Probabilistic Interpretation of Quantum Mechanics with Schrödinger Quantization Rule

Saurav Dwivedi*

November 3, 2010

Abstract

Quantum theory is a probabilistic theory, where certain variables are hidden or non-accessible. It results in lack of representation of systems under study. However, I deduce system’s representation in probabilistic manner, introducing probability of existence w, and quantize it exploiting Schrödinger’s quantization rule. The formalism enriches probabilistic quantum theory, and enables systems’s representation in probabilistic manner.

keywords Schrödinger Operators • Probability • Hidden Variables

PACS 03.65.-w; 02.30.Tb; 02.50.Cw

Contents

1 Introduction i
2 Probability Eigenvalue Formalism ii
3 Quantum Dynamical Equations iii
A Unit Operator iv

1 Introduction

Classical physics is based on mechanistic perspective, where no contingencies appear [1, 2]. It results in a deterministic theory, where no chances appear, and systems are governed by mechanistic laws. On the contrary, quantum theory is a probabilistic theory [3, p. 260]. So is its interpretation [4]. Quantum theory is not based on mechanistic order [2]. Indeterminism, an ingredient part of the theory, appears due to some hidden variables [5, 6, 7]. In a non-deterministic (acausal) theory (like QM) certain variables are (hidden) non-accessible. It persists in lack of representation of the system under study.

However, we define system’s existence in probabilistic manner. We assign a probability (w) in order to define a system in isolation. For $w = 1$ system is in pure state and all its variables are accessible, for $w \in (0, 1)$ it is in mixed state as certain of variables are hidden or non-accessible (e.g. in presence of many type of interactions [8]). For $w = 0$ the system is in forbidden state and all its variables are hidden and system can be represented by none. We quantize this observable using Schrödinger’s quantization rule and obtain $\hat{w} = -i\hbar \partial/\partial s$. Exploiting usual formalism of QM [9, 10, 11] we further deduce quantum dynamical equations, based on non-commutativity between probability w and dynamicals A.

*Department of Physics, Faculty of Science, Banaras Hindu University, Varanasi 221005 India. E-mail: Saurav.Dwivedi@gmail.com, Homepage: www.dwivedi.bravehost.com
2 Probability Eigenvalue Formalism

We have a general form of Schrödinger’s wavefunction\(^1\) [10] belonging to system’s Hilbert space \(\mathbb{H}\), in generalized perspective

\[
\psi(s(q_i, t)) := R(q_i, t) \exp\left(\frac{i}{\hbar} s(q_i, t)\right), \quad i = 1, 2, 3, \ldots, f, \tag{2.1}
\]

which is orthonormalizable

\[
\langle \psi_\alpha | \psi_\beta \rangle = \int_{-\infty}^{+\infty} \psi_\alpha^*(s(q_i, t)) \psi_\beta(s(q_i, t)) \, d\tau = \delta_{\alpha\beta}, \tag{2.2}
\]

where \(d\tau = \prod_{i=1}^{f} h dq_i, \) \(h\) being scale factor and \(f\) is degrees of freedom) is generalized volume element of the configuration space. [The system has all these variables, except \(\psi\) (and tacitly its space \(\mathbb{H}\)) in Praxic perspective [12]]. Differentiate (2.1) partially w.r.t. \(A\)ction to obtain

\[
\frac{\partial \psi(s(q_i, t))}{\partial s(q_i, t)} = \frac{i}{\hbar} \psi(s(q_i, t)). \tag{2.3}
\]

We propose a unit (zero-order differential) operator that satisfies for an ordinary function \(f\) as well as for wavefunction (See Appendix A)

\[
\mathcal{I} f = f; \quad \mathcal{I} \psi(s(q_i, t)) = \psi(s(q_i, t)). \tag{2.4}
\]

Following deduction (2.4) for (2.3), we obtain

\[
\mathcal{I} \psi(s(q_i, t)) + i\hbar \frac{\partial \psi(s(q_i, t))}{\partial s(q_i, t)} = 0, \tag{2.5}
\]

which is in the form of eigenvalue equation. We deduce Schrödinger unit operator \(\hat{\mathcal{I}}\) [in the sense of Schrödinger’s quantization rule] satisfying unit eigenoperator equation [13, Dwivedi 2005]

\[
\hat{\mathcal{I}} \psi = \mathcal{I} \psi; \quad \hat{\mathcal{I}} = -i\hbar \frac{\partial}{\partial s}. \tag{2.6}
\]

Its expectation value is given by inner-product

\[
\langle \hat{\mathcal{I}} \rangle = \langle \psi | \hat{\mathcal{I}} | \psi \rangle = \int_{-\infty}^{+\infty} \psi^*(s(q_i, t)) \left(-i\hbar \frac{\partial \psi(s(q_i, t))}{\partial s(q_i, t)} \right) \, d\tau = \int_{-\infty}^{+\infty} |\psi(s(q_i, t))|^2 \, d\tau = \text{Prob.}(-\infty, +\infty). \tag{2.7}
\]

