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Abstract

We explore the many novel physical consequences of Born’s reciprocal Relativity
theory in flat phase-space and to generalize the theory to the curved phase-space
scenario. We provide with six specific novel physical results resulting from
Born’s reciprocal Relativity and which are not present in Special Relativity.
These are : momentum-dependent time delay in the emission and detection of
photons; energy-dependent notion of locality; superluminal behavior; relative
rotation of photon trajectories due to the aberration of light; invariance of
areas-cells in phase-space and modified dispersion relations. We finalize by
constructing a Born reciprocal general relativity theory in curved phase-spaces
which requires the introduction of a complex Hermitian metric, torsion and
nonmetricity.

1 Introduction

Born’s reciprocal (”dual”) relativity [1] was proposed long ago based on the
idea that coordinates and momenta should be unified on the same footing, and
consequently, if there is a limiting speed (temporal derivative of the position
coordinates) in Nature there should be a maximal force as well, since force is
the temporal derivative of the momentum. A curved phase space case scenario
has been analyzed by Brandt [9] within the context of the Finsler geometry
of the 8D cotangent bundle of spacetime where there is a limiting value to
the proper acceleration and such that generalized 8D gravitational equations
reduce to ordinary Einstein-Riemannian gravitational equations in the infinite
acceleration limit. A pedagogical monograph on Finsler geometry can be found
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in [21] where, in particular, Clifford/spinor structures were defined with respect
to nonlinear connections associated with certain nonholonomic modifications of
Riemann–Cartan gravity.

Born’s reciprocal ”duality” principle is nothing but a manifestation of the
large/small tension duality principle reminiscent of the T -duality symmetry
in string theory; i.e. namely, a small/large radius duality, a winding modes/
Kaluza-Klein modes duality symmetry in string compactifications and the ultra-
violet/infrared entanglement in noncommutative field theories. The generalized
velocity and acceleration boosts (rotations) transformations of the 8D Phase
space, where Xi, T, E, P i; i = 1, 2, 3 are all boosted (rotated) into each-other,
were given by [2] based on the group U(1, 3) and which is the Born version of
the Lorentz group SO(1, 3).

Invariant actions for a point-particle in reciprocal Relativity involving Casimir
group invariant quantities were studied in [27]. Casimir invariant field equa-
tions; unitary irreducible representations based on Mackey’s theory of induced
representations; the relativistic harmonic oscillator and coherent states can be
found in [2]. The granular cellular structure of spacetime, the Schrodinger-
Robertson inequality, multi-mode squeezed states, a ”non-commutative” rela-
tivistic phase space geometry, in which position and momentum are interchange-
able and frame-dependent, was studied by [3]. Born’s reciprocity principle in
atomic physics and galactic motion based on (1/r)+(b/p) potentials was studied
recently by [4] with little effect on atomic physics but with relevant effects on
galactic rotation without invoking dark matter.

This approach differs from the pseudo-complex Lorentz group description
by [22] related to the effects of maximal acceleration in Born-Infeld models that
also maintains Lorentz invariance, in contrast to the approaches of deformed
(double) Special Relativity [10] that were motivated by the anomalous Lorentz-
violating dispersion relations in the ultra high energy cosmic rays [16, 17, 18].
Related to the minimal Planck scale, an upper limit on the maximal acceleration
principle in Nature was proposed long ago by Cainello [5]. Maximal-acceleration
physics has ben studied by [18], [6], [7], [23] among others; its relation to the
Double Special Relativity programs was investigated by [8].

The purpose of this work is to explore the many novel physical consequences
of Born’s reciprocal Relativity theory in flat phase-space and to generalize the
theory to the curved phase-space scenario. We provide with 6 specific novel
physical results resulting from Born’s reciprocal Relativity and which are not
present in Special Relativity. These are :

(i) momentum-dependent time delay in the emission and detection of pho-
tons; (ii) energy-dependent notion of locality; (iii) superluminal behavior; (iv)
relative rotation of photon trajectories due to the aberration of light; (v) in-
variance of areas-cells in phase-space and Planck areas; (vi) modified dispersion
relations.

A completely different approach to the notion of ”relativity of locality” and
energy-dependent time-delay of photons based on a curved momentum space has
been undertaken by [15], [25]. The role of curved momentum space and torsion
in deformations of Special Relativity were analyzed extensively by [13]. These
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authors found that the natural framework for embedding the ideas of deformed,
or doubly, special relativity (DSR) into a curved spacetime is a generalisation of
Einstein-Cartan theory, considered by Stelle and West. Instead of interpreting
the noncommuting ”spacetime coordinates” of the Snyder algebra as endowing
spacetime with a fundamentally noncommutative structure, they were led to
consider a connection with torsion in this framework. The relationship among
conformal theories, curved phase spaces, relativistic wavelets and the geometry
of complex domains was examined thoroughly by [12]. An adaptation of Born’s
Reciprocity Principle to conformal relativity, the replacement of space-time by
the 8-dimensional conformal domain at short distances, the existence of a max-
imal acceleration was put forward by [19]. Also relevant, was the revision of
the Unruh effect (vacuum radiation in uniformly relativistic accelerated frames)
in a group-theoretical setting by constructing a conformal SO(4, 2)-invariant
quantum field theory and studying its spontaneous breakdown.

Born reciprocal general relativity theory in curved phase-spaces (without the
need to introduce star products) can be defined as a local gauge theory of the
deformed Quaplectic group that is given by the semi-direct product of U(1, 3)
with the deformed (noncommutative) Weyl-Heisenberg group corresponding
to noncommutative generators [Za, Zb] 6= 0; i.e. noncommutative coordinates
and momenta. The Hermitian metric is complex-valued with symmetric and
nonsymmetric components : g(µν) + ig[µν]. If one sets the nonmetricity to
zero, there are two different complex-valued Hermitian Ricci tensors Rµν ,Sµν .
The deformed Born’s reciprocal gravitational action linear in the Ricci scalars
R,S with Torsion-squared terms and BF terms is provided in section 3 after
reviewing our prior results in [26].

2 Born’s Reciprocal Relativity in Phase-Spaces

2.1 Invariance under the U(1, 3) Group

The U(1, 3) = SU(1, 3) ⊗ U(1) group transformations leave invariant the sym-
plectic 2-form Ω = − dt∧dp0 + δijdxi∧dpj ; i, j = 1, 2, 3 and also the following
Born-Green line interval in the 8D phase-space (in natural units h̄ = c = 1)

(dσ)2 = (dt)2 − (dx)2 − (dy)2 − (dz)2 +
1
b2

(
(dE)2 − (dpx)2 − (dpy)2 − (dpz)2

)
(2.1)

the rotations, velocity and force (acceleration) boosts leaving invariant the sym-
plectic 2-form and the line interval in the 8D phase-space are rather elaborate,
see [2] for details. These transformations can be simplified drastically when
the velocity and force (acceleration) boosts are both parallel to the x-direction
and leave the transverse directions y, z, py, pz intact. There is now a subgroup
U(1, 1) = SU(1, 1) ⊗ U(1) ⊂ U(1, 3) which leaves invariant the following line
interval
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(dω)2 = (dT )2 − (dX)2 +
(dE)2 − (dP )2

b2
=

(dτ)2
(

1 +
(dE/dτ)2 − (dP/dτ)2

b2

)
= (dτ)2

(
1 − F 2

F 2
max

)
(2.2)

where one has factored out the proper time infinitesimal (dτ)2 = dT 2 − dX2 in
(2.2). The proper force interval (dE/dτ)2− (dP/dτ)2 = −F 2 < 0 is ”spacelike”
when the proper velocity interval (dT/dτ)2 − (dX/dτ)2 > 0 is timelike. The
analog of the Lorentz relativistic factor in eq-(2.2) involves the ratios of two
proper forces.

