Exact solution of viscous-plastic flow equations for Glacier dynamics in 2-dimensional case.

Sergey V. Ershkov
Institute for Time Nature Explorations, M.V. Lomonosov's Moscow State University, Leninskie gory, 1-12, Moscow 119991, Russia.

Keywords: Glacier dynamics, exact solution; basal slip, viscous fluid, plastic flow; glacial ice, dynamic viscosity; critical maximal level of stress; shared layer of glacial ice; Riccati's type of ODE, Bernoulli's type of ODE; surging glaciers.

Here is presented a new exact solution of Ice dynamics in Glaciers in terms of viscousplastic theory of movements, for 2-dimensional case. In general case, 2-D solution of Ice dynamics could be classified as Riccati's type. Due to a very special character of Riccati's type equation, it's general solution is proved to have a proper gap of components of such a solution.

It means a possibility of sudden gradient catastrophe at definite moment of timeparameter, in regard to the components of solution (2-D profile of Glacier, 2-D components of ice velocity moving).

That's why surging glacier seems to be accelerating from time to time: it's velocity of moving is suddenly rising from few meters to hundreds meters /per day.

A glacier is a massive, slowly moving mass of compacted snow and ice. The action of gravity moves the mass of ice down the slope side: glaciers are being moved from a millimeter to hundreds meters a day. There are two kinds of motion: 1) a slow sliding motion and an avalanche like flow; 2) the internal movement of glacial ice, is a flow similar to plastic flow and viscous flow.
Glaciers move by two mechanisms: basal slip and viscous-plastic flow. In basal slip, the entire glacier slides over bedrock. A glacier also moves by plastic flow, in which it flows as a viscous fluid.

In accordance with [1], 2-dimensional case of glacial ice viscous-plastic flow should be represented in the Cartesian system of coordinates as below (axis $\boldsymbol{O x}$ coincides to initial direction of glacial ice flow, which is assumed to be a plane-parallel flow, $z=$ const $)$:

$$
\begin{align*}
& \rho \cdot\left(\frac{\partial v_{x}}{\partial t}+v_{x} \cdot \frac{\partial v_{x}}{\partial x}+v_{y} \cdot \frac{\partial v_{x}}{\partial y}\right)=-\frac{\partial p}{\partial x}+G_{x}+\frac{\partial s_{x x}}{\partial x}+\frac{\partial s_{x y}}{\partial y} \\
& \rho \cdot\left(\frac{\partial v_{y}}{\partial t}+v_{x} \cdot \frac{\partial v_{y}}{\partial x}+v_{y} \cdot \frac{\partial v_{y}}{\partial y}\right)=-\frac{\partial p}{\partial y}+G_{y}+\frac{\partial s_{x y}}{\partial x}-\frac{\partial s_{x x}}{\partial y}, \tag{1.1}\\
& \frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}=0, \quad U=\sqrt{4\left(\frac{\partial v_{x}}{\partial x}\right)^{2}+\left(\frac{\partial v_{x}}{\partial y}+\frac{\partial v_{y}}{\partial x}\right)^{2}} \\
& s_{x x}=2\left(\mu+\frac{\tau_{s}}{U}\right) \cdot \frac{\partial v_{x}}{\partial x}, s_{x y}=2\left(\mu+\frac{\tau_{s}}{U}\right) \cdot\left(\frac{\partial v_{x}}{\partial y}+\frac{\partial v_{y}}{\partial x}\right)
\end{align*}
$$

- where v_{x} - is the component of ice velocity in the direction x of Cartesian system x, y; v_{y} - the component of ice velocity in the direction $y ; p-$ is an internal pressure in glacial ice; G_{x}, G_{y} - are the appropriate projections of gravity (central force) to the chosen initial direction x, y of glacial ice plane-parallel flow; $S_{x x}, S_{x y}$ - are the appropriate components of stress tensor; μ - is a coefficient of glacial ice dynamic viscosity; $\tau_{s}-$ is a critical maximal level of stress in shared layer of glacial ice when it starts to move as viscous flow (stage of plastic flow: if an absolute meaning of stress tensor less than a critical maximal level of stress in shared layer $<\tau_{s}, \rightarrow$ glacial ice does not move).

