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FOREWORD 

 Rarely, if ever, was the human spirit under a closer critical scrutiny than in the following 
masterpiece of the great scientist of the 19th and 20th centuries, Henri Poincaré. The work 
itself is seldom cited. Yet, the reader can find in it all the objections that can be raised 
against the main scientific inventions of the human spirit. They are still valid today, exactly 
as they were more than a century ago, or three centuries ago, for that matter. 

 It is, first and foremost, advisable to pay close attention to the definition of central forces 
as given by Poincaré. Like all of the classics of science, he understood them with a string 
attached: their magnitude should depend only on the distance between points. Einstein 
himself used the definition of central forces in that connotation when he judged the whole 
system of the classical mechanics and introduced the general relativity. However, the very 
first definition of the central forces, as it appears in Newton’s Principia, doesn’t ask 
anything of the kind. What can we say, but repeat with Nietzsche: the first reaction is 
usually the right one! 

 It is also advisable to pay attention to the critique of the concept of energy: it stands even 
today as it was then, in this work of Poincaré. Yet, in spite of the overwhelming cases 
against energy, the theoretical physics doesn’t seem to stop speculating upon the kinds of 
energy that might exist in the world. Finally, it is worth paying attention to the criticism of 
the way in which Hertz assigns matter through a hypothesis: it seems like the hypothesis of 
missing mass of today. 

 It is our conviction that this masterpiece is not quite known to the English speaking 
readers. This is why we undertook here the burden of its translation. We hope to give it 
another chance, in order to have, at least nowadays, more than a century from its first 
publication, the impact it deserves on the human spirit. 
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 In the year 1890 the great electrician Hertz reached the apogee of his glory; all of the 
Academies of Europe rewarded him with the awards at their disposal. The entire world 
hoped that he would still have many years of life and that they should be just as brilliant as 
those of his debut. 
 Unfortunately, the malady he acquired so prematurely already got to him and started 
immediately to slow down, until almost complete halt, his experimental activity. He barely 
had time to install his new lab in Bonn; all kinds of ailing deprived him, and us, of the 
discoveries he promised. 
 However, he would still serve the physical sciences, by the enormous influence he 
exerted, by advices given to his students; nevertheless this period is only marked by a single 
personal discovery, of primeval importance, is true, namely that of the transparence of 
aluminum to cathodic rays. 
 But, if he was so brutally turned from the studies so precious to him, he didn’t go 
however inactive; if the senses betrayed him, the intelligence remained and he would use it 
to profound reflections on the philosophy of Mechanics. The results of these reflections 
were published in a posthumous work, and I want to summarize and discuss them here 
briefly. 
 Hertz criticizes first the two principal systems proposed until now, which I’ll call the 
classical system and the energetic system, and proposes a third system which I’ll call the 
Hertzian system. 