If (in natural units h̄ = c = 1) one sets the maximal proper-force to be given
by b ≡ mP Amax, where mP = (1/LP ) is the Planck mass and Amax = (1/Lp),
then b = (1/LP )2 may also be interpreted as the maximal string tension. The
units of b would be of (mass)2. In the most general case there are four scales
of time, energy, momentum and length that can be constructed from the three
constants b, c, h̄ as follows [3]

λt =

√
h̄

bc
; λl =

√
h̄ c

b
; λp =

√
h̄ b

c
; λe =

√
h̄ b c (2.3)

The gravitational constant can be written as G = αG c4/b where αG is a di-
mensionless parameter to be determined experimentally. If αG = 1, then the
four scales (2.3) coincide with the Planck time, length, momentum and energy,
respectively. An interesting numerical relation involving the Planck scale and
Hubble radius is Fmax = mP

c2

LP
∼ MUniverse

c2

RH
, hence in [23] we suggested

that a certain large (Hubble) /small (Planck) scale duality was operating in this
Born’s reciprocal relativity theory reminiscent of the T -duality in string theory
compactifications. Such duality was also compatible with Mach’s principle. The
authors [14] have proposed a relativity theory based on the de Sitter group that
requires an invariant scale, besides the speed of light. The authors [14] have
argued that such scale might bear a connection to the cosmological constant;
i.e. to the quantity (RHubble)−2 observed today.

The U(1, 1) group transformation laws of the phase-space coordinates X, T, P,E
which leave the interval (2.2) invariant are [2]

T ′ = T coshξ + (
ξv X

c2
+

ξa P

b2
)

sinhξ

ξ
(2.4a)

E′ = E coshξ + (−ξa X + ξvP )
sinhξ

ξ
(2.4b)

X ′ = X coshξ + (ξv T − ξa E

b2
)

sinhξ

ξ
(2.4c)

P ′ = P coshξ + (
ξv E

c2
+ ξa T )

sinhξ

ξ
(2.4d)
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ξv is the velocity-boost rapidity parameter and the ξa is the force (acceleration)
boost rapidity parameter of the primed-reference frame. These parameters are
defined respectively in terms of the velocity v = dX/dT and force f = dP/dT
(related to acceleration) as

tanh(
ξv

c
) =

v

c
; tanh(

ξa

b
) =

f

Fmax
(2.5)

The net effective boost parameter ξ of the U(1, 1) subgroup transformations
appearing in eqs-(2.4) is defined in terms of the velocity and force (acceleration)
rapidity boosts parameters ξv, ξa as

ξ ≡
√

ξ2
v

c2
+

ξ2
a

b2
(2.6a)

Straightforward algebra allows to verify that these transformations leave the
interval (dω)2 of eq-(2.2) in classical phase space invariant. When on sets ξa = 0
in eqs-(2.4) one recovers automatically the standard Lorentz transformations for
the X, T and E,P variables separately, leaving invariant the intervals c2(dT )2−
(dX)2 = (dτ)2 and ((dE)2 − c2(dP )2)/b2.

When one sets ξv = 0 we obtain the transformations rules from one reference-
frame into another non− inertial frame of reference whose force (acceleration)
boost rapidity parameter is

ξ ≡ ξa

b
; tanhξ = tanh(

ξa

b
) =

f

b
. (2.6b)

The transformations for force (acceleration) boosts are

T ′ = T coshξ +
P

b
sinhξ. (2.7a)

E′ = E coshξ − b X sinhξ. (2.7b)

X ′ = X coshξ − E

b
sinhξ (2.7c)

P ′ = P cosh ξ + b T sinhξ (2.7d)

It is straightforwad to verify that the transformations (2.7) leave invariant the
phase space interval c2(dT )2 − (dX)2 + ((dE)2 − c2(dP )2)/b2 but do not leave
separately invariant the proper time interval (dτ)2 = dT 2−dX2, nor the interval
in energy-momentum space 1

b2 [(dE)2 − c2(dP )2]. Only the combination

(dω)2 = (dτ)2
(

1 − F 2

F 2
max

)
(2.8)

is truly left invariant under force (acceleration) boosts (2.7). The composition
of two succesive force (acceleration)-boosts is another force (acceleration)-boost
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with acceleration rapidity given by ξ′′ = ξ + ξ′. The addition of forces (acceler-
ations) follows the usual relativistic composition rule

tanhξ′′ = tanh(ξ + ξ′) =
tanhξ + tanh ξ′

1 + tanhξ tanhξ′
⇒ f ′′

b
=

f
b + f ′

b

1 + f f ′

b2

. (2.10)

and in this fashion the upper limiting force (acceleration) is never surpassed like
it happens with the speed of light in the ordinary Special Relativistic addition of
velocities. The composition properties of both velocity and force (acceleration)
boosts (2.4) requires much more algebra [23] to analyze. A careful study reveals
that the group composition rules of two successive transformations of the form
(2.4) are preserved if, and only if, the ξ; ξ′; ξ′′...... parameters obey the suitable
collinear relations [23]

ξ =

√
(ξv)2

c2
+

ξ2
a

b2
; ξ′ =

√
(ξ′v)2

c2
+

(ξ′a)2

b2
; ξ′′ =

√
(ξ′′v )2

c2
+

(ξ′′a )2

b2

(2.11a)
ξa

ξ
=

ξ′a
ξ′

=
ξ′′a
ξ′′

;
ξv

ξ
=

ξ′v
ξ′

=
ξ′′v
ξ′′

; ξ′′v = ξv + ξ′v; ξ′′a = ξa + ξ′a; ξ′′ = ξ + ξ′

(2.11b)
The relations (2.11) are required to be satisfied in order to have the proper
U(1, 1) group composition law involving both velocity and force (acceleration)
boosts transformations (2.4) and resulting in a phase-space change of coordi-
nates (in the cotangent bundle of a 2D spacetime).

2.2 The Many Novel Physical Consequences

• Momentum-dependent time delay in the emission and detection of
photons

From eqs-(2.7) one learns

∆T ′ = ∆T coshξ +
∆P

b
sinhξ (2.12)

If two photons of different momentum P1, P2 are emitted simultaneously in a
given reference frame, ∆T = 0, there is a time delay in the emission times as
measured with respect to an accelerated frame of reference. The time delay is

∆T ′ =
∆P

b
sinhξ = T ′

2 − T ′
1 =

P2 − P1

b
sinhξ (2.13)

A momentum dependent delay in the emission times of photons will also cause
a time delay in their detection as measured with respect to an accelerated frame
of reference.

• Energy-dependent notion of locality in the emission of photons
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From eqs-(2.7) one also has

∆X ′ = ∆X coshξ − ∆E

b
sinhξ (2.14)

If two photons of different energy E1, E2 are emitted from the same location in
a given reference frame, ∆X = 0, they are not emitted from the same location
in the accelerated frame of reference

∆X ′ = − ∆E

b
sinhξ = X ′

2 − X ′
1 = − E2 − E1

b
sinhξ (2.15)

thus the notion of locality is now frame-dependent; i.e. it is relative to the
observers.

