\left(\left[0, a_{1}\right], \ldots,\left[0, a_{7}\right]\right)\right\} \cup\{[0, \mathrm{a}] / \mathrm{a}$ $\left.\in \mathrm{Z}_{19} \backslash\{0\}, \times\right\}$ be an interval bigroup.
a. Prove G is non commutative.
b. Find normal interval bisubgroups of $G$.
c. Is Cauchy theorem for groups satisfied by G?
158. Obtain some interesting properties enjoyed by interval groups.
159. Can Lagrange theorem in general be true for interval bigroups of finite biorder?
160. Give an example of an interval bigroup which is bicyclic.
161. Can all the Sylow theorem be true in case of finite interval bigroups? Justify your answer.
162. Obtain the classical homomorphism theorems in case of interval bigroups.
163. Determine the conditions under which we can extend Cayleys theorem in case of interval bigroups.
164. Enumerate all classical properties which are not true in case of interval bigroups.
165. Define interval bigroup automorphisms. Is the collection of all interval bigroup automorphisms a bigroup? Justify your claim.
166. Can we derive all properties associated with cosets in case of groups in case of interval bigroup?
167. Define permutation birepresentation of an interval bigroup.
168. Suppose $\mathrm{G}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{\mathrm{p}},+\right\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{\mathrm{q}},+\right\}$, p and q primes be an interval bigroup. What is the special property enjoyed by it?
169. Define interval matrix bigroup. Illustrate it by an example.
170. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\mathrm{S}_{20} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{20}, \times\right\}$ be a quasi interval bigroup.
a. What is the order of G?
b. Find atleast 3 quasi bisubgroups of G .
c. Can $G$ have more than one quasi interval normal bisubgroup?
d. Is Lagrange theorem for finite groups true in case of the quasi interval bigroup $G$ ?
171. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=<\mathrm{g} / \mathrm{g}^{26}=1>\cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{13} \backslash\{0\}, \mathrm{x}\right\}$ be a quasi interval bigroup.
a. Find the order of G .
b. Prove G has quasi interval subbigroups and all of them are binormal in G .
172. Let $G=S_{5} \cup S_{x}$ where $\left.X=\left\{\left[0, a_{1}\right],\left[0, a_{2}\right],\left[0, a_{3}\right]\right\}\right\}$ be the quasi interval bigroup.
a. Find the biorder of G.
b. Find all quasi interval normal subbigroups of G .
c. Find the (p, q)-Sylow quasi interval bisubgroups of $G(p$ $=5$ and $\mathrm{q}=3$ ).
173. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{\mathrm{S}_{10}\right\} \cup\left\{\left.\left[\begin{array}{ll}{[0, \mathrm{a}]} & {[0, \mathrm{~b}]} \\ {[0, \mathrm{c}]} & {[0, \mathrm{~d}]}\end{array}\right] \right\rvert\, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{Z}_{20}\right.$ with $[0, a d]-[0, b c] \neq[0,0]$ that is $[0,(a d-b c)(\bmod 20)] \neq[0$, $0]$.
a. Is G a commutative quasi interval bigroup?
b. Find the biorder of G.
c. Can $G$ have quasi interval normal bisubgroups?
d. Find atleast 5 distinct quasi interval bisubgroups.
e. What is the biorder of them? Will their biorder divide the biorder of G?
174. Let $G=G_{1} \cup G_{2}=\left\{\left.A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right] \right\rvert\, \operatorname{det} A \neq 0 ; a, b, c, d, e\right.$,
$\left.f, g, h, i \in Z_{29}\right\} \cup\left\{\left.A=\left[\begin{array}{lll}{\left[0, a_{1}\right]} & {\left[0, a_{2}\right]} & {\left[0, a_{3}\right]} \\ {\left[0, a_{4}\right]} & {\left[0, a_{5}\right]} & {\left[0, a_{6}\right]} \\ {\left[0, a_{7}\right]} & {\left[0, a_{8}\right]} & {\left[0, a_{9}\right]}\end{array}\right] \right\rvert\, \operatorname{det} A \neq 0\right.$,
$\left.\mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{19}, 1 \leq \mathrm{i} \leq 9\right\}$. Is $G$ a quasi interval bigroup?
175. Does their exist a quasi interval bigroup $G$ of finite biorder which has a quasi interval subbigroup whose biorder does not divide the biorder of G? Justify your answer.
176. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{26},+\right\} \cup\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{26}, \times\right\}$ be an interval group-semigroup.
a. What is the biorder of G ?
b. Can Lagrange theorem for finite groups be true in case of this G?
c. Find atleast 2 interval subgroup-subsemigroup of G.
177. Let $G=G_{1} \cup G_{2}=\{$ All $3 \times 3$ interval matrices with intervals
 $+, 1 \leq \mathrm{i} \leq 4\}$ be an interval semigroup-group. Prove $G$ has infinite number of interval subsemigroup-subgroup.
178. Let $G=G_{1} \cup G_{2}=\left\{\sum_{i=0}^{7}[0, a] x^{i} / a \in Z_{15},+\right\} \cup\left\{\sum_{i=0}^{\infty}[0, a] x^{i} / a\right.$ $\left.\in \mathrm{Z}^{+} \cup\{0\}\right\}$ be an interval group- semigroup. Prove $G$ in problem (177) is different from G given in problem (178).
179. Let $G=G_{1} \cup G_{2}=\left\{\sum_{\mathrm{i}=0}^{\infty}[0, \mathrm{a}] \mathrm{x}^{\mathrm{i}} \mid \mathrm{a}_{\mathrm{i}} \in \mathrm{Z}^{+} \cup\{0\}\right\} \cup\left\{\sum_{\mathrm{i}=0}^{\infty}[0, \mathrm{a}] \mathrm{x}^{\mathrm{i}} \mid\right.$ $\left.\mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{48}\right\}$ be an interval bisemigroup. Find interval biideals of G. Does G contain an interval subbisemigroup which is not an interval biideal of G?