I – THE CLASSICAL SYSTEM 

1. The definition of force – The first tentative of coordination of the mechanical facts is that 
which I will call the classical system; this is, says Hertz, «the great royal way, whose main 
stations carry the names of Archimedes, Galilei, Newton and Lagrange. 
 »The fundamental notions we find as points of depart are those of space, time, force and 
mass. The force in this system is taken as a cause of motion; it exists before the motion and 
is independent of it». 
 I’ll try to explain now why Hertz was unsatisfied with this manner of considering the 
things. 
 First, we have the difficulties met when we want to define the fundamental notions. 
What is the mass? It is the product between volume and density, says Newton. – It would be 
better to say that the density is the ratio between mass and volume, answer Thomson and 
Tait. – What is the force? It is, answers Lagrange, a cause producing or tending to produce 
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the motion of a body. – It is, would Kirchhoff say, the product between mass and 
acceleration. But then why wouldn’t we say that the mass is the ratio between force and 
acceleration? 
 These difficulties are inextricable. 
 When we say that the force is the cause of a motion, we do metaphysics, and if we 
should limit ourselves to this, the definition is absolutely sterile. In order that a definition 
could serve to something, it must teach us to measure the force; this would be entirely 
sufficient, we wouldn’t need it to teach us what is the force in itself, nor that it is cause or 
effect of the motion. 
 Therefore, we first ought to define the equality of two forces. When will we say that two 
forces are equal? When applied to the same mass, one answers, they will imprint the same 
acceleration or, when opposed directly to one another, they are in equilibrium. 
 However, this definition is not here but only to bedazzle us. One cannot take a force, 
applied to a body, to attach it to another body, like one would take, for instance, the 
locomotive from a train in order to attach it to another train. It is therefore impossible to 
know what acceleration such and such force, applied to such and such body, would impart to 
another body, if applied to that body. It is impossible to know how two forces, which are not 
directly opposed to one another, would behave in case they are directly opposed. 
 This definition is the one we try to materialize, so to speak, when we measure the force 
with a dynamometer or when we equilibrate it with a weight. Two forces F and F′, which for 
simplicity I assume vertical and oriented upward, are applied to two bodies C and C′ 
respectively; I suspend the same heavy body P, first to C, then to C′; if the equilibrium takes 
place in the two cases, I’ll conclude that the two forces F and F′ are equal to each other, 
because they are equal with the weight of the body P. 
 But am I sure that the body P maintained its weight when moved from the first to the 
second body? Far from this, I am rather sure of the contrary; for I know that the intensity of 
weight varies from a point to another, and that it is for instance higher to the pole than to the 
equator. The difference is, obviously, very small and practically I wouldn’t even care of it; 
but a good definition ought to have mathematical rigor, and this rigor doesn’t exist here. 
What I just said about weight applies obviously to the force of the spring of a dynamometer, 
which the temperature and a host of other circumstances can prompt to vary. 
 And this is not all of it yet; one cannot say that the weight of body P was applied to body 
C and equilibrates the force F. What is actually applied to the body C is the action A of the 
body P on body C; the body P is in turn acted upon by its weight, and on the other hand by 
the reaction of body C on P. After all, the force F is equal to force A, for they are in 
equilibrium: the force A is equal to R by the principle of equality of action and reaction; 
finally, the force R is equal to the weight of body P, for they are in equilibrium. Only from 
these three equalities are we inferring the equality of F with the weight of P as a 
consequence. 
 We are therefore required to introduce in the definition of the equality of two forces the 
very principle of the equality of action and reaction; based on this, that principle can no 
more be considered as an experimental law, but only as a definition. 
 Here we are, therefore, in possession of two rules of recognizing the equality of two 
forces: the equality of two forces equilibrating each other; the equality of action and 
reaction. But, as we have just shown above, these two rules are insufficient; we are therefore 
compelled to appeal to a third rule, and admit that certain forces, like for instance the weight 
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of a body, are constant in magnitude and direction. However, as we said, this third rule is an 
experimental law: it is only approximately true; it is a bad definition. 
 We are therefore down to the definition of Kirchhoff: the force equals mass times 
acceleration. This «law of Newton» ceases in turn to be considered as an experimental law, 
it is nothing more than a definition. But even this definition is still insufficient, for we don’t 
know what’s mass. It allows us to calculate the ratio of two forces applied to the same body 
at different times, no doubt; however, it doesn’t teach us anything about the ratio of these 
forces in case they are applied to different bodies. 
 In order to round it up, we must appeal again to the third of Newton’s laws (the equality 
of action and reaction), taken however not as an experimental law but as a definition. Two 
bodies A and B act on each other; the acceleration of A times mass of A is equal to the 
action of B on A; similarly, the product of the acceleration of B with its mass is equal with 
the reaction of A on B. As, by definition, the action is equal to the reaction, the masses of A 
and B are in inverse ratio with the accelerations of the two bodies. Here is, therefore, the 
ratio of the two masses defined, and it remains for experience to verify that this ratio is 
constant. 
 This would work very well, if the two bodies A and B would be alone present, and 
withdrawn to the action of the rest of the world. But it is not at all so; the acceleration of A 
is not exclusively due to the action of B, but to the action of a host of other bodies C, D… In 
order to apply the preceding law, we need to decompose the acceleration of A in many 
components and then find which one of these components is due to the action of B. 
 This decomposition would still be possible should we admit that the action of C on A 
simply adds to that of B on A, without the presence of C modifying the action of B on A, or 
the presence of B modifying the action of C on A; consequently, if we would admit that two 
arbitrary bodies attract each other, that their mutual action is oriented along the line joining 
them and does not depend but on the distance between them; in a word, if we admit the 
hypothesis of central forces. 
 It is well known that for the evaluation of masses of celestial bodies we make use of an 
entirely different principle. The law of gravitation teaches us that the attraction of two 
bodies is proportional to their masses; if r is the distance between them, m and m' are their 
masses and k a constant, their attraction will be k⋅m⋅m′/r2. 
 What one measures then is not the mass, as ratio between force and acceleration, but the 
attracting mass; it is not the inertia of the body but its attractive power. 
 We have here an indirect procedure, whose use is not theoretically compulsory. It could 
very well be that the attraction is inversely proportional with the square of distance, without 
being proportional though with the product of masses, i.e. it could be equal to f/r2, but 
without having though 

