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Abstract 

The observed variation of the electromagnetic coupling constant α, seen in high 

energy e+e- ��e+e- collisions, has been explained in terms of work done compressing the 

energetic electron. A simple monotonic law has been found, which describes how the 

electron tries to resist compression, without transmutation. Variation of the strong coupling 

constant αs has also been analysed in terms of effective work done compressing the gluon 

field within a proton’s component parts.  
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1. General Introduction. 

It has been observed experimentally that the electromagnetic coupling constant α 

increases with the squared four-momentum transfer during electron-positron collisions; see 

TOPAZ Collaboration (1997), L3 Collaboration (2005), OPAL Collaboration (2006) , Mele 

(2006). This effect has always been explained in terms of vacuum polarization and virtual-

loop corrections to the photon propagator, see Gell-Mann & Low (1954), Steinhauser 

(1998), Jegerlehner (2003). Other experiments have discovered that the strong coupling 

constant αs decreases substantially with momentum transfer, for interactions between 

quarks and gluons within the colliding hadrons; see Bethke, (2000), (2007), and Prosperi et 

al (2007). Unfortunately, theoretical concepts like renormalisation of singular bare-

electrons and negative vacuum energy were invented to establish a quantum field theory 

which is extraordinarily complex and unnaturally inelegant. 

 

2. Electromagnetic coupling constant (αααα    = e2/ħc) 

Here in this paper, we shall make use of realistic models of the electron and muon 

presented in Wayte (2010a, b), (Papers 1, 2), and attribute the running of α to the electron’s 

robust reaction to compression. Paper 1 shows how an electron grows from a small seed 

during its creation and develops an intricate expanded mechanism in equilibrium. 

Apparently, this force of expansion can react to oppose the compression which occurs 

during a subsequent collision process. A simple monotonic law which relates α to 

momentum transfer is required, in contrast to the adhoc addition of many separate 

components in electroweak theory. It will be presumed that the electron and positron retain 

their normal structure throughout an elastic collision, and do not continuously transform 

into other species as proposed in QED theory 

Figure 1 illustrates our proposed theoretical fit of a smooth curve to published data 

on the running of α, from the L3 collaboration, (2005). The dotted line is for an elementary 

formula, which will be refined to the solid line. Two QED theoretical values are shown, 

plus α-1(mz
2) = 128.936 calculated according to Burkhardt and Pietrzyk (2001). The LEP 
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measurements of α at large momentum transfer lie above the QED prediction by a few 

percent, giving (C = 1.05) rather than 1.0 in the QED formula [α = α o /(1-C�α)].  

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

-5 -4 -3 -2 -1 0 1 2 3 4 5

-Q^2 (10^n, GeV^2)

al
ph

a 
x 

10
0

Mz

QED

QED

L3

L3

Figure 1. The theoretical variation of alpha with squared momentum transfer. Dotted line shows α1 

from Eq.(2.1); solid line shows the refined value of α from Eq.(2.10). Three hollow markers show 

QED predictions, and the four solid markers were taken from L3 Collaboration (2005). 

 

2.1 Analysis. 

The dotted line in Figure 1 describes α1  given by the expression: 
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Here αo
-1 = 137.03599968 is the inverse fine structure constant empirical value, Q 

represents the total momentum transfer in the e+e- �� e+e- process, mo is the electron or 

positron rest mass, and en = 2.71828 is the natural log base. Factors (π/2) and √2 have been 

used in Papers 1, 2 within action equations. By taking logarithms and differentiating 

Eq.(2.1) we get: 
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which has the appearance of a self-normalised equation, employing two main terms on the 

right-side. 

First of all, factor ln[(Q/2+mo)/mo] will be interpreted in terms of work done in 

compressing the electron, as follows. The most basic action expression for an electron in 

Paper 1 is: 

eo
2 / c = mocro      ,          (2.3) 

where r�� is the classical electron� radius and eo is the constant electronic charge. Electron 

spin s is given by:  

s = ½ mocre = ½ ħ   ,         (2.4) 

where (re = 137ro) is the Compton radius (ħ/moc). When an electron is accelerated by an 

electric field, it gains kinetic energy but its spin remains constant. Its relativistic mass MR is 

therefore contained within a smaller electron spin-loop, and its classical radius is also 

smaller by the same factor: 

rKE =  eo
2 / MRc2 .        (2.5) 

While the electron is moving freely at high velocity, its charge remains constant at the 

stationary value eo .However, during a head-on elastic collision with the positron, the 

electron is brought to rest with increased static rest mass density. This strains its internal 

mechanism, which causes swelling of the radius above its natural value rKE , and increases 

the charge above eo
 . 