180. Let $G=\left\{\sum_{i=0}^{6}\left[0, a_{i}\right] x^{i} \mid a_{i} \in Z_{40}, x^{7}=1, \times\right\} \cup\{$ All $8 \times 8$ matrices $A$ with entries from $Z_{20}$ where $\left.|A| \neq 0\right\}$ be a quasi interval semigroup-group.
a. What is the biorder of G?
b. Find quasi interval subsemigroup-subsemigroups in G.
181. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}=\left\{<\mathrm{g} / \mathrm{g}^{20}=1>\cup\left\{\mathrm{S}_{\mathrm{X}}\right.\right.$ where $\mathrm{X}=\left(\left[0, \mathrm{a}_{1}\right]\right.$, $\left.\left.\left[0, \mathrm{a}_{2}\right], \ldots,\left[0, \mathrm{a}_{10}\right]\right)\right\}$ be a quasi interval bigroup.
a. What is the biorder of G?
b. Find quasi interval normal bisubgroups in G.
c. Using the quasi interval binormal bisubgroup. $\mathrm{H}=\left\{1, \mathrm{~g}^{4}\right.$, $\left.g^{8}, g^{12}, g^{16}\right\} \cup A(X)=H_{1} \cup H_{2} \subseteq G_{1} \cup G_{2}$, define the quasi interval quotient bigroup $G / H=G_{1} / H_{1} \cup G_{2} / H_{2}$. What is the biorder of G / H?
182. Describe any stricking property enjoyed by a quasi interval bigroupoid.
183. Find some dissimilarities between interval biloops and interval bigroupoids in general.
184. Determine some similarities between quasi interval bigroups and interval bigroups.
185. Find atleast one marked difference between a quasi interval semigroup and a quasi interval group semigroup.
186. Find some applications of interval bigroups.
187. How can interval biloops be used in the biedge colouring problems $\mathrm{K}_{2 \mathrm{n}} \cup \mathrm{K}_{2 \mathrm{~m}}$ ?
188. Can interval bigroupoids be used in biautomaton?
189. Will interval bisemigroups be used in bisemiautomaton so as to yield a better result?
190. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3}$ be a 3-interval groupoid or interval trigroupoid where $\mathrm{G}_{1}=\left\{[0, \mathrm{a}] \mid \mathrm{a} \in \mathrm{Z}_{11}, *,(3,2)\right\}, \mathrm{G}_{2}=\{[0, \mathrm{~b}]$ $/ \mathrm{b} \in \mathrm{Z}_{20}$, $\left.{ }^{*},(1,4)\right\}$ and $\mathrm{G}_{3}=\left\{[0, \mathrm{c}] / \mathrm{c} \in \mathrm{Z}_{40}\right.$, $\left.{ }^{*},(0,11)\right\}$. Find the triorder of the triinterval groupoid. Find substructures of G.
191. Obtain any interesting property associated with n-interval groupoids.
192. Give an example of a S-strong 5-interval Bol groupoid.
193. Give an example of a S-5-interval Bol groupoid.
194. Give an example of a 7-interval P-groupoid.
195. Does their exist a 8 -interval groupoid which is not a S-8interval groupoid?
196. Give an example of a 10 -interval groupoid which is not a Sstrong right alternative 10 -interval groupoid.
197. Give an example of a 5-interval groupoid which is a S-left alternative 5 -interval groupoid.
198. Give an example of a S-strong 4-interval Moufang groupoid.
199. Find a necessary and sufficient condition of a 7-interval groupoid to be a S-strong P-groupoid.
200. Give an example of a 3-interval idempotent groupoid.
201. Give an example of a 5-interval semigroup which has no 5interval ideals.
202. Give an example of a 12 -interval semigroup in which every 12 -interval subsemigroup is a 12 -interval ideal.
203. What makes the study of n-interval semigroups interesting?
204. Obtain some interesting results about $n$-interval groupoids ( n $>2$ ).
205. Characterize those n-interval groupoids which are not Smarandache n-interval groupoids.
206. Give an example of a 7-interval groupoid which is not a S-7interval groupoid.
207. Give an example of a 6-interval groupoid in which every 6interval subgroupoid is a S-6-interval subgroupoid.
208. Give an example of a 17 -interval groupoid G which has no S 17 interval subgroupoids but G is a S -17-interval groupoid.
209. Can these new structures be used in cryptography?
210. Give an example of a 3-interval semigroup which is a Sinterval semigroup.
211. Give an example of a 5-interval semigroup which is not a S-5interval semigroup.
212. Give an example of a n-interval semigroup ( $\mathrm{n}>2$ ) in which every n-interval subsemigroup is a S-n interval subsemigroup.
213. Give an example of a n-interval semigroup ( $\mathrm{n}>2$ ) in which every n-interval subsemigroup is a S-n-interval ideal.
214. Let $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4}$ be a 4-interval groupoid where $\mathrm{G}_{1}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{8},{ }^{*},(3,0)\right\} ; \mathrm{G}_{2}=\left\{[0, \mathrm{~b}] / \mathrm{b} \in \mathrm{Z}_{10},{ }^{*},(7\right.$, $0)\} ; \mathrm{G}_{3}=\left\{[0, \mathrm{c}] / \mathrm{c} \in \mathrm{Z}_{8},{ }^{*},(0,3)\right\}$ and $\mathrm{G}_{4}=\left\{[0, \mathrm{~d}] / \mathrm{d} \in \mathrm{Z}_{10}\right.$, *, (0, 7) $\}$.
a. What is the 4 -order of G ?
b. Find some 4-interval subgroupoids.
c. Is G a S-4-interval groupoid?
d. Does G satisfy any one of the special identities?
e. Can $G$ be have S-4-interval subgroupoids?