f = k⋅m⋅m′ 
 Even so, we would still be capable of measuring the masses of these bodies by observing 
their relative motions. 
 However, do we have the right to admit the hypothesis of central forces? Is this 
hypothesis rigorously exact? Is it sure that it will not be contradicted by experience? Who 
would venture to answer in the affirmative? And yet, if we are to abandon this hypothesis, 
the whole edifice, so laboriously erected, will collapse. 
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 We have therefore no right to talk of the component of acceleration of A due to the 
action of B. There is no mean to discern it from that due to the action of C or of any other 
body. The rule of measuring the masses becomes inapplicable. 
 What is left then from the principle of equality of action and reaction? If the hypothesis 
of central forces is rejected, this principle must then be expressed in the following way: the 
geometrical resultant of all forces applied to different bodies of a system withdrawn from 
any external action will be zero. In other words, the motion of the center of gravity of this 
system will be rectilinear and uniform. 
 Here is, apparently, a means to define the mass; the position of the center of gravity 
depends obviously on the values attributed to the masses; we should dispose of those values 
in such a way that the motion of the center of gravity is rectilinear and uniform; this will 
always be possible if the third law of Newton is true, and will not be possible but in one 
single way. 
 Nevertheless, there is no system withdrawn to any external action; all the parts of the 
Universe suffer more or less the action of all the other parts. The law of the motion of the 
center of gravity is not rigorously valid but when applied to the entire Universe. 
 But then, in order to be capable to extract the value of the masses, we ought to be able to 
observe the motion of the center of gravity of the Universe. The absurdity of this conclusion 
is obvious; we don’t know but relative motions; the motion of the center of gravity of the 
Universe remains for us an eternal unknown. 
 We are left therefore with nothing, and our efforts were unfruitful; we are compelled to 
adopt the following definition, which is nothing else but a confession of incapacity: the 
masses are coefficients convenient to introduce in calculations. 
 We will be able to redo the whole Mechanics, by attributing to all the masses different 
values. This new Mechanics will not be in contradiction with experience nor will it be 
contradicting the general principles of Dynamics (the principle of inertia, the proportionality 
of the forces with masses and with accelerations, equality of action and reaction, rectilinear 
and uniform motion of the center of gravity, the principle of areas). 
 Only, the equations of this new Mechanics will be less simple. Let’s understand this 
well: only the first terms will be simpler, i.e. the ones we already know from experience; it 
would be possible that, by altering the masses by small quantities, the complete equation 
neither gain nor drop anything from their simplicity. 
 I insisted on this discussion longer than Hertz himself; I meant to show though that Hertz 
didn’t simply look for quarrel with Galilei and Newton; we must agree to the conclusion that 
in the framework of the classical system it is impossible to give a satisfactory idea for force 
and mass. 
2. Different objections. – Hertz asks himself, further, if the principles of Mechanics are 
rigorously true. «In the opinion of many physicists, he says, will appear as inconceivable 
that the remotest experience could ever change something from the undestructible principle 
of Mechanics; yet, what comes out of experience can always be rectified by experience.» 
 After what we just have discussed such a fear seems superfluous. The principles of 
Dynamics appear to us first as experimental truths; nevertheless we were compelled to use 
them as of definitions. By definition the force is equal with the product of the mass and 
acceleration; here is, therefore, a principle that from this moment on is placed out of reach of 
any upcoming experience. Similarly, only by definition the action is equal to the reaction. 
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 But, can one say, these unverifiable principles are absolutely empty of any meaning; the 
experience cannot contradict them; and they cannot teach us anything beneficial; why then 
study the Dynamics? 
 This expedite condemnation would be unjust. There is in Nature no system perfectly 
isolated, perfectly withdrawn to any external action; there are nearly isolated systems 
though. 
 If one observes such a system, then one can study not only the relative motion of its 
different parts one with respect to another, but also the motion of its center of gravity with 
respect to other parts of the Universe. One can ascertain then that the motion of this center 
of gravity is almost rectilinear and uniform, according to the the third law of Newton. 
 We have here an experimental truth, but it will not be possible to be invalidated by 
experience; for, what could tell us a more precise experience, indeed? It could tell us that the 
law is almost exact; but this we already knew. 
 Now it is obviously explainable why the experience could serve as the basis of the 
principles of Mechanics, and yet it will never be capable of contradicting them. 
 But let’s come back to Hertz’s argument. The classical system is incomplete because all 
of the motions compatible with the principles of Mechanics are not materialized in Nature, 
they are not even realizable. Indeed, it is obvious that the principles of areas and of the 
motion of center of gravity are not the only laws that regulate the natural phenomena. No 
doubt, it would be unreasonable to ask Dynamics to comprise in the same formula all the 
laws that Physics ever discovered or will be capable of discovering. Nevertheless, it is no 
less true the fact that we will need to consider as incomplete and insufficient a system of 
Mechanics in which the principle of conservation of energy is passed by in silence. 
 «Our system, concludes Hertz, comprises indeed all of the natural motions, but at the 
same time it comprises still many others that are not natural. A system that will exclude a 
part of these motions will be much more in agreement with the nature of things, and 
consequently will represent a progress». Thus, for instance, will be the energetic system, to 
be discussed hereinafter, in which the fundamental principle of conservation of energy is 
introduced quite naturally.  
 Perhaps it is not well understood what specifically deters the sheer annexation of this 
principle to the other principles of the classical system. 
 But Hertz asks himself still another question: 
 The classical system gives us an image of the external world. Is this a simple image? 
have we gotten rid in it of the spurious features, arbitrarily introduced along with the 
essential ones? Aren’t the forces we are compelled to introduce genuine fruitless gears, 
gyrating in vain? 
 On this table there is a bar of iron; an uninfluenced observer will think that because there 
is no motion there is no force. How deceived will he be! The physics teaches us that every 
atom of iron is attracted by all the other atoms in the Universe. Moreover, every atom of iron 
is magnetic, and consequently is submitted to the action of all the magnets in the Universe. 
All of the electrical currents in the world act upon this atom. I leave aside the electrostatic 
forces, the molecular forces, etc. 
 If just a few of these forces are the only ones acting, their action will be enormous; the 
iron will fly apart into pieces. Fortunately they all act and counterbalance, so that nothing 
happens. Our uninfluenced observer, who doesn’t see but only a thing, an iron bar at rest, 
will obviously conclude that all these forces do not exist but in our imagination. 
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 No doubt, these assumptions don’t have anything of absurd in themselves, but a system 
that makes a clean sweep of them will be, by this very thing, better than our system. 
 It’s impossible that this objection doesn’t strike us. Besides, in order to show that it is 
not merely artificial, it is sufficient for me to recall a polemics that took place a few years 
ago between two eminent scientists, von Helmholtz and Mr. Bertrand, in connection with 
the mutual actions of the currents. Trying to translate in a classical language the theory of 
von Helmholtz, Mr. Bertrand encountered unfathomable contradictions. Every element of 
current would need to be submitted to a couple of forces; but a couple of forces is composed 
of two parallel, equal and opposite forces. Mr. Bertrand has calculated that every one of 
those two component forces must be considerable, big enough to be able to destroy the wire, 
and concluded that the theory must be rejected. On the contrary von Helmholtz, partisan of 
the energetic system, would not see here any difficulty. 
 Thus, according to Hertz, the classical system should be abandoned: 
 1º because a good definition of force is impossible; 
 2º because it is incomplete; 
 3º because it introduces spurious assumptions and these can often times generate 
difficulties, purely artificial, but big enough though, in order to stop even the most exquisite 
spirits. 

