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Abstract

The recently proposed and partly developed ”Grossone Theory” of Y
D Sergeyev is analyzed and partly clarified.

1. Preliminaries

Recently, a remarkable avenue has been proposed and to some ex-
tent developed in [10] for an effective computation with infinitesimal
and infinitely large numbers, a computation which is implementable
on usual digital computers. The presentation in [10], recommended
by the author himself for a first approach of the respective theory, is
aimed ostensibly for a wider readership, and as such it may benefit
from a four fold upgrade along the following lines : First, the lengthy
motivation on pages 1-6 and in various parts of the subsequent ones



2

could gain a lot from a more brief and crisp formulation. Second,
the mathematical part itself can be introduced in a more systematic
way which makes it more explicit that the whole issue is but about
a certain specific and highly particular extension of the usual set of
natural numbers N = { 1, 2, 3, . . . }, and thus implicitly, of the integers
in Z as well. Third, it should be made clear up front that the whole
issue is but about a rather small subset of various ultrapower fields,
among them the well known one introduced more than four decades
ago by the Nonstandard Analysis of A Robinson. And such fields can
be constructed by most simple undergraduate algebra means, see [11],
and also [3-9]. Fourth, and by far most importantly, the presentation
in [10] is based on several postulates and axioms added to the usual
set N of natural numbers, set assumed quite likely to be defined by
the classical Peano axioms. And then, it should be made clear, very
clear indeed, to what extent the respective enlarged system of axioms
is consistent, or at least, can be expected to be so.

Obviously, the presentation in [10] was aimed at as large a readership
as possible. However, it is not at all clear whether in our times of
information over-exposure and short attention span the kind of pre-
sentation in [10] may indeed manage to maximize its impact to a
sufficient extent...

The above is in no way to be construed as a negative comment on
the potential merit of the mentioned avenue introduced and started
to be developed in [10]. Indeed, one of the obvious and major merits
of that avenue is precisely in the fact that - focusing on a special and
particular subset of various well known ultrapower fields, see section
6 below - it offers a practically effective and efficient way to introduce
in a wide range of everyday numerical computations the rather easy
and natural possibility of dealing at long last with infinitesimal and
infinitely large numbers as well ...

And why compute with infinitesimal and infinitely large numbers, at
all ?

Well, given the mentioned information overload and short attention
span which so much dominate and characterize our days, one may
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hopefully be excused when not presenting yet another longer attempt
at trying to convince the skeptics, non-believers, opponents, and the
many like, of the idea of computing with infinitesimal and infinitely
large numbers ...
However, such attempts do nevertheless exist, and a few of them can
be found in [3-9], for instance ...

Controversies, one the other hand, are of course quite another issue.
And they still can attract a wider attention even in our excessively
busy and hectic times ...

Here, therefore, it may be amusing to mention their existence related
to [10]. And as an illustration, one of them can be found in some detail
in [2], where a ”Blog in Fragments” has a section ”On Rigmarole and
Pseudoscience”, and in it, an item entitled ”A Penn’orth of Grossone”
presents several strikingly negative comments, among them : ”Un-
fortunately, it turned out impossible to stop the flood of Sergeyev’s
publications in the variety of the international journals having little if
any in common with foundations of analysis. Miraculously, there are
no Sergeyev’s publications on his grossone in Russian in the Russian
mathematical database Math-Net.Ru.”

Since the issue of the status of the ”Grossone Theory” still seems to be
pending to a certain extent, one should start nevertheless by pointing
out several remarkable observations in [10] which are worth consider-
ing most seriously by mathematicians.

First, and stated more or less in the very terms of [10], comes the
fact that the way much of mathematics is done recalls that of science
in general. Namely, the triad made up from ’researcher’, ’object of
investigation’ and ’tools used to observe the object’ is so often present
in mathematics as well.
And in this regard, we already happen to have in mathematics a va-
riety of ’numeral systems’ used to express ’numbers’. And clearly,
such ’numeral systems’ can be seen as some among the tools of ob-
servation used by mathematicians, used not only in the application of
mathematics, but also within mathematics itself, that is, when doing
mathematical research.
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In this regard, no matter how much and for how long we have been
accustomed to the usual set N of natural numbers, nowadays, and ever
since Gödel’s Incompleteness Theorem, we should be aware that what
we mean by N is most definitely not one single ’numeral system’, or
for that matter, set of ’numbers’.
And then, the basic idea in [10] is in fact :

(1.1) to distinguish between ’numeral systems’ and ’numbers’, with
the former supposed to represent some, or possibly, all of the latter,