215. Let $G=G_{1} \cup G_{2} \cup G_{3}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12},(3,2), *\right\} \cup\{[0, \mathrm{~b}] /$ $\left.\mathrm{b} \in \mathrm{Z}_{12},(7,5),{ }^{*}\right\} \cup\left\{[0, \mathrm{c}] / \mathrm{c} \in \mathrm{Z}_{12},(8,11), *\right\}$ be a 3 interval groupoid?
a. Is G a S-3- interval groupoid?
b. Can G have S-3- interval subgroupoids?
c. Does G satisfy any one of the special identities?
d. Is G a normal 3-interval groupoid?
216. Obtain some interesting properties enjoyed by $n$ interval semigroups.
217. Does there exist a n-interval semigroup which is S-Lagrange n-interval semigroup?
218. Give an example of a n-interval semigroup which is not Sweakly Lagrange n-interval semigroup.
219. Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}=\left\{[0, a] / a \in Z_{11}, \times\right\} \cup\{[0, a] / a$ $\left.\in Z_{13}, x\right\} \cup\left\{[0, a] / a \in Z_{19}, x\right\} \cup\left\{[0, a] / a \in Z_{5}, x\right\}$ be a $4-$ interval semigroup.
a. What is the order of S ?
b. Prove S is a $\mathrm{S}-4$-interval semigroup.
c. Is S a S-weakly Lagrange 4-interval semigroup?
d. Is S a S-Lagrange 4 interval semigroup?
e. Find all the 4-interval subgroups in S.
220. Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5}=\left\{[0, a] / a \in Z_{22}, \times\right\} \cup\{[0$,
a] $\left./ \mathrm{a} \in \mathrm{Z}_{26}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{42}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{240}, \times\right\}$
$\cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{36}, \times\right\}$ be a 5 -interval semigroup.
a. Find the order of $S$.
b. Is S a S-5-interval semigroup?
c. Is S a S-Lagrange 4-interval semigroup?
d. Can S be only a S-weakly Lagrange 4-interval semigroup?
e. Find 4-interval zero divisors in S.
f. Does $S$ have 4-interval idempotents?
g. Does $S$ have 4 -interval units?
221. Illustrate by example a quasi n-interval semigroup which is Squasi $n$-interval semigroup but has no S-quasi n-interval subsemigroup.
222. Find all the zero divisors and idempotents and units in $\mathrm{S}=\mathrm{S}_{1}$ $\cup S_{2} \cup S_{3}=\left\{[0, a] / a \in Z_{24}, \times\right\} \cup\left\{Z_{28}, \times\right\} \cup\left\{[0, b] \mid b \in Z_{42}\right.$, $\times\}$, the quasi 3 -interval semigroup.
223. Give an example of a quasi $n$-interval semigroup in which every quasi $n$-interval subsemigroup is a S-quasi $n$-interval subsemigroup.
224. Give an example of a quasi n-interval semigroup which has no S - quasi n-interval ideals.
225. Enumerate all the special properties enjoyed by a quasi ninterval semigroup.
226. Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5}=\left\{Z_{8}, \times\right\} \cup\left\{[0, a] / a \in Z_{9}\right.$, $\times\} \cup\left\{\mathrm{Z}_{12}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{15}, \times\right\} \cup\left\{\mathrm{Z}_{18}, \times\right\}$ be a quasi $5-$ interval semigroup.
a. What is the order of S ?
b. Is S a S-Lagrange quasi 5 -interval semigroup?
c. Is S only a S-weakly Lagrange quasi 5-interval semigroup?
d. Is S a S-quasi 5-interval semigroup?
e. Is S a S-quasi 5 -interval cyclic semigroup?
f. Can $S$ be a $S$-p-Sylow 5 -quasi interval semigroup?
g. Find zero divisors, units and idempotents if any in S .
h. Does S have S-zero divisors, S-units and S-idempotents?
227. Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}$ be a quasi 4-interval semigroup where $S_{1}=S(3), S_{2}=S(7), S_{3}=S(5)$ and $S_{4}=\{S(X) / X=$ ( $\left.\left.\left[0, a_{1}\right],\left[0, a_{2}\right], \ldots,\left[0, a_{6}\right]\right)\right\}$.
a. Is S a S-Lagrange quasi 4-interval semigroup?
b. Is S a S-weakly Lagrange quasi 4 -interval
c. semigroup?
d. Find S-quasi 4 -interval subsemigroups of $S$ (if any).
e. Find S-quasi 4-interval ideals in S.
f. Does $S$ have zero divisors?
g. Find the set of all units in S .
h. Can S have S-units?
i. What is the order of S ?
228. Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5}=\left\{[0, a] / a \in 3 Z^{+} \cup\{0\}\right\} \cup$ $\left\{8 \mathrm{Z}^{+} \cup\{0\}, \times\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in 19 \mathrm{Z}^{+}\right\} \cup\left\{13 \mathrm{Z}^{+}, \times\right\} \cup\left\{11 \mathrm{Z}^{+}\right.$, $\times\}$ be a quasi 5 -interval semigroup.
a. Can $S$ have S-zero divisors?
b. Can $S$ have idempotents?
c. Is S a S -quasi 5 -interval semigroup?
d. Can $S$ have $S$-quasi 5 -interval ideals?
e. Find at least 2 quasi 5 -interval subsemigroups in S .
229. Let $\mathrm{S}=\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3} \cup \mathrm{~S}_{4} \cup \mathrm{~S}_{5}=\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{24}, \times\right\} \cup\left\{\mathrm{Z}_{30}\right.$, $\times\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{45}, \times\right\} \cup\left\{\mathrm{Z}_{120}, \times\right\} \cup\left\{\mathrm{Z}_{240}, \times\right\}$ be a quasi 5 -interval semigroup.
a. Find the order of S.
b. Can S have S-zero divisors?
c. Find quasi 5-interval ideals of S.
d. Is S a S-quasi 5 -interval semigroup?
e. Can $S$ have S -quasi 5 -interval ideals?
f. Can $S$ have quasi 5 -interval subsemigroups?