Due to the facts that ∆T ′ 6= 0,∆X ′ 6= 0, despite that ∆T = ∆X = 0, one
arrives at the conclusion that the notion of spatio-temporal locality is no longer
an invariant concept as it was in special relativity; it is relative with respect
to the non-inertial (accelerated) frames of reference. A completely different
approach to the notion of ”relativity of locality” and energy-dependent time-
delay of photons based on a curved momentum space has been undertaken by
[15], [25].

• Superluminal behavior in Born’s Reciprocal Relativity

Let us study the notion of generalized proper vectors in flat phase-space. In
units of h̄ = c = 1, the generalized phase-space coordinates are

Zα = ( x0, x1,
p0

b
,

p1

b
); Fmax = b; x0 = T, x1 = X, p0 = E, p1 = P

(2.16)
in these units of h̄ = c = 1, b has dimensions of (mass)2 (string tension). When
dω 6= 0, the generalized velocity vector has for components∏

=
dZα

dω
= (

dx0

dω
,

dx1

dω
,

1
b

dp0

dω
,

1
b

dp1

dω
), dω 6= 0 (2.17)

where the U(1, 1)-invariant proper displacement is defined in terms of the proper
time τ and proper-force squared F 2 as

dω = dτ

√
1− (

F 2

F 2
max

), − F 2 = (
dE

dτ
)2 − (

dP

dτ
)2 ≤ 0 (2.18)

A constant generalized velocity (in a given frame of reference) by definition has
constant components ao, a1, a2, a3

dx0

dω
= ao,

dx1

dω
= a1,

1
b

dp0

dω
= a2,

1
b

dp1

dω
= a3 (2.19)
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and from which one can infer that

dp0

dω
= (

dp0

dτ
) (

dτ

dω
) =

1√
1− ( F 2

F 2
max

)
(
dp0

dτ
) = a2

dp1

dω
= (

dp1

dτ
) (

dτ

dω
) =

1√
1− ( F 2

F 2
max

)
(
dp1

dτ
) = a3 ⇒

1
1− ( F 2

F 2
max

)
[ (

dp0

dτ
)2 − (

dp1

dτ
)2 ] = − F 2

1− ( F 2

F 2
max

)
=

(a2)2 − (a3)2 = constant ⇒ F 2 = constant (2.20)

hence, when F 2 = constant one arrives at the (Lorentz covariant) conditions

dp0

dτ
= constant;

dp1

dτ
= constant;

dx0

dτ
= constant;

dx1

dτ
= constant

(2.21)
expressed in terms of the ordinary proper time τ in special relativity. In general,
F 2(τ) 6= constant and the generalized velocities are not constant either.

If dω 6= 0, one has the trivial identity

(
∏

)2 = (
dE

dω
)2 − (

dP

dω
)2 + (

dx0

dω
)2 − (

dx1

dω
)2 = (

dω

dω
)2 = 1 (2.22)

when the interval is null, dω = 0, one must take the derivatives with respect
to an affine parameter κ (dκ 6= 0 ) such that one has the proper null condition
associated with a null generalized vector in flat phase-space

(
∏

)2 = (
dE

dκ
)2 − (

dP

dκ
)2 + (

dx0

dκ
)2 − (

dx1

dκ
)2 = (

dω

dκ
)2 = 0 (2.23)

Such generalized U(1, 1)-invariant null condition in phase space does not neces-
sarily imply, separately, the two restricted and special conditions

(
dE

dκ
)2 − (

dP

dκ
)2 = 0, (

dx0

dκ
)2 − (

dx1

dκ
)2 = 0 (2.24)

In ordinary special relativity, the above separate two-conditions (2.24) are by
themselves Lorentz invariant. A null line infinitesimal interval in phase space
obeys in general the condition

dω = dτ

√
1− (

F 2

F 2
max

) = 0 ⇒ F 2 = F 2
max; or dτ = 0, or both (2.25)

If dτ 6= 0 in eq-(2.25), one ends up with

− F 2 = (
dE

dτ
)2 − (

dP

dτ
)2 = − F 2

max (2.26)

8



In this case, a null line path in phase space corresponds to a maximal proper-
force trajectory; whereas a null line path in ordinary special relativity corre-
sponds to a photon (geodesic) trajectory moving at the maximal speed of light
c. If dτ = 0 and (dE)2 − (dP )2 < 0 ⇒ (dω)2 < 0 which is unphysical, it is the
analog of a ”tachyonic” interval.

Given the null condition (dω)2 = (dT )2 − (dX)2 + (dE)2−(dP )2

b2 = 0, dividing
by (dT )2, yields

1 − (
dX

dT
)2 + (

1
b
)2 (

dE

dT
)2 − (

1
b
)2 (

dP

dT
)2 = 0 ⇒

1− (v)2 + (
1
b
)2 (fo)2 − (

1
b
)2 (f1)2 = 0 ⇒ v = ±

√
1 + (

1
b
)2 (f0)2 − (

1
b
)2 (f1)2

(2.27)
where v = dX

dT is the coordinate velocity; the analog of power and force are
respectively fo = dE

dT 6= dE
dτ = F0; f1 = dP

dT 6= dP
dτ = F1. Reinserting the speed of

light c (that was set to unity ) one arrives at [2]

v = ± c

√
1 + (

1
bc

)2 (f0)2 − (
1
b
)2 (f1)2 = ± c

√
1 + (

c

b
)2 (

dM

dT
)2

(2.28)
where the infinitesimal mass-displacement is defined as

c2 (dM)2 = (
1
c2

) (dE)2 − (dP )2 (2.29)

Taking the positive sign under the square root, when ( c
b )2 (dM

dT )2 < 0, one ar-
rives at the interesting conclusion that at the null hypersurface in phase−space
one can have points such that v < c. However, if ( c

b )
2 (dM

dT )2 > 0 one can have
superluminal v > c behavior in this case, despite having a null hypersurface
in phase-space. When ( c

b )2 (dM
dT )2 = 0, one recovers v = c as it occurs in Spe-

cial Relativity. Superluminal behavior in the underlying Minkowski space may
occur also in the Extended Relativity Theory in Clifford spaces [24].