(1.2) to focus with priority on the construction of a ’numeral system’
which allows the representation of infinitesimal and infinitely large
’numbers’, as well as the usual algebraic operations with them, as
they are customary in a field,

(1.3) to have the usual natural numbers n in N both part of the
’numeral system’, and of the ’numbers’ represented by that system,
simply by having the ’numeral’ n represent the ’number’ n, or equiv-
alently, having the ’number’ n be represented by the ’numeral’ n,

(1.4) to allow only finitely constructible ’numerals’, with the construc-
tion being recursive from the simpler ’numerals’ to the more complex
ones,

(1.5) to be unconcerned about ’numbers’ which cannot be repre-
sented by a given ’numeral system’,

(1.6) to be open to the construction of new ’numeral systems’ in or-
der to be able to represent more ’numbers’, and/or to represent them
with better precision.

Remarkably, all of the above can be attained by the surprisingly sim-
ple means of introducing one single infinite ’numeral’ called grossone,
as seen in section 2, next.

Second, the emerging ”Grossone Theory” touches upon Set Theory as
well, and does so in novel ways. Indeed, the way Cantor defines the
size of sets, namely, by their cardinal numbers, allows the possibility
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that ”a part is not smaller than the whole”. Namely, it is in fact
a characteristic property of infinite sets to have strict subsets of the
same cardinal, thus of the same size in the sense of Cantor. Indeed,
take any infinite set X and in it any element x ∈ X. Then clearly
Y = X \ {x} is still an infinite set, and has the same cardinal with X,
while it is obviously a strict subset of X.
Well, Postulate 3 in [10] states, on the other hand, that the part is
less than the whole. In other words, the way [10] tries to measure the
size of sets is clearly non-Cantorian.
Unfortunately however, that alternative way of measuring is not made
sufficiently clear by a suitable general enough definition, and all one is
presented with instead is a formulation in usual colloquial language,
plus some examples.
The conclusion, nevertheless, is valid that, indeed, there can be many
other ways to measure the size of sets. And the way Cantor did with
the help of cardinals is but one of them.

Amusingly, such fundamentally important issues are completely missed
by the critics in [2] who seem to become lost in arguments trying to
support by all the means available to them a seemingly prejudiced
negative attitude ...

Hopefully, in due time, the ”Grossone Theory” in [10] may be per-
fected, and among others, possibly along the line of the above sugges-
tions as well ...

Needless to say, we cannot expect a ’numeral system’ to be able to
represent all the ’numbers’ which can possibly be conceived of, and
do so by finite means. After all, even in usual Analysis we have to
face uncountably many ’numbers’, and most of the irrational ones we
cannot represent by finite means ...

As for Nonstandard Analysis, or more generally, the various ultra-
power fields, [11,3-9], they contain uncountably many different in-
finitesimals, and also, different infinitely large numbers. Indeed, given
two such infinitesimals, one of them can be infinitely smaller, or for
that matter, infinitely larger than the other one, and a similar situa-
tion happens with the infinitely large numbers. Details in this regard
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can be found in [8], for instance.
And in fact, as is known, [1], such ultrapower fields can have arbitrar-
ily large cardinals.

In conclusion, to the extent that some of the infinitely small and in-
finitely large numbers can be included in the representation available
in a ’numeral system’, a system that may even be performed on digital
computers, we are, and for the first time, given a truly precious gift ...

2. A Few Basic Details on Grossone

Here we shall present a few first steps in making the ”Grossone The-
ory” more clear. Needless to say, the completion of the respective
venture in clarification may fall in its entirety upon the author of [10]
himself.

The presentation proper in [10] starts with the following three postu-
lates :

P1. ”We postulate existence of infinite and infinitesimal objects but
accept that human beings and machines are able to execute only a
finite number of operations.”

P2. ”We shall not tell what are the mathematical objects we deal
with; we just shall construct more powerful tools that will allow us to
improve our capacities to observe and to describe properties of math-
ematical objects.”

P3. ”We adopt the principle : ’The part is less than the whole’ to all
numbers (finite, infinite, infinitesimal) and to all sets and processes
(finite and infinite).”

In certain parts of [10] it is claimed that one or another of the above
three postulates is used in an essential, and in fact, sine-qua-non man-
ner. That claim itself may need a further consideration.

As for the above first postulate P1, the term ”operation” is not at
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all made clear enough. After all, we humans can within Calculus, for
instance, compute limits, derivatives and integrals. And they contain
by their definitions infinitely many arithmetic operations.
Regarding [10], that first postulate P1 is actually an overstatement,
since what it mostly means is that the ’numeral system’ is composed of
elements which can be constructed by finite means from usual natural
numbers n in the infinite set N, with these numbers seen as ’numerals’
according to (1.3) above, as well as from a special infinite ’numeral’
introduced next.