230. Let $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5}=\left\{Z_{12}, \times\right\} \cup\left\{[0, a] / a \in Z_{36}\right.$, $\times\} \cup S(5) \cup\{3 \times 3$ interval matrices with intervals of the form [0, a] where $\left.\mathrm{a} \in \mathrm{Z}_{24}\right\} \cup\{([0, \mathrm{a}][0, \mathrm{~b}],[0, \mathrm{c}]) / \mathrm{a}, \mathrm{b}, \mathrm{c} \in$ $\left.\mathrm{Z}_{10}, \times\right\}$ be a quasi 5 -interval semigroup.
a. What is the order of $S$ ?
b. Is S a S-quasi 5-interval semigroup?
231. Give an example of a Smarandache strong n-interval Bol loop.
232. Give an example of a S-quasi n-interval Bol loop.
233. Does there exist any n-interval Bruck loop of finite order?
234. Construct a n-interval $m \times s$ matrix loop which is a S-ninterval $\mathrm{m} \times \mathrm{s}$ matrix loop.
235. Show by an example all n-interval loop which is not a Smarandache n-interval loop.
236. Obtain some interesting applications of S-n-interval loop.
237. Derive some interesting properties about quasi n-interval loops of finite order.
238. Prove in general all n-interval loops are not S-strongly Lagrange n-interval loop.
239. Give an example of a S- Lagrange n-interval loop.
240. Is every n-interval loop a S-Cauchy loop?
241. Give an example of a 7-interval loop which is S-Cauchy loop.
242. Give an example of a quasi 8 -interval loop which is a S-2Sylow loop.
243. Give an example of a mixed 5-interval algebraic structure of finite order.
244. Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \ldots \cup \mathrm{~L}_{7}$ be a 7-interval loop built using $\mathrm{L}_{7}$ (5), $\mathrm{L}_{9}(5), \mathrm{L}_{13}(7), \mathrm{L}_{21}(11), \mathrm{L}_{43}$ (20), $\mathrm{L}_{25}$ (9) and $\mathrm{L}_{49}$ (9).
a. What is the order of L ?
b. Is L a S-strongly Lagrange?
c. Is L commutative?
d. Can L have 7-inteval subloops?
e. Is L a S-2-Sylow loop?
f. Can L have 7-interval normal subloop?
g. Is L S-simple.
h. Is $\mathrm{SN}_{1}(\mathrm{~L})=\mathrm{SN}_{2}(\mathrm{~L})$ ?
i. Does L satisfy any the well known identities?
j. Find the S-Moufang center of L .
k. Is L a power associative loop?
l. Prove L is a S-7-interval loop.
m . Can L have proper S-7-interval subloops?
245. Let $G=G_{1} \cup \mathrm{G}_{2} \cup \mathrm{G}_{3}=\{3 \times 2$ interval matrices with intervals of the form $\left.[0, \mathrm{a}], \mathrm{a} \in \mathrm{Z}_{22}, *,(10,0)\right\} \cup\{2 \times 4$ interval matrices with interval of the form $[0, \mathrm{a}]$ where $\mathrm{a} \in \mathrm{Z}_{12}$ under +$\} \cup\{3 \times 3$ interval matrices with intervals of the form $[0, \mathrm{a}], \mathrm{a} \in \mathrm{Z}_{8}$ under $\left.\times\right\}$ be a mixed 3 interval matrix algebraic structure.
a. Is $G$ commutative?
b. What is the order of G?
c. Find at least 3 substructures in G.
d. Does the substructure satisfy any well known classical theorems for finite groups?
246. Give an example of a 5-interval group-loop of order 256.
247. Give an example of a 3-interval groupoid-loop G of infinite order and such that $G$ is non commutative and has no substructures.
248. Give an example of a 8-interval groupoid-loop which is not a S-8-interval groupoid-loop.
249. Obtain some interesting applications of quasi n-interval groupoid-loops?
250. Find zero divisors and S-zero divisors of a 3-interval groupoid-semigroup G by constructing G of order 9.12.24.
251. Give an example of a n-interval semigroup which is not a S-ninterval semigroup.
252. Give an example of a quasi 18 -interval semigroup with out zero divisors.
253. Can n-interval semigroups constructed using special symmetric semigroups have zero divisors? Justify your claim.
254. Give an example of a quasi 4 -interval semigroup S using symmetric interval semigroups of order $3^{3}, 4^{4}, 2^{2}$ and $5^{5}$.
255. Does S in problem (254) S-Lagrange?
256. Does S in problem (254) S-quasi 4-interval symmetric semigroup?
257. Obtain atleast one quasi 5-interval semigroup which is not a S-quasi 5 -interval semigroup.
258. State and prove any interesting result on mixed quasi ninterval algebraic structure.
259. Can any mixed quasi n-interval algebraic structure be S-quasi n-interval algebraic structure? Justify your claim.
260. Give an example of a mixed quasi n-interval algebraic structure which has no mixed quasi n-interval algebraic substructure.
261. Does there exists a 5-interval loop which is not a S-Cauchy 5interval loop.
262. Give an example of S-Cauchy 6 -interval loop.
263. Give an example of a S-strong Lagrange 7-interval loop.
264. Give an example of a 5-interval loop which is not a SLagrange 5-interval loop.
265. Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4} \cup \mathrm{~L}_{5}=\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots .$, $\left.17,{ }^{*}, 10\right\} \cup \mathrm{L}_{13}(7) \cup \mathrm{Z}_{8}(3,4) \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{18}, *, 90,5\right\}$ $\cup\left\{[0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{12}, *,(0,5)\right\}$ be a 5 quasi interval loopgroupoid.
a. Find the order of $L$.
b. Is L a S-5-quasi interval loop-groupoid?
c. Does L satisfy any of the special identities?
