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Jiang and Wiles Proofs on Fermat Last 
Theorem(1) 

Abstract 
D.Zagier(1984) and K.Inkeri(1990) said[7]: Jiang mathematics is true,but Jiang 

determinates the irrational numbers to be very difficult for prime exponent p. In 1991 Jiang 
studies the composite exponents n=15,21,33,…3p and proves Fermat last theorem for prime 

exponent p>3[1].In 1986 Gerhard Frey places Fermat last theorem at the elliptic curve  
that is Frey curve.  Andrew Wiles studies Frey curve.In 1994 Wiles proves Fermat last 
theorem[9,10]. Conclusin:Jiang proof is direct and simple ,but Wiles proof is indirect and  
complex. 
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                                Abstract 
In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate 

into two biquadrates, or in general any power higher than the second into powers of like degree: I 
have discovered a truly marvelous proof, which this margin is too small to contain.” 

This means: ( 2)n n nx y z n+ = >  has no integer solutions, all different from 0(i.e., it has 

only the trivial solution, where one of the integers is equal to 0). It has been called Fermat’s last 

theorem (FLT). It suffices to prove FLT for exponent 4. and every prime exponent P . Fermat 
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proved FLT for exponent 4. Euler proved FLT for exponent 3. 
In this paper using automorphic functions we prove FLT for exponents 3P  and P , where 

P  is an odd prime. The proof of FLT must be direct. But indirect proof of FLT is disbelieving. 
 
 
In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic 

fields 
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where J  denotes a n th root of unity, 1nJ = , n  is an odd number, it  are the real numbers. 

iS  is called the automorphic functions(complex hyperbolic functions) of order n  with 
1n −  variables [1-7]. 
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where i=1,2,…,n; 
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(2) may be written in the matrix form 
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where ( 1) / 2n −  is an even number. 

From (4) we have its inverse transformation 
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(5) 
From (5) we have 

     
1

n
A

i
i

e S
=

=∑ ,   
1

1 1
1

cos ( 1) cosj
n

B ij
j i

i

ije S S
n
πθ

−

+
=

= + −∑  

     
1

1
1

1
sin ( 1) ( 1) sinj

n
B j ij

j i
i

ije S
n
πθ

−
+

+
=

= − −∑ ,                                   （6） 

In (3) and (6) it  and iS  have the same formulas. (4) and (5) are the most critical formulas of 

proofs for FLT. Using (4) and (5) in 1991 Jiang invented that every factor of exponent n  has the 
Fermat equation and proved FLT [1-7] Substituting (4) into (5) we prove (5). 
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From (3) we have  
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From (6) we have 
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From (8) and (9) we have the circulant determinant 
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If 0iS ≠ , where 1,2, ,i n= L , then (10) has infinitely many rational solutions. 

Assume 1 0S ≠ , 2 0S ≠ , 0iS =  where 3, 4, , . 0ii n S= =L  are 2n −  indeterminate 

equations with 1n −  variables. From (6) we have 
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From (10) and (11) we have the Fermat equation 
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Example[1]. Let 15n = . From (3) we have 

1 14 2 13 3 12 4 11 5 10 6 9 7 8( ) ( ) ( ) ( ) ( ) ( ) ( )A t t t t t t t t t t t t t t= + + + + + + + + + + + + +  

1 1 14 2 13 3 12 4 11
2 3 4( )cos ( ) cos ( ) cos ( ) cos

15 15 15 15
B t t t t t t t tπ π π π
= − + + + − + + +  

      5 10 6 9 7 8
5 6 7( )cos ( ) cos ( ) cos
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t t t t t tπ π π
− + + + − + , 

2 1 14 2 13 3 12 4 11
2 4 6 8( )cos ( ) cos ( )cos ( )cos
15 15 15 15

B t t t t t t t tπ π π π
= + + + + + + +  

      5 10 6 9 7 8
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t t t t t tπ π π
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3 1 14 2 13 3 12 4 11
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5 1 14 2 13 3 12 4 11
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= − + + + − + + +  

      5 10 6 9 7 8
25 30 35( )cos ( ) cos ( ) cos
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− + + + − + , 

6 1 14 2 13 3 12 4 11
6 12 18 24( )cos ( ) cos ( )cos ( )cos
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= + + + + + + +  

      5 10 6 9 7 8
30 36 42( )cos ( )cos ( ) cos
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7 1 14 2 13 3 12 4 11
7 14 21 28( )cos ( ) cos ( )cos ( ) cos
15 15 15 15