The development proper in [10] starts with section 3, where the ”nu-
meral < 1 > called grossone” is introduced as ”the infinite unit of
measure” which is declared to be, or rather, to represent ”the number
of elements of the set N”.

Then the so called ”Infinite Unit Axiom”, or in short, IUA is intro-
duced as consisting of three parts, namely :

Infinity : Any finite natural number n is less than the grossone, that
is, n << 1 >.

Identity : The following relations hold :

0. < 1 > = < 1 > .0 = 0, < 1 > − < 1 > = 0, <1>
<1>

= 1

< 1 >0 = 1, 1<1> = 1, 0<1> = 0

Divisibility : For any finite natural number n, the infinite sets

Nk,n = { k, k + n, k + 2n, k + 3n, . . . }, 1 ≤ k ≤ n

have the same number of elements given by the numeral <1>
n

.

Here as a motivation of the above, one can note that⋃
1≤k≤n Nk,n = N

is a partition of N, and the sets Nk,n, with 1 ≤ k ≤ n, are translates
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of one another.

This is about all in [10] regarding the introduction of the basic novel-
ties.

As one can see, these novelties include :

(2.1) the numeral < 1 >, called grossone,

(2.2) the assumption that N, when extended with grossone, can be
included in a numeral system, say, S,

(2.3) certain infinite sets can - in a non-Cantorian manner - have
their sizes measured, or rather represented by elements in S.

(2.4) the numeral system S is not supposed to be the same with the
set of numbers it can represent, and is not expected to represent all
possible numbers

(2.5) the concern is not with the set of numbers, but with the nu-
meral system,

(2.6) various numeral systems may describe various sets of numbers,

(2.7) the concern is to introduce a numeral system which, for the first
time in the literature, can represent in addition to the usual natural
numbers, also infinitesimal and infinitely large numbers, and can op-
erate with them rigorously, including on digital computers, according
to the customary operations in a field.

Obviously, the numeral <1>
n

above is considered to be infinite, and
therefore, its inverse n

<1>
is considered to be infinitesimal. Further-

more, <1>
n

is, in fact, considered to be an infinite integer.

Here, a surprising novelty is introduced in [10] by declaring that, now,
with the above new numeral system, we can consider that, in fact, we
have
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(2.8) N = { 1, 2, 3, . . . , < 1 > −3, < 1 > −2, < 1 > −1, < 1 > }

while on the other hand, and much unlike the above, the usual nu-
meral system gives of course

(2.9) N = { 1, 2, 3, . . . }

All of this is but a simple example of the fact that different numeral
systems can give different ways of representing numbers. And the
numbers represented can be the same or different ones. And some of
such systems are more sophisticated than other ones, and thus may
allow a greater precision in the representation of numbers, and/or can
allow the representation of more numbers.
In this regard, the above new numeral system is clearly more sophis-
ticated and with greater precision than the usual one since it can
represent numbers, for instance, infinite and infinitesimal ones, which
the usual one cannot.
For instance, the usual representation only allows∞+1 =∞+2 =∞,
while in the new representation we have

< 1 > 6= < 1 > +1 6= < 1 > +2

Next, [10] introduces the extension of the new set N of natural num-
bers in (2.1), namely

(2.10) N̂ = { 1, 2, 3, . . . , < 1 > −3, < 1 > −2, < 1 > −1, < 1 >,
< 1 > +1, < 1 > +2, < 1 > +3, . . . ,
< 1 >2 −3, < 1 >2 −2, < 1 >2 −1, < 1 >2,
< 1 >2 +1, . . . }

By the way, and quite amusingly, (2.8) and (2.10) are not seen in [10]
as conflicting with postulate P1. This fact alone shows that the men-
tioned postulate may have to be reconsidered and formulated in more
precise form, a form which is considerably weaker than as it presently
stands in [10]. Indeed, in view of (2.8) and (2.10), for instance, the
term ”to operate” in that postulate seems not to include the term ”to
conceive” ...
Here, of course, one can recall that the concept of infinity is notori-
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ously difficult not only in mathematics, but more widely, in philosophy
as well. Therefore, no doubt, a special care need be taken when for-
mulating postulates like P1 above.

