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Abstract 

In practice, the information regarding the population proportion possessing certain 

attribute is easily available see Jhajj et.al. (2006). For estimating the population mean Y  

of the study variable y, following Bahl and Tuteja (1991), a ratio-product type 

exponential estimator has been proposed by using the known information of population 

proportion possessing an attribute (highly correlated with y) in simple random sampling. 

The expressions for the bias and the mean-squared error (MSE) of the estimator and its 

minimum value have been obtained. The proposed estimator has an improvement over 

mean per unit estimator, ratio and product type exponential estimators as well as Naik 

and Gupta (1996) estimators. The results have also been extended to the case of two 

phase sampling. The results obtained have been illustrated numerically by taking some 

empirical populations considered in the literature. 

Keywords: Proportion, bias, mean-squared error , two phase sampling. 

1. Introduction  
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In survey sampling, the use of auxiliary information can increase the precision of 

an estimator when study variable y is highly correlated with the auxiliary variable x. but 

in several practical situations, instead of existence of auxiliary variables there exists some 

auxiliary attributes, which are highly correlated with study variable y, such as 

(i) Amount of milk produced and a particular breed of cow. (ii) Yield of wheat crop and 

a particular variety of wheat etc. (see Shabbir and Gupta(2006)). 

In such situations, taking the advantage of point biserial correlation between the 

study variable and the auxiliary attribute, the estimators of parameters of interest can be 

constructed by using prior knowledge of the parameters of auxiliary attribute.   

Consider a sample of size n drawn by simple random sampling without 

replacement (SRSWOR) from a population of size N. let yi and iφ  denote the 

observations on variable y and φ  respectively for the ith unit ( N,...,2,1i = ). We note that 

iφ = 1, if ith unit of population possesses attribute φ  and iφ = 0, otherwise. Let 

∑
=

φ=
N

1i
iA and ∑

=

φ=
n

1i
ia denote the total number of units in the population and sample 

respectively possessing attributeφ . Let  
N
AP = and 

n
ap = denote the proportion of units 

in the population and sample respectively possessing attributeφ . 

In order to have an estimate of the population mean Y  of the study variable y, 

assuming the knowledge of the population proportion P, Naik and Gupta (1996) defined 

ratio and product estimators of population when the prior information of population 

proportion of units, possessing the same attribute is available. Naik and Gupta (1996) 

proposed following estimators: 
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The MSE of t1 and t2 up to the first order of approximation are 
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pb  is the point biserial correlation coefficient. 

Following Bahl and Tuteja (1991), we propose the following ratio and product 

exponential estimators  
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2. Bias and MSE of t3 and t4 

To obtain the bias and MSE of t3 to the first degree of approximation, we define  
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Expressing (1.5) in terms of e’s, we have  
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Expanding the right hand side of (2.1) and retaining terms up to second powers of e’s, we 

have  
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Taking expectations of both sides of (2.2) and then subtracting Y  from both sides, we get 

the bias of the estimator t3 up to the first order of approximation, as 
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From (2.2), we have  
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Squaring both sides of (2.4) and then taking expectations we get MSE of the estimator t3, 

up to the first order of approximation as  

 ⎥⎦
⎤

⎢⎣
⎡ −+= )K

4
1(CCYf)t(MSE p

2
p

2
y

2
13       (2.5) 

To obtain the bias and MSE of t4 to the first degree of approximation, we express (1.6) in 

terms of e’s 
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and following the above procedure, we get the bias and MSE of t4 as follows 
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3. Proposed class of estimators 

It has been theoretically established that, in general, the linear regression 

estimator is more efficient than the ratio (product) estimator except when the regression 

line of y on x passes through the neighborhood of the origin, in which case the 

efficiencies of these estimators are almost equal. Also in many practical situations the 

regression line does not pass through the neighborhood of the origin. In these situations, 

the ratio estimator does not perform as good as the linear regression estimator. The ratio 

estimator does not perform well as the linear regression estimator does.  

Following Singh and Espejo (2003), we propose following class of ratio-product 

type exponential estimators: 
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where α  is a real constant to be determined such that the MSE of t5 is minimum. 

For α=1, t5 reduces to the estimator ⎟⎟
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Bias and MSE of t5: 

Expressing (3.1) in terms of e’s, we have  
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Expanding the right hand side of (3.2) and retaining terms up to second powers of e’s, we 

have 
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Taking expectations of both sides of (3.3) and then subtracting Y  from both sides, we get 

the bias of the estimator t5 up to the first order of approximation, as 
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From (3.3), we have 
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Squaring both sides of (3.5) and then taking expectations we get MSE of the estimator t5, 

up to the first order of approximation as 
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Minimization of (3.6) with respect to α  yields optimum value of as 
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Substitution of (3.7) in (3.1) yields the optimum estimator for t5 as (t5)opt (say)with 

minimum MSE as  

 )t(MSE.min 5 = ( )2
pb

2
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which is same as that of traditional linear regression estimator. 

4. Efficiency comparisons  

In this section, the conditions for which the proposed estimator t5 is better than y , t1, 

t2, t3, and t4 have been obtained. The variance of y  is given by 
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To compare the efficiency of the proposed estimator t5 with the existing estimator, from 

(4.1) and (1.3), (1.4), (2.5), (2.8) and (3.8), we have  
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Using (4.2)-(4.6), we conclude that the proposed estimator t5 outperforms y , t1, t2, t3, and 

t4. 

5. Empirical study 

We now compare the performance of various estimators considered here using the 

following data sets: 
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Population 1. [Source: Sukhatme and Sukhatme (1970), p. 256] 

y = number of villages in the circles and  

φ = A circle consisting more than five villages.  

