
 
A General Class of Estimators of Population Median Using Two Auxiliary 

Variables in Double Sampling 
 
 

  Jack Allen1 , Housila P. Singh2, Sarjinder Singh3, Florentin Smarandache4  
 
             1 School of Accounting and Finance, Griffith University, Australia 
                    2 School of Studies in Statistics, Vikram University, Ujjain - 456 010 (M. P.), India 
          3 Department of Mathematics and Statistics, University of Saskatchewan, Canada 
          4 Department of Mathematics, University of New Mexico, Gallup, USA 
 

 
Abstract: 

In this paper we have suggested two classes of estimators for population median MY of the study 
character Y using information on two auxiliary characters X and Z in double sampling.  It has 
been shown that the suggested classes of estimators are more efficient than the one suggested by 
Singh et al (2001).  Estimators based on estimated optimum values have been also considered 
with their properties.  The optimum values of the first phase and second phase sample sizes are 
also obtained for the fixed cost of survey. 
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1. INTRODUCTION 
 
In survey sampling, statisticians often come across the study of variables which have highly 
skewed distributions, such as income, expenditure etc.  In such situations, the estimation of 
median deserves special attention.  Kuk and Mak (1989) are the first to introduce the estimation 
of population median of the study variate Y using auxiliary information in survey sampling.  
Francisco and Fuller (1991) have also considered the problem of estimation of the median as part 
of the estimation of a finite population distribution function.  Later Singh et al (2001) have dealt 
extensively with the problem of estimation of median using auxiliary information on an auxiliary 
variate in two phase sampling. 
 
Consider a finite population U={1,2,…,i,...,N}.  Let Y and X be the variable for study and 
auxiliary variable, taking values Yi and Xi respectively for the i-th unit.  When the two variables 
are strongly related but no information is available on the population median MX of X, we seek 
to estimate the population median MY of Y from a sample Sm, obtained through a two-phase 
selection.  Permitting simple random sampling without replacement (SRSWOR) design in each 
phase, the two-phase sampling scheme will be as follows: 
 
 (i) The first phase sample Sn(Sn⊂U) of fixed size n is drawn to observe only X in 

order to furnish an estimate of MX. 
 
 (ii) Given Sn, the second phase sample Sm(Sm⊂Sn) of fixed size m is drawn to observe 

Y only. 
 
Assuming that the median MX of the variable X is known, Kuk and Mak (1989) suggested a ratio 
estimator for the population median MY of Y as 
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where YM̂  and XM̂  are the sample estimators of MY and MX respectively based on a sample Sm 

of size m.  Suppose that y(1), y(2), …, y(m) are the y values of sample units in ascending order.  
Further, let t be an integer such that Y(t) ≤ MY ≤Y(t+1) and let p=t/m be the proportion of Y, values 
in the sample that are less than or equal to the median value MY, an unknown population 

parameter.  If p̂  is a predictor of p, the sample median YM̂ can be written in terms of quantities 

as ( )pQY ˆˆ  where 5.0ˆ =p .  Kuk and Mak (1989) define a matrix of proportions (Pij(x,y)) as 
 

 Y ≤ MY Y > MY Total 
X ≤ MX P11(x,y) P21(x,y) P⋅1(x,y) 
X > MX P12(x,y) P22(x,y) P⋅2(x,y) 

Total P1⋅(x,y) P2⋅(x,y) 1 
 
and a position estimator of My given by 
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with ),(ˆ yxpij  being the sample analogues of the Pij(x,y) obtained from the population and mx the 

number of units in Sm with X ≤ MX. 
 

Let )(
~

yFYA  and )(
~

yFYB  denote the proportion of units in the sample Sm with X ≤ MX, and 
X>MX, respectively that have Y values less than or equal to y. Then for estimating MY, Kuk and 
Mak (1989) suggested the 'stratification estimator' as 
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It is to be noted that the estimators defined in (1.1), (1.2) and (1.3) are based on prior knowledge 
of the median MX of the auxiliary character X.  In many situations of practical importance the 
population median MX of X may not be known.  This led Singh et al (2001) to discuss the 
problem of estimating the population median MY in double sampling and suggested an analogous 
ratio estimator as 
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where 1ˆ
XM  is sample median based on first phase sample Sn. 