B t t t t t t t tπ π π π
= − + + + − + + +  

      5 10 6 9 7 8
35 42 49( )cos ( ) cos ( ) cos
15 15 15

t t t t t tπ π π
− + + + − + , 
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Form (12) we have the Fermat equation 
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From (13) we have 

                    5
3 6 5 10exp( 2 2 ) [exp( )]A B B t t+ + = + .                   （15） 

From (11) we have 

                       5 5
3 6 1 2exp( 2 2 )A B B S S+ + = + .                       (16) 

From (15) and (16) we have the Fermat equation 

          5 5 5
3 6 1 2 5 10exp( 2 2 ) [exp( )]A B B S S t t+ + = + = + .                    （17） 

Euler proved that (14) has no rational solutions for exponent 3[8]. Therefore we prove that (17) 
has no rational solutions for exponent 5[1]. 
Theorem 1. [1-7]. Let 3n P= ,where 3P >  is odd prime. From (12) we have the Fermat’s 
equation 
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From (19) and (20) we have the Fermat equation 
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Euler proved that (18) has no rational solutions for exponent 3[8]. Therefore we prove that (21) 
has no rational solutions for 3P >  [1, 3-7]. 
Theorem 2. In 1847 Kummer write the Fermat’s equation 

                      P P Px y z+ =                              （22） 

in the form 

         2 1( )( )( ) ( )P Px y x ry x r y x r y z−+ + + + =L                        （23） 

where P  is odd prime, 
2 2cos sinr i
P P
π π

= + . 

Kummer assume the divisor of each factor is a P th power. Kummer proved FLT for prime 
exponent p<100 [8].. 
We consider the Fermat’s equation  

                         3 3 3P P Px y z+ =                           （24） 

we rewrite (24) 
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                     3 3 3( ) ( ) ( )P P Px y z+ =                         (25) 

From (24) we have 

                   2 3( )( )( )P P P P P P Px y x ry x r y z+ + + =                 （26） 

where 
2 2cos sin
3 3

r iπ π
= +  

We assume the divisor of each factor is a P th power. 

Let 1
xS
z

= , 2
yS
z

= . From (20) and (26) we have the Fermat’s equation 

          2[ exp( )]P P P
P Px y z t t+ = × +                    (27) 

Euler proved that (25) has no integer solutions for exponent 3[8]. Therefore we prove that (27) has 
no integer solutions for prime exponent P . 
Fermat Theorem. It suffices to prove FLT for exponent 4. We rewrite (24) 

                    3 3 3( ) ( ) ( )P P Px y z+ =                     (28) 

Euler proved that（25）has no integer solutions for exponent 3 [8]. Therefore we prove that (28) has 
no integer solutions for all prime exponent P [1-7]. 
We consider Fermat equation 

                              4 4 4P P Px y z+ =                       (29) 

We rewrite (29)  

                         4 4 4( ) (( ) ( )P P Px y z+ =                   （30） 

                         4 4 4( ) ( ) ( )P P Px y z+ =                    （31） 

Fermat proved that (30) has no integer solutions for exponent 4 [8]. Therefore we prove that (31) 
has no integer solutions for all prime exponent P  [2,5,7].This is the proof that Fermat thought to 
have had. 
Remark. It suffices to prove FLT for exponent 4. Let 4n P= , where P  is an odd prime. We 
have the Fermat’s equation for exponent 4P  and the Fermat’s equation for exponent P [2,5,7]. 
This is the proof that Fermat thought to have had. In complex hyperbolic functions let exponent 
n  be n P= Π , 2n P= Π  and 4n P= Π . Every factor of exponent n  has the Fermat’s 
equation [1-7]. In complex trigonometric functions let exponent n  be n P= Π , 2n P= Π  
and 4n P= Π . Every factor of exponent n  has Fermat’s equation [1-7].Using modular elliptic 
curves Wiles and Taylor prove FLT[9,10].This is not the proof that Fermat thought to have had. 
The classical theory of automorphic functions, created by Klein and Poincare, was concerned with 
the study of analytic functions in the unit circle that are invariant under a discrete group of 
transformations. Automorphic functions are generalization of the trigonometric,hyperbolic,elliptic, 
and certain other functions of elementary analysis. The complex trigonometric functions and 
complex hyperbolic functions have a wide application in mathematics and physics. 
Acknowledgments.We thank Chenny,K.Inkeri,Mao-Hua Le,Moshe Klein and D.Zagier for their 
help and suggestion. 
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Sir Andrew John Wiles 

Wiles' proof of Fermat's Last Theorem is a proof of the modularity theorem 

for semistable elliptic curves, which, together with Ribet's theorem, 

provides a proof for Fermat's Last Theorem. Wiles first announced his 

proof in June 1993 in a version that was soon recognized as having a serious 

gap. The widely accepted version of the proof was released by Andrew Wiles 

in September 1994, and published in 1995. The proof uses many techniques 

from algebraic geometry and number theory, and has many ramifications in 

these branches of mathematics. It also uses standard constructions of 

modern algebraic geometry, such as the category of schemes and Iwasawa 

theory, and other 20th century techniques not available to Fermat. 

