A Note On Testing Of Hypothesis

Rajesh Singh School of Statistics, D. A.V.V., Indore (M.P.), India rsinghstat@yahoo.co.in

Jayant Singh
Department of Statistics
Rajasthan University, Jaipur, India
Jayantsingh47@rediffmail.com

Florentin Smarandache
Chair of Department of Mathematics, University of New Mexico, Gallup, USA
fsmarandache@yahoo.com

Abstract: In this paper problem of testing of hypothesis is discussed when the samples have been drawn from normal distribution. The study of hypothesis testing is also extended to Baye's set up.

Keywords: Hypothesis, level of significance, Baye's rule.

1. Introduction

Let the random variable (r.v.) X have a normal distribution $N(\theta, \sigma^2)$, σ^2 is assumed to be known. The hypothesis $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1, \ \theta_1 > \theta_0$ is to be tested. Let $X_1, \ X_2, \ \dots, \ X_n$ be a random sample from $N(\theta, \ \sigma^2)$ population. Let $\overline{X}(=\frac{1}{n}\sum_{i=1}^n X_i)$ be the sample mean.

By Neyman – Pearson lemma the most powerful test rejects H_0 at α % level of significance,

if
$$\frac{\sqrt{n}(\overline{X} - \theta_o)}{\sigma} \ge d_\alpha$$
, where d_α is such that

$$\int_{d_{\alpha}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{Z^2}{2}} dZ = \alpha$$

If the sample is such that H_0 is rejected then will it imply that H_1 will be accepted?

In general this will not be true for all values of θ_1 , but will be true for some specific value of θ_1 i.e., when θ_1 is at a specific distance from θ_0 .

$$H_0$$
 is rejected if $\frac{\sqrt{n}(\overline{X} - \theta_o)}{\sigma} \ge d_{\alpha}$

i.e.
$$\overline{X} \geq \theta_0 + d_\alpha \frac{\sigma}{\sqrt{n}}$$
 (1)

Similarly the Most Powerful Test will accept H₁ against H₀

if
$$\frac{\sqrt{n}(\overline{X} - \theta_1)}{\sigma} \ge -d_{\alpha}$$

i.e.
$$\overline{X} \geq \theta_1 - d_\alpha \frac{\sigma}{\sqrt{n}}$$
 (2)

Rejecting H₀ will mean accepting H₁

if
$$(1) \Rightarrow (2)$$

i.e.
$$\overline{X} \geq \theta_0 + d_\alpha \frac{\sigma}{\sqrt{n}} \implies \overline{X} \geq \theta_1 - d_\alpha \frac{\sigma}{\sqrt{n}}$$

i.e.
$$\theta_1 - d_\alpha \frac{\sigma}{\sqrt{n}} \le \theta_0 + d_\alpha \frac{\sigma}{\sqrt{n}}$$
 (3)

Similarly accepting H₁ will mean rejecting H₀

if
$$(2) \Rightarrow (1)$$

i.e.
$$\theta_0 + d_\alpha \frac{\sigma}{\sqrt{n}} \le \theta_1 - d_\alpha \frac{\sigma}{\sqrt{n}}$$
 (4)

From (3) and (4) we have

$$\theta_0 + d_\alpha \frac{\sigma}{\sqrt{n}} = \theta_1 - d_\alpha \frac{\sigma}{\sqrt{n}}$$

i.e.
$$\theta_1 - \theta_0 = 2 d_\alpha \frac{\sigma}{\sqrt{n}}$$
 (5)

Thus
$$d_{\alpha} \frac{\sigma}{\sqrt{n}} = \frac{\theta_1 - \theta_0}{2}$$
 and $\theta_1 = \theta_0 + 2 d_{\alpha} \frac{\sigma}{\sqrt{n}}$.

From (1) Reject
$$H_0$$
 if $\overline{X} > \theta_0 + \frac{\theta_1 - \theta_0}{2} = \frac{\theta_0 + \theta_1}{2}$

and from (2) Accept
$$H_1$$
 if $\overline{X} > \theta_1 - \frac{\theta_1 - \theta_0}{2} = \frac{\theta_0 + \theta_1}{2}$

Thus rejecting H_0 will mean accepting H_1

when
$$\overline{X} > \frac{\theta_0 + \theta_1}{2}$$
.

From (5) this will be true only when $\theta_1 = \theta_0 + 2 d_\alpha \frac{\sigma}{\sqrt{n}}$. For other values of

 $\theta_1 \ \neq \ \theta_0 + 2 \ d_\alpha \frac{\sigma}{\sqrt{n}} \ \text{rejecting H_0 will not mean accepting H_1.}$

It is therefore, recommended that instead of testing H_0 : $\theta=\theta_0$ against H_1 : $\theta=\theta_1$, $\theta_1>\theta_0$, it is more appropriate to test H_0 : $\theta=\theta_0$ against H_1 : $\theta>\theta_0$. In this situation rejecting H_0 will mean $\theta>\theta_0$ and is not equal to some given value θ_1 .

But in Baye's setup rejecting H_0 means accepting H_1 whatever may be θ_0 and θ_1 . In this set up the level of significance is not a preassigned constant, but depends on θ_0 , θ_1 , σ^2 and n.

Consider (0,1) loss function and equal prior probabilities $\frac{1}{2}$ for θ_0 and θ_1 . The Baye's test rejects H_0 (accept H_1)

if
$$\overline{X} > \frac{\theta_0 + \theta_1}{2}$$

and accepts H₀ (rejects H₁)

$$\text{if } \quad \overline{X} < \frac{\theta_0 + \theta_1}{2}.$$

[See Rohatagi p.463, Example 2]

The level of significance is given by

$$\begin{array}{ll} P_{H_0} \,\, [\, \overline{X} \, > \, \frac{\theta_0 + \theta_1}{2} \,] \,\, = \,\, P_{H_0} \, [\, \frac{(\overline{X} - \theta_0) \sqrt{n}}{\sigma} \,\, > \,\, \frac{(\theta_1 - \theta_0) \sqrt{n}}{2\sigma} \,\,] \\ \\ \\ &= \,\, 1 - \, \Phi \! \bigg(\frac{\sqrt{n} \, (\theta_1 - \theta_0}{2\sigma} \bigg) \,\, \end{array}$$

where
$$\Phi(t) = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-\frac{Z^2}{2}} dZ$$
.

Thus the level of significance depends on θ_0 , θ_1 , σ^2 and n.

Acknowledgement : Author's are thankful to Prof. Jokhan Singh for suggesting this problem.

References

Lehmann, E.L. (1976): Testing Statistical Hypotheses, Wiley Eastern Ltd., New Delhi.

Rohatagi, V.K. (1985): An introduction to probability theory and mathematical statistics, Wiley Eastern Ltd., New Delhi.