From (1.1) we obtain the appropriate equalities below:

$$
\begin{aligned}
& U=\frac{1}{\mu} \cdot\left(\sqrt{s_{x x}^{2}+\frac{s_{x y}^{2}}{4}}-\tau_{s}\right) \\
& \frac{\partial v_{x}}{\partial x}=s_{x x} / 2\left(\mu+\frac{\tau_{s}}{U}\right)
\end{aligned}
$$

Let's assume in our modeling that the left part of (1.1) equals to zero due to negligible terms for the case of slowly moving glacial ice. But for the case of slow glacial ice flow system (1.1) could be reduced as below

$$
\begin{align*}
& 0=-\frac{\partial p}{\partial x}+G_{x}+\frac{\partial s_{x x}}{\partial x}+\frac{\partial s_{x y}}{\partial y} \\
& 0=-\frac{\partial p}{\partial y}+G_{y}+\frac{\partial s_{x y}}{\partial x}-\frac{\partial s_{x x}}{\partial y} \tag{1.2}\\
& \frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}=0, \frac{\partial v_{x}}{\partial x}=s_{x x} / 2\left(\mu+\frac{\tau_{s}}{U}\right), \\
& U=\frac{1}{\mu} \cdot\left(\sqrt{s_{x x}^{2}+\frac{s_{x y}^{2}}{4}}-\tau_{s}\right) .
\end{align*}
$$

Then for finding a solution, we should cross-differentiate 1 -st \& 2-nd equation (1.2) in regard to $x \& y$, as well as we should combine it by a proper linear way (besides, on open air $p(x, y)=$ const $)$; in result, we obtain:

$$
\frac{\partial^{2} s_{x y}}{\partial x^{2}}+\frac{\partial^{2} s_{x y}}{\partial y^{2}}=0
$$

- it means that $S_{x y}$ - is the harmonic function [2].

According to Liouville's theorem: "if f is a harmonic function defined on all of \mathbf{R}^{n} which is bounded above or bounded below, then f is constant" [2].

It is evident that $S_{x y}$, being the component of stress tensor, is bounded above - in regard to it's absolute meanings - due to general physical sense.

So, we have: 1) $S_{x y}$ is a harmonic function, 2) $S_{x y}$ is bounded above. Thus, in accordance with Liouville's theorem, $S_{x y}$ is a constant: $S_{x y}=$ const $=2$. Then from (1.2) we obtain $S_{x x}=-G_{x} \cdot x+G_{y} \cdot y+C_{0}\left(C_{0}=\right.$ const $\left.\neq 0\right)$, but:

$$
\begin{gathered}
U=\frac{1}{\mu} \cdot\left(\sqrt{\left(-G_{x} \cdot x+G_{y} \cdot y+C_{0}\right)^{2}+C^{2}}-\tau_{s}\right), \\
\frac{\partial v_{x}}{\partial x}=\frac{s_{x x}}{2 \mu}\left(1-\frac{\tau_{s}}{\sqrt{s_{x x}^{2}+\frac{s_{x y}^{2}}{4}}}\right),
\end{gathered}
$$

- hence, we obtain in result:

Let's choose $C=0$, then above equality could be simplified to the form below

$$
\frac{\partial v_{x}}{\partial x}=\frac{1}{2 \mu}\left\{G_{y} \cdot y-G_{x} \cdot x+\left(C_{0}-\tau_{s}\right)\right\},
$$

If we take also into consideration the continuity equation (see (1.2)):

$$
\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}=0,
$$

- we obtain that initial system (1.1) is reduced to representation below

$$
\begin{align*}
& \frac{\partial v_{x}}{\partial x}=\frac{1}{2 \mu}\left\{G_{y} \cdot y-G_{x} \cdot x+\left(C_{0}-\tau_{s}\right)\right\} \\
& \frac{\partial v_{y}}{\partial y}=-\frac{1}{2 \mu}\left\{G_{y} \cdot y-G_{x} \cdot x+\left(C_{0}-\tau_{s}\right)\right\} \tag{1.3}
\end{align*}
$$

The system above could be easily solved if $G_{x}=0$ or $G_{y}=0$. Indeed, let's choose for example $G_{y}=0, G_{x} \neq 0$ in (1.3), then we obtain below $\left(C_{1}=\right.$ const $\left.\neq 0\right)$:

$$
\begin{aligned}
& v_{x} \equiv \frac{\partial x}{\partial t}=\frac{1}{2 \mu}\left\{-G_{x} \cdot \frac{x^{2}}{2}+\left(C_{0}-\tau_{s}\right) \cdot x+C_{1}\right\}, \Rightarrow \\
& \Rightarrow \int \frac{d x}{\left\{-G_{x} \cdot \frac{x^{2}}{2}+\left(C_{0}-\tau_{s}\right) \cdot x+C_{1}\right\}}=\frac{t}{2 \mu},
\end{aligned}
$$