The proof itself is over 100 pages long and consumed seven years of Wiles' 

research time. Among other honors for his accomplishment, he was knighted. 
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[edit] Progress of the previous decades 

Fermat's Last Theorem states that no nontrivial integer solutions exist 

for the equation 

 

if n is an integer greater than two. 

In the 1950s and 1960s a connection between elliptic curves and modular 

forms was conjectured by the Japanese mathematician Goro Shimura based 

on some ideas that Yutaka Taniyama posed. In the West it became well known 

through a 1967 paper by André Weil. With Weil giving conceptual evidence 

for it, it is sometimes called the Shimura-Taniyama-Weil conjecture. It 

states that every rational elliptic curve is modular. 

On a separate branch of development, in the late 1960s, when Yves 

Hellegouarch came up with the idea of associating solutions (a,b,c) of 
Fermat's equation with a completely different mathematical object: an 

elliptic curve.
[1]
 The curve consists of all points in the plane whose 

coordinates (x, y) satisfy the relation. 

 

Such an elliptic curve would enjoy very special properties, which are due 

to the appearance of high powers of integers in its equation and the fact 

that an
 + bn

 = cn
 is a nth power as well. 

In 1982-1985, Gerhard Frey called attention to the unusual properties of 

the same curve as Hellegouarch, now called a Frey curve. This provided 

a bridge between Fermat and Taniyama by showing that a counterexample to 

Fermat's Last Theorem would create such a curve that would not be modular. 

Again, the conjecture says that each elliptic curve with rational 

coefficients can be constructed in an entirely different way, not by 

giving its equation but by using modular functions to parametrize 

coordinates x and y of the points on it. Thus, according to the conjecture, 
any elliptic curve over Q would have to be a modular elliptic curve, yet 

if a solution to Fermat's equation with non-zero a, b, c and p greater 
than 2 existed, the corresponding curve would not be modular, resulting 
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in a contradiction. The link between Fermat's Last Theorem and the 

Taniyama–Shimura conjecture is a little subtle: in order to derive the 

former from the latter, one needs to know a small amount more, or as 

mathematicians would have it, "an epsilon more". 

In 1985, Jean-Pierre Serre proposed that a Frey curve could not be modular 

and provided a partial proof of this. This showed that a proof of the 

semistable case of the Taniyama-Shimura conjecture would imply Fermat's 

Last Theorem. Serre did not provide a complete proof and what was missing 

became known as the epsilon conjecture or ε-conjecture. Serre's main 

interest was in an even more ambitious conjecture, Serre's conjecture on 

modular Galois representations, which would imply the Taniyama–Shimura 

conjecture. Although in the preceding twenty or thirty years a lot of 

evidence had been accumulated to form conjectures about elliptic curves, 

the main reason to believe that these various conjectures were true lay 

not in the numerical confirmations, but in a remarkably coherent and 

attractive mathematical picture that they presented. Moreover, it could 

have happened that one or more of these conjectures were actually false. 

In the summer of 1986, Ken Ribet succeeded in proving the epsilon 

conjecture. (His article was published in 1990.) He demonstrated that, 

just as Frey had anticipated, a special case of the Taniyama–Shimura 

conjecture (still unproven at the time), together with the now proven 

epsilon conjecture, implies Fermat's Last Theorem. Thus, if the 

Taniyama–Shimura conjecture holds for a class of elliptic curves called 

semistable elliptic curves, then Fermat's Last Theorem would be true. 

[edit] General approach of proof 

Given an elliptic curve E over the field Q of rational numbers , 

for every prime power ln
, there exists a homomorphism from the absolute 

Galois group 

 

to 

GL2(Z / lnZ),  
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the group of invertible 2 by 2 matrices whose entries are integers 

( ). This is because , the points of E over , form an 

abelian group, on which acts; the subgroup of elements x such 

that lnx = 0 is just (Z / lnZ)2
, and an automorphism of this group is a 

matrix of the type described. 