[It could also be obtained alternatively using (2.4) and (2.6) in inner-product (2.7).] The operator \(\hat{\mathcal{I}}\), having trace \(\text{Prob.}(-\infty, +\infty)\), entails properties of our probability operator \(\hat{w}\). For a system in isolation:

\[
\begin{aligned}
\text{Prob.}(-\infty, +\infty) &= w_{\text{pure}} = 1 \quad \text{for pure state;} \\
\text{Prob.}(-\infty, +\infty) &= w_{\text{mixed}} \in (0, 1) \quad \text{for mixed state;} \\
\text{Prob.}(-\infty, +\infty) &= w_{\text{forbidden}} = 0 \quad \text{for forbidden state.}
\end{aligned} \tag{2.8}
\]

Thus \(\hat{\mathcal{I}}\) is essentially \(\hat{w}\) that satisfies probability eigenvalue equation

\[
\hat{w} |\psi_w\rangle = w |\psi_w\rangle; \quad \hat{w} = -i\hbar \frac{\partial}{\partial s}, \tag{2.9}
\]

Or

\[
w \psi_w(s(q_i, t)) + i\hbar \frac{\partial \psi_w(s(q_i, t))}{\partial s(q_i, t)} = 0, \tag{2.10}
\]

\(^1\)It’s remarkable that it could be treated as function of \(q_i\) and \(t\) as well as function of \(s\) explicitly.
having solution
\[\psi_w(s(q, t)) = A \exp \left(\frac{i}{\hbar} ws(q, t) \right). \] (2.11)

For now and later on we will treat \(\psi \) as function of \(s \) explicitly. For orthonormalization we have the inner-product,
\[\langle \psi_w'|\psi_w \rangle = \int_{-\infty}^{+\infty} \psi_w^*(s) \psi_w(s) \, ds = |A|^2 \int_{-\infty}^{+\infty} \exp \left(\frac{i}{\hbar} (w - w') s \right) \, ds
= |A|^2 2\pi \delta(w - w'). \] (2.12)

For \(A = 1/\sqrt{2\pi\hbar} \), we have
\[\psi_w(s) = \frac{1}{\sqrt{2\pi\hbar}} \exp \left(\frac{i}{\hbar} ws \right) \] (2.13)
that follows Dirac orthonormality
\[\langle \psi_w'|\psi_w \rangle = \delta(w - w'). \] (2.14)

However, these eigenfunctions form complete set \((\psi = \sum_w c_w \psi_w) \). For (square-integrable) function \(\psi(s) \),
\[\psi(s) = \int_0^1 c(w) \psi_w(s) \, dw = \frac{1}{\sqrt{2\pi\hbar}} \int_0^1 c(w) \exp \left(\frac{i}{\hbar} ws \right) \, dw. \] (2.15)
The expansion coefficient is obtained by Fourier’s trick
\[\langle \psi_w'|\psi \rangle = \int_0^1 c(w) \langle \psi_w'|\psi_w \rangle \, dw = \int_0^1 c(w) \delta(w - w') \, dw = c(w'), \] (2.16)
or
\[c(w) = \langle \psi_w'|\psi \rangle. \] (2.17)
Exploiting completeness (2.15), the amplitude \(R \) in (2.1) is obtained
\[R = \frac{1}{\sqrt{2\pi\hbar}} \int_0^1 c(w) \exp \left(\frac{i}{\hbar} s(w - 1) \right) \, dw. \] (2.18)

3 Quantum Dynamical Equations

Dynamics is a law relating physical quantities in course of time (or some internal observables [15]). In Praxic theory Action is a fundamental physical entity [14]. However, it could often be customary to deduce dynamics in course of Action. Let differentiate the inner-product,
\[\langle \hat{A} \rangle = \langle \psi|\hat{A}|\psi \rangle = \int_{-\infty}^{+\infty} \psi^* \hat{A} \psi \, d\tau, \] (3.1)
exactly \(w.r.t. \) Action with differential-integral rule
\[\hat{f} g(\kappa) = \hat{f} \int_{-\infty}^{+\infty} \phi(\tau) K(\kappa, \tau) \, d\tau = \int_{-\infty}^{+\infty} \hat{f} \{ \phi(\tau) K(\kappa, \tau) \} \, d\tau, \] (3.2)
we obtain (using chain rule for \(\hat{f} := \frac{\partial}{\partial \kappa} \))
\[\frac{\partial}{\partial s} \langle \hat{A} \rangle = \langle \frac{\partial \psi}{\partial s}|\hat{A}|\psi \rangle + \langle \psi|\frac{\partial \hat{A}}{\partial s}|\psi \rangle + \langle \psi|\hat{A}|\frac{\partial \psi}{\partial s} \rangle. \] (3.3)
Considering probability eigenvalue equations
\[\frac{\partial \psi}{\partial s} = \frac{i}{\hbar} \hat{w} \psi, \quad \langle \psi|\frac{\partial \hat{A}}{\partial s}|\psi \rangle = -\frac{i}{\hbar} \langle \hat{w}^\dagger \psi | \]. (3.4)