• Relative Rotation of photon trajectories due to the Aberration
of light

The addition of velocities in Special Relativity ( c = 1 ) can be derived by
performing, for example, a velocity-boost transformation with velocity v = v1

along the x-axis of the proper velocity’s components associated to the moving
object : (U0 = dx0

dτ ;U1 = dx1
dτ ;U2 = dx2

dτ ) in 2 + 1 dimensions (for simplicity)

 W0

W1

W2

 =

 V0 V1 0
V1 V0 0
0 0 1

  U0

U1

U2

 , V0 =
1√

1− v2
, V1 =

v√
1− v2

,

(2.30)
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giving

W0 =
dt′

dτ
= U0 V0 + U1 V1

W1 =
dx′1
dτ

= U0 V1 + U1 V0

W2 =
dx′2
dτ

= U2; dτ ′ = dτ = invariant (2.31)

The new coordinate velocities in the prime frame of reference are

u′1 =
dx′1
dt′

=
W1

W0
=

U0 V1 + U1 V0

U0 V0 + U1 V1
=

V1
V0

+ U1
U0

1 + U1
U0

V1
V0

=
v1 + u1

1 + u1 v1
(2.32a)

u′2 =
dx′2
dt′

=
W2

W0
=

U2

U0 V0 + U1 V1
=

U2
U0V0

1 + U1
U0

V1
V0

=

1
V0

u2

1 + u1 v1
=

√
1− v2

u2

1 + u1 v1
; v = v1 (2.32b)

If one reinstates the usual value of c into eqs-(2.32) one recovers the addition
formula of velocities in Special Relativity. One of the consequences of the ad-
dition of velocities is the aberration of light. The angle corresponding to the
direction of a photon measured along the line of sight of an observer moving
with constant velocity ~v with respect to the light source (star), is not the same
as the angle measured by an observer at rest. Taking the velocity ~v of the mov-
ing observer to lie along the x-direction, and the star at rest hovering above and
in front of the observer, the addition formula of the velocities components as-
sociated with the x-direction, and corresponding to the photon and the moving
observer, leads to

−c cos(θobs) =
v − c cos(θsource)
1 − v

c cos(θsource)
⇒

cos(θobs) =
cos(θsource)− v

c

1 − v
c cos(θsource)

⇒ θobs 6= θsource (2.33)

When there is an observer in an accelerated frame of reference, he will also
experience an aberration of light. Furthermore, there is also a new effect as
well. The directions of two photons, A,B, with different energy-momentum
content, that are emitted along the same line of sight of an observer, at rest
with respect to a light source (star), will appear to be rotated with respect to
an accelerated observer ; i.e. the two angles corresponding to the directions of
two photons, measured along the line of sight of an observer in the accelerated
frame of reference (with respect to the light source) are not the same.
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A force (acceleration) boost transformation of the generalized velocity’s com-
ponents (dZα/dω) in phase space can be written as


U ′

0

U ′
1

F ′
0

b
F ′

1
b

 =


coshξ 0 0 sinhξ

0 coshξ −sinhξ 0
0 −sinhξ coshξ 0

coshξ 0 0 coshξ




U0

U1
F0
b

F1
b

 ; tanh(ξ) =
f

b
.

(2.34)
giving

U ′
0 = U0 coshξ +

F1

b
sinhξ

U ′
1 = U1 coshξ − F0

b
sinhξ

F ′
0

b
= − U1 sinhξ +

F0

b
coshξ

F ′
1

b
= U0 sinhξ +

F1

b
coshξ (2.35)

In units of h̄ = c = 1, one has

U ′
1

U ′
0

= cos(θobs) =
cos(θsource) − ( dE

dx0 ) ( tanhξ
b )

1 + ( dP
dx0 ) ( tanhξ

b )
⇒ θobs 6= θsource (2.36)

Hence, one also experiences an aberration of light in the accelerated frame of
reference. Furthermore, if one has two photons A,B with different energy-
momentum content, due to the fact that in the most general case one has

(
dE

dx0
)A 6= (

dE

dx0
)B ; (

dP

dx0
)A 6= (

dP

dx0
)B (2.37)

and one arrives at the conclusion that (θobs)A 6= (θobs)B despite the fact that
the two photons were originally emitted parallel to each other in the rest frame
of reference of the light source (star) (θsource)A = (θsource)B . Therefore, the
two angles corresponding to the directions of two photons, measured along the
line of sight of an observer in the accelerated frame of reference (with respect
to the light source) are not the same. Their directions will appear to be rotated
with respect to each other. A completely different approach to the relative
rotation of photon trajectories in curved momentum space due to the presence
of torsion (in momentum space) was proposed by [25].

• Invariance of Fundamental Area-cells in Phase Space and Planck
areas

In Special Relativity, under velocity boost transformations after recurring to
eqs-(2.4) when the force (acceleration) boost rapidity parameter is set to zero
ξa = 0, one has in this case ξ = ξv

c such that
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∆T ′ = ∆T coshξ +
∆X

c
sinhξ; ∆X ′ = ∆X coshξ + c ∆T sinhξ ⇒

∆X ′ ∆T ′ 6= ∆X ∆T (2.38a)

the space-time areas ∆X∆T are not invariant. At first sight this appears to
contradict the well known consequences of Special Relativity : if there is a
time dilation and a length contraction then one may naively conclude that the
space-time areas are invariant. The underlying reason behind this apparent
contradiction occurs because by time dilation it is meant that ∆T ′ = γ∆T =
coshξ ∆T = ∆T√

1−(v/c)2
when the reading of the clocks ∆T occurs at the same

location in the frame of reference which is at rest ∆X = 0. Whereas by length
contraction, it is meant ∆X ′ = (∆X/γ) when the length of the (contracted)
rod is measured at the same time in the moving frame of reference ∆T ′ = 0.

The time dilation and a length contraction findings can be seen simply by
replacing T ′ ↔ T, X ′ ↔ X and ξ ↔ −ξ in (2.38a) yielding

∆T = ∆T ′ coshξ − ∆X ′

c
sinhξ; ∆X = ∆X ′ coshξ − c ∆T ′ sinhξ (2.38b)

so that ∆T ′ = γ∆T when ∆X = 0, and ∆X ′ = (∆X/γ) when ∆T ′ = 0. Hav-
ing resolved this apparent contradiction, one finds that ∆X ′∆T ′ 6= ∆X∆T in
Special Relativity despite the time dilation and length contraction phenomena.

The group transformations rules of the coordinates in Phase space permitted
us to show why force (acceleration) boosts preserve Planck-Scale Areas [23]
when b = (1/L2

P ) (h̄ = c = 1 and αG = 1). In the most general case areas can
be preserved if certain conditions are met.

From eqs-(2.7) one obtains the transformation rules of the finite intervals
∆X, ∆T,∆E,∆P , from one inertial reference frame to another non − inertial
frame of reference under force (acceleration) boosts with rapidity parameter ξ

∆T ′ = ∆T coshξ +
∆P

b
sinhξ; ∆E′ = ∆E coshξ − b ∆X sinhξ (2.39a)

∆X ′ = ∆X coshξ − ∆E

b
sinhξ; ∆P ′ = ∆P coshξ + b ∆T sinhξ (2.39b)

If, and only if, the conditions

∆X ∆P = ∆T ∆E; ∆T ∆X =
∆E ∆P

b2
(2.40)

are obeyed, due to the identity cosh2ξ − sinh2ξ = 1, one can see that the
following area− cells will be invariant under force (acceleration) boosts

∆X ′ ∆P ′ = ∆X ∆P (cosh2ξ − sinh2ξ) = ∆X ∆P (2.41a)

∆T ′ ∆E′ = ∆T ∆ E (cosh2ξ − sinh2ξ) = ∆T ∆E (2.41c)
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∆X ′ ∆T ′ = ∆X ∆T (cosh2ξ − sinh2ξ) = ∆X ∆T (2.41c)

∆P ′ ∆E′ = ∆P ∆E (cosh2ξ − sinh2ξ) = ∆P ∆E (2.41d)

The conditions (2.40) are trivially satisfied for the very special case that

λl = ∆X; λt = ∆T ; λp = ∆P ; λe = ∆E (2.42)

or any judicious multiples of those fundamental scales, where λl, λt, λp, λe are
the four scales provided by eq-(2.3). From the discussion after eq-(2.3), one
learned that if αG = 1 one recovers the four Planck scales of length, time,
momentum and energy in eq-(2.42), respectively, so that their corresponding
Planck areas (2.41) are invariant under force (acceleration) boosts. However,
one must emphasize that in general the conditions (2.40) are not always obeyed
so that eqs-(2.41) are not always obeyed either (only in special cases).