3. New Positional Numeral System

Next, in [10], a new positional numeral system is introduced in which
the grossone < 1 > plays an essential role. And this new system is
a rather straightforward and natural extension of the usual one, with
the only exception that each numeral in it is but a finite construction,
thus keeping with the postulate P1. Namely, the numerals are of the
general form

(3.1) C = cpm < 1 >pm + . . .+ cp1 < 1 >p1 +cp0 < 1 >p0 +
+ cp−1 < 1 >p−1 + . . .+ cp−k

< 1 >p−k

or written more briefly

(3.2) C = cpm < 1 >pm . . . cp1 < 1 >p1 cp0 < 1 >p0 cp−1 < 1 >p−1

. . . cp−k
< 1 >p−k

where m, k are natural numbers, or zero, further, the grosspowers

(3.3) pm > . . . p1 > p0 = 0 > p−1 > . . . > p−k

are arbitrary numerals already constructed according to (3.1), and as
such can be finite, infinitesimal or infinite, while finally, the grossdigits
ci 6= 0 are arbitrary usual rational numbers in Q, expressed in finite
terms in a positional system.

The surprising fact is the amount of infinitesimal and infinitely large
numbers which such a positional numeral system can represent. Some
examples in this regard are presented in [10]. Here, let us only men-
tion the following immediate consequence of (3.1). Clearly, < 1 > is
of form (3.1), thus it is a numeral. And then, it can be taken as a
grosspower, thus giving the numeral < 1 ><1>. Continuing in this
manner any finite number of times, one can obtain numerals given by
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any finite exponential tower

(3.4) < 1 ><1><1><1>
...

consequently, far larger infinitely large numerals are available than the
grossone itself.

4. Arithmetic Operations

In [10], it is shown in clear detail that way the usual operations in a
field can be performed within the positional numeral system in (3.1).

5. Further Developments

A number of other operations with elements of the positional numeral
system in (3.1) are presented in [10], albeit some of them suffer from
an insufficient clarity.

6. Ultrapower Fields and the Grossone

Let us relate the above to the well known ultrapower fields, a partic-
ular case of which constitutes the subject of Nonstandard Analysis,
[11,3-9].

As a first step, let us recall the seemingly less familiar fact that Non-
standard Analysis constructs the field ∗R of nonstandard real numbers
by a rather simple and general ultrapower construction, a construc-
tion which only requires undergraduate algebra, namely, familiarity
with the concepts of ring, ideal, quotient of a ring by an ideal, as well
as with the rather elementary set theoretic concept of filter, and its
particular case of ultrafilter.

The difference between various ultrapower fields, and on the other
hand, the nonstandard field ∗R is in the fact that the latter is accom-
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panied by the so called transfer principle.

However, upon a more careful consideration, it may appear that the
price paid in the considerable technical complications needed for se-
curing that transfer principle is not rewarded sufficiently. Indeed, by
far most of the properties of interest do not transfer from the standard
case to the nonstandard one, since they cannot be formulated in first
order predicate logic.
And whether or not it may indeed be the case that the complications
do not compensate for the rewards, the fact remains that the vast ma-
jority of mathematicians have chosen not to use nonstandard methods,
ever since their emergence in the 1960s.
On the other hand, that statistical fact cannot in any way be held
against Nonstandard Analysis which, as a mathematical accomplish-
ment in its own, can be seen as ranking among the most important,
and in fact, revolutionary ones, achieved in the 20th century, among
others for the fact that it presents the first ever rigorous, systematic
and wide ranging foundation for the concept of infinitesimals intro-
duced by Leibniz.

Consequently, in the sequel we shall only relate the emerging ”Grossone
Theory” to ultrapower fields. For that purpose we briefly recall the
construction of such ultrapower fields, further details being presented
in [11,3-9].

Let Λ be any infinite set. Below, for convenience, we shall take Λ = N.
Further, let F be a free ultrafilter on Λ. We note that the existence of
such free ultrafilters on infinite sets follows from the Axiom of Choice.

Obviously, the set RΛ of functions x : Λ −→ R is a unital commutative
algebra over R. We define in this algebra the maximal ideal

(6.1) IF = {x ∈ RΛ | Z(x) ∈ F }

where Z(x) = {λ ∈ Λ | x(λ) = 0 }.

And now we obtain the ultrapower field
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(6.2) RF = RΛ/IF

Further, we have the embedding of fields

(6.3) R 3 r 7−→ u(r) + IF ∈ RF

where u(r) ∈ RΛ is defined by (u(r))(λ) = r, for λ ∈ Λ.

Finally, the field RΛ is totally, or linearly ordered by the relation

(6.4) x ≤ y ⇐⇒ {λ ∈ Λ | x(λ) ≤ y(λ) } ∈ F

We note that the totally, or linearly ordered field ∗R of nonstandard
reals is - as a field - but a particular case of the remarkably simple
construction above, and in fact, it can be obtained for Λ = N.