- where [4]:

$$
\begin{array}{ll}
\int \frac{\text { 1) } \frac{2}{\sqrt{\Delta}} \operatorname{arctg} \frac{-G_{x} \cdot x+\left(C_{0}-\tau_{s}\right)}{\sqrt{\Delta}}}{\left\{-G_{x} \cdot \frac{x^{2}}{2}+\left(C_{0}-\tau_{s}\right) \cdot x+C_{1}\right\}} \equiv & \left(\Delta>0, \Delta=-2 G_{x} \cdot C_{1}-\left(C_{0}-\tau_{s}\right)^{2}\right) \\
\equiv & \text { 2) } \frac{1}{\sqrt{-\Delta}} \ln \frac{-G_{x} \cdot x+\left(C_{0}-\tau_{s}\right)-\sqrt{-\Delta}}{-G_{x} \cdot x+\left(C_{0}-\tau_{s}\right)+\sqrt{-\Delta}} .
\end{array}
$$

Let's choose in above equalities $C_{0}=\tau_{s}$ (for the aim of clear presentation of final solution); in such a case the equalities above are simplified then we could obtain a final solution:

$$
\begin{array}{ll}
\begin{array}{ll}
x=-\frac{\sqrt{\Delta}}{G_{x}} \cdot \operatorname{tg} \frac{\sqrt{\Delta}}{4 \mu} t ; & \text { 2) } x=\frac{\sqrt{-\Delta}}{G_{x}} \cdot \frac{1+\exp \left(-\frac{\sqrt{-\Delta}}{2 \mu} t\right)}{1-\exp \left(-\frac{\sqrt{-\Delta}}{2 \mu} t\right)} \\
\left(\Delta=-2 G_{x} \cdot C_{1}, \Rightarrow C_{1}<0\right) & \left(\Delta<0, \Rightarrow C_{1}>0\right)
\end{array} \tag{1.4}
\end{array}
$$

First type of solutions (1.4) could be associated with pulsating glaciers or surging glaciers, which are characterized by periodic movements of glacial ice.

As for coordinate $y=y(t)$, we could obtain from (1.3):

$$
\begin{gathered}
\frac{\partial v_{y}}{\partial y} \equiv \frac{\partial v_{y}}{\partial t} \cdot \frac{\partial t}{\partial y} \equiv \ddot{y} \cdot(\dot{y})^{-1}, \Rightarrow \\
\Rightarrow \ddot{y}-\left(\frac{G_{x} \cdot x}{2 \mu}\right) \cdot \dot{y}=0,
\end{gathered}
$$

- Bernoulli's type ordinary differential equation, which has a proper regular solution [4].

But in general case, if $G_{x}, G_{y} \neq 0$, equations (1.3) could be classified as Riccati's type. Due to a very special character of Riccati's type equation, it's general solution is proved to have a proper gap of components of such a solution [3-4].

It means a possibility of sudden gradient catastrophe [5] at definite moment of timeparameter, in regard to the components of solution (2-D profile of Glacier, 2-D components of ice velocity moving). That's why Glacier seems to be accelerating from time to time: it's velocity of moving is suddenly rising from few meters to hundreds meters /per day.

Let's also explore the case $C_{0}=\tau_{s}, C_{1}=0$ (we choose all new constants below are equal to zero):

$$
\begin{aligned}
& \frac{\partial v_{x}}{\partial x}=-\frac{1}{2 \mu} G_{x} \cdot x, \Rightarrow v_{x}=\dot{x}=-\frac{1}{4 \mu} G_{x} \cdot x^{2}, \Rightarrow x=\left(\frac{4 \mu}{G_{x}}\right) \cdot t^{-1} \\
& \frac{\partial v_{y}}{\partial y} \equiv \frac{\partial v_{y}}{\partial t} \cdot \frac{\partial t}{\partial y} \equiv \ddot{y} \cdot(\dot{y})^{-1}, \Rightarrow \ddot{y} \cdot(\dot{y})^{-1}=2 t^{-1}, \Rightarrow \ddot{y}-2 t^{-1} \cdot \dot{y}=0
\end{aligned}
$$

- here the last equation is also the Bernoulli's type of ODE in regard to component $y(t)$, which has a proper regular solution [4]:

$$
\begin{aligned}
& \ddot{y}-2 t^{-1} \cdot \dot{y}=0, \Rightarrow\left(\dot{y} \cdot t^{-2}\right)^{\prime}=0, \\
& d y=C_{2} \cdot t^{2} d t, \Rightarrow y=\frac{C_{2}}{3} \cdot t^{3}+C_{3},
\end{aligned}
$$

- it means that due to general physical sense: $C_{1}=$ const $\neq 0$ (never ever).