II – THE ENERGETIC SYSTEM 

1. Different objections – The energetic system was born after the discovery of the principle 
of conservation of energy. Von Helmholtz gave it the definitive form. 
 One starts by definition of two quantities playing the fundamental part in this theory. 
These are: on one hand, the kinetic energy or the living force; on the other hand the potential 
energy. 
 All the changes that bodies from nature can undergo are governed by two fundamental 
laws. 
 1º The sum of kinetic energy and potential energy is a constant. This is the principle of 
conservation of energy. 
 2º If a system of bodies is in the situation A at the time t0 and in situation B at the time 
t1, it passes always from the first situation to the second in a way for which the mean value 
of the difference between the two kinds of energies in the time interval separating the 
moments t0 and t1, is the least possible. 
 This is the Hamilton principle, one of the forms of the principle of the least action. 
 The energetic theory has over the classical theory the following advantages: 
 1º It is less incomplete; i.e. the principles of the conservation of energy and of Hamilton 
teach us the fundamental principles of the classical theory, and additionally they exclude 
certain motions which are not materialized in Nature, but are nevertheless compatible with 
the classical theory; 
 2º It releases us from the hypothesis of atoms, almost impossible to avoid with the 
classical theory. 
 But it brings out in turn new difficulties; before discussing the objections of Hertz I will 
make reference to two of these that come now to my mind: 
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 The definitions of the two kinds of energy uncover difficulties almost as great as those of 
the force and mass from the first system. However, we get on with it, at least in the simplest 
of the cases. 
 Let’s admit an isolated system formed out of a certain number of material points; assume 
that these material points are submitted to some forces that don’t depend but on their relative 
position and the mutual distances, but are independent of their velocities. By virtue of the 
principle of conservation of energy, there must exist here a function of the forces. 
 In this case the statement of the principle of conservation of energy is of an extreme 
simplicity. A certain quantity, accessible to experiment, must be constant. This quantity is 
the sum of two terms: the first one depends only on the positions of the material points but is 
independent of their velocities; the second one is proportional to the square of these 
velocities. This decomposition cannot be done but in one way 
 The first of these terms, which I’ll call U, will be the potential energy; the second one, 
which I’ll call T, will be the kinetic energy. 
 It is true that T + U is a constant, but the same we can say about some function of T + U, 
φ(T + U). 
 But this function φ(T + U) will be no more the sum of two terms, one independent of 
velocities, the other proportional with the square of these velocities. Among the functions 
that remain constants there is but one that bears this property, i.e. T + U (or a linear function 
of T + U, which does not change anything inasmuch as it can be reduced to T + U by a 
change of units and origin). This is then what we call energy; its first term will be called 
potential energy and the second will be called kinetic energy. The definition of the two kinds 
of energy can then be pushed through without any ambiguity. 
 The same goes for the definition of masses. The kinetic energy, or the living force, is 
formulated very simply with the help of masses and the velocities of all material points with 
respect to one of them. These relative velocities are accessible to observation, and when we 
have the expression of kinetic energy as a function of them, the coefficients of this 
expression will give us the masses.  
 Therefore, in this simple case one can define the fundamental notions without any 
difficulty. But the difficulties come back in more complicated cases, for instance if forces, 
instead of depending only on distances, depend also on velocities. For example, Weber 
assumes that the reciprocal action of two electric molecules depends not only on the distance 
between them, but also on their velocity and acceleration. Should the material points attract 
each other by a similar law, then U would depend on velocity, and could even contain a term 
proportional to the square of velocity. 
 Then how are we to discern, among the terms proportional with the square of velocity, 
those of T from those of U? Therefore, how are we to distinguish the two parts of the 
energy? 
 Even more, how do we define the energy itself? We have no reason to take as definition 
T + U instead of any other function of T + U, when the property characterizing T + U of 
being the sum of two terms of particular form disappeared. 
 And this is not even all of it, because we will have to account not only for the 
mechanical energy proper, but also for some other forms of energy, heat, chemical energy, 
electric energy etc. The principle of conservation of energy must then be written 