d. Is L a S-strongly Moufang?
e. Obtain any other interesting property about L .
266. Obtain some interesting properties about n-quasi interval semigroup-groupoid.
267. Give an example of a quasi n-interval semigroup groupoid which is not a S-quasi interval semigroup-groupoid.
268. Can a n-interval loop of odd order exist?
269. Give an example of a 5 -interval loop of order 251.
270. Give an example of a n-interval groupoid - loop of order $2^{\mathrm{t}}$. (t is at the readers choice, $\mathrm{t}>\mathrm{n}$ )
271. Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3}$ be a 3-loop of order 16.18.20 built using $\mathrm{Z}_{15}, \mathrm{Z}_{17}$ and $\mathrm{Z}_{19}$.
a. Is L S-simple?
b. Is L S-Lagrange?
c. Prove L is S-Cauchy.
d. Is L S-strongly cyclic?
e. Does L have proper S-subloops?
272. Give an example of a 3-simple interval group.
273. Does there exists a 6-interval group which is non commutative of order |3. $12 \underline{\underline{5} .25 .29 .43 ? ~}$
274. Let $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2} \cup \mathrm{~L}_{3} \cup \mathrm{~L}_{4}=\{$ All $2 \times 2$ interval matrices with intervals of the form $[0, a]$ where $a \in Z_{12}$ under multiplication $\} \cup\left\{\left(\left[0, a_{1}\right]\left[0, a_{2}\right] \ldots\left[0, a_{5}\right]\right) \mid a_{i} \in\{e, 1,2, \ldots\right.$, $27\}, *, 11\} \cup\left\{\left[\begin{array}{l}{\left[0, a_{1}\right]} \\ {\left[0, a_{2}\right]} \\ {\left[0, a_{3}\right]}\end{array}\right] / a_{i} \in Z_{15}, *,(2,3) ; 1 \leq i \leq 3\right\} \cup\left(Z_{20}\right.$,
$\times$ ) be a quasi 4-interval mixed algebraic structure.
a. What is the order of $L$ ?
b. Find substructures of L.
275. Let $G=G_{1} \cup G_{2} \cup \mathrm{G}_{3} \cup \mathrm{G}_{4} \cup \mathrm{G}_{5}=\{3 \times 3$ interval matrices with intervals of the form $[0, \mathrm{a}]$ where $\mathrm{a} \in \mathrm{Z}_{12}$, under multiplication $\} \cup\{3 \times 5$ interval matrices with intervals of the form [0, a] where $\left.\mathrm{a} \in \mathrm{Z}_{40},+\right\} \cup\{1 \times 6$ interval matrices with intervals of the form [0, a] where $\left.\mathrm{a} \in \mathrm{Z}_{25}, \times\right\} \cup\{4 \times 3$ interval matrices with intervals of the form [0, a] where a $\in$ $\left.\mathrm{Z}_{120},+\right\} \cup\{2 \times 2$ upper triangular interval matrices with intervals of the form [0, a] where $\left.\mathrm{a} \in \mathrm{Z}_{21}, \times\right\}$ be a 5-interval semigroup.
a. What is the order of G?
b. Find substructures in G.
c. Find zero divisors in G.
d. Find S-zero divisors in G.
e. Find S-ideals if any in G.
f. Find S-subsemigroups which are not S-ideals if any
g. in G.
h. Find idempotents in G.
276. Give an example of a quasi mixed n-interval algebraic structure which does not have any substructure.
277. Give an example of a quasi mixed 5-interval algebraic structure which has atleast 3-substructures.
278. What is the order of $S=\left\{Z_{27}, x\right\} \cup\left\{\mathrm{Z}_{40},+\right\} \cup\{[0, a] / a \in$ $\left.\mathrm{Z}_{9},{ }^{*},(2,3)\right\} \cup\left\{[0, \mathrm{a}] / \mathrm{a} \in\{\mathrm{e}, 1,2, \ldots, 27\},{ }^{*}, 5\right\} \cup \mathrm{L}_{29}(7)$ ? Does $S$ have substructures?
279. Give an example of a 5-interval S-simple loop.
280. Give an example of a 6-interval simple group.
281. What can one say about homomorphism of 3-interval group into a 4-interval group? Illustrate this situation by some examples.
282. Give any nice application of n-interval groupoids.
283. Can n-interval semigroups be used in automaton construction? (Here interval solution for machines to be used)?
284. What is the application of n-interval loops in colouring problem of $\mathrm{K}_{2 \mathrm{n}}$ ?
285. Give an example of a n-interval loop which is has no Ssubloops.
286. Give any interesting applications of mixed n-interval matrix algebraic structure.
287. What can one say about applications of quasi mixed n-interval matrix algebraic structure?
288. Give any possible applications of n-interval matrix groupoids.
289. Can the notion of n-interval matrix groups help in any applications in physics?
290. What can one say about the applications of quasi n-matrix interval semigroups?
291. Determine those n-matrix interval semigroups which has no S-n-ideal.
292. Find some interesting applications of n-matrix interval groupoids built using $\mathrm{Z}_{\mathrm{n}}$ 's.
293. What is the benefit of using n-interval structures?
294. Find an example 7-interval groupoid-loop which is SMoufang.
295. Give an example quasi 6-interval loop-groupoid which is a SBol.
296. Give an example of a 5 -interval loop-groupoid which is Smarandache strong right alternative.
297. Obtain some special properties about S-strong Bol n-interval groupoid-loops which is not in general true for other ninterval groupoid-loops.
298. Give an example of a S-quasi 4-interval groupoid of order 420. How many such S-quasi 4-interval groupoids can be constructed using $\mathrm{S}_{\mathrm{i}}=\left([0, \mathrm{a}] / \mathrm{a} \in \mathrm{Z}_{\mathrm{i}}\right.$, ${ }^{*}$, ( $\left.\mathrm{p}, \mathrm{q}\right)$ ), $0<\mathrm{i}<\infty$ ?