Besides, let's obtain solution in general case $G_{x,} G_{y} \neq 0$ - for equations (1.3):

$$
\begin{aligned}
& \frac{\partial v_{x}}{\partial x} \equiv \frac{\partial v_{x}}{\partial t} \cdot \frac{\partial t}{\partial x} \equiv \ddot{x} \cdot(\dot{x})^{-1}=\frac{1}{2 \mu}\left\{G_{y} \cdot y-G_{x} \cdot x+\left(C_{0}-\tau_{s}\right)\right\} \\
& \frac{\partial v_{y}}{\partial y} \equiv \frac{\partial v_{y}}{\partial t} \cdot \frac{\partial t}{\partial y} \equiv \ddot{y} \cdot(\dot{y})^{-1}=-\frac{1}{2 \mu}\left\{G_{y} \cdot y-G_{x} \cdot x+\left(C_{0}-\tau_{s}\right)\right\}
\end{aligned}
$$

If we designate: $p(y)=y^{\prime}(t), q(x)=x^{\prime}(t), \rightarrow(1.3)$ could be transformed to the form below

$$
\begin{aligned}
& q^{\prime}(x) \cdot q(x)=\frac{q(x)}{2 \mu}\left\{G_{y} \cdot y-G_{x} \cdot x+\left(C_{0}-\tau_{s}\right)\right\}, \\
& p^{\prime}(y) \cdot p(y)=-\frac{p(y)}{2 \mu}\left\{G_{y} \cdot y-G_{x} \cdot x+\left(C_{0}-\tau_{s}\right)\right\},
\end{aligned}
$$

- then we obtain:

$$
\begin{array}{ll}
q^{\prime}(x)=\frac{1}{2 \mu}\left\{G_{y} \cdot y-G_{x} \cdot x+\left(C_{0}-\tau_{s}\right)\right\}, & \\
p^{\prime}(y)=-\frac{1}{2 \mu}\left\{G_{y} \cdot y-G_{x} \cdot x+\left(C_{0}-\tau_{s}\right)\right\}, &
\end{array}
$$

- but

$$
q^{\prime}(x)+p^{\prime}(y)=0, \Rightarrow q(x)+p(y)=C_{q p}, \Rightarrow x(t)+y(t)=C_{q p} \cdot t+\left(x_{0}+y_{0}\right) .
$$

Thus, we obtain in result ($C_{q, p}=$ const $)$:

$$
\begin{aligned}
& x^{\prime \prime}(t)=\frac{x^{\prime}(t)}{2 \mu}\left\{G_{y} \cdot\left(-x+C_{q p} \cdot t+\left(x_{0}+y_{0}\right)\right)-G_{x} \cdot x+\left(C_{0}-\tau_{s}\right)\right\}, \Rightarrow \\
& x^{\prime \prime}(t)=\frac{x^{\prime}(t)}{2 \mu}\left\{-\left(G_{x}+G_{y}\right) \cdot x+\left(G_{y} \cdot C_{q p}\right) \cdot t+\left[G_{y} \cdot\left(x_{0}+y_{0}\right)+\left(C_{0}-\tau_{s}\right)\right]\right\},
\end{aligned}
$$

- but if $C_{q, p}=0$:

$$
\begin{aligned}
& d\left(x^{\prime}(t)+\frac{\left(G_{x}+G_{y}\right)}{4 \mu} \cdot x^{2}\right)=\frac{1}{2 \mu} d\left(\left[G_{y} \cdot\left(x_{0}+y_{0}\right)+\left(C_{0}-\tau_{s}\right)\right] \cdot x\right), \Rightarrow \\
& x^{\prime}(t)+\frac{\left(G_{x}+G_{y}\right)}{4 \mu} \cdot x^{2}=\frac{\left[G_{y} \cdot\left(x_{0}+y_{0}\right)+\left(C_{0}-\tau_{s}\right)\right]}{2 \mu} x+C_{t},
\end{aligned}
$$

- the last equation could be classified as Riccati's type [4], where $C_{t}=$ const.

References:

1. Klimov D.M., Petrov A.G. Analytical solutions of the boundary- value problem of non stationary flow of viscous-plastic medium between two plates// Archive of Applied Mechanics. 2000, Vol. 70. P. 3-16.

See also, in Russian (branch 2.2.2.): http://www.ipmnet.ru/~petrov/files/vpdchp.pdf.
2. Weisstein, Eric W., "Harmonic Function" from MathWorld.

See also: http://en.wikipedia.org/wiki/Harmonic function.
3. Ershkov S.V., Schennikov V.V. Self-Similar Solutions to the Complete System of Navier-Stokes Equations for Axially Symmetric Swirling Viscous Compressible Gas Flow // Comput. Math. and Math. Phys. J. (2001) Vol.41, № 7. P.1117-1124.
4. Dr. E.Kamke. Hand-book for ordinary differential equations // Moscow: "Science" (1971).
5. Arnold V.I. Catastrophe Theory, 3rd ed. Berlin: Springer-Verlag, 1992.