Less obvious is that given a modular form of a certain special type, a 

Hecke eigenform with eigenvalues in Q, one also gets a homomorphism from 

the absolute Galois group 

.:  

This goes back to Eichler and Shimura. The idea is that the Galois group 

acts first on the modular curve on which the modular form is defined, 

thence on the Jacobian variety of the curve, and finally on the points 

of ln
 power order on that Jacobian. The resulting representation is not 

usually 2-dimensional, but the Hecke operators cut out a 2-dimensional 

piece. It is easy to demonstrate that these representations come from some 

elliptic curve but the converse is the difficult part to prove. 

Instead of trying to go directly from the elliptic curve to the modular 

form, one can first pass to the ( ) representation for some l and 

n, and from that to the modular form. In the case l=3 and n=1, results 

of the Langlands-Tunnell theorem show that the (mod 3) representation of 

any elliptic curve over Q comes from a modular form. The basic strategy 

is to use induction on n to show that this is true for l=3 and any n, that 

ultimately there is a single modular form that works for all n. To do this, 

one uses a counting argument, comparing the number of ways in which one 

can lift a ( ) Galois representation to ( ) and the number 

of ways in which one can lift a ( ) modular form. An essential point 

is to impose a sufficient set of conditions on the Galois representation; 

otherwise, there will be too many lifts and most will not be modular. These 

conditions should be satisfied for the representations coming from 

modular forms and those coming from elliptic curves. If the original (mod 

3) representation has an image which is too small, one runs into trouble 

with the lifting argument, and in this case, there is a final trick, which 

has since taken on a life of its own with the subsequent work on the Serre 

Modularity Conjecture. The idea involves the interplay between the (mod 
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3) and (mod 5) representations. See Chapter 5 of the Wiles paper for this 

3/5 switch. 

[edit] Wiles' proof 

Shortly after learning of the proof of the epsilon conjecture, it was clear 

that a proof that all rational semistable elliptic curves are modular 

would also constitute a proof of Fermat's Last Theorem. Wiles decided to 

conduct his research exclusively towards finding a proof for the 

Taniyama-Shimura conjecture. Many mathematicians thought the 

Taniyama-Shimura conjecture was inaccessible to proof because the modular 

forms and elliptic curves seem to be unrelated. 

Wiles opted to attempt to "count" and match elliptic curves to counted 

modular forms. He found that this direct approach was not working, so he 

transformed the problem by instead matching the Galois representations 

of the elliptic curves to modular forms. Wiles denotes this matching (or 

mapping) that, more specifically, is a ring homomorphism: 

 

R is a deformation ring and T is a Hecke ring. 

Wiles had the insight that in many cases this ring homomorphism could be 

a ring isomorphism. (Conjecture 2.16 in Chapter 2, §3) Wiles had the 

insight that the map between R and T is an isomorphism if and only if two 
abelian groups occurring in the theory are finite and have the same 

cardinality. This is sometimes referred to as the "numerical criterion". 

Given this result, one can see that Fermat's Last Theorem is reduced to 

a statement saying that two groups have the same order. Much of the text 

of the proof leads into topics and theorems related to ring theory and 

commutation theory. The Goal is to verify that the map R → T is an 
isomorphism and ultimately that R=T. This is the long and difficult step. 
In treating deformations, Wiles defines four cases, with the flat 

deformation case requiring more effort to prove and is treated in a 

separate article in the same volume entitled "Ring-theoretic properties 

of certain Hecke algebra". 

Gerd Faltings, in his bulletin, on p. 745. gives this commutative diagram: 

  --> T -> T/m 
 /          ̂  
R           | 
 \          | 
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  --> Z3 -> F3 

or ultimately that R = T , indicating a complete intersection. Since Wiles 
cannot show that R=T directly, he does so through Z3, F3 and T/m via lifts. 

In order to perform this matching, Wiles had to create a class number 

formula (CNF). He first attempted to use horizontal Iwasawa theory but 

that part of his work had an unresolved issue such that he could not create 

a CNF. At the end of the summer of 1991, he learned about a paper by Matthias 

Flach, using ideas of Victor Kolyvagin to create a CNF, and so Wiles set 

his Iwasawa work aside. Wiles extended Flach's work in order to create 

a CNF. By the spring of 1993, his work covered all but a few families of 

elliptic curves. In early 1993, Wiles reviewed his argument beforehand 

with a Princeton colleague, Nick Katz. His proof involved the 

Kolyvagin-Flach method,
[2]
 which he adopted after the Iwasawa method 

failed.
[3]
 In May 1993 while reading a paper by Mazur, Wiles had the insight 

that the 3/5 switch would resolve the final issues and would then cover 

all elliptic curves (again, see Chapter 5 of the paper for this 3/5 switch). 