Now, the force required to compress an electron core-segment has to act around its 

circumference against the guidewave creation force, operating as described in Paper 1. It 

will be put inversely proportional to circumference length but proportional to the electronic 

charge-squared, therefore: 

F = ke2 / 2πr ,         (2.6) 

where k is a constant. This agrees with the muon analysis in Wayte (Paper 2, Section 4). 

Work done to compress from original radius ro to final radius rKE at the metastable rest 

position is then: 
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Here, MR is the relativistic mass which has become rest mass temporarily and can be related 

to the momentum transfer factor for the individual electron or positron, 

ie. ( )oR m2/QM +≡ . When the electron-positron collision is glancing rather than head-on, 

MR is the effective temporary increase in rest mass produced by whatever momentum 

transfer and slowing of the electron occurs. 

The work coefficient (enαo /√2) given in Eq.(2.1) needs to be related to k in Eq.(2.7), 

as follows. Let the charge per core-segment be (eo /137) and the self-interaction potential 

energy associated with it around the circumference be classically    

]r2/)137/e(E[ o
2

oCS π= . Then we will let (keo
2) be given by: 
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The compression work done W should then be normalised by standard energy ECS , to 

satisfy Eq.(2.2). Factor (enαo /√2) is effectively a measure of the guidewave compression 

force relative to the Coulomb force. Factor √2 and Eq.(2.6) were discovered for the muon 

guidewave binding force, (Paper 2); and factor (enαo) was employed for the muon-pearl 

creation. So these terms are also available here for describing electron compression 

processes. 

 The (π/2)2 term in Eq.(2.2) has the effect of increasing every element of 

compression work done, to produce an elemental increase in the fine structure constant. It 

appears to be caused by the electron's pearls and grains rotating at enhanced velocity 

)]2/(c'c[ π= , but the underlying mechanism for this is not known. 

 

2.2 Refined analysis. 

Given the reasonable success of Eq.(2.1) with the above description of terms, the 

theory can now be improved. In Eq.(2.7a) the integration for work done should retain 

variable e2 because it increases during the integration, (e2 = αeo
2/αo). This has been done 



 6

numerically by re-introducing the approximate value of α from Eq.(2.1) into Eq.(2.7a) in 

order to get a more accurate value of W. Then the improved expression for α is: 
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This final result for α is shown in Figure1 as the solid curve, and it fits the L3 Collaboration 

data very well. There is no analytical form which could be related to QED theory, but for 

comparison with experiment it can be accurately expressed as: 

  ( ) ( )[ ]{ } 2)2/(2
1on1on1

oo

o W
~

e12W
~

e1W
~ π

α+α−=
α
δα

=
α

α−α
  ,  (2.10) 

where 1W
~  is the normalised work term in the square bracket of Eq.(2.1). 

 

 

3. Strong coupling constant αs 

A realistic model of the proton, presented in Wayte (2010c), (Paper 3), will be used 

to help interpret the running of αs with momentum transfer, in a collision process. Paper 3 

shows how a proton mass mp is composed of 3 trineons (quarks in QCD theory), which 

consist of 3 pearls each. The mass of a pearl is therefore (mℓ = mp /9 ≈ 104.25245MeV), 

which is approximately the mass of a muon. Running of αS is found to be based upon this 

pearl mass, rather than the proton mass, in a monotonic law. 

Figure 2 illustrates our proposed fit of a theoretical curve to published world data on 

the running of αs , (Bethke, 2007, and Baldicchi et al, 2007). The line fits data accurately at 

large momentum transfer, where for example αs(MZo) = 0.11854, and the latest value for 

MZo is 91.1876GeV. This compares well with the empirical world average, αs(MZo) = 

0.1189 ± 0.0010. 

 

3.1 Analysis 

The line in Figure 2 is described by the expression: 
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Here mℓ is the proton's pearl mass, and Q' represents the total momentum transfer Q plus 

2mℓ. Therefore, this numerator includes an extra factor compared with that in Eq.(2.1). 