The symplectic 2-form Ω = − dT ∧dE +dX ∧dP is always invariant under
the transformations (2.4, 2.7), irrespective if the conditions (2.40) are obeyed
or not. By recurring to the antisymmetry −dT ∧ dE = dE ∧ dT ; dX ∧ dP =
−dP ∧ dX, ..... one can verify that under force (acceleration) boosts one has

∆X ′ ∧∆P ′ − ∆T ′ ∧∆E′ = ∆X ∧∆P cosh2ξ + ∆T ∧∆E sinh2ξ +

(sinhξ coshξ) (b ∆X∧∆T − ∆E ∧∆P

b
)−∆T∧∆E cosh2ξ + ∆P∧∆X sinh2ξ +

(sinhξ coshξ) (b ∆T ∧∆X − ∆P ∧∆E

b
) =

∆X∧∆P (cosh2ξ − sinh2ξ)−∆T∧∆E (cosh2ξ − sinh2ξ) = ∆X∧∆P −∆T∧∆E
(2.43)

therefore Ω = Ω′ remains invariant under force (acceleration) boosts. The 8D
phase space symplectic 2-form Ω = − dt ∧ dp0 + δijdxi ∧ dpj ; i, j = 1, 2, 3
is U(1, 3) invariant. In a phase-space of 2n dimensions, the symplectic 2-form
Ω is U(1, n − 1) invariant [2] due to the fact that the (pseudo) unitary group
U(1, n − 1) can be interpreted as the intersection of D ⊗ Sp(2n) and O(2n),
where D is the pure dilations/scalings group, Sp(2n) is the symplectic group and
O(2n) the orthogonal group in 2n-dimensions. The fact that Planck-scale Areas
(when αG = 1) are invariant under force (acceleration) boosts could reveal very
important information about Black holes Entropy and Holography. Minimal
areas (in Planck units) was an important consequence in Loop Quantum Gravity.

• Modification of the Dispersion Relations

Multiplying the generalized velocity vector (2.17) in phase-space by an in-
variant mass parameter M (not to be confused with the proper rest mass m of a
particle in ordinary Special Relativity) allows to define a generalized momentum
vector
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M
dZα

dω
= M (

dx0

dω
,

dx1

dω
,

1
b

dp0

dω
,

1
b

dp1

dω
) =

M√
1− (F 2/b2)

(
dx0

dτ
,

dx1

dτ
,

1
b

dp0

dτ
,

1
b

dp1

dτ
) =

M√
1− (F 2/b2)

(
p0

m
,

p1

m
,

F 0

b
,

F 1

b
); dω 6= 0 (2.44)

Given the last term of eq-(2.44), and after recurring to eqs-(2.18, 2.22), one has
that the norm-squared of the generalized momentum vector coincides with the
invariant M2

(M
dZα

dω
)2 = M2 ⇒ M2 =

1
1− (F 2/b2)

(
(
M

m
)2(p0)2 − (

M

m
)2(p1)2 − M2

b2
F 2

)
⇒

(1− F 2

b2
) M2 + M2 F 2

b2
= M2 = (

M

m
)2 [ (p0)2−(p1)2 ] ⇒ (p0)2−(p1)2 = m2

(2.45)
From eq-(2.45) one arrives at the standard dispersion relation (p0)2−(p1)2 = m2

in Special Relativity (in units c = 1) if m is identified as the proper (rest) mass.
However, one must emphasize that m is not an invariant in this theory [2]; M
is the true invariant quantity.

To explain this further, one introduces the Quaplectic groupQ(1, 3) [2] which
is given by the semidirect product of U(1, 3)⊗s H(4), where H(4) is the Weyl-
Heisenberg group. In ordinary Special Relativity the Poincare group SO(1, 3)⊗s

T4 is the semidirect product of the Lorentz group with the translation group
in Minkowski spacetime. The invariant proper mass is related to the quadratic
Casimir invariant pµpµ = m2 of the Poincare group. This is no longer the case
for the Quaplectic group [2]. The mass-squared m2 is no longer a quadratic
Casimir invariant of Q(1, 3). In this theory the non− commuting space is the
coset Q(1, 3)/SU(1, 3) which is the non-commuting analog of Minkowski Space
(SO(1, 3) ⊗s T4)/SO(1, 3). The quadratic Casimir invariant of the Quaplectic
group is [2]

1
2

1
λ2

t

(
T 2 +

E2

b2 c2
− X2

c2
− P 2

b2
+

2 h̄ I

b c
(

Y

b c
− 2)

)
= C2 (2.46)

where λt is the invariant temporal parameter in (2.3); I is the center of the
Weyl-Heisenberg group and Y is the U(1) generator contained in U(1, 3) =
U(1)⊗SU(1, 3). X2 = (x1)2 +(x2)2 +(x3)2;P 2 = (p1)2 +(p2)2 +(p3)2. Hence,
from the quadratic Casimir invariant in eq-(2.46) one can define the invariant
mass-squared as a suitable multiple of the Casimir : M2 = (bh̄/c3) C2. The
quantity (bh̄/c3) coincides with the Planck mass-squared (mP )2 when αG = 1.

Therefore, from eq-(2.46) one learns that the combination 1
b2 [E2

c2 − P 2] is
only a piece of the Q(1, 3) group Casimir invariant so that E2

c4 − P 2

c2 = m2
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is not an invariant and, consequently, there is no Quaplectic group invariant
notion of m. The relation (2.46) represents the Quaplectic group analog of
the energy-momentum dispersion relation for the Poincare group. From this
point of view, the energy-momentum dispersion relations are indeed modified,
fact which is compatible with the non − commuting nature of the coset space
Q(1, 3)/SU(1, 3). Modified energy-momentum dispersion relations occur in
deformed (double) special Relativity due to the quantum group (Hopf algebraic)
kappa-deformations of the Poincare algebra [11], [10] and motivated by the
anomalous Lorentz-violating dispersion relations in the ultra high energy cosmic
rays [16, 17, 18].

Modified dispersion relations occur also in Clifford spaces [24]. In C-space
(Clifford space), the invariant M2 is identified with the norm-squared of the
poly-momentum associated with the poly-particle [24]. The norm-squared of
the Clifford-valued momentum (a poly-vector with antisymmetric components
of different rank) is

M2 = π2 + pµpµ + pµνpµν + pµνρpµνρ + pµνρσpµνρσ (2.47)

in order to match dimensions in (2.47) one requires to introduce suitable powers
of a mass parameter, like the Planck mass. From (2.47) one concludes that
pµpµ = m2 is not an invariant under the most general Cl(1, 3)-algebra valued
transformations (poly-rotations) in C-space. π is the scalar component of the
Clifford-valued momentum. Therefore in C-space m is a variable and, in this
aspect, a poly-particle shares similar properties to the notion of unparticles
of variable mass in a regime where conformal invariance operates. The 4D
conformal algebra su(2, 2) ∼ so(4, 2) admits an explicit realization in terms of
Clifford algebra generators. Also the 4D superconformal algebra can be realized
as well in terms Clifford algebra generators via 5 × 5 matrices and the charge
conjugation matrix as shown by [28].