Over the course of three lectures delivered at Isaac Newton Institute for 

Mathematical Sciences on June 21, 22, and 23 of 1993, Wiles announced his 

proof of the Taniyama–Shimura conjecture, and hence of Fermat's Last 

Theorem. There was a relatively large amount of press coverage 

afterwards.
[4]
 

After announcing his results, Katz was a referee on his manuscript and 

he asked Wiles a series of questions that led Wiles to recognize that the 

proof contained a gap. There was an error in a critical portion of the 

proof which gave a bound for the order of a particular group: the Euler 

system used to extend Flach's method was incomplete. Wiles and his former 

student Richard Taylor spent almost a year resolving it.
[5][6]

 Wiles 

indicates that on the morning of September 19, 1994 he realized that the 

specific reason why the Flach approach would not work directly suggested 

a new approach with the Iwasawa theory which resolved all of the previous 

issues with the latter and resulted in a CNF that was valid for all of 

the required cases. On 6 October Wiles sent the new proof to three 

colleagues including Faltings. The new proof was published and, despite 

its size, widely accepted as likely correct in its major components.
[7][8]

 

In his 1995 108 page article, Wiles divides the subject matter up into 

the following chapters (preceded here by page numbers): 

443 Introduction  
Chapter 1  
455 1. Deformations of Galois representations  
472 2. Some computations of cohomology groups  
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475 3. Some results on subgroups of GL2(k)  
Chapter 2  
479 1. The Gorenstein property  
489 2. Congruences between Hecke rings  
503 3. The main conjectures  
517 Chapter 3 : Estimates for the Selmer group  
Chapter 4  
525 1. The ordinary CM case  
533 2. Calculation of η  
541 Chapter 5 : Application to elliptic curves  
545 Appendix: Gorenstein rings and local complete intersections  

Gerd Faltings provided some simplifications to the 1995 proof, primarily 

in switch from geometric constructions to rather simpler algebraic 

ones.
[9][10]

 The book of the Cornell conference also contained 

simplifications to the original proof.
[11]
 

[edit] Culmination of the work of many 

Because Wiles had incorporated the work of so many other specialists, it 

had been suggested in 1994 that only a small number of people were capable 

of fully understanding at that time all the details of what Wiles has 

done.
[12]
 The number is likely much larger now with the 10-day conference 

and book organized by Cornell et al.,
[11]
 which has done much to make the 

full range of required topics accessible to graduate students in number 

theory. The paper provides a long Bibliography and Wiles mentions the 

names of many mathematicians in the text. The list of some of the many 

other mathematicians whose work the proof incorporates includes Felix 

Klein, Robert Fricke, Adolf Hurwitz, Erich Hecke, Barry Mazur, Dirichlet, 

Richard Dedekind, Robert Langlands, Jerrold B. Tunnell, Jun-Ichi Igusa, 

Martin Eichler, André Bloch, Tosio Kato, Ernst S. Selmer, John Tate, P. 

Georges Poitou, Henri Carayol, Emil Artin, Jean-Marc Fontaine, Karl Rubin, 

Pierre Deligne, Vladimir Drinfel'd and Haruzo Hida and to those 

mathematicians who have searched (or continue to search) for a more 

elementary proof. 

[edit] Aftermath 

In 1998, the full modularity theorem was proven by Christophe Breuil, 

Brian Conrad, Fred Diamond, and Richard Taylor using many of the methods 

that Andrew Wiles used in his 1995 published papers. 
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A computer science challenge given in 2005 is "Formalize and verify by 

computer a proof of Fermat's Last Theorem, as proved by A. Wiles in 

1995."
[13]
 

[edit] Reading and notation guide 

The Wiles paper is over 100 pages long and often uses the peculiar symbols 

and notations of group theory, algebraic geometry, commutative algebra, 

and Galois theory. 

One might want to first read the 1993 email of Ken Ribet,
[14][15]

 Hesselink's 

quick review of top-level issues gives just the elementary algebra and 

avoids abstract algebra.
[16]
, or Daney's web page which provides a set of 

his own notes and lists the current books available on the subject. Weston 

attempts to provide a handy map of some of the relationships between the 

subjects.
[17]
 F. Q. Gouvêa provides an award-winning review of some of the 

required topics.
[18][19][20][21]

 Faltings' 5-page technical bulletin on the 

matter is a quick and technical review of the proof for the non-specialist. 