Differentiation yields: 
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which is reminiscent of Eq.(2.2), but is self-normalised with only one main term. 
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Figure 2. The theoretical variation of αs with momentum transfer, as calculated from Eq.(3.1), 

which gives αs(MZo) = 0.11854. Empirically, αs(MZo) = 0.1189±0.0010. Data points have been 

taken from Bethke (2007) Table 1, and Baldicchi et al (2007) Tables 1-7 for Q > 150MeV. 
 

Factor {21/2ln[(Q'/2+mℓ)/mℓ]} will now be interpreted in terms of work done in 

compressing the proton’s internal gluon field. First of all, the size of the proton and its 

pearls are governed by electromagnetic forces. For example, from Paper 3, the proton’s 

effective radius is equal to the Compton radius: 

rp = ħ /mpc = 137 e2 /mpc2 = 0.2103fm.     (3.3) 
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A trineon’s radius is 137(2/π) times smaller, and a pearl is 24 times smaller still. Proton 

spin is given by: 

s = ½ mpcrp = ½ħ ,          (3.4) 

and this remains constant when a proton is accelerated by an electric field. Its relativistic 

mass is therefore contained within a proportionally reduced proton radius, which stays the 

same when the KE is converted temporarily into rest mass energy during a head-on 

collision. However, the internal trineons and pearls are also proportionally reduced but are 

strained to accommodate this temporary high rest mass density. This will generate a small 

increase in the overall electromagnetic charge, as for the electron. 

Now the gluon field strength operating around each pearl circumference is also 

affected by having to accommodate the temporary high rest mass density. Remarkably, the 

shrinkage of pearl and proton dimensions with relativistic mass increase is accepted by the 

gluon field like an extended spring being relaxed. Work done is therefore nominally 

negative potential energy, and αs decreases as follows. Let the gluon force field acting 

around a pearl circumference, binding the constituent grains together, be given by: 

 r2/gF 2
g πκ−=   ,       (3.5) 

where κ is a constant, g2 is an effective  gluon charge squared  for the  proton, which will 

empirically evaluate to ( ) ( ) 
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Here values of rKE and rℓ are inversely proportional to the pearl relativistic mass energy as 

in Eq.(2.7). And, analogous to Eq.(2.7b), we will let mKE represent (Q'/2 = Q/2 + mℓ ).  

 Now, the extra mℓ in the numerator of Eq.(3.1) has to be explained as a residual 

momentum transfer which remains as Q → 0, and Q'/2 → mℓ . It will be attributed to the 

pearl itself having momentum within the trineon which travels around the proton at velocity 

c. This is like Dirac's electron having internal spin velocity +/− c, as explained in the real 
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electron model of Paper 1. So, even very slow protons in collision will transfer this 

momentum. Therefore W will be increased to: 
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Finally we will set [κg2 =  √2(g2/2πrℓ)] arbitrarily, then normalise the magnitude of W by a 

standard energy of self-interaction around the pearl (g2/2πrℓ). Then the main factor in 

Eq.(3.2) will equal the normalised compression work done: 
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This expression accounts for Eq.(3.1) very well, and the abscissa Q' of Figure 2 is the 

published value of Q, plus 2mℓ . 

 At first sight, the analysis appears to suggest that only one pearl in a colliding 

proton conveys the total impact energy/momentum. However, the 9 proton pearls are tied 

together by an elastic gluon field, which will rapidly equalise momentum transfer 

throughout. 

 

4. Conclusion 

Running of the electromagnetic constant α has been attributed to the action of work 

done in compressing the electron’s internal structure, during a collision process. 

Apparently, an electron retains its basic design and spin, but shrinks in scale to 

accommodate its kinetic energy. Only when this KE converts to rest mass in a collision, 

does the internal stress cause an increase in charge and therefore α. A monotonically 

increasing power law fits the empirical data very well. 

Running of the strong coupling constant αs has been attributed to the action of 

effective work done in compressing the internal circumferential gluon field around each 

pearl in a proton. This occurs when a proton is given kinetic energy which then converts to 

rest mass energy in a collision process. A monotonically decreasing law fits the empirical 

data very well. 
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