3 Born’s Reciprocal Relativity in Curved Phase
Space and Noncommutative Gravity

Born’s reciprocal relativity in flat spacetimes is based on the principle of a
maximal speed limit (speed of light) and a maximal proper force (which is also
compatible with a maximal and minimal length duality) and where coordinates
and momenta are unified on a single footing. For the sake of completeness, in
this last section we review our construction [26] where we extended Born’s the-
ory to the case of curved spacetimes and construct a deformed Born reciprocal
general relativity theory in curved spacetimes (without the need to introduce
star products) as a local gauge theory of the deformed Quaplectic group that
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is given by the semi-direct product of U(1, 3) with the deformed (noncommu-
tative) Weyl-Heisenberg group corresponding to noncommutative coordinates
and momenta.

The deformed Weyl-Heisenberg algebra involves the generators

Za =
1√
2

(
Xa

λl
− i

Pa

λp
); Z̄a =

1√
2

(
Xa

λl
+ i

Pa

λp
); a = 1, 2, 3, 4. (3.1)

Notice that we must not confuse the generators Xa, Pa (associated with the
fiber coordinates of the internal space of the fiber bundle) with the ordinary base
spacetime coordinates and momenta xµ, pµ. The gauge theory is constructed
in the fiber bundle over the base manifold which is a 4D curved spacetime
with commuting coordinates xµ = x0, x1, x2, x3. The (deformed) Quaplectic
group acts as the automorphism group along the internal fiber coordinates.
Therefore we must not confuse the deformed complex gravity constructed here
with the noncommutative gravity work in the literature [29] where the spacetime
coordinates xµ are not commuting.

The Hermitian generators Zab, Za, Z̄a, I of the U(1, 3) algebra and the deformed
Weyl-Heisenberg algebra obey the relations

(Zab)† = Zab; (Za)† = Z̄a; I† = I; a, b = 1, 2, 3, 4. (3.2)

The standard Quaplectic group [2] is given by the semi-direct product of the
U(1, 3) group and the unmodified Weyl-Heisenberg H(1, 3) group : Q(1, 3) ≡
U(1, 3) ⊗s H(1, 3) and is defined in terms of the generators Zab, Za, Z̄a, I with
a, b = 1, 2, 3, 4. A careful analysis reveals that the complex generators Za, Z̄a

(with Hermitian and anti-Hermitian pieces) of the deformed Weyl-Heisenberg
algebra can be defined in terms of the Hermitian U(1, 4) algebra generators
ZAB , where A,B = 1, 2, 3, 4, 5; a, b = 1, 2, 3, 4; ηAB = diag (+,−,−,−,−), as
follows

Za = (−i )1/2 ( Za5 − iZ5a ); Z̄a = ( i )1/2 ( Za5 + iZ5a ); Z55 =
I
2

(3.3)

the Hermitian generators are ZAB ≡ EB
A and ZBA ≡ EA

B ; notice that the position
of the indices is very relevant because ZAB 6= ZBA. The commutators are

[Eb
a, Ed

c ] = − i δb
c Ed

a + i δd
a Eb

c ; [Ed
c , E5

a ] = − i δd
a E5

c ; [Ed
c , Ea

5 ] = i δa
c Ed

5 .
(3.4)

and [E5
5 , Ea

5 ] = −i δ5
5 Ea

5 .... such that now I(= 2Z55) no longer commutes with
Za, Z̄a. The generators Zab of the U(1, 3) algebra can be decomposed into the
Lorentz-subalgebra generators Lab and the ”shear”-like generators Mab as

Zab ≡
1
2

(Mab−iLab); Lab = L[ab] = i (Zab−Zba); Mab = M(ab) = (Zab+Zba),

(3.5)
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one can see that the ”shear”-like generators Mab are Hermitian and the Lorentz
generators Lab are anti − Hermitian with respect to the fiber internal space
indices. The explicit commutation relations of the Hermitian generators Zab

can be rewritten as

[Lab, Lcd] = (ηbcLad − ηacLbd − ηbdLac + ηadLbc). (3.6a)

[Mab, Mcd] = − (ηbcLad + ηacLbd + ηbdLac + ηadLbc). (3.6b)

[Lab, Mcd] = (ηbcMad − ηacMbd + ηbdMac − ηadMbc). (3.6c)

Defining Zab = 1
2 (Mab − iLab), Zcd = 1

2 (Mcd − iLcd) after straightforward
algebra it leads to the U(3, 1) commutators

[ Zab, Zcd ] = − i ( ηbc Zad − ηad Zcb ). (3.6d)

as expected, and which requires that the commutators [M,M ] ∼ L otherwise
one would not obtain the U(3, 1) commutation relations (3.9d) nor the Jacobi
identities will be satisfied. The commutators of the (anti-Hermitian) Lorentz
boosts generators Lab with the Xc, Pc generators are

[Lab, Xc] = ( ηbc Xa − ηac Xb ); [Lab, Pc] = ( ηbc Pa − ηac Pb ). (3.7a)

Since the Hermitian Mab generators are the reciprocal boosts transformations
which exchange X for P , in addition to boosting (rotating) those variables, one
has in

[Mab,
Xc

λl
] = − i

λp
( ηbc Pa + ηac Pb ); [Mab,

Pc

λp
] = − i

λl
( ηbc Xa + ηac Xb )

(3.7b)
such that upon recurring to the above equations after lowering indices it leads
to 1

[ Zab, Zc ] = − i

2
ηbc Za +

i

2
ηac Zb −

1
2

ηbc Z̄a − 1
2

ηac Z̄b

[ Zab, Z̄c ] = − i

2
ηbc Z̄a +

i

2
ηac Z̄b +

1
2

ηbc Za +
1
2

ηac Zb . (3.7c)

In the noncommutative Yang’s phase-space algebra case [20], associated with
a noncommutative phase space involving noncommuting spacetime coordinates
and momentum xµ, pµ, the generatorN which appears in the modified [xµ, pν ] =
ih̄ηµνN commutator is the exchange operator x ↔ p, [pµ,N ] = ih̄xµ/R2

H and
[xµ,N ] = iL2

P pµ/h̄. LP , RH are taken to be the minimal Planck and maximal

1These commutators differ from those in [2] because he chose all generators X, P, M, L
to be anti-Hermitian so there are no i terms in the commutators in the r.h.s of eq-(3.7b) and
there are also sign changes
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Hubble length scales, respectively. The Hubble upper scale RH corresponds to
a minimal momentum h̄/RH , because by ”duality” if there is a minimal length
there should be a minimal momentum also.

Yang’s [20] noncommutative phase space algebra is isomorphic to the confor-
mal algebra so(4, 2) ∼ su(2, 2) after the correspondence xµ ↔ Lµ5, pµ ↔ Lµ6,
and N ↔ L56. In the deformed Quaplectic algebra case, it is in addition to the
I generator, the Mab generator which plays the role of the exchange operator
of X with P and which also appears in the deformed Weyl-Heisenberg algebra
leading to a matrix-valued generalized Planck-constant, and noncommutative
fiber coordinates, as follows

[
Xa

λl
,
Pb

λp
] = i αh̄ (ηab I+Mab); [Xa, Xb] = − (λl)2 L[ab]; [Pa, Pb] = (λp)2 L[ab];

(3.8)
One could interpret the term ηab I + Mab as a matrix-valued Planck constant
h̄ab (in units of h̄). The deformed (noncommutative) Weyl-Heisenberg algebra
can also be rewritten as

[Za, Z̄b] = −αh̄ ( ηab I + Mab ); [Za, Zb] = [Z̄a, Z̄b] = −i Z[ab] = −Lab.