## Further Reading

1. Bruck, R. H., A survey of binary systems, Springer-Verlag, (1958).
2. Bruck, R.H, Some theorems on Moufang loops, Math. Z., 73, 59-78 (1960).
3. Raul, Padilla, Smarandache Algebraic Structures, Smarandache Notions Journal, 9, 36-38 (1998).
4. Smarandache, Florentin, Special Algebraic Structures, in Collected Papers, Abaddaba, Oradea, 3, 78-81 (2000).
5. Vasantha Kandasamy, W. B., Biloops, U. Sci. Phy. Sci., 14, 127-130 (2002).
6. Vasantha Kandasamy, W. B., Groupoids and Smarandache groupoids, American Research Press, Rehoboth, (2002). http://www.gallup.unm.edu/~smarandache/VasanthaBook2.pdf
7. Vasantha Kandasamy, W. B., Smarandache groupoids, (2002).
http://www.gallup.unm.edu/~smarandache/Groupoids.pdf
8. Vasantha Kandasamy, W. B., Smarandache loops, Smarandache Notions Journal, 13, 252-258 (2002). http://www.gallup.unm.edu/~smarandache/Loops.pdf
9. Vasantha Kandasamy, W. B., Smarandache Loops, American Research Press, Rehoboth, NM, (2002). http://www.gallup.unm.edu/~smarandache/VasanthaBook4.pdf
10. Vasantha Kandasamy, W. B., Smarandache Semigroups, American Research Press, Rehoboth, NM, (2002). http://www.gallup.unm.edu/~smarandache/VasanthaBook1.pdf
11. Vasantha Kandasamy, W. B., Bialgebraic Strucutures and Smarandache Bialgebraic Strucutures, American Research Press, Rehoboth, NM, (2003).
12. Vasantha Kandasamy, W.B., and Smarandache, Florentin, Fuzzy Interval Matrices, Neutrosophic Interval matrices and their application, Hexis, Arizona, (2006).
13. Vasantha Kandasamy, W.B., and Smarandache, Florentin, Interval Semigroups, Kappa and Omega, Glendale, (2011).
14. Vasantha Kandasamy, W.B., Smarandache, Florentin and Moon Kumar Chetry, Interval Groupoids, Infolearnquest, Ann Arbor, (2010).
15. Zoltan, Esik, Free De Morgan Bisemigroups and Bisemilattices, Basic Research in Computer Science (BRICS) http://www.brics.dk

## INDEX

## A

Alternative interval bigroupoids, 29

## B

Biidempotents of an interval bisemigroup, 16-8
Biinterval groupoid-semigroup, 42-5
Biinterval group-semigroup, 52-4
Biinterval ideal of a semigroup, 14-6
Biinterval loop, 61-3
Biinterval semigroup, 9-11
Biinterval semigroup-group, 52-4
Biinterval semigroup-groupoid, 42-5
Biinterval subbigroup, 49-52
Biinterval subgroupoid-subsemigroup, 42-5
Biinterval subgroup-subsemigroup, 52-6
Biinterval subsemigroup-subgroupoid, 42-5
Biinterval, 7-9
Bisimple interval bigroupoids, 32-4