As mentioned, we shall take Λ = N. Then it is easy to give examples
of infinitesimal and infinitely large elements in RF . Indeed, let any
x ∈ RN. If

(6.5) x(n) > 0, n ∈ N

and

(6.6) limn∈N x(n) = 0

then x̃ = x+IF ∈ RF is an infinitesimal number. On the other hand, if

(6.7) limn∈N x(n) = ∞

then x̃ = x+ IF ∈ RF is an infinitely large number.

Clearly, given any function f : R −→ R, one can define its extension

(6.8) f̃ : RF −→ RF

by
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(6.9) f̃(x+ IF) = f ◦ x+ IF , x ∈ RN

Indeed, given x, y ∈ RN, such that y − x ∈ IF , then (6.1) gives
{n ∈ N | x(n) = y(n) } ∈ F , hence {n ∈ N | f(x(n)) = f(y(n)) } ∈ F .

In fact, we have the following considerably stronger property. Given
any f : N× R −→ R, we define

(6.10) f̃(x+ IF) = f
⊙

x+ IF , x ∈ RN

where

(6.11) N 3 n 7−→ f(n, x(n)) ∈ R

since for x, y ∈ RN, such that y − x ∈ IF , we have

{n ∈ N | f(n, x(n)) = f(n, y(n)) } ⊇ {n ∈ N | x(n) = y(n) } ∈ F

Now, returning to the grossone, we can take it as

(6.12) < 1 >∈ RF

given by any infinitely large positive number, and clearly, the condi-
tions in the Identity Axiom will be satisfied.

The question, therefore, arises :

Is the new numeral system S given by the gossone nothing
else but the subfield Q(< 1 >) generated in RF by Q and
< 1 > chosen in (6.12) ?

Clearly, in view of section 4 above, and in more details, of section 4
in [10], the numeral system S contains the numbers in Q(< 1 >).

What is crucially important, however, regarding the ”Grossone The-
ory” is that we have in fact the strict inclusion

(6.13) Q(< 1 >) $ S
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which follows obviously from (3.4).

7. How about a Multi-Gorssone Theory ?

The fact that the grossone numeral system S is far larger than any
field extension of the usual rational numbers generated by an infinitely
large number is remarkable, and follows directly from the positional
definition of numerals in (3.1).

Of course, in case postulate P1 is set aside, one is allowed grossonedig-
its in (3.1) which are arbitrary real numbers, and then (6.13) takes the
stronger form

(7.1) R(< 1 >) $ S

However, even without removing P1, or more precisely, a more pre-
cisely focused version of it, one may ask the following question :

How about developing a numeral system based not only
on one single grossone, but on a finite number of them ?

In other words, instead of the grossone < 1 > alone, one can start
with any finite number of them, say

(7.2) < 1 >,< 2 >,< 3 >, . . . , < γ >

and by an obvious direct extension of (3.1), construct a corresponding
numeral system S(< 1 >,< 2 >,< 3 >, . . . , < γ >).

What may happen in such a case is that the mapping

(7.3) numeral 7−→ number

which gives the representation of numbers by numerals, may cease to
be injective.
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A first obvious step in order to avoid such a situation is to introduce
the Basic Order Axiom, according to which

(7.4) < 1 > < < 2 > < < 3 > < . . . < < γ >

The difficulty here is that, in view of (3.4), for instance, the gap be-
tween successive grossones in (7.4) has to be considerable, if one wants
to secure the injectivity of the representation mapping in (7.3).

On the other hand, by only dealing with one single grossone, the corre-
sponding numeral system appear to have no chance at all to represent
arbitrarily large infinite numbers in RF .

Indeed, let us take any grossone < 1 > in (6.12). The question is the
following :

Is it the case that for every x̃ ∈ RF there exists a numeral
ν ∈ S which represents a number ỹ ∈ RF which is at least
as large as x̃ ?

And to be more specific, let us formulate the question in a more par-
ticular manner, namely :

Let be given any f : N × R −→ R and the corresponding
f̃ in (6.10). Further, let x̃ = f̃(< 1 >) ∈ RF . Is there a
numeral ν ∈ S which represents a number ỹ ∈ RF which
is at least as large as x̃ ?

In view of postulate P1, or for that matter, of certain more focused
weaker forms of it, the answer to the above question is likely to be
negative.

However, the same appears to be the case of any multi-grossone the-
ory, as long as finite number of grossons are employed.

Here, therefore, can one see one of the possible limitations of ”Grossone
Theory”.
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