[Za, I] = 2 Z̄a; [Z̄a, I] = − 2 Za; [Zab, I] = 0. I = 2 Z55. (3.9)

where [Xa

λl
, I] = 2iPa

λp
; [Pa

λp
, I] = 2iXa

λl
and the metric ηab = (+1,−1,−1,−1) is

used to raise and lower indices . The deformed Quaplectic algebra obeys the
Jacobi identities. No longer I commutes with Za, Z̄a, it exchanges them, as
one can see from eq-(3.9) since Z55 = I/2.

The complex tetrad Ea
µ which transforms under the fundamental represen-

tation of U(1, 3) is defined as

Ea
µ =

1√
2

( ea
µ + ifa

µ ); Ēa
µ =

1√
2

( ea
µ − ifa

µ ). (3.10)

The complex Hermitian metric is given by

Gµν = Ēa
µ Eb

ν ηab = g(µν) + ig[µν] = g(µν) + iBµν . (3.11)

such that

(Gµν)† = Ḡνµ = Gµν ; Ḡµν = Gνµ. (3.12)

where the bar denotes complex conjugation. Despite that the metric is complex
the infinitesimal line element is real

ds2 = Gµν dxµ dxν = g(µν) dxµ dxν , because i g[µν] dxµ dxν = 0. (3.13)

The (deformed) Quaplectic-algebra-valued anti-Hermitian gauge field (Aµ)† = −
Aµ is given by

Aµ = Ωab
µ Zab +

i

Lp
( Ea

µ Za + Ēa
µ Z̄a ) + i Ωµ I . (3.14)
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where a length scale that we chose to coincide with the the Planck length scale
LP has been introduced in the second terms in the r.h.s since the connection Aµ

must have units of (length)−1. In natural units of h̄ = c = 1 the gravitational
coupling in 4D is G = L2

P . Decomposing the anti-Hermitian components of the
connection Ωab

µ into anti-symmetric [ab] and symmetric (ab) pieces with respect
to the internal indices

Ωab
µ = Ω[ab]

µ + i Ω(ab)
µ . (3.15)

gives the anti-Hermitian U(1, 3)-valued connection

Ωab
µ Zab = (Ω[ab]

µ + i Ω(ab)
µ )

1
2
(Mab − i Lab) =

− i

2
Ω[ab]

µ Lab +
i

2
Ω(ab)

µ Mab ⇒ (Ωab
µ Zab)† = − Ωab

µ Zab. (3.16)

since (Zab)† = Zab

The deformed Quaplectic algebra-valued (anti-Hermitian) field strength is
given by

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] =

F ab
µν Zab + i (F a

µν Za + F̄ a
µν Z̄a) + Fµν I =

i

2
F (ab)

µν Mab −
i

2
F [ab]

µν Lab + i (F a
µν Za + F̄ a

µν Z̄a) + Fµν I (3.17)

after decomposing Zab = 1
2 (Mab − iLab). The components of the curvature

two-form associated with the anti-Hermitian connection Ωab
µ = Ω[ab]

µ + iΩ(ab)
µ

are

−i F [ab]
µν = ∂µΩ[ab]

ν − ∂νΩ[ab]
µ + Ω[ac]

[µ Ω[cb]
ν] −

Ω(ac)
[µ Ω(cb)

ν] +
1

L2
P

Ea
[µ Eb

ν] +
1

L2
P

Ēa
[µ Ēb

ν] . (3.18)

i F (ab)
µν = ∂µΩ(ab)

ν − ∂νΩ(ab)
µ + Ω(ac)

[µ Ω[cb]
ν] + Ω(bc)

[µ Ω[ca]
ν] +

1
L2

P

Ea
[µ Ēb

ν] +
1

L2
P

Eb
[µ Ēa

ν] (3.19)

where a summation over the repeated c indices is implied and [µν] denotes
the anti-symmetrization of indices with weight one. Notice the presence of the
extra terms EE in the above expressions for the deformed field strengths due
to the noncommutative [Za, Zb] 6= 0, and which in turn, modifies the Weyl-
Heisenberg algebra due to the Jacobi identities. In the undeformed ordinary
Quaplectic-algebra case these terms are absent because [Za, Zb] = 0, ... and,
furthermore, there is no Mab term in the ordinary Weyl-Heisenberg algebra.
These extra terms Ea ∧Eb, .... in eqs-(3.18,3.19) are one of the hallmarks of the
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deformed Quaplectic gauge field theory formulation of the deformed Born’s
Reciprocal Complex Gravity.

The components of the torsion two-form are

F a
µν = ∂µEa

ν − ∂νEa
µ − i Ω[ac]

[µ Ec
ν] + i Ω(ac)

[µ Ēc
ν] − 2i Ēa

[µ Ων]. (3.20a)

F̄ a
µν = ∂µĒa

ν − ∂νĒa
µ + i Ω[ac]

[µ Ēc
ν] − i Ω(ac)

[µ Ec
ν] + 2i Ea

[µ Ων]. (3.20b)

The remaining field strength has roughly the same form as a U(1) field
strength in noncommutative spaces due to the additional contribution of Bµν

resulting from the nonabelian nature of the Weyl-Heisenberg algebra in the
internal space (fibers) and which is reminiscent of the noncommutativity of the
coordinates with the momentum :

Fµν = i ∂µΩν − i ∂νΩµ +
1

L2
P

Ea
µ Ēb

ν ηab −
1

L2
P

Ēa
µ Eb

ν ηab =

i ∂µΩν − i ∂νΩµ +
1

L2
P

( Gµν − Gνµ ) = i Ω[µν] + i
2

L2
P

G[µν] (3.21)

after recurring to the commutation relations (for αh = 1) in eqs-(3.8,3.9) and
the Hermitian property of the metric

Gµν = Ēa
µ Eb

ν ηab = [ ηab Ēb
ν Ea

µ ]∗ = (Gνµ)∗ ⇒ (Gµν)∗ = Gνµ. (3.22)

where ∗ stands for (bar) complex conjugation.
The curvature tensor is defined in terms of the anti-Hermitian connection

Ω[ab]
µ + i Ω(ab)

µ as

Rρ
µνλ ≡ ( F [ab]

µν + i F (ab)
µν ) (Eρ

a Ebλ + Ēρ
a Ēbλ + Eρ

a Ēbλ + Ēρ
a Ebλ). (3.23)

where the explicit components F
[ab]
µν and F

(ab)
µν can be read from the defining re-

lations (3.18, 3.19). Note that both values of values of F
[ab]
µν and F

(ab)
µν are purely

imaginary such that one may rewrite the complex-valued F ab
µν field strength as

(F (ab)
µν + iF [ab]

µν ) for real valued F (ab)
µν , F [ab]

µν expressions. The contraction of
indices yields two different complex-valued (Hermitian) Ricci tensors.