 
Sometimes even if MX is unknown, information on a second auxiliary variable Z, closely related 
to X but compared X remotely related to Y, is available on all units of the population.  This type 
of situation has been briefly discussed by, among others, Chand (1975), Kiregyera (1980, 84), 
Srivenkataramana and Tracy (1989), Sahoo and Sahoo (1993) and Singh (1993).  Let MZ be the 
known population median of Z.  Defining 
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such that E(ek)≅0 and ek<1 for k=0,1,2,3; where 2M̂  and 1
2M̂  are the sample median 

estimators based on second phase sample Sm and first phase sample Sn.  Let us define the 
following two new matrices as 
 

 Z ≤ MZ Z > MZ Total 
X ≤ MX P11(x,z) P21(x,z) P⋅1(x,z) 
X > MX P12(x,z) P22(x,z) P⋅2(x,z) 

Total P1⋅(x,z) P2⋅(x,z) 1 
 
and 
 

 Z ≤ MZ Z > MZ Total 
Y ≤ MY P11(y,z) P21(y,z) P⋅1(y,z) 
Y > MY P12(y,z) P22(y,z) P⋅2(y,z) 

Total P1⋅(y,z) P2⋅(y,z) 1 
 
Using results given in the Appendix-1, to the first order of approximation, we have 
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E(e4
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N  (4n)-1{MZfZ(MZ)}-2, 

E(e0e1) = 
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N  (4m)-1{4P11(x,y)-1}{MXMYfX(MX)fY(MY)}-1, 
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where it is assumed that as N→∞ the distribution of the trivariate variable (X,Y,Z) approaches a 
continuous distribution with marginal densities fX(x), fY(y) and fZ(z) for X, Y and Z respectively.  
This assumption holds in particular under a superpopulation model framework, treating the 
values of (X, Y, Z) in the population as a realization of N independent observations from a 
continuous distribution.  We also assume that fY(MY), fX(MX) and fZ(MZ) are positive. 
 

Under these conditions, the sample median YM̂ is consistent and asymptotically normal (Gross, 
1980) with mean MY and variance 
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In this paper we have suggested a class of estimators for MY using information on two auxiliary 
variables X and Z in double sampling and analyzes its properties. 
 
2. SUGGESTED CLASS OF ESTIMATORS 
 
Motivated by Srivastava (1971), we suggest a class of estimators of MY of Y as 
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==  and g(u,v) is a function of  u and v such that g(1,1)=1 and such that it 

satisfies the following conditions. 
 
1. Whatever be the samples (Sn and Sm) chosen, let (u,v) assume values in a closed convex 

sub-space, P, of the two dimensional real space containing the point (1,1). 
 
2. The function g(u,v) is continuous in P, such that g(1,1)=1. 
 
3. The first and second order partial derivatives of g(u,v) exist and are also continuous in P. 
 
Expanding g(u,v) about the point (1,1) in a second order Taylor's series and taking expectations, 
it is found that  
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so the bias is of order n−1. 
 



Using a first order Taylor's series expansion around the point (1,1) and noting that g(1,1)=1, we 
have 
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where g1(1,1) and g2(1,1) denote first order partial derivatives of g(u,v) with respect to u and v 
respectively around the point (1,1). 
 

Squaring both sides in (2.2) and then taking expectations, we get the variance of )(ˆ g
YM  to the 

first degree of approximation, as 
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The variance of ( )g
YM̂  in (2.3) is minimized for 
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Thus the resulting (minimum) variance of ( )g
YM  is given by 

 

( )( )
( )( )

( )( ) ( )( )



 −


 −−−


 −−


 −= 1,4111,41111

4

1ˆVar min. 11
2

112
zyP

Nn
yxP

nmNmMf
M

YY

g
Y    

 (2.7) 
 
Now, we proved the following theorem. 
 



Theorem 2.1 - Up to terms of order n-1, 
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It is interesting to note that the lower bound of the variance of ( )g
yM̂  at (2.1) is the variance of 

the linear regression estimator 
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with ( )yxp ,ˆ11  and ( )zyp ,ˆ11  being the sample analogues of the ( )yxp ,11  and ( )zyp ,11  

respectively and ( ) ( )XXYY MfMf ˆ,ˆˆ  and ( )ZZ Mf̂  can be obtained by following Silverman (1986). 
 