Bizero divisors of an interval bisemigroup, 16-8

## C

Commutative biinterval semigroup, 10

## D

Doubly simple quasi interval bigroup, 50-2

## I

Ideal in an interval bisemigroup, 14-6
Ideally simple interval bisemigroup, 14-6
Ideals of a semi interval bisemigroup, 14-6
Idempotent interval bigroupoids, 31-3
Integer intervals, 7
Interval alternative bigroupoids, 29
Interval bigroup, 46-8
Interval bigroupoid, 27-9
Interval biloop, 61-3
Interval bisemigroup, 9-11
Interval bisubgroup, 61-4
Interval bisubsemigroup, 14
Interval group-loop, 83-6
Interval loop-group, 83-6
Interval loop-groupoid, 89-92
Interval loop-groupoid, 89-92
Interval loop-semigroup, 85-8
Interval P-bigroupoid, 29
Interval semigroup-loop, 85-8
Interval subbiloop, 61-4
Interval subbisemigroup, 14
(t, s) interval subgroupoid-subsemigroup, 123-6

## N

n-interval group-loop, 150-3
n-interval groupoids, 114-8
n-interval ideal, 94-9
n-interval idempotents, 102-8
n-interval loop-groupoid, 155-7
n-interval loop-semigroup, 154-6
n-interval matrices, 158-9
n-interval mixed algebraic structure, 157-9
n-interval polynomial groupoid, 115-8
n-interval S-Cauchy loop, 138-9
n-interval semigroup homomorphism, 107-9
n-interval semigroup, 93-6
n-interval S-simple group-loop, 150-3
n-interval S-subgroup-subloop, 136-9
n-interval subgroupoids, 116-8
n-interval subgroupoid-subsemigroup, 126-8
n-interval subloops, 135-8
n-interval subloop-subgroupoid, 155-7
n-interval subloop-subsemigroup, 154-6
n-interval subsemigroup, 98-102
n-interval S-zero divisors, 101-5
n-interval zero divisors of an n-interval semigroup, 100-7
Non-commutative biinterval semigroup, 10

## P

P-interval bigroupoid, 29
Principal biisotopes, 64
Pseudo biinterval, 7-9

## Q

Quasi biinterval semigroup-groupoid, 42-5
Quasi biinterval subgroupoid-subsemigroup, 42-5
Quasi bisimple interval bigroupoid, 33-5
Quasi ideally simple interval bisemigroup, 16
Quasi idempotent interval bigroupoids, 31-4
Quasi interval alternative bigroupoids, 28-30
Quasi interval bigroup, 49
Quasi interval bigroupoids, 28-30
Quasi interval bisubsemigroup, 14-6

Quasi interval group-loop, 84-6
Quasi interval ideals of a bisemigroup, 14-6
Quasi interval loop-group, 84-6
Quasi interval semigroup-loop, 85-8
Quasi interval Smarandache bisemigroup, 20-1
Quasi interval subgroupoids, 33-6
Quasi interval subgroup-subloop, 84-7
Quasi interval subloop-subgroup, 84-7
Quasi n-interval groupoids, 124-6
Quasi n-interval semigroup, 111-4
Quasi n-interval semigroup-groupoid, 126-8
Quasi n-interval subgroupoids, 124-8
Quasi normal interval bigroupoids, 36-40
Quasi P-interval bigroupoids, 28-30
Quasi semiinterval biideal, 22-4
Quasi simple interval bisemigroup, 14-6
Quasi Smarandache interval bigroupoids, 33-5
Quasi Smarandache interval bisemigroup, 20
Quasi Smarandache semi interval bisemigroup, 26
Quasi subbiinterval group-semigroup, 54-5

## R

Rational intervals, 7
Real intervals, 7
Right biideal of interval bigroupoid, 39-42

## S

S-2-Sylow n-interval semigroup, 102-7
S-biideal of an interval bigroupoid, 39-42
S-Bol n-interval groupoid, 120-5
S-Cauchy element of a n-interval semigroup, 104-8
S-Cauchy quasi n-interval loop, 148-56
S-commutative n-interval loop, 140-6
Semi commutative biinterval semigroup, 10
Semi interval bisemigroup, 21-2

Semi interval bisubsemigroup, 22-4
Set modulo integer intervals, 7
Simple biinterval group-semigroup, 53-5
Simple biinterval semigroup, 14-5
Simple quasi interval bigroup, 50-2
Simple quasi interval bigroupoids, 37-42
Simple semi interval bisemigroup, 24-5
S-interval groupoid-loop, 90-2
S-interval semigroup-loop, 85-8
S-interval subsemigroup-subloop, 86-9
S-Lagrange n-interval loop-group, 150-3
S-Lagrange n-interval semigroup, 104-8
S-Lagrange quasi n-interval loop, 148-54
Smarandache associative interval biloop, 71-5
Smarandache associator interval subbiloop, 73-5
Smarandache bicyclic interval biloop, 70-5
Smarandache Cauchy interval biloop, 67-9
Smarandache commutative interval biloop, 69-73
Smarandache commutative quasi interval biloop, 80-6
Smarandache first normalizer interval biloop, 74-8
Smarandache hyper bigroup, 20-2
Smarandache idempotent interval bigroupoids, 35-8
Smarandache interval bigroupoids, 33-5
Smarandache interval biideals, 42-6
Smarandache interval biloop homomorphism, 68-70
Smarandache interval biloop isomorphism, 68-70
Smarandache interval biloop, 61-3
Smarandache interval bisemigroup, 20
Smarandache interval Bol bigroupoid, 35-8
Smarandache interval P-groupoid, 35-9
Smarandache interval simple biloops, 65-6
Smarandache interval subbiloop, 67-8
Smarandache interval subgroup-subloop, 62-3
Smarandache Lagrange interval biloop, 67
Smarandache Moufang bicenter, 76-9
Smarandache Moufang interval bigroupoids, 35-8
Smarandache n-interval semigroup, 94-9
Smarandache pseudo commutative interval biloop, 70-6
Smarandache p-Sylow interval subbigroup, 68-72