N = 89, Y =3.360, P = 0.1236, pbρ = 0.766, Cy = 0.60400, Cp = 2.19012. 

Population 2. [Source: Mukhopadhyaya, (2000), p. 44] 

Y= Household size and  

φ = A household that availed an agricultural loan from a bank. 

N = 25, Y =9.44, P = 0.400, pbρ = -0.387, Cy = 0.17028, Cp = 1.27478. 

The percent relative efficiency (PRE’s) of the estimators y , t1-t4 and (t5)opt with respect to 
unusual unbiased estimator y  have been computed and compiled in table 5.1. 
 

Table 5.1: PRE of various estimators  with respect to y . 

Estimator PRE’s (., y ) 

 Population 

 I II 

y  100 100 

t1 11.63 1.59 

t2 5.07 1.94 

t3 66.24 5.57 

t4 14.15 8.24 

(t5)0 241.98 117.61 
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Table 5.1 shows that the proposed estimator t5 under optimum condition performs 

better than the usual sample mean y , Naik and Gupta (1996) estimators (t1 and t2) and 

the ratio and product type exponential estimators (t3 and t4). 

 

6. Double sampling  

In some practical situations when P is not known apriori, the technique of two-phase 

sampling is used. Let p’ denote the proportion of units possessing attributeφ  in the first 

phase sample of size n’; p denote the proportion of units possessing attributeφ  in the 

second phase sample of size n < n’ and y  denote the mean of the study variable y in the 

second phase sample.    

When P is not known, two-phase ratio and product type exponential estimator are 

given by 

  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=
p'p
p'pexpyt 6        (6.1) 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=
'pp
'ppexpyt 7        (6.2) 

To obtain the bias and MSE of t6 and t7, we write  
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where 
N
1

'n
1f2 −= . 

Expressing (6.1) in terms of e’s, we have  
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Expanding the right hand side of (6.3) and retaining terms up to second powers of e’s, we 

have 
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Taking expectations of both sides of (6.4) and then subtracting Y  from both sides, we get 

the bias of the estimator t6 up to the first order of approximation, as 
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Squaring both sides of (6.6) and then taking expectations we get MSE of the estimator t6, 

up to the first order of approximation as 
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To obtain the bias and MSE of t7 to the first degree of approximation, we express (6.2) in 

terms of e’s as 
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Expanding the right hand side of (6.8) and retaining terms up to second powers of e’s, we 

have 
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Taking expectations of both sides of (6.9) and then subtracting Y  from both sides, we get 

the bias of the estimator t7 up to the first order of approximation, as 
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From (6.9), we have 
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Squaring both sides of (6.11) and then taking expectations we get MSE of the estimator 

t7, up to the first order of approximation as 
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7. Proposed class of estimators in double sampling  

We propose the following class of estimators in double sampling  
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where 1α  is a real constant to be determined such that the MSE of t8 is minimum. 
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Bias and MSE of t8: 

Expressing (7.1) in terms of e’s, we have 
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Expanding the right hand side of (7.2) and retaining terms up to second powers of e’s, we 
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Taking expectations of both sides of (7.3) and then subtracting Y  from both sides, we get 

the bias of the estimator t8 up to the first order of approximation, as 
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From (7.3), we have 
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Squaring both sides of (7.5) and then taking expectations we get MSE of the estimator t8, 

up to the first order of approximation as 
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Minimization of (7.6) with respect to 1α  yields optimum value of as 
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Substitution of (7.7) in (7.1) yields the optimum estimator for t8 as (t8)opt (say) with 

minimum  MSE  as  
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which is same as that of traditional linear regression estimator. 

8. Efficiency comparisons 

The MSE of usual two-phase ratio and product estimator is given by 
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From  (4.1), (6.7), (6.12), (8.1), (8.2) and (7.8) we have 

0f)t(M)yvar( 2
pb308 ≥ρ=− .       (8.3) 

0C
2

C
f)t(M)t(MSE

2

ypb
p

3086 ≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ−=− .     (8.4) 

0C
2

C
f)t(M)t(MSE

2

ypb
p

3087 ≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ+=− .     (8.5) 

( ) 0CCf)t(M)t(MSE 2
ypbp3089 ≥ρ−=− .     (8.6) 



 14

( ) 0CCf)t(M)t(MSE 2
ypbp30810 ≥ρ+=− .     (8.7) 

From (8.3)-(8.7), we conclude that our proposed estimator t8 is better than y , t6, t7, t9, and 

t10. 

9. Empirical study 

The various results obtained in the previous section are now examined with the 

help of following data: 

Population 1. [Source: Sukhatme and Sukhatme( 1970), p. 256] 

N = 89, n′  = 45, n = 23, y  = 1322, p = 0.1304, p′= 0.1333, pbρ  = 0.408, Cy = 0.69144, 

Cp = 2.7005. 

Population 2. [Source: Mukhopadhyaya( 2000), p. 44] 

N = 25,  n′= 13, n = 7, y  = 7.143, p = 0.294, p′  = 0.308, pbρ  = -0.314, Cy = 0.36442,    

Cp =1.34701. 

Table 9.1: PRE of various estimators (double sampling) with respect to y . 

Estimator PRE’s (., y ) 

 Population 

 I II 

y  100 100 

t6 40.59 25.42 

t7 21.90 40.89 

t9 11.16 8.89 

t10 7.60 12.09 

(t8)0 112.32 106.74 
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Table 9.1 shows that the proposed estimator t8 under optimum condition performs better 

than the usual sample mean y , t6, t7, t9, and t10. 
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