Any parametric function g(u,v) satisfying the conditions (1), (2) and (3) can generate an 
asymptotically acceptable estimator.  The class of such estimators are large.  The following 
simple functions g(u,v) give even estimators of the class 
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Let the seven estimators generated by g(i)(u,v) be denoted by ( ) ( )( ) ( )7 to1,,ˆˆ == ivugMM i
Y

g
Yi .  It 

is easily seen that the optimum values of the parameters α,β,wi(i-1,2) are given by the right hand 
sides of (2.6). 



 
3. A WIDER CLASS OF ESTIMATORS 
 
The class of estimators (2.1) does not include the estimator 
 

( ) ( ) ( )21
1

2
1

1 ,,ˆˆˆˆ ddMMdMMdMM ZZXXYYd −+−+=  

 
being constants. 
 
However, it is easily shown that if we consider a class of estimators wider than (2.1), defined by 
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of MY, where G(⋅) is a function of YM̂ , u and v such that ( ) YY MMG =1,1,  and ( ) 11,1,1 =YMG .  

( )1,1,1 YMG  denoting the first partial derivative of G(⋅) with respect to YM̂ . 
 

Proceeding as in Section 2 it is easily seen that the bias of ( )G
YM̂  is of the order n−1 and up to this 

order of terms, the variance of ( )G
YM̂  is given by 
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 (3.2) 
 
where G2(MY1,1) and G3(MY1,1) denote the first partial derivatives of u and v respectively 
around the point (MY,(1,1). 
 

The variance of ( )G
YM̂  is minimized for 
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Substitution of (3.3) in (3.2) yields the minimum variance of ( )G
YM̂  as 
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(3.4) 
 
Thus we established the following theorem.  Theorem 3.1 - Up to terms of order n-1, 
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with equality holding if 
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If the information on second auxiliary variable z is not used, then the class of estimators ( )G
YM̂  

reduces to the class of estimators of MY as 
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⋅∂= .  The estimator ( )H

YM̂  is reported by Singh et al (2001). 

 

The minimum variance of ( )H
YM̂  to the first degree of approximation is given by 
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From (3.4) and (3.6) we have 
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which is always positive.  Thus the proposed class of estimators ( )G
YM̂  is more efficient than the 

estimator ( )H
YM̂  considered by Singh et al (2001). 



 
4. ESTIMATOR BASED ON ESTIMATED OPTIMUM VALUES 
 
We denote 
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In practice the optimum values of g1(1,1)(=-α1) and g2(1,1)(=-α2) are not known.  Then we use 
to find out their sample estimates from the data at hand.  Estimators of optimum value of g1(1,1) 
and g2(1,1) are given as 
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Now following the procedure discussed in Singh and Singh (19xx) and Srivastava and Jhajj 
(1983), we define the following class of estimators of MY (based on estimated optimum) as 
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and such that it satisfies the following conditions: 
 
1. Whatever be the samples (Sn and Sm) chosen, let 21 ˆˆ,, ααvu  assume values in a closed 

convex sub-space, S, of the four dimensional real space containing the point (1,1,α1,α2). 
 
2. The function g*(u,v, α1, α2) continuous in S. 
 
3. The first and second order partial derivatives of ( )21 ˆ,ˆ,,* ααvug  exst. and are also 

continuous in S. 
 
Under the above conditions, it can be shown that 
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and to the first degree of approximation, the variance of ( )*ˆ g
YM  is given by 
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YM̂min.Var  is given in (2.7). 

 
A wider class of estimators of MY based on estimated optimum values is defined by 
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are the estimates of 
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Under these conditions it can be easily shown that 
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and to the first degree of approximation, the variance of ( )*ˆ G
YM  is given by 
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G
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where ( )G
YM̂min.Var  is given in (3.4). 

 

It is to be mentioned that a large number of estimators can be generated from the classes ( )*ˆ g
YM  

and ( )*ˆ G
YM  based on estimated optimum values. 

 
5. EFFICIENCY OF THE SUGGESTED CLASS OF ESTIMATORS FOR FIXED COST 
 
The appropriate estimator based on on single-phase sampling without using any auxiliary 

variable is YM̂ , whose variance is given by 
 

( )
( )( )24

111ˆVar
YY

Y
MfNm

M 




 −=     (5.1) 

 



In case when we do not use any auxiliary character then the cost function is of the form C0-mC1, 
where C0 and C1 are total cost and cost per unit of collecting information on the character Y. 
 
The optimum value of the variance for the fixed cost C0 is given by  
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When we use one auxiliary character X then the cost function is given by 
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where C2 is the cost per unit of collecting information on the auxiliary character Z. 
 