T + U + Q = const., 
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where T would represent the sensible kinetic energy, U the potential energy, depending only 
on the positions of the bodies, Q the internal molecular energy in thermal, chemical or 
electric forms. 
 Everything would go just fine should these terms be perfectly distinct, i.e. should T be 
proportional to the square of velocities, should U be independent of these velocities and of 
the state of bodies, should Q be independent of the velocities and positions of the bodies and 
depend only on their internal state. 
 The expression of energy could then be decomposed in just one single way into three 
terms of this form. 
 But it is not so; consider some electrified bodies: the electrostatic energy due to their 
reciprocal action will obviously depend on their charge, i.e. on their state; but it will depend 
equally well on positions. If these bodies are in motion, they will interact electrodynamically 
and the electrodynamic energy will depend not only on their state and positions, but also on 
their velocities. 
 We have therefore no means to select the terms which belong to T, to U and to Q, in 
order to separate the three parts of the energy. 
 If (T + U + Q) is constant, so is some function 

φ(T + U + Q). 
 Should (T + U + Q) be of the particular form mentioned above, we would have no 
ambiguity; among the functions φ(T + U + Q) which are constants wouldn’t exist but only 
one of this particular form, and that I would agree to call energy. 
 But, as I said, it is not rigorously so; among the constant functions there is none which 
can be rigorously put in this particular form; besides, how are we to choose from among 
them the one that we must call energy? We have nothing that could guide us in our choice. 
 We are left with only one statement for the principle of conservation of energy: there is 
something that remains constant. In this form it can find itself, in turn, outside experience 
and reduces to some kind of tautology. For, it is clear that if the world is governed by laws, 
there will be quantities that will remain constants. Like Newton’s principles, and for a 
similar reason, the principle of the conservation of energy, based on experience, cannot be 
invalidated by it. 
 This discussion shows that passing from the classical system to the energetic one, a 
progress is indeed achieved; but at the same time it shows that this progress is quite 
insufficient. 
 Another objection seems to me even more severe; the principle of the least action is 
applicable to reversible phenomena; but it is no more satisfactory when it comes to 
irreversible phenomena; the tentative of von Helmholtz of extending it to this kind of 
phenomena has not succeeded, and it couldn’t succeed; in this respect everything remains 
yet to be done. 
 There are still other objections, of almost metaphysical order, on which Hertz expounds 
most. 
 If the energy is materialized, so to speak, it should remain always positive. However, 
there are cases where it is difficult to avoid contemplation of the negative energy. Consider, 
for instance, Jupiter revolving around the Sun; its energy has as expression av2 – b/r + c, 
where a, b, c are three positive constants, v is the velocity of Jupiter and r is its distance 
from the Sun. 
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 Because we dispose of the constant c, we can assume that it is big enough so that the 
energy is positive; we already have here an arbitrary that shocks the spirit. 
 But this is not all of it. Imagine now that a celestial body of an enormous mass and with 
enormous speed passes through the solar system; after it would have been passed and would 
have departed again to an immense distance, the orbits of the planets would have suffered 
considerable perturbations. We can imagine, for instance, that the major axis of the Jupiter 
orbit became much smaller, but that this orbit would have remained sensibly circular. No 
matter how big the constant c, if the new axis is very small, the expression av2 – b/r + c 
would have become negative, and we will have the occasion to see resurfacing the difficulty 
we thought to avoid by giving c a great value. 
 Summarizing, we cannot ensure that the energy will be always positive. 
 On the other hand, in order to materialize the energy, we need to localize it; as concerns 
the kinetic energy this is easy to do, but it is not quite so easy for the potential energy. 
Where do you localize the potential energy due to the attraction of two heavenly bodies? In 
one of the two? In both of them? In the intermediate medium? 
 The statement of the principle of minimum action itself has in it something that shocks 
the spirit. In order to reach from one point to another, a material molecule, withdrawn to the 
action of any force but compelled to move on a surface, will follow the geodesic line, i.e. the 
shortest path. 
 This molecule seems to know the point in which we want to bring it, to predict the time 
it will take to arrival following such and such paths, and then to choose the most convenient 
path. The statement presents it as a being alive and free, so to speak. It is clear that we 
would want to replace it by something rather less shocking, in which, like the philosophers 
would say, the final caused don’t seem to substitute themselves for the efficient causes. 
2. The objection of ball (1