Rµλ = gσν gρσ Rρ
µνλ = δν

ρ Rρ
µνλ = R(µλ) + i R[µλ]; (Rµλ)∗ = Rλµ (3.24)

and

Sµλ = gσν gσρ Rρ
µνλ = S(µλ) + i S[µλ]; (Sµλ)∗ = Sλµ (3.25)

due to the fact that

gσν gρσ = δν
ρ and gσν gσρ 6= δν

ρ . (3.26)
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because gσρ 6= gρσ. The position of the indices is crucial. There is a third Ricci
tensor Q[µν] = Rρ

µνλδλ
ρ related to the curl of the nonmetricity Weyl vector Qµ

[31] which one may set to zero. However, in the most general case one should
include nonmetricity. Nonmetricity was essential in the recent findings by [25].

A further contraction yields the generalized (real-valued) Ricci scalars

R = (g(µλ) + i g[µλ]) ( R(µλ) + i R[µλ] ) =

R = g(µλ) R(µλ) − Bµλ R[µλ]; g[µλ] ≡ Bµλ. (3.27a)

S = (g(µλ) + i g[µλ]) ( S(µλ) + i S[µλ] ) =

S = g(µλ) S(µλ) − Bµλ S[µλ]. (3.27b)

The first term g(µλ) R(µλ) corresponds to the usual scalar curvature of the
ordinary Riemannian geometry. The presence of the extra terms Bµλ R[µλ] and
Bµλ S[µλ] due to the anti-symmetric components of the metric and the two
different types of Ricci tensors are one of the hallmarks of the deformed Born
complex gravity. We should notice that the inverse complex metric is

g(µλ) + ig[µλ] = [ g(µν) + ig[µν] ]−1 6= (g(µν))−1 + (ig[µν])−1. (3.28)

so g(µν) is now a complicated expression of both gµν and g[µν] = Bµν . The same
occurs with g[µν] = Bµν . Rigorously we should have used a different notation
for the inverse metric g̃(µλ) + iB̃[µλ], but for notational simplicity we chose to
drop the tilde symbol.

One could add an extra contribution to the complex-gravity real-valued
action stemming from the terms iBµνFµν which is very reminiscent of the BF
terms in Schwarz Topological field theory and in Plebanksi’s formulation of
gravity. In the most general case, one must include both the contributions
from the torsion and the i BµνFµν terms. The contractions involving Gµν =
g(µν) + iBµν with the components Fµν (due to the antisymmetry property of
Fµν = −Fνµ) lead to

i Bµν Fµν = − Bµν ( ∂µΩν − ∂νΩµ )− 2 Bµν Bµν = − Bµν Ωµν − 2 Bµν Bµν .
(3.29)

where we have set the length scale LP = 1 for convenience. These BF terms
contain a mass-like term for the Bµν field. Mass terms for the Bµν and a massive
graviton formulation of bi-gravity (in addition to a massles graviton) based on
a SL(2, C) gauge formulation have been studied by [31], [32], [30],. When the
torsion is not constrained to vanish one must include those contributions as well.
The real-valued torsion two-form is (F a

µνZa + F̄ a
µνZ̄a)dxµ ∧ dxν and the torsion

tensor and torsion vector are

T ρ
µν = F a

µν Eρ
a ; T̄ ρ

µν = Ēρ
a F̄ a

µν ; Tµνρ = gρσ T σ
µν ; T̄µνρ = T̄ σ

µν (gρσ)∗ =

T̄ σ
µν gσρ; Tµ = δν

ρ T ρ
µν ; T̄µ = T̄ ρ

µν δν
ρ . (3.30)
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The (real-valued) action, linear in the two (real-valued) Ricci curvature
scalars and quadratic in the torsion is of the form

1
2κ2

∫
M4

d4x
√
| det (g(µν) + iBµν) | ( a1 R+ a2 S + a3 Tµνρ Tµνρ + a4 Tµ Tµ+c.c).

(3.31)

| det (g(µν) + iBµν) | =
√

det (g(µν) + iBµν) det (g(µν) − iBµν) (3.32)

where one must add the complex conjugate (cc) terms in order to render the
action real-valued. κ2 = 8πG is the gravitational coupling and in natural units
h̄ = c = 1 one has G = L2

Planck. We may add the BF terms (3.29) to the
action (3.31) as well as Yang-Mills terms F ∧∗ F . In the most general case one
should include nonmetricity terms as well. The action (3.31) is invariant under
infinitesimal U(1, 3) gauge transformations of the complex tetrad δEa

µ = (ξa
b(1)+

iξa
b(2))E

b
µ where the real ξ

(1)
[ab] and imaginary ξ

(2)
(ab) components of the complex

parameter are anti-symmetric and symmetric, respectively, with respect to the
indices a, b for anti-Hermitian infinitesimal U(1, 3) gauge transformations.

The a1, a2, a3, a4 are suitable numerical coefficients that will be constrained
to have certain values if one wishes to avoid the presence of ghosts, tachyons and
higher order poles in the propagator, not unlike it occurs in Moffat’s nonsym-
metric gravity theory [31]. The instabilities of Moffat’s nonsymmetric gravity
found by [32] are bypassed when one extends the theory to spacetimes with
complex coordinates [30].

The action (3.31) defined in 4D can be extended to a 4D complex spacetime;
i.e. an action in 8D real-dimensional Phase Space associated with the cotangent
bundle of spacetime. The geometry of curved Phase spaces and bounded com-
plex homogeneous domains has been studied by [12]. The presence of matter
sources can be incorporated, for example, by recurring to the invariant action for
a point-particle in Born’s Reciprocal Relativity involving Casimir group invari-
ant quantities associated with the world-line of the particle. The quantization of
a point-particle corresponding to the undeformed Quaplectic group is far richer
than the ordinary Poincare case since acceleration boosts can change the spin
of the particle. The spectrum contains towers of integer massive spin states, as
well as unconventional massless representations [2].

To conclude, we should emphasize that the complex deformed Born Recipro-
cal Gravitational theory advanced here differs from the modified gravitational
theories in the literature [31], [30], [33], and it is mainly due to the fact that we
have constructed a deformed complex Born’s reciprocal gravitational theory in
4D as a gauge theory of the deformed Quaplectic group given by the semidirect
product of U(1, 3) with the deformed (noncommutative) Weyl-Heisenberg al-
gebra of eqs-(3.8, 3.9). The deformed Weyl-Heisenberg algebra already encodes
the noncommutativity of the fiber coordinates such that Zµ(wi) = Ea

µ(wi) Za

and Z̄µ(wi) = Ēa
µ(wi) Z̄a could be interpreted as the p-brane noncommutative

target complex-spacetime background embedding functions Zµ(wi), Z̄µ(wi) in
terms of the p + 1 world-volume coordinates wi ( i = 1, 2, ...., p + 1).
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Since the vielbein Ea
µ is required in the definition of the embedding coordi-

nates Zµ, Z̄µ, it is not surprising to see why string-theory (p-branes) encodes
gravity. For plausible relations between nonsymmetric gravity and string theory
see [31], [30]. Finally, gravitational theories based on Born’s reciprocal relativ-
ity principle involving a maximal speed limit and a maximal proper force, is a
very promising avenue to quantize gravity that does not rely in breaking the
Lorentz symmetry at the Planck scale, in contrast to other approaches based
on deformations of the Poincare algebra, Hopf algebras, quantum groups, etc...
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