For those in search of a commercially available book to guide them, he 

recommended that those familiar with abstract algebra read Hellegouarch, 

then read the Cornell book,
[11]
 which is claimed to be accessible to "a 

graduate student in number theory". Note that not even the Cornell book 

can cover the entirety of the Wiles proof.
[4]
 

The work of almost every mathematician who helped to lay the groundwork 

for Wiles did so in specialized ways, often creating new specialized 

concepts and yet more new jargon. In the equations, subscripts and 

superscripts are used extensively because of the numbers of concepts that 

Wiles is sometimes dealing with in an equation. 

• See the glossaries listed in Lists of mathematics topics#Pure mathematics, such as 
Glossary of arithmetic and Diophantine geometry . Daney provides a proof-specific 
glossary.  

• See Table of mathematical symbols and Table of logic symbols  
• For the deformation theory, Wiles defines restrictions (or cases) on the deformations as 

Selmer (sel), ordinary(ord), strcit(str) or flat(fl) and he uses the abbreviations list here. He 
usually uses these as a subscript but he occasionally uses them as a superscript. There is 
also a fifth case: the implied "unrestricted" case but note that the superscript "unr" is not 
an abbreviation for unrestricted.  

• Qunr is the unramified extension of Q. A related but more specialized topic used is 
crystalline cohomology. See also Galois cohomology.  

• Some relevant named concepts: Hasse-Weil zeta function, Mordell–Weil theorem, 
Deligne-Serre theorem  
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• Grab bag of jargon mentioned in paper: cover and lift, finite field, isomorphism, 
surjective function, decomposition group, j-invariant of elliptical curves, Abelian group, 
Grossencharacter, L-function, abelian variety, Jacobian[disambiguation needed], Néron model, 
Gorenstein ring, Torsion subgroup (including torsion points on elliptic curves here [22] and 
here [23]), Congruence subgroup, eigenform, Character (mathematics), Irreducibility 
(mathematics), Image (mathematics), dihedral, Conductor, Lattice (group), Cyclotomic 
field, Cyclotomic character, Splitting of prime ideals in Galois extensions (and 
decomposition group and inertia group), Quotient space, Quotient group  

[edit] Notes 

1. ^ Hellegouarch, Yves (2001). Invitation to the Mathematics of Fermat-Wiles. 
Academic Press. ISBN 978-0123392510.  

2. ^ Singh, Simon. Fermat's Last Theorem, 2002, p. 259.  
3. ^ Singh, Simon. Fermat's Last Theorem, 2002, p. 260.  
4. ^ a b AMS book review Modular forms and Fermat's Last Theorem by Cornell et. al., 

1999  
5. ^ A Year Later, Snag Persists In Math Proof 1994-06-28  
6. ^ June 26-July 2; A Year Later Fermat's Puzzle Is Still Not Quite Q.E.D. 1994-07-03  
7. ^ NOVA Video, The Proof October 28, 1997, See also Solving Fermat: Andrew Wiles  
8. ^ The Proof of Fermat's Last Theorem Charles Daney, 1996  
9. ^ Fermat's Last Theorem at MacTutor  
10. ^ Fermat's Last Theorem 1996  
11. ^ a b c G. Cornell, J. H. Silverman and G. Stevens, Modular forms and Fermat's Last 

Theorem, ISBN 0-387-94609-8  
12. ^ History of Fermat's Last Theorem Andrew Granville, Jun 24, 1993  
13. ^ Computer verification of Wiles' proof of Fermat's Last Theorem  
14. ^ FAQ: Wiles attack June 1993  
15. ^ Fermat's Last Theorem a Theorem at last August 1993  
16. ^ How does Wiles prove Fermat's Last Theorem? by Wim H. Hesselink  
17. ^ Research Summary Topics  
18. ^ A Marvelous Proof Fernando Gouvêa, The American Mathematical Monthly, vol. 

101, 1994, pp. 203-222  
19. ^ The Mathematical Association of America's Lester R. Ford Award  
20. ^ Year of Award: 1995  
21. ^ MAA Writing Awards, 1995  
22. ^ http://mat.uab.es/~xarles/elliptic.html  
23. ^ http://planetmath.org/encyclopedia/ArithmeticOfEllipticCurves.html  
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