 It is known what a system with constraints is; let’s imagine first two points connected by 
a rigid triangle, in such a way that their distance apart is maintained invariable; or, more 
general, let’s assume that some mechanism maintains a relation among the coordinates of 
two or more points of a system. We have here a first kind of constraint, called «solid 
constraint». 

) – The last objection, which seems to be the one that impressed 
Hertz most, is of a little different nature. 

 Assume now, that a sphere would be constrained to roll on a plane. The speed of the 
contact point must be zero; we have therefore a second kind of constraints, expressed by a 
relationship not only between the coordinates of the different points of the system, but 
between these coordinates and the velocities of points. 
 The systems in which there are constraints of this second kind have a queer property, 
which I’ll try to explain through the simple example I just cited above, that of a ball rolling 
over a horizontal plane. 
 Let O be a point of the horizontal plane and C the center of the ball. 
 In order to better define the situation of the mobile sphere, I’ll take three fixed 
coordinates, Ox, Oy and Oz, the first two of them being situated in the horizontal plane over 
which the ball rolls; I’ll take also three coordinate axes invariable connected to the sphere, 
Cξ, Cη and Cζ. 
 The situation of sphere will thus be completely defined when one will give the 
coordinates of the contact point and the nine direction cosines of the mobile axes with 
                                                 
1 See Notes to the Principles of Analytical Mechanics 
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respect to the fixed axes. Let A be a position of the sphere for which the point of contact is 
in origin and the mobile axes are parallel with the fixed axes. 
 The coordinates of the contact point are 

x = 0, y = 0 
and the nine direction cosines are: 

.1,0,0
;0,1,0
;0,0,1

 

Let’s give now to sphere an infinitely small rotation ε around the axis Cξ; it will come now 
in a position B, in which the coordinates of the contact point are 

x = 0, y = 0 
and the nine direction cosines become 

.cos,sin,0
;sin,cos,0

;0,0,1

εε−
εε  

 However, this rotation is impossible, because it would make the sphere glide on the 
plane without rolling. This rotation is therefore impossible, because it would make the 
sphere slip without rolling. It is therefore impossible to pass from the position A to the 
infinitely neighboring position B directly, i.e. by an infinitely small motion. 
 Let’s show that this passage can be achieved indirectly, i.e. by a finite motion. 
 Let’s start from the position A. Make the sphere roll on the plane in such a way that the 
instantaneous rotation axis is situated in the horizontal plane, is at all times parallel to Oy, 
and stop when the axis Cξ would become vertical and parallel to Oz. We will reach a 
position D, where the coordinates of the contact point are 

x = π/2∙R, y = 0. 
and the nine cosines will be 

.0,0,1
;0,1,0
;1,0,0

+

−
 

 In position D, the point of contact is at the extremity of axis Cξ which is now vertical. 
 Let’s give sphere a rotation ε around the axis Cξ; this rotation is a swing around the 
vertical axis passing through the contact point, it doesn’t use any skidding and is therefore 
compatible with the constraints. The sphere has come then in a position E where the 
coordinates of the contact are 