As Probability does not exist in the domain \((-\infty, 0) \cup (1, +\infty)\), we have omitted integration over this domain. It does not create trouble in formalism.
we obtain
\[\frac{\partial}{\partial s} \langle \hat{A} \rangle = \langle \frac{\partial \hat{A}}{\partial s} \rangle - \frac{i}{\hbar} \langle [\hat{w}^\dagger \hat{A}]^\dagger \psi \rangle - \langle \hat{A} \hat{w} \psi \rangle \].
\[(3.5)\]

Here \(\hat{A}\), defined by \(\hat{A} = \langle \psi | \hat{A} | \psi \rangle\), is a dynamical \([15]\) — an observable-valued-function of system’s variables \(-\hat{A}(q_1, t)\) as distinct from observables. Since probability is a real aspect of nature, i.e., in operator representation, it must be hermitian\(^3\),
\[\langle \hat{w}^\dagger \hat{A} | \psi \rangle = \langle \hat{w} \hat{A} | \psi \rangle , \]
\[\text{which yields} \]
\[\frac{\partial}{\partial s} \langle \hat{A} \rangle = \langle \frac{\partial \hat{A}}{\partial s} \rangle - \frac{i}{\hbar} [\hat{w}, \hat{A}]_{\lambda} . \]
\[(3.7)\]

This is first order \(\text{quantum dynamical equation}.\) Following the analogy, we further obtain second and third order quantum dynamical equations
\[\frac{\partial^2}{\partial s^2} \langle \hat{A} \rangle = \langle \frac{\partial^2 \hat{A}}{\partial s^2} \rangle - \frac{i}{\hbar} \langle [\hat{w}^\dagger \hat{A}]^\dagger \hat{w} \hat{A} | \psi \rangle - \langle \hat{A} \hat{w} \hat{A} | \psi \rangle \]
\[- \langle \hat{A} \hat{w} \hat{A} \rangle \]
\[\text{for operators} (\frac{\partial^2 \hat{A}}{\partial s^2}, n = 0, 1, 2, ...) \text{compatible with} \hat{w}, \text{these equations follow Ehrenfest’s theorem} \]
\[\frac{\partial^n \langle \hat{A} \rangle}{\partial s^n} = \langle \frac{\partial^n \hat{A}}{\partial s^n} \rangle . \]
\[\text{(3.10)}\]

It holds good for observables having simultaneous eigenstates with probability \(\hat{w}\).

Appendix

A \hspace{1em} Unit Operator

Unit operator (eigenoperator), analogous to \(\text{idemtity matrix}\), is deduced as a zero-order (ordinary or partial) differential operator (irrespective of with respect to what) defined as
\[\mathcal{I} := \partial^0_x = \frac{\partial^0}{\partial x^n} ; \quad (x = q, p, t, ...) . \]
\[\text{(A.1)}\]

We have observed in \(\text{mathematical analysis}\) that a zero-order differential operator does not change the function to which it is applied which leads to deduce it unit operator satisfying \(\mathcal{I} f = f\). For example, in Ostrogodsky transformation, zero-order prime of generalized co-ordinate \(q^n, (n = 0, 1, 2, 3, ...)\) for \(n = 0\) is given by \(q\). It may be extended to \(q^n = \mathcal{I} q = q\) for \(n = 0\) with \(\mathcal{I} := \partial^0_q\). The deduction is less applicable in mathematical analysis but is very important to deal with quantum problems. Unit operator is quantized to \(\hat{\mathcal{I}} := -i \hbar \frac{\partial}{\partial q}\) satisfying unit eigenoperator equation \(\hat{\mathcal{I}} |\psi\rangle = |\psi\rangle\) while treating quantum problems. For example, a quantum transformation with \(\psi, (n = 0, 1, 2, 3, ...)\) (being \(n\)-th order partial derivative of \(\psi\) w.r.t. any variable \(x\)) is extended for \(n = 0\), \(\psi = \mathcal{I} \psi = \psi\) with \(\mathcal{I} := \partial^0_x\). This is a quantum problem and we quantize \(\mathcal{I}\) to \(\hat{\mathcal{I}}\) which yields \(\psi + i \hbar \frac{\partial \psi}{\partial s} = 0\), for \(n = 0\).

\[^3\text{It also follows from counter-intuitive behavior of probability operator} \hat{w}.\]
Acknowledgements

Saurav Dwivedi would like to praise his gratitude towards Librarian Baddu Babu for spiritual support and Prof. David Finkelstein for his careful guidance and encouragements in his contributions. He is also indebted to Prof. Jacob Bekenstein for his suggestion to be self-critical. Saurav Dwivedi thanks Prof. Matej Pavsic and Prof. Larry Horwitz for valuable suggestions and support.

References