The optimum sample sizes under (5.4) for which the minimum variance of ( )H
YM̂  is optimum, 

are 
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where V1=V0(4P11(x,y)-1)2. 
 

Putting these optimum values of m and n in the minimum variance expression of ( )H
YM̂  in (3.6), 

we get the optimum ( )( )H
YM̂min.Var  as 
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Similarly, when we use an additional character Z then the cost function is given by 
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where C3 is the cost per unit of collecting information on character Z. 
 
It is assumed that C1>C2>C3.  The optimum values of m and n for fixed cost C0 which minimizes 

the minimum variance of ( ) ( ))(ˆorˆ G
Y

g
Y MM  (2.7) (or (3.4)) are given by 
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where V2=V0(4P11(y,z)-1)2. 
 

The optimum variance of ( ) ( )( )G
Y

g
Y MM ˆorˆ  corresponding to optimal two-phase sampling strategy 

is 
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Assuming large N, the proposed two phase sampling strategy would be profitable over single 
phase sampling so long as  
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When N is large, the proposed two phase sampling is more efficient than that Singh et al (2001) 
strategy if 
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6. GENERALIZED CLASS OF ESTIMATORS 
 
We suggest a class of estimators of MY as  
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where ZZZZXX MMwMMvMMu /ˆ,/ˆ,ˆ/ˆ =′=′=  and the function F(⋅) assumes a value in a 

bounded closed convex subset W⊂ℜ4, which contains the point (MY,1,1,1)=T and is such that 

F(T)=MY⇒F1(T)=1, F1(T) denoting the first order partial derivative of F(⋅) with respect to YM̂   
around the point T=(MY,1,1,1).  Using a first order Taylor's series expansion around the point T, 
we get 
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where F2(T), F3(T) and F4(T) denote the first order partial derivatives of ( )wvuMF Y ,,,ˆ  with 
respect to u, v and w around the point T respectively.  Under the assumption that F(T)=MY and 
F1(T)=1, we have the following theorem. 
 
Theorem 6.1.  Any estimator in ℑ is asymptotically unbiased and normal. 
 
Proof:  Following Kuk and Mak (1989), let PY, PX and PZ denote the proportion of Y, X and Z 
values respectively for which Y≤MY, X≤MX and Z≤MZ; then we have 
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Using these expressions in (6.2), we get the required results. 
 
Expression (6.2) can be rewritten as 
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Squaring both sides of (6.3) and then taking expectation, we get the variance of ( )F
YM̂  to the first 

degree of approximation, as 
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The ( )( )F
YM̂Var  at (6.4) is minimized for 
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Thus the resulting (minimum) variance of ( )F
YM̂  is given by  
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where 
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and ( )( )G
YM̂min.Var  is given in (3.4) 

 

Expression (6.6) clearly indicates that the proposed class of estimators ( )F
YM̂  is more efficient 

than the class of estimator ( ) ( )( )g
Y

G
Y MM ˆor  ˆ  and hence the class of estimators ( )H

YM̂  suggested 

by Singh et al (2001) and the estimator YM̂  at its optimum conditions. 
 
The estimator based on estimated optimum values is defined by 
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are the sample estimates of a1, a2 and a3 given in (6.5) respectively, F*(⋅) is a function of 
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where T* = (MY,1,1,1,a1,a2,a3) 
 
Under these conditions it can easily be shown that 
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and to the first degree of approximation, the variance of ( )*ˆ F
YM  is given by 
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where ( )( )F
YM̂min.Var  is given in (6.6). 

 
Under the cost function (5.8), the optimum values of m and n which minimizes the minimum 

variance of ( )F
YM̂  is (6.6) are given by 
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for large N, the optimum value of ( )( )F
YM̂min.Var  is given by 

 

( )( )[ ] ( ) ( )( )[ ]
0

323211310ˆmin.VarOpt.
C

CCVVVCVVV
M F

Y

++−+−−
=   (6.13) 

 
The proposed two-phase sampling strategy would be profitable over single phase-sampling so 

long as ( )[ ] ( )( )[ ]F
YM YM̂min.VarOpt.ˆVarOpt. >  

 
2

321

3100

1

32i.e.












+−

−−−
<

+
VVV

VVVV

c

CC
    (6.14) 

 
It follows from (5.7) and (6.13) that 
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for large N. 
 
Further we note from (5.11) and (6.13) that 
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