x = π/2∙R, y = 0 
and the cosines are 

.0,sin,cos
;0,cos,sin
;1,0,0

ε−ε
εε

−
 

Let’s make now the sphere roll in such a way that the instantaneous rotation axis remains 
constantly parallel to Oy, and consequently the contact takes always place along the axis Ox. 
Stop then when the contact point reached again the origin. It is easy to see that we have 
arrived in position B. 
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 One can thus arrive from position A to position B, passing through the positions D and 
E. 
 Hertz calls holonomic the systems for which, if the constraints do not allow a direct 
passage from a position to another neighboring one, they don’t allow an indirect passage 
either. These are the systems for which there are but solid constraints.  
 One can see therefore that our sphere is not a holonomic system. 
 One can reach this way the conclusion that the principle of minimum action is not 
applicable to unholonomic systems. 
 One can indeed pass from the position A to position B the way we just indicated, and 
without any doubt many other ways; among these there is one corresponding evidently to an 
action smaller than the other ones; the sphere would therefore be capable to follow it in 
order to reach from A to B; but it is not so; no matter of the initial conditions of the motion, 
the sphere would never go from A to B. 
 Moreover, if the sphere goes effectively from position A in other position A', it will 
never take the way that corresponds to the minimum action. 
 The principle of minimum action is not true anymore. 
 «In this case, says Hertz, a sphere which would obey this principle, would resemble a 
living being following conscientiously a designated purpose, while a sphere following the 
law of Nature offers the image of an inanimate mass rolling uniformly… But, one would 
reply, that such constraints don’t exist in the Nature; this alleged rolling without slipping is 
but a rolling with small slipping. This phenomenon falls among the irreversible phenomena, 
like the friction, still less known, and to which we don’t know yet to apply the true 
principles of Mechanics». 
 «A rolling without skidding, we answer, is neither contrary to the principle of energy, 
nor to any other known law of Physics; this phenomenon can be materialized in the visible 
world with such a great approximation, that we can use it in order to build integration 
machines among the most delicate ones (planimeters, harmonic analyzers, etc.) We have no 
right to exclude it as impossible; however, being approximate and accomplished but only 
approximately, still doesn’t solve the difficulties. In order to adopt a principle we must ask 
that, when applied to a problem whose data are approximately exact, give results that are 
approximately exact too. As a matter of fact, the other constraints, the solid ones, are also 
only approximately accomplished in Nature; however, we don’t exclude them… » 

III – THE HERTZIAN SYSTEM 

 Here is now the system that Hertz proposes to substitute for the two theories he 
criticizes. This system is based on the following hypotheses: 
 1° There are not in Nature but only systems with constraints, withdrawn to the action of 
any external force; 
 2° If certain bodies seem to be submitted to forces, is because they are connected to 
other bodies which, for us, are invisible. 
 A material point which seems free does not describe however a rectilinear trajectory; the 
ancient mechanicians would say that it departs from rectilinear because it is submitted to a 
force; Hertz says that it departs because it is not free, but connected to other invisible points. 
 This hypothesis seems strange at the first sight: why introduce besides visible bodies 
also hypothetical invisible bodies? But, answers Hertz, the two theories are equally 
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compelled to assume besides visible bodies, some invisible entities; The classical theory 
introduces forces, the energetic theory introduces energy; and these invisible entities, force 
and energy are of an unknown and mysterious nature: the hypothetical entities which I 
imagine here are, on the contrary, of the same nature as the visible bodies. 
 Isn’t this simpler and more natural? 
 One can discuss over this point and uphold that the entities of the old theories must be 
retained especially because of their mysterious nature. Respecting this myster appears as a 
confession of ignorance; and because our ignorance isn’t sure, isn’t it better to admitting it 
rather than to hiding it? 
 But let’s get over this, and proceed to see what conclusion draws Hertz from his 
hypotheses. 
 The motions of the systems with constraints, without external force, are governed by a 
unique law. 
 Among the motions compatible with the constraints, the one which will be materialized 
is that for which the sum of the masses multiplied by the square of the accelerations is 
minimal. 
 This principle is equivalent to that of the minimum action when the system is holonomic, 
but is more general, inasmuch as it also applies to the nonholonomic systems. 
 In order to realize the impact of this principle, let’s take a simple example: that of a point 
compelled to move on a surface. The acceleration must therefore be minimum; this 
acceleration is equal to dv/dt, v being the velocity and t the time; therefore v is constant and 
the motion of the point is uniform; more than this, it is necessary that the normal 
acceleration be minimum; but this is equal to v2/ρ, ρ being the radius of curvature of the 
trajectory, or to v2/(R∙cosφ), R being the radius of curvature of the normal section of the 
surface, and φ the angle between the osculating plane of the trajectory and the normal to 
surface. 
 But the velocity is assumed known, both in magnitude and direction. Therefore v and R 
are known. 
 Therefore we must have cosφ = 1, i.e. the osculating plane must be normal to surface; in 
other words, the point in motion describes a geodesic line. 
 In order to understand now how the motion of the systems that seem to be submitted to 
forces can be explained, I’ll take again a simple example, the one of the regulator with balls. 
This well known device consists of a hinged parallelogram ABCD: the vertices B and D of 
this parallelogram carry balls of a significant mass; the superior vertex A is fixed; the 
inferior vertex C carries a ring which can glide along a fixed vertical rod AX; the whole 
device is driven by a rapid rotation around the rod AX. Of the ring C a control lever T is 
hung. 
 The centrifugal force tends to pull the balls off and consequently to raise the ring C and 
the control lever T. This lever is therefore subjected to a traction which is harder the faster 
the rotation. 
 Assume now, an observer who sees only this lever, and imagine that the balls, the rod 
AX, the parallelogram are made of a matter which is invisible for him. That observer will 
notice the traction exerted upon lever; but, as he will not see the organs producing it, he will 
attribute it to a mysterious cause, to a «force», to an attraction exerted by the point A upon 
lever. 