Smarandache quasi interval biloop, 77
Smarandache quasi interval Cauchy biloop, 78-81
Smarandache second normalizer interval biloop, 74-8
Smarandache semi interval bisemigroup, 25-6
Smarandache simple interval biloops, 65-6
Smarandache strong 2-Sylow interval biloop, 68-72
Smarandache strong interval p-Sylow biloop, 68-71
Smarandache strong quasi interval 2-Sylow biloop, 79-83
Smarandache strongly associative quasi interval biloop, 80-4
Smarandache strongly commutative interval biloop, 69-74
Smarandache strongly cyclic interval biloop, 70-5
Smarandache strongly cyclic quasi interval biloop, 79-82
Smarandache strongly pairwise associative interval biloop, 72-5
Smarandache subbiinterval groupoid-semigroup, 42-6
Smarandache weakly Lagrange interval biloop, 66
Smarandache weakly pseudo Lagrange interval biloop, 67-9
S-Moufang n-center, 142-6
S-n- interval subloop-subgroup, 136-9
S-n-interval Bol groupoid-loop, 155-7
S-n-interval groupoid, 117-9
S-n-interval groupoid-loop, 155-7
S-n-interval idempotent groupoid, 122-5
S-n-interval Lagrange loop, 141-5
S-n-interval loop, 136-9
S-n-interval Moufang loop-groupoid, 156-7
S-n-interval simple loop, 136-8
S-n-interval subgroupoids, 117-9
S-n-interval subsemigroup, 94-7
S-n-interval weakly Lagrange loop, 140-5
S-p-Sylow n-interval semigroup, 101-4
S-quasi interval subloop-subsemigroup, 85-9
S-quasi n-interval loop, 144-8
S-quasi n-interval semigroup, 111-4
S-second normalizer in S-n-interval loop, 142-5
S-strong n-interval Moufang groupoids, 122-6
S-strong n-interval P-groupoids, 118-122
S-strong n-interval p-Sylow loop, 140-5
S-strongly commutative n-interval loop, 141-6
S-strongly n-cyclic loop, 140-5

Strongly simple quasi interval bigroup, 50-2
Subbiinterval quasi semigroup-groupoid, 42-5
S-weakly cyclic n-interval semigroup, 104-8
S-weakly Lagrange n-interval loop-group, 152-5
S-weakly Lagrange n-interval semigroup, 101-5

## About the Authors

Dr.W.B.Vasantha Kandasamy is an Associate Professor in the Department of Mathematics, Indian Institute of Technology Madras, Chennai. In the past decade she has guided 13 Ph.D. scholars in the different fields of non-associative algebras, algebraic coding theory, transportation theory, fuzzy groups, and applications of fuzzy theory of the problems faced in chemical industries and cement industries. She has to her credit 646 research papers. She has guided over 68 M.Sc. and M.Tech. projects. She has worked in collaboration projects with the Indian Space Research Organization and with the Tamil Nadu State AIDS Control Society. She is presently working on a research project funded by the Board of Research in Nuclear Sciences, Government of India. This is her $55^{\text {th }}$ book.

On India's 60th Independence Day, Dr.Vasantha was conferred the Kalpana Chawla Award for Courage and Daring Enterprise by the State Government of Tamil Nadu in recognition of her sustained fight for social justice in the Indian Institute of Technology (IIT) Madras and for her contribution to mathematics. The award, instituted in the memory of Indian-American astronaut Kalpana Chawla who died aboard Space Shuttle Columbia, carried a cash prize of five lakh rupees (the highest prize-money for any Indian award) and a gold medal.
She can be contacted at vasanthakandasamy@gmail.com
Web Site: http://mat.iitm.ac.in/home/wbv/public_html/
or http://www.vasantha.in

[^0]In this book the authors introduce several interval bialgebraic structures like biinterval group, biinterval semigroup, biinterval groupoids, biinterval loop, interval group-loop and interval loop-groupoids. The Smarandache analogue is defined and described. We suggest over 290 problems some of which are research level.


[^0]:    Dr. Florentin Smarandache is a Professor of Mathematics at the University of New Mexico in USA. He published over 75 books and 200 articles and notes in mathematics, physics, philosophy, psychology, rebus, literature.

    In mathematics his research is in number theory, nonEuclidean geometry, synthetic geometry, algebraic structures, statistics, neutrosophic logic and set (generalizations of fuzzy logic and set respectively), neutrosophic probability (generalization of classical and imprecise probability). Also, small contributions to nuclear and particle physics, information fusion, neutrosophy (a generalization of dialectics), law of sensations and stimuli, etc. He can be contacted at smarand@unm.edu