14 
 

 Well, according to Hertz, any time we imagine a force we are duped by an analogous 
illusion. 
 Then a question is raised: can we imagine a hinged system imitating a system of forces, 
defined by a certain law or approximating it as close as we need? The answer must be 
affirmative; I limit myself to recalling a theorem of Mr. Kœnigs that could serve as basis to 
a demonstration. Here is the theorem: One can always imagine a hinged system, such that a 
point of this system describes a curve or an arbitrary algebraical surface; or, more 
generally, one can imagine a hinged system such that, by the virtue of its constraints, the 
coordinates of the different points of the system are submitted to some arbitrary given 
algebraical relations. 
 Only, the hypotheses to which we are led could be very complicated. 
 As a matter of fact, this would not be the first tentative made along these lines. It’s 
impossible not to see here closeness between the hypotheses of Hertz and the theory of Lord 
Kelvin on the gyrostatic elasticity. 
 It is known that Lord Kelvin tried to explain the properties of ether without making any 
force intervene. He even gave a definitive form to his hypothesis, representing the ether by 
one of these mechanical models, as the Englishmen call them. Satisfied if they materialized 
their ideas, if they made them palpable, the English scientists are not afraid of the 
complication of these models whereby they multiply the levers, the tillers, the guideways as 
in a mechanical shop. 
 In order to give an idea along these lines, let’s describe the model representing gyrostatic 
ether. The ether would be formed of a kind of lattice. Each cell of this lattice is a 
tetrahedron. Each one of the edges of this tetrahedron is made of two rods, one solid and one 
hollow, gliding into one another; this edge is therefore extensible but not flexible. 
 In each cell there is a device formed of three lines fixed with respect to one another and 
forming a right trihedron. Any one of these rods rests upon two of the opposite edges of the 
tetrahedron; finally, each one of them carries four gyroscopes. 
 In the system we just described there is no potential energy, but only kinetic energy, the 
one of tetrahedrons and the one of gyroscopes. However, a medium thus constituted will 
behave like an elastic medium; it will transmit the transversal oscillations exactly like the 
ether. 
 I shall add one more thing: with hinged systems of this kind, containing gyroscopes, one 
can not only imitate all the forces we find in Nature, but even other which Nature will not 
know to materialize; this is precisely the aim that lord Kelvin took; he wanted to explain 
certain properties of ether, which the common hypotheses seemed incapable to explain. 
 It is known that the gyroscope axis tends to preserve a fixed direction in space; when 
pulled away it tends to come back to it as if it is acted on by a directing force. This apparent 
force, tending to maintain the direction of gyroscope, is not counterbalanced by a reaction 
equal and contrary like the real forces. It is therefore liberated from the law of action and 
reaction, as well as from its consequences, like the law of areas, to which the natural forces 
are submitted. 
 We can think therefore that, only to the extent to which it is liberated from this 
restrictive rule, the gyrostatic hypothesis explained facts impossible to explain by the usual 
hypotheses obeying that rule. 
 Taking all in all, what are we to think about the theory of Hertz? Interesting, to be sure, 
but it doesn’t satisfy me completely, because it leaves too much room for hypothesis. 
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 Hertz took shelter from a few of the objections that worn him out; but he doesn’t seem to 
have removed them all. 
 The difficulties discussed at length at the beginning of this article could be summarized 
the following way: 
 The principles of Dynamics have been expounded in many ways; but never was it 
sufficiently distinguished what is definition, what is experimental truth, what is 
mathematical theorem. In the Hertzian system the distinction is not yet perfect, and 
moreover, a fourth element is introduced: the hypothesis. However, by the sheer fact that it 
is new, this manner of presentation is useful: it compels us to reflect, to break loose from the 
old associations of ideas. We cannot see the entire monument yet: this would mean a new 
perspective, from an entirely new point of view. 


	Hertz’s Ideas on Mechanics
	Foreword

	Hertz’s Ideas on Mechanics
	I – The Classical System
	II – The Energetic System
	III – The